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Abstract

Explicit solutions to constrained linear model predictive control problems can be obtained by solving multi-parametric quadratic programs
(mp-QP) where the parameters are the components of the state vector. We study the properties of the polyhedral partition of the state
space induced by the multi-parametric piecewise a4ne solution and propose a new mp-QP solver. Compared to existing algorithms, our
approach adopts a di5erent exploration strategy for subdividing the parameter space, avoiding unnecessary partitioning and QP problem
solving, with a signi6cant improvement of e4ciency.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Our motivation for investigating multi-parametric
quadratic programming (mp-QP) comes from linear model
predictive control (MPC). This refers to a class of control
algorithms that compute a manipulated variable trajectory
from a linear process model to minimize a quadratic per-
formance index subject to linear constraints on a prediction
horizon. The 6rst control input is then applied to the pro-
cess. At the next sample, measurements are used to update
the optimization problem, and the optimization is repeated.
In this way, this becomes a closed-loop approach. There
has been some limitation to which processes MPC could
be used on, due to the computationally expensive on-line
optimization which was required. There has recently been
derived explicit solutions to the constrained MPC prob-
lem, which could increase the area of use for this kind of
controllers. Explicit solutions to MPC problems are not
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mainly intended to replace traditional implicit MPC, but
rather to extend its area of use. MPC functionality can with
this be applied to applications with sampling rates in the
�-sec range, using low cost embedded hardware. Software
complexity and reliability is also improved, allowing the
approach to be used on safety-critical applications. Methods
for e4cient online implementation of PWA function eval-
uation in explicit MPC has been developed by exploiting
convexity (Borrelli, Baotic, Bemporad, & Morari, 2001) or
an associated binary search tree data structure (THndel & Jo-
hansen 2002; THndel, Johansen, & Bemporad, 2003). In-
dependent works by Bemporad, Morari, Dua, and Pis-
tikopoulos (2002), Bemporad, Morari, Dua, and Pistikopou-
los (2000b), Johansen, Petersen, & Slupphaug (2002) and
Seron, De Dona, and Goodwin (2000) have reported how a
piecewise a4ne (PWA) solution can be computed o5-line,
while the on-line e5ort is limited to evaluate this PWA func-
tion. In particular, in Bemporad et al. (2002, 2000b) such a
PWA function is obtained by treating the MPC optimization
problem as a parametric program. Parametric programming
is a term for solving an optimization problem for a range of
parameter values. One can distinguish between parametric
programs, in which only one parameter is considered, and
multi-parametric programs, in which a vector of param-
eters is considered. The algorithm reported in Bemporad
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et al. (2002) is the only mp-QP algorithm known to the au-
thors for solving general linear MPC problems, while single
parameter parametric QP is treated in Berkelaar, Roos, and
Terlaky (1997). Multi-parametric LP (mp-LP) is treated in
Gal (1995) and Borrelli, Bemporad, and Morari (in press),
mp-LP in connection with MPC based on linear program-
ming is investigated in eBemporad, Borrelli, and Morari
(2003), and multi-parametric mixed-integer linear program-
ming (Dua & Pistikopoulos, 2000) is used in Bemporad,
Borrelli, and Morari (2000a) for obtaining explicit solutions
to hybrid MPC. The mp-LP algorithm of Gal (1995) and
the mp-QP algorithm presented in this paper are similar, but
while Gal (1995) uses simplex steps to solve the mp-LP, our
algorithm proceeds similar to an active set QP solver. The
problem of reducing the complexity of the PWA solution to
linear quadratic MPC problems is addressed in Johansen et
al. (2002) and Bemporad and Filippi (2003), and e4cient
on-line computation schemes of explicit MPC controllers
are proposed in Borrelli et al. (2001). This paper extends the
theoretical results of Bemporad et al. (2002), by analyzing
several properties of the geometry of the polyhedral parti-
tion and its relation to the combination of active constraints
at the optimum of the quadratic program. Based on these re-
sults, we derive a new exploration strategy for subdividing
the parameter space, which avoids: (i) unnecessary parti-
tioning, (ii) the solution to LP problems for determining an
interior point in each new region of the parameter space,
and (iii) the solution to the QP problem for such an interior
point. As a consequence, there is a signi6cant improvement
of e4ciency with respect to the algorithm of Bemporad et al.
(2002). Some preliminary results were presented in THndel,
Johansen, and Bemporad (2001a).

2. From linear MPC to an mp-QP problem

The main aspects of formulating a linear MPC problem
as a mp-QP will be repeated here for convenience (see
Bemporad et al., 2002, for further details). Consider the
linear system

x(t + 1) = Ax(t) + Bu(t)

y(t) = Cx(t);
(1)

where x(t)∈Rn is the state vector, u(t)∈Rm is the input
vector, A∈Rn×n, B∈Rn×m and (A; B) is a controllable pair.
For the current x(t), MPC solves the optimization problem

min
U

{
J (U; x(t)) = xTt+N |tPxt+N |t

+
N−1∑
k=0

xTt+k|tQxt+k|t + uTt+kRut+k

}

s:t:ymin6yt+k|t6ymax; k = 1; : : : ; N;

umin6 ut+k6 umax; k = 0; : : : ; M − 1;

ut+k = Kxt+k|t ; M6 k6N − 1;

xt|t = x(t);

xt+k+1|t = Axt+k|t + But+k ; k¿ 0;

yt+k|t = Cxt+k|t ; k¿ 0

(2)

with respect to U , [uTt ; : : : ; u
T
t+M−1]

T, where ymin ¡ 0
¡ymax, umin ¡ 0¡umax, R = R′ ¿ 0, Q = Q′¿ 0,
P = P′ ¿ 0, xk+t|t is the prediction of xt+k at time
t, and M is the control input horizon. When the 6-
nal cost matrix P and gain K are calculated from the
algebraic Riccati equation, under the assumption that
the constraints are not active for k¿N (2) exactly
solve the constrained (in6nite-horizon) LQR problem for
(1) with weights Q, R (see also, Sznaier & Damborg,
1987; Chmielewski & Manousiouthakis, 1996; Scokaert &
Rawlings, 1998). For simplicity we consider the regulator
problem (2), but the algorithm developed in this paper is
directly applicable to tracking and measured disturbance
rejection problems as described in Bemporad et al. (2002).
These problems can by some algebraic manipulation be
reformulated as

Vz(x(t)) = min
z

1
2 z

THz (3)

s:t: Gz6W + Sx(t); (4)

where z , U + H−1FTx(t) and x(t) is the current state,
which can be treated as a vector of parameters. Note that
H � 0 since R � 0. The number of inequalities is de-
noted by q and the number of free variables is nz = m · N .
Then z ∈Rnz , H ∈Rnz×nz , G ∈Rq×nz , W ∈Rq×1, S ∈Rq×n,
F ∈Rn×q. The problem we consider here is to 6nd the solu-
tion of the optimization problems (3) and (4) in an explicit
form z∗ = z∗(x(t)). Bemporad et al. (2002) showed that
the solution z∗(x(t)) (and U ∗(x(t))) is a continuous PWA
function de6ned over a polyhedral partition of the parameter
space, and Vz(x(t)) is a convex (and therefore continuous)
piecewise quadratic function.

3. Background on mp-QP

As shown in Bemporad et al. (2002), the mp-QP prob-
lems (3) and (4) can be solved by applying the Karush–
Kuhn–Tucker (KKT) conditions

Hz + GT = 0;  ∈Rq; (5)

 i(Giz −Wi − Six) = 0; i = 1; : : : ; q; (6)

 ¿ 0; (7)

Gz −W − Sx6 0: (8)

For ease of notation we write x instead of x(t). In the sequel,
let the superscript index denote a subset of the rows of a
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matrix or vector. Since H has full rank, (5) gives

z =−H−1GT : (9)

De nition 1. Let z∗(x) be the optimal solution to (3) and
(4) for a given x. We de6ne active constraints the constraints
with Giz∗(x) − Wi − Six = 0, and inactive constraints the
constraints with Giz∗(x)−Wi−Six¡ 0. The optimal active
set A∗(x) is the set of indices of active constraints at the
optimum, A∗(x) = {i |Giz∗(x) = Wi + Six}. We also de-
6ne as weakly active constraint an active constraint with an
associated zero Lagrange multiplier  i, and as strongly ac-
tive constraint an active constraint with a positive Lagrange
multiplier  i.

Assume for the moment that we know the set A of con-
straints that are active at the optimum for a given x. We can
now form matricesGA,WA and SA, and the Lagrange mul-
tipliers  A¿ 0, corresponding to the optimal active set A.

De nition 2. For an active set, we say that the linear inde-
pendence constraint quali7cation (LICQ) holds if the set
of active constraint gradients are linearly independent, i.e.,
GA has full row rank.

Assuming that LICQ holds, (6) and (9) lead to

 A =−(GAH−1(GA)T)−1(WA + SAx): (10)

Eq. (10) can now be substituted into (9) to obtain

z = H−1(GA)T(GAH−1(GA)T)−1(WA + SAx): (11)

We have now characterized the solution to (3) and (4) for
a given optimal active set A ⊆ {1; : : : ; q}, and a 6xed x.
However, as long as A remains the optimal active set in a
neighborhood of x, the solution (11) remains optimal, when
z is viewed as a function of x. Such a neighborhood where
A is optimal is determined by imposing that z must remain
feasible (8)

GH−1(GA)T(GAH−1(GA)T)−1(WA + SAx)

6W + Sx (12)

and that the Lagrange multipliers  must remain non-
negative (7)

− (GAH−1(GA)T)−1(WA + SAx)¿ 0: (13)

Eqs. (12) and (13) describe a polyhedron in the state space.
This region is denoted as the critical region CR0 correspond-
ing to the given set A of active constraints, is a convex
polyhedral set, and represents the largest set of parameters
x such that the combination A of active constraints at the
minimizer is optimal (Bemporad et al., 2002).
The recursive algorithm of (Bemporad et al., 2002) can be

brieNy summarized as follows: Solve an LP to 6nd a feasible
parameter x0 ∈X , where X is the range of parameters for

CR0 R1
CR0

R4

R

R1
CR0

R5

R3
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R1
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2

(a) (b)
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Fig. 1. State space exploration strategy of Bemporad et al. (2002).

which the mp-QP is to be solved. Solve the QP (3) and (4)
with x = x0, to 6nd the optimal active set A for x0, and
then use (10)–(13) to characterize the solution and critical
region CR0 corresponding to A. Then divide the parameter
space as in Fig. 1(b) and (c) by reversing one by one the
hyperplanes de6ning the critical region. Iteratively subdivide
each new region Ri in a similar way as was done with X .
The main drawback of this algorithm is that the regions Ri

are not related to optimality, as they can split some of the
critical regions like CR1 in Fig. 1(d). A consequence is that
CR1 will be detected at least twice.

The following theorem characterizes the primal and dual
parametric solutions, and will be useful in the sequel.

Theorem 1. Consider Problems (3) and (4) with H � 0.
Let X ∈Rn be a polyhedron. Then the solution z∗(x) and
the Lagrange multipliers  ∗(x) of a mp-QP are piecewise
a:ne, functions of the parameters x, and z∗(x) is continu-
ous. Moreover, if LICQ holds for all x∈X ,  ∗(x) is also
continuous.

Proof. Follows easily from uniqueness (due to H ¿ 0 and
LICQ) of z∗(x) and  ∗(x), cf. Bemporad et al., (2002) and
Fiacco (1983).

4. Characterization of the partition

Below, we denote by z∗k (x) the linear expression of the
PWA function z∗(x) over the critical region CRk .

De nition 3. Let a polyhedron X ⊂ Rn be represented by
the linear inequalities A0x6 b. Let the ith hyperplane Ai

0x=
bi be denoted by H. If X ∩H is (n− 1)-dimensional then
X ∩H is called a facet of the polyhedron.

De nition 4. Two polyhedra are called neighboring poly-
hedra if they have a common facet.
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De nition 5. Let a polyhedron X be represented by
A0x6 b. We say that Ai

0x6 bi is redundant if Aj
0x6 bj

∀j �= i⇒ Ai
0x6 bi (i.e., it can be removed from the descrip-

tion of the polyhedron). The inequality i is redundant with
degree h if it is redundant and there exists a h-dimensional
subset Y of X such that Ai

0x = bi for all x∈Y .

De nition 6. A representation of a polyhedron (12)
and (13) is l-minimal if all redundant constraints have
degree h¿ l. It is minimal if there are no redundant
constraints.

Clearly, a representation of a polyhedron X ⊂ Rn is
minimal if it contains all inequalities de6ning facets, and
does not contain two or more coincident hyperplanes. Let
us consider a hyperplane de6ning the common facet be-
tween two polyhedra CR0, CRi in the optimal partition
of the state space. There are two di5erent kinds of hy-
perplanes. The 6rst (Type I) are those described by (12),
which represents a non-active constraint of (4) that be-
comes active at the optimum as x moves from CR0 to
CRi. As proved in the following theorem, this means that
if a polyhedron is bounded by a hyperplane which orig-
inates from (12), the corresponding constraint will be
activated on the other side of the facet de6ned by this
hyperplane. In addition, the corresponding Lagrange mul-
tiplier may become positive. The other kind (Type II) of
hyperplanes which bound the polyhedra are those described
by (13). In this case, the corresponding constraint will
be non-active on the other side of the facet de6ned by this
hyperplane.

Theorem 2. Consider an optimal active set {i1; i2; : : : ; ik}
and its corresponding minimal representation of the criti-
cal region CR0 obtained by (12) and (13) after removing
all redundant inequalities. Let CRi be a full-dimensional
neighboring critical region to CR0 and assume LICQ holds
on their common facet F=CR0 ∩H where H is the sep-
arating hyperplane between CR0 and CRi. Moreover, as-
sume that there are no constraints which are weakly active
at the optimizer z∗(x) for all x∈CR0. Then:
Type I: If H is given by Gik+1z∗0 (x)=Wik+1 +Sik+1x, then

the optimal active set in CRi is {i1; : : : ; ik ; ik+1}.
Type II: If H is given by  ik0 (x) = 0, then the optimal

active set in CRi is {i1; : : : ; ik−1}.

Proof. Let us 6rst prove Type I. In order for some con-
straint ij ∈{i1; : : : ; ik} not to be in the optimal active set in
CRi, by continuity of  ∗(x) (due to Theorem 1 and LICQ), it
follows that ( ∗)ij (x)=  ij0 (x)= 0 for all x∈F. Since there
are no constraints which are weakly active for all x∈CR0,
this would mean that constraint ij becomes non-active
at F. But this contradicts the assumption of minimality
since  ij0 (x)¿ 0 and Gik+1z∗0 (x)6Wik+1 + Sik+1x would be
coincident. On the other hand {i1; : : : ; ik} cannot be the
optimal active set on CRi because CR0 is the largest set

of x’s such that {i1; : : : ; ik} is the optimal active set. Then,
the optimal active set in CRi is a superset of {i1; : : : ; ik}.
Now assume that another constraint ik+2 is active in CRi.
That means Gik+2z∗i (x) = Wik+2 + Sik+2x in CRi, and by
continuity of z∗(x), the equality also holds for x∈F. How-
ever, Gik+2z∗0 (x) =Wik+2 + Sik+2x would then coincide with
Gik+1z∗0 (x) =Wik+1 + Sik+1x, which contradicts the assump-
tion of minimality. Therefore, only {i1; : : : ; ik ; ik+1} can
be the optimal active set in CRi. The proof for Type II is
similar.

Corollary 1. Consider the same assumptions as in Theo-
rem 2, except that the assumption of minimality is relaxed
into (n− 1)-minimality, i.e., two or more hyperplanes can
coincide. Let I ⊂ {i1; : : : ; ik} be the set of indices corre-
sponding to coincident hyperplanes in the (n− 1)-minimal
representation of (12) and (13) of CR0.

• every constraint ij where ij ∈{i1; i2; : : : ; ik}\I is active
in CRi,
• every constraint ij where ij �∈ {i1; i2; : : : ; ik} ∪I is inac-

tive in CRi.

We remark that coincident hyperplanes are rare, as from
(12) and (13) one can see that special structures of H , F ,
G, W , and S are required for two or more hyperplanes to
be coincident. Anyway, when for instance two hyperplanes
are coincident, by Corollary 1 there are three possible active
sets which have to be checked to 6nd the optimal active set
in CRi.

One should always a priori remove redundant con-
straints from Gz− Sx6W . This reduces the complexity of
the mp-QP, and may also avoid some degeneracies (see
Section 5).

Example 1. Consider the double integrator (Johansen et al.,
2002)

A=

[
1 Ts

0 1

]
; B=

[
T 2
s

Ts

]
;

where the sampling interval Ts=0:05, and consider the MPC
problem over the prediction horizon N=2with cost matrices
Q = diag([1 0]), R = 1. The constraints in the system are
−0:56 x26 0:5, −16 u6 1. The mp-QP associated with
this problem has the form (3) and (4) with

H =

[
1:079 0:076

0:076 1:073

]
; F =

[
1:109 1:036

1:573 1:517

]
;

GT =

[
1 0 −1 0 0:05 0:05 −0:05 −0:05
0 1 0 −1 0 0:05 0 −0:05

]
;

W T =
[
1 1 1 1 0:5 0:5 0:5 0:5

]
;
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Fig. 2. Critical regions for double integrator.

ST =[
1:0 0:9 −1:0 −0:9 0:1 0:1 −0:1 −0:1
1:4 1:3 −1:4 −1:3 −0:9 −0:9 0:9 0:9

]
:

We start the partitioning with the region where no con-
straints are active, which is full-dimensional because the
mp-QP is created from an MPC problem where upper
(lower) bounds on inputs and outputs are strictly positive
(negative), see Bemporad and Filippi (2003, Lemma 6).
This means that A0 = ∅, and GA, WA and SA are empty
matrices, z∗(x) = 0 and the 6rst component of U ∗(x) is
the unconstrained LQR law. This critical region is then de-
scribed by 06W + Sx; which contains eight inequalities.
Two of these inequalities are redundant with degree 0 (#2
and #4), the remaining six hyperplanes are facet inequali-
ties of the polyhedron (see Fig. 2a). By crossing the facet
given by H1, de6ned by inequality 1 and of Type I, as
predicted by Theorem 2 the optimal active set across this
facet is A1 = {1}, which leads to the critical region CR1

(see Fig. 2b). After removing redundant inequalities we are
left with a minimal representation of CR1 containing four
facets. The 6rst of these is of Type II,  1(x) = 0. The other
three are of Type I. These are inequalities #2, #6 and #7.
Consider 6rst the other side of the facet which comes from
 1(x)=0, see Fig. 2c. The region should not have constraint
1 active, so the optimal active set is A2 = ∅. This is the
same combination of active constraints as A0, as expected,
soA2 is not pursued. Next, consider crossing the respective
facets of inequalities 2, 6 and 7, see Figs. 2d–f. This results
in three di5erent active sets: A3 = {1; 2}, A4 = {1; 6} and
A5={1; 7}.A3 andA4 lead to new polyhedra as shown in
the 6gures. The combinationA5 leads to an interesting case
of “degeneracy”: The associated matrix GA has linearly
dependent rows, which violates the LICQ assumption. In

this case, A5 leads to an infeasible part of the state space.
A general treatment of degeneracy is given in the next
section.

Theorem 2 and Corollary 1 show how to 6nd the opti-
mal active set across a facet only by using the knowledge
of which kind of hyperplane the facet corresponds to,
except in degenerate cases, which is the topic of the next
section.

5. Degeneracy in mp-QP

We have so far assumed that LICQ holds on the com-
mon facet between two polyhedra, and that there are no con-
straints which are weakly active for all x within a critical
region. Such cases are referred to as degenerate. We will
6rst consider how to handle cases where LICQ is violated,
and then consider weakly active constraints.

Theorem 3. Consider a generic combination A ⊆
{1; : : : ; q} of active constraints and assume that the corre-
sponding rows [GA|−SA|−WA] are linearly independent.
If LICQ is violated, then the corresponding critical region
is not full-dimensional.

Proof. Let the active constraints be GAz = SAx + WA.
Since LICQ is violated, GA has not full rank and a reduced
set of equations can be de6ned without changing the solution
z∗(x): G′z = S ′x + W ′. Assume without loss of generality
that

GA =

[
G′

Gk

]
; SA =

[
S ′

Sk

]
; WA =

[
W ′

Wk

]
; (14)

where Gk , and Sk are row-vectors and Wk is a scalar.
Let CR′ and CRA be the critical regions where the active
sets corresponding to G′ and GA, respectively, are opti-
mal. The solution is z∗CR′(x) = z∗CRA(x) = Lx + v within
both CR′ and CRA, where L = H−1G′T(G′H−1G′T)−1S ′,
v = H−1G′T(G′H−1G′T)−1W ′. It is clear that CRA ⊂
{x∈Rn | [GA − SA][ z

∗
CRA

(x)
x ] =WA}=M and

M =

{
x∈Rn

∣∣∣∣∣
[
G′ −S ′

Gk −Sk

][
Lx + v

x

]
=

[
W ′

Wk

]}

=

{
x∈Rn |G′Lx − S ′x + G′v=W ′

(GkL− Sk)x + Gkv=Wk

}

= {x∈Rn | (GkL− Sk)x + Gkv=Wk}: (15)

If GkL �= Sk or Gkv �= Wk it follows that M is not a
full-dimensional subspace of Rn, and since CRA ⊂ M , nei-
ther is CRA. Suppose this does not hold, i.e., GkL= Sk and
Gkv=Wk . Since GA has not full rank, Gk =+G′, where + is
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a row-vector, and Sk =+G′H−1G′T(G′H−1G′T)−1S ′=+S ′,
Wk = +G′H−1G′T(G′H−1G′T)−1W ′ = +W ′. Then, there is
linear dependence between rows of [GA| − SA| −WA], a
contradiction.

In an MPC problem one might avoid full-dimensional
critical regions with violation of LICQ by simply slightly
perturbing the weight matrices and the constraints, with-
out producing signi6cant changes of the closed-loop behav-
ior. On the other hand, in some situations this may not be
possible, for instance equality constraints such as terminal
state constraints xt+N |t =0, would lead to violation of LICQ
(cf. Berkelaar et al., 1997, Example 6.3). In such cases,
full-dimensional critical regions can be handled by solving
a QP, as in THndel, Johansen, and Bemporad (2001b).
Next Theorem 4 provides a method to 6nd the optimal

active set in a neighboring region also when LICQ is violated
on the common facet. Before proceeding further, we need a
technical Lemma.

Lemma 1. Let the optimal active set in a critical region
CR0 be {i1; : : : ; ik}, and consider an minimal representation
of CR0. Assume that there are no constraints which are
weakly active for all x∈CR0 and that G{i1 ; :::; ik} does not
have linearly dependent rows. Let CRi be a full-dimensional
neighboring critical region to CR0, and letF be their com-
mon facet with F=CR0 ∩H and H is the Type I hyper-
plane Gik+1z∗0 (x)=Wik+1 + Sik+1x. Suppose G{i1 ; :::; ik ; ik+1} has
linearly dependent rows, such that LICQ is violated at F.
Then, if there is a feasible solution in CRi, the optimal ac-
tive set in CRi consists of constraint ik+1 and some subset
of {i1; : : : ; ik}.

Proof. Clearly, G{i1 ; :::; ik ; ik+1} collects the active constraints
at the optimal solution for x∈F. Consider now vectors x
in the interior of CRi. The active sets {i1; : : : ; ik+1} or any
active set including constraint ik+2 can be excluded using
similar arguments as in the proof of Theorem 2. Next, as-
sume that {i1; : : : ; ik−1} is the optimal active set in CRi. The
KKT conditions (5)–(8) together with the full row rank of
G{i1 ; :::; ik−1} gives that for each x∈CRi (also on the facets)
there is a unique solution to

Hz + (G{i1 ; :::; ik−1})T {i1 ; :::; ik−1} = 0;

 {i1 ; :::; ik−1} ¿ 0;  j = 0 for all j �∈ {i1; : : : ; ik−1}: (16)

Note that this solution still is unique at F, since  ij = 0 for
all ij �∈ {i1; : : : ; ik−1}. But in CR0 we have a unique solution
to

Hz + (G{i1 ; :::; ik})T {i1 ; :::; ik} = 0;

 {i1 ; :::; ik} ¿ 0;  ij = 0 for all ij �∈ {i1; : : : ; ik}: (17)

Due to continuity both of these solutions are valid on F.
This is a contradiction because the solutions are unique,

while we require  ik = 0 and ¿ 0. The only remaining pos-
sibility is that the optimal active set in CRi consists of ik+1

and a subset of {i1; : : : ; ik}.

Theorem 4. Make the same assumptions as in Lemma 1.
Consider the following LP:

max
 {i1 ;:::; ik ; ik+1}

 ik+1 ; (18)

s:t: Hz(x0) + (G{i1 ; :::; ik ; ik+1})T {i1 ; :::; ik ; ik+1} = 0; (19)

 {i1 ; :::; ik ; ik+1}¿ 0 (20)

for some x0 on F. If this LP has a bounded solution,
the optimal active set in CRi consists of the elements of
{i1; : : : ; ik ; ik+1} with  ij ¿ 0 in the solution. If the LP is
unbounded, CRi is an infeasible area of the parameter
space.

Proof. The solution z∗(x) to (5)–(8) on F is known from
the solution in CR0. The optimal Lagrange multipliers  ∗(x)
on F is then characterized by (19) and (20). The solution
to (5)–(8) in CRi must be valid also on F, in particular,
 ∗i (x) must satisfy (19) and (20) on F. From Lemma 1, the
optimal active set in CRi; consists of constraint ik+1 and a
proper subset of {i1; : : : ; ik}. Therefore, there must be a so-
lution onF which satis6es ( ik+1

i )∗(x)¿ 0 and ( iji )
∗(x)=0

for at least one ij ∈{i1; : : : ; ik}. With a 6xed  ik+1 = 0, (19)
de6nes nz equations in k unknowns (nz¿ k). But there ex-
ists a solution from CR0, such that a reduced set of equa-
tions can be de6ned with k equations in k unknowns. When
 ik+1 ¿ 0 (19) consists of k equations in k + 1 unknowns,
and  ij = fij ( ik+1) for any ij ∈{i1; : : : ; ik}, where fij is an
a4ne function. When  ik+1 =0, the solution of (19) and (20)
has  ij ¿ 0 for all ij ∈{i1; : : : ; ik} (due to minimality and no
weakly active constraints for all x in CR0). To 6nd a solu-
tion which satis6es Lemma 1,  ik+1 must be increased from
zero until  ij = 0 for some ij ∈{i1; : : : ; ik}. This is the only
solution of (19) and (20) which satis6es Lemma 1 because
if  ik+1 is increased further,  ij =fij ( ik+1)¡ 0 (since fij is
an a4ne function).

Constraints that are weakly active for all x in a critical
region, can be handled according to the following result,
which can be proven similarly to Theorem 2.

Theorem 5. Make the same assumptions as in Theorem
2, except that now constraint i1 is weakly active for all
x∈CR0.
Type I: If H is given by Gik+1z∗0 (x) = Wik+1 + Sik+1x,

then the optimal active set in CRi is {i1; : : : ; ik ; ik+1} or
{i2; : : : ; ik ; ik+1}.
Type II: If H is given by  ik0 (x) = 0, then the optimal

active set in CRi is {i1; : : : ; ik−1} or {i2; : : : ; ik−1}.
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Example 1 (Continued). We want to show how to han-
dle the case when LICQ is violated at a facet. First, no-
tice in Fig. 2 that the polyhedra made from A3 and A4

are neighboring polyhedra, but still there are two elements
in A3 which are di5erent from A4. This is caused by
a violation of LICQ on the hyperplane separating these
regions. Assume we have found CR3, and try to detect
CR4. We cross a hyperplane of Type 1, which de6nes their
common facet F. This hyperplane says that constraint 6 is
becoming active at the optimal solution for x∈F. Since
constraints 1 and 2 was active in CR3, constraints {1; 2; 6}
are active at the optimal solution for x∈F. This obvi-
ously leads to linear dependence among the elements in
GA, and Theorem 4 is applied to 6nd the optimal active
set across F. A point x0 ∈F is needed to initialize the
LP (18)–(20), and in this case we use x0 = [ − 1:8 0:4]T.
We then solve the LP (18)–(20): max {1; 2; 6} 

6; s:t: Hz(x0)+
(G{1;2;6})T {1;2;6} = 0;  {1;2;6}¿ 0. The solution of this LP
is  {1;2;6} = [0:11 0 4:25]T. Hence,  2 should be removed
from the active set, and the optimal active set in CR4 is
{1; 6}, as expected. Next, consider crossing the facet drawn
as a thick segment in Fig. 2f. The optimal active set in CR1

is {1}, and the inequality corresponding to the facet says
that constraint 7 is being activated. G1 and G7 are linearly
dependent, so LICQ is violated. We therefore solve the LP
(18)–(20), with

x0 = [−0:28 −0:55 ]T : max
 {1;7}

 7;

s:t: Hz + (G{1;7})T {1;7} = 0;  {1;7}¿ 0:

The solution to this LP is unbounded and according to
Theorem 4, we have reached an infeasible part of the state
space, which is easily veri6ed.

6. O--line mp-QP algorithm

Based on the results of Sections 3–5, we 6nally present an
e4cient algorithm for the computation of the solution to the
mp-QP (3) and (4). Generally, there exist active sets which
are not optimal anywhere in the parameter space (typically,
most active sets are not optimal anywhere). We need an
active set which is optimal in a full-dimensional region to
start the algorithm. Generally, we can do this by choosing a
feasible x, and 6nd the optimal active set for this x by solving
a QP. This can be avoided in the special case when we solve
a linear MPC problem, where in general the region where
no constraint is active at the optimum is full dimensional,
and we can choose the active set A0 = ∅ (see Bemporad &
Filippi, 2003, Lemma 6).
Let Lcand be a list of active sets which are found, but not

yet explored (i.e., are candidates for optimality) and Lopt
be the set of active sets which have been explored (i.e., are
found to be optimal).

Algorithm 1.

Choose the initial active set A0 as in
(Bemporad et al., 2003, Proposition 2); Let Lcand ←
{A0}, Lopt ← ∅;
while Lcand �= ∅ do

Pick an element A from Lcand · Lcand ← Lcand \ {A};
Build the matrices GA, WA and SA from A and
determine the local Lagrange multipliers,  A(x)
and the solution z(x) from (10) and (9);
Find the CR where A is optimal from (12) and (13),
and remove all hyperplanes from CR which are not
coincident to hyperplanes in the minimal
representation of CR;
If CR is full-dimensional then
Lopt ← Lopt ∪ {A};
for each facet F in CR do
Find the optimal active set on F by examining the
type of hyperplane F is given by;
Find any possible optimal active sets in CRi

according to Theorem 2, Corollary 1, Theorems 4
and 5.
If none of these are applicable, 6nd
the active set in CRi by solving a QP as
in (THndel et al., 2001b);
For any new active set Anew found, let
Lcand ← Lcand ∪ {Anew}

end for
end if

end while

An estimate of the cost for solving the mp-QP (3) and
(4) by di5erent algorithms is given below. This estimate is
given by the number of LPs/QPs which has to be solved, as
this is the main cost. For Algorithm 1 this is given by(

Final # regions

found by the algorithm

)
×
(

# LPs per region

for redundancy check

)

and the main cost of the algorithm from Bemporad et al.
(2002) is(

Final # regions

found by the algorithm

)
×
(

# LPs per region

for redundancy check

)

+

(
Total #

regions explored

)

×




# LPs for red: check

+1 LP to 6nd interior point

+1 QP to 6nd active set


 :

Consequently, the di5erence between the two algorithms is
the last term, which is due to the extra partitioning into
regions Ri, as in Fig. 1. The removal of redundant constraints
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Table 1
Number of regions explored and computation times for Algorithm 1 and
the algorithm of Bemporad et al. (2002) for Example 2. We have also
added the number of solutions that would be explored by the algorithm
of Seron et al. (2000). In this example, the 6nal number of regions in the
solution is the same as the number of regions explored by Algorithm 1.

Hor. Alg. 1 Alg. froma Alg. fromb

2 [9; 0:14 s] [15; 0:77 s] [9, –]
3 [19; 0:33 s] [39; 2:63 s] [27, –]
4 [33; 0:64 s] [79; 5:60 s] [81, –]
5 [51; 1:14 s] [131; 9:01 s] [243, –]
6 [73; 1:79 s] [205; 16:48 s] [729, –]
7 [95; 2:50 s] [261; 22:74 s] [2187, –]
8 [113; 3:25 s] [329; 30:98 s] [6561, –]
9 [127; 4:01 s] [393; 39:71 s] [19683, –]
10 [137; 4:60 s] [415; 44:82 s] [59049, –]

aBemporad et al. (2002).
bSeron et al. (2000).

from polyhedra is done by solving one LP for each hyper-
plane. The cost of the algorithm of (Seron et al., 2000) which
only handles input constraints, is

3nz ×
(

# LPs per region

for redundancy check

)
:

Example 2. We compare the e4ciency of Algorithm 1, the
algorithm of Bemporad et al. (2002) and the algorithm of
Seron et al. (2000) on the double integrator example from
Bemporad et al. (2002) in Table 1. All the computation
times are achieved on a 650 MHz Pentium III running Mat-
lab 5.3, using the NAG Foundation Toolbox to solve LP/QP
subproblems. In this example, both algorithm 1 and the al-
gorithm of Bemporad et al. (2002) spend more than 60% of
the time on removing redundant constraints from the poly-
hedra, according to the previous complexity analysis. Note
that symmetries of this MPC problem could be exploited to
further decrease computation times.

Example 3. The laboratory model helicopter (Quanser
3-DOF Helicopter) described in THndel and Johansen
(2002) sampled with T = 0:01 s, and the following state
space representation is obtained

A=




1 0 0:01 0 0 0

0 1 0 0:01 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0:01 0 0 0 1 0

0 0:01 0 0 0 1



;

Table 2
Computation times, helicopter example

Horizon Algorithm 1 (s) Number of regions

1 1.1 33
2 18.9 395
3 163.2 2211
4 1830.0 12223

B=




0 0

0:0001 −0:0001
0:0019 0:0019

0:0132 −0:0132
0 0

0 0



:

The states of the system are:

x1—elevation,
x2—pitch angle,
x3—elevation rate,
x4—pitch angle rate,
x5—integral of elevation error,
x6—integral of pitch angle error.

The inputs to the system are:

u1—front rotor power,
u2—rear rotor power.
The system is to be regulated to the origin with the follow-

ing constraints on the inputs and pitch and elevation rates:

−16 u16 3;

−16 u26 3;

−0:446 x36 0:44;

−0:66 x46 0:6:

The LQ cost function is given by

Q = diag(100; 100; 10; 10; 400; 200);

R= I2×2

and P is given by the algebraic Riccati equation.
The system is optimized with a horizon of 50 samples,

and as is common in MPC implementations, input param-
eterization has been used to reduce the dimensions of the
optimization problem. Table 2 shows the number of regions
in the partition and computation times using 1–4 parameters
to describe the control input.

7. Conclusions

In this paper, we have proposed a new approach for solv-
ing mp-QP problems giving o5-line piecewise a4ne explicit
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solutions to MPC control problems. Being based on the
exploitation of direct relations between neighboring poly-
hedral regions and combinations of active constraints, we
believe that our contribution signi6cantly advances the 6eld
of explicit MPC control, both theoretically and practically,
as examples have indicated large improvements of compu-
tational e4ciency over existing mp-QP algorithms.
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