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Abstract

In this paper we study the solution to optimal control problems for constrained discrete-time linear hybrid systems based on quadratic
or linear performance criteria. The aim of the paper is twofold. First, we give basic theoretical results on the structure of the optimal
state-feedback solution and of the value function. Second, we describe how the state-feedback optimal control law can be constructed by
combining multiparametric programming and dynamic programming.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction characteristic dynamical laws. Mode transitions are triggered
by variables crossing specific thresholds (state events), by

Recent technological innovations have caused a considerthe lapse of certain time periods (time events), or by external
able interest in the study of dynamical processes of a mixedinputs (input events)Antsaklis, 200Q. A detailed discus-
continuous and discrete nature, denoted as hybrid systemssion of different modeling frameworks for hybrid systems
In their most general form hybrid systems are characterizedthat appeared in the literature goes beyond the scope of this
by the interaction of continuous-time models (governed by paper; the main concepts can be foundirtsaklis (2000)
differential or difference equations), and of logic rules and Branicky, Borkar, and Mitter (1998Bemporad and Morari
discrete event systems (described, for example, by temporal(1999) Lygeros, Tomlin, and Sastry (1999)
logic, finite state machines, if-then-else rules) and discrete Different methods for the analysis and design of con-
components (on/off switches or valves, gears or speed se+rollers for hybrid systems have emerged over the last few
lectors, etc.). Such systems can switch between many op-years Gontag, 1981; Lygeros et al., 1999; Bemporad &
erating modes where each mode is governed by its ownMorari, 1999. Among them, the class of optimal controllers

is one of the most studied. The approaches differ greatly in

Er—— _ _ the hybrid models adopted, in the formulation of the optimal

“ This paper was not presented at any IFAC meeting. This paper was . .
recommended for publication in revised form by Associate Editor Andrew control _prObIem and in the methc_)d used ,to so!ve it. .
R. Teel under the direction of Editor H.K. Khalil. In this paper we focus on discrete-time linear hybrid
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Sannio in Benevento, Piazza Roma 21, 82100 Benevento, ltaly. Tel.: the system to be discontinuous, (ii) both states and inputs
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mato.baotic@fer.h(M. Baoti€), bemporad@dii.unisi.i(A. Bemporad), both internal, i.e., caused by the state reachlng a particular
morari@control.ee.ethz.ofM. Morari). boundary, and exogenous, i.e., forced by a switch to some
1 Current address: University of Zagreb, 10000 Zagreb, Croatia. other operating mode, and (iv) states and inputs to fulfill
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linear constraints. We will focus on discrete-time piecewise 2. Definitions and basic results

affine (PWA) models. Discrete-time PWA models can de-

scribe a large number of processes, such as discrete-time lin- We will use the following non-standard definitions:

ear systems with static piecewise-linearities; discrete-time

linear systems with discrete states and inputs; switching sys-Definition 1. A polyhedron is a set that equals the intersec-

tems where the dynamic behavior is described by a finite tion of a finite number of closed halfspaces. An open set

number of discrete-time linear models together with a set of 2 whose closureZ is a polyhedron is called open polyhe-

logic rules for switching among these models; approxima- dron. A “neither open nor closed polyhedron” is a neither

tion of nonlinear discrete-time dynamics, e.g., via multiple open nor closed se# whose closureZ is a polyhedron. A

linearizations at different operating points. non-Euclidean polyhedron is a set whose closure equals the
In discrete-time hybrid systems an event can occur only at union of a finite number of polyhedra.

instants that are multiples of the sampling time, and many in-

teresting mathematical phenomena occurring in continuous-Definition 2. A collection of sets#1, ..., Zy is apartition

time hybrid systems such as Zeno behaviors do not exist.of a set® if (i) Uf\’zl% =0, (i) ZNR; =0,Vi # .

However, the solution to optimal control problems is still Moreover#1, ..., Zy is apolyhedral partitionof a poly-

complex: the solution to the HJB equation can be discontin- hedral se® if %1, ..., Zy is a partition of® and theZ;’s

uous and the number of possible switches grows exponen-are polyhedral sets, wheeg; denotes the closure of the set

tially with the length of the horizon of the optimal control  Z;.

problem. Nevertheless, we will show that for the class of

linear discrete-time hybrid systems we adraracterizeand Definition 3. A function s : ® — Rf, where® c R,
computethe optimal control law exactlyithout gridding is PWAif there exists a partitior#y, ..., Zy of @ and
the state space. hO)=HO+k',Y0ecR,i=1,...,N

The solution to optimal control problems for discrete-time
hybrid systems was first outlined t8§ontag (1981)In his Definition 4. A function s : @ — R¥, where® < R’,
plenary presentationMayne, 200] at the 2001 European is PWA on polyhedrgPPWA if there exists a polyhedral
Control Conference, Mayne presented an intuitively appeal- partition Z1, . .., Zy of © andh(0) = H'0+ k', Y0 € %;,
ing characterization of the state-feedback solution to opti- i =1,..., N.
mal control problems for linear hybrid systems with per-
formance criteria based on quadratic and linear norms. The Piecewise quadratic (PWQ) functions and piecewise
detailed exposition presented in the initial part of this pa- quadratic functions on polyhedra (PPWQ) are defined anal-
per follows a similar line of argumentation and shows that ogously.
the state-feedback solution to the finite time optimal control
problem is a time-varying PWA feedback control law, pos- Definition 5. A functiong : © — R, where® C R’, is a
sibly defined over non-convex regions. Moreover, we give multiple quadraticfunctiormfmultiplicity d e NTif g(0)=
insight into the structure of the optimal state-feedback solu- mln{ql(G) 00+ 0+, ..., q%0) 20 0%0+170+
tion and of the value function. ¢?}, 0'>0, Vi=1,...,d and® is a convex polyhedron.

In the second part of the paper we describe how the op-
timal control law can be efficiently computed by means of Definition 6. A functiong : ® — R, where® C R’, is a
multiparametric programming. In particular, we propose a multiple PWQ on polyhedrémultiple PPWQ) if there ex-

novel algorithm that solves the Hamilton-Jacobi—Bellman ists a polyhedral partitioy, .. JZN of ® and q(0)
equation by using a simple multiparametric solver. In collab- min{g!(0) = 0' 010+110+c}, ...,ql O G’Q 9+l "0+
oration with different companies and institutes, the results Cd L, V0 € %;,i=1, ..., N.We defina; to be the muIt|pI|c—

described in this paper have been applied to a wide range of..
problems Baotic, Vasak, Morari, & Peric, 20(;)1Bemporad,g ity of the funct|onq n the polyhedron;, andd = Z —1di
. . ’ X to be the multiplicity of the functiom. (Note that® is not

Borodani, & Mannelli, 2003 Bemporad, Giorgetti, Kol- necessarily convex.)
manovsky, & Hrovat, 2002Bemporad & Morari, 1999
Borrelli, Bemporad, Fodor, & Hrovat, 20QEerrari-Trecate
et al., 2002; Mignone, ZOOMObUS, Baotic, & Morari, 2003 3. Basics of mu]tiparametric programming
Torrisi & Bemporad, 200% Simple examples that highlight
the main features of the hybrid system approach presented Consider the nonlinear mathematical program dependent
in this paper can be found iBorrelli, Baotic, Bemporad,  on a parameter vectorappearing in the cost function and
and Morari (2003) in the constraints

Before formulating optimal control problems for hy- " .
brid systems we will give a short overview on multipara- 2 )= 1f /(2. %)
metric programming and on discrete-time linear hybrid subj. tog(z, x) <0

systems. zeM, 1)
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wherez € R’ is the optimization vectory € R” is the 3.1. Multiparametric quadratic program

parameter vectorf : R* x R" — R is the cost function,

g : R x R* — R"¢ are the constraints and C R°. Consider the multiparametric program
A small perturbation of the parameteiin (1) can cause

* 1.7/ R 1./ /
a variety of outcomes, i.e., depending on the properties of ST = gx Yt mzml svHz o Fx (5)
the functionsf andg the solutionz*(x) may vary smoothly subj. to Cz<c + Sx,
or change abruptly as a functionxafWe denote bykK* the wherez € R is the optimization vectory € R" is the
set of feasible parameters, i.e., vector of parameters, and € R7":, ¢ € RY, § € RI*"
are constant matrices. We refer to the problem of computing
K*={xeR"|3ze M, g(z, x)<0}, ) z*(x) andJ*(x) in (5) as (right-hand sidepultiparametric

quadratic program(mp-QP).

by R : R" — 2% where %' denotes the set of all subsets

of R, the point-to-set map that assigns the set of feagible Theorem 2 (Bemporad, Morari, Dua, & Pistikopoulos,
2002. Consider the mp-QR5). AssumeH > 0 and

R(x) ={z e M|g(z,x)<0} 3) [? g] =0. The setk* is a polyhedral setthe value func-

tion J* : K* — R is PPWQ convex and continuous and

to a parametex, by J* : K* — RU {—oo} the real-valued 4 optimizerz* : K* — R": is PPWA and continuous

function which expresses the dependence ofi the mini-
mum value of the objective function ovéf*, i.e.,

4. Hybrid systems
J*(x)=inf {f(z,x)|x € K*, z € R(x)}, (4)
: Several modeling frameworks have been introduced for
discrete-time hybrid systems. Among theR\WA systems
(Sontag, 198 are defined by partitioning the state space
into polyhedral regions and associating with each region a
different affine state-update equation

and byZ* : K* — 2K the point-to-set map which expresses
the dependence otof the set of optimizers, i.&*(x)={z €
R(X)|f(z, %) = J*(%)} with ¥ € K*.

J*(x) will be referred to as the optimal value function
or simply value function Z*(x) will be referred to as the  x(r 4+ 1) = A’x(¢t) + B'u(r) + f*
optimal set We will denote byz* : R" — R* one of the . [x@)
possible single valued functions that can be extracted from if [u(,)
z*, andz* will be called theoptimizer functionlf Z*(x) is
a singleton for alk, thenz*(x) is the only element of *(x). wherex € R" x {0, 1}*¢, u € R™ x {0, 1}"™¢, {Qi}jzl isa

Our interest in problem (1) will become clear in the fol- polyhedral partition of the set of the state+input spate
lowing sections. We can anticipate here that optimal control R** n = n. 4+ ng, m = m. + m,. We denote by € R
problems for nonlinear systems can be reformulated as theandu. € R"< the real components of the state and input
mathematical program (1) wherss the input sequence to  vector, respectively. We will give the following definitions
be optimized ana the initial state of the system. Therefore, of continuous PWA system.
the study of the properties off and Z* is fundamental for
the study of properties of state-feedback optimal controllers. Definition 7. We say that the PWA system (6)dsntinuous

Fiacco (1983, Chapter pyovides conditions under which  if the mapping(xc(t), uc(t)) = xc(¢t + 1) is continuous and
the solution of nonlinear multiparametric programs (1) is lo- ny =my =0. The PWA system (6) isontinuous in the real
cally well behaved and establishes properties of the solutioninput spaceif the mapping(x¢(z), uc(t)) + xc(r + 1) is
as a function of the parameters. In the following we report continuous w.r.tuc. Analogously, we define PWA systems
a basic resultflogan, 1973 which focuses on a restricted continuous in the real state space.
set of functionsf (z, x) andg(z, x):

}e?i,iz{l,...,s}, (6)

Our main motivation for focusing on discrete-time models
Theorem 1 (Hogan, 1973 Consider the multiparametric  stems from the need to analyze these systems and to solve
nonlinear program(1). Assume that M is a convex and optimization problems, such as optimal control or schedul-
bounded set iR, f is continuous and the components of g ing problems, for which the continuous time counterpart
are convex o x R". Then J*(x) is continuous at each  would not be easily computable.
x € K*. PWA systems are equivalent to interconnections of lin-
ear systems and finite automata.Heemels, De Schutter,

Unfortunately very little can be said without continuity and Bemporad (2001the authors have proven the equiv-
assumption ot and convexity assumption an Below we alence of linear discrete-time PWA systems and other
restrict our attention to two special classes of multiparamet- classes of discrete-time hybrid systems. PWA models can
ric programming. be generated automatically through appropriate conversion
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procedures Bemporad, 2004 from discrete hybrid au-
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where the column vectdyy £ lug, ..., uy_q41 € RN x

tomata, a very general class of linear hybrid systems that{0, 1)V is the optimization vector\ is the optimal con-

can be modeled in the language HYSDHIoffisi & Bem-
porad, 200%

5. Problem formulation

Consider the PWA system (6) subject to hard input and

state constraints
Ex(t) + Lu(t) <M, (7)

for 1 >0, and denote bgonstrained PWA syste(@PWA)

trol horizon and? ; is a polyhedral terminal region. In (9),
|Ox|, denotes thg-norm of the vectoQxif p =1, oo or
x'Qx if p=2.In (11) we have omitted the constrainfse
Rieasxr), k =1, ..., N, assuming that they are implicit in
the first constraints, i.e., if there exists @ that contains
[j’;] then this is an infeasible point. We will use this implicit
notation throughout the paper.

Note that we distinguish between the inpit) and the
statex(¢) of plant (8) at timet and the variables; andx;
of the optimization problem (11).

In the following, we will assume thad=Q’ = 0, R=R’ >

the restriction of the PWA system (6) over the set of states 0, P =0, for p = 2, and thatQ, R, P are full column rank

and inputs defined by (7),

¥t +1) = Alx(t) + Biu() + £ if [zgﬂe?”] (8)

where{é’i }i_, is the new polyhedral partition of the sets of

state+input spac&"*" obtained by intersecting the se#é
in (6) with the polyhedron described by (7). The union of

the polyhedral partitiong £ | J*_, 2" will implicitly define
the feasible regiomResin the input space as a functionxf

Ricagx) = {u € R x {0, 1) |(x, u) € P}.

We assume thaRseaqdx) is @ compact set for anyand the
following:

Assumption 1. System (8) is continuous in the real input
and real state space.

Assumption 1 requires that the PWA function that de-

fines the update of the continuous states is continuous on
the boundaries of contiguous polyhedral cells, and there-

fore allows one to work with the closure of se#s without

the need of introducing multi-valued state update equations.

With abuse of notation in the following sectiod® will al-

ways denote the closure &t . Discontinuous PWA systems
will be discussed in Section 8.
We define the following cost function:

N-1

JUN. xO) 2 (Pxyllp+ Y 10l + [ Ruelp,
k=0

9

and consider the constrained finite-time optimal control
(CFTOC) problem

JE(x(0) = minJ Uy, x(0)) (10)
N
Xip1 = Alxg 4+ Blug + f°
. Xk ii -
subj. 1o if |:uki|e/,l_1,...,s (11)

XN € 3{","
xo = x(0),

matrices forp = 1, co. We will also denote by, € R x
{0, 1}"¢ the set of states;, that are feasible for (9)—(11):

Ju e R™ x {0, 1),
Jie{l,...,s)
ne ny ~i
xeR X{O’l}k[z}eﬂ’land ,
Alx + Blu+ fl € Zri1

Xk

k=0,...,N —1,
AN ftrf.

= (12)
Note that the optimizer functiot/y, may not be uniquely
defined if the optimal set of problem (9)—(11) is not a sin-
gleton for somex (0).

In the following we need to distinguish between optimal
control based on the 2-norm and optimal control based on
the 1-norm orco-norm.

As a last remark, we want to point out that it is almost im-
mediate to extend the results of the following sections to dif-
ferent formulations of hybrid optimal control problems, such
as reference tracking problems or problems where penalties
for switching between two different regions of operation are
weighted in the cost function.

6. Solution properties

Theorem 3. Consider the optimal control proble(®)—(11)
with p = 2 and let Assumptiod hold. Thenthere exists a
solution in the form of a PWA state-feedback control law

uf(x(k)) = Fix(k) + G if x(k) € 4, (13)

where %%, i = 1,..., Ni is a partition of the set? of

feasible states (k), and the closure%;; of the sets#; has
the following form

P2 x 0 x (k) LLGHx (k) + ML(j)x (k) < NL(j),

j=1...,n}, k=0,...,N -1, (14)
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and

x(k+1) = Alx(k) + Blul (x (k) + fi
x (k)

it [uz(x(k)) (13)

:|e?~/_’i, i={L....s).

Proof. The piecewise linearity of the solution was first
mentioned bySontag (1981) Mayne (2001)sketched a
proof. In the following we will give the proof forg(x(0));
the same arguments can be repeated iufpx (1)), ...,
uy_1(x(N —1)).

Casel: no binary inputs and statg®:; = n; = 0).

Depending on the initial state(0) and on the input se-
quencelU = [ug, ..., u;], the stateq is either infeasible or

it belongs to a certain polyhedroﬁi, k=0,...,N — 1.

The number of all possible locations of the state sequence

X0, ..., xy—1is equal tasV. Denote by{v,-}fil the set of all
possible switching sequences over the horikipand byvf

thekth element of the sequeneg i.e., vf =jifx € 7.
Fix a certainv; and constrain the state to switch according
to the sequence;. problem (9)—(11) becomes

JE(x(0)) = min J(Uy, x(0)) (16)
! {Un}
k k k
xpyr =AY xx + BYiug + fU,
k

Xk V]

|: c P
. Ug
subj.toy Lot o N

XN € ﬂff,
xo = x(0).

17)

Problem (16)—(17) is equivalent to a finite-time optimal con-
trol problem for a linear time-varying system with time-

varying constraints and can be solved by using the approach

of Bemporad et al. (2002 he first moveuq of its solution
is the PPWA feedback control law

ub(x(0)) = F*/x(0) + G/,
vx(0) e 7, j=1,...,N", (18)
whereZ' =U]/.V:1,7"'j is a polyhedral partition of the convex
setZ' of feasible states(0) for problem (16)—(17)N"’
is the number of regions of the polyhedral partition of the
solution and it is a function of the number of constraints in
problem (16)—(17). The upper indéxn (18) denotes that
the inputuB(x(O)) is optimal when the switching sequence
v; is fixed.
The set?’ of all feasible states at time 036y = U,S-Zlgi
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the only feasible one for all the states belongingto’

and therefore the optimal solution is given by (18), i.e.

uf(x(0)) = F*x(0) + G, VxeT". (19)

(2) If 7%/ intersects one or more polyhedrd’>™,
Fl2m2 | the states belonging to the intersection
are feasible for more than one switching sequence
vi, vy, V. - . ., and therefore the corresponding value
functions J;7, J; , J; ... in (16) have to be com-

pared in order to compute the optimal control law.

Consider the simple case when only two polyhedra

overlap, i.e.7"/ N 7tm & 7 ED.Em) £ g We will

refer to.7 -/>-™ as adouble feasibility polyhedron

For all states belonging tg @/ the optimal so-

lution is

ug(x(0)=

Fiix(0)+ G/, Vx(0) € 7 @D m)
Sy (x(0) < J5 (x(0))
Vx(0) € 7@ (m)
JE@(0) > I (x(0))

ﬁ'l,mx(o) 4 Gl,m ,

vV x(0) e 7GDEm)

T3 (x(0)) = J5, (x(0)).
(20)

Fiix(0)+G"/ or
Fl,mx(o) + Gl,m

BecauseJ;; and J;; are quadratic functions of(0)

on 7%/ and 7™, respectively, we find the ex-
pression (14) of the control law domain. The sets
FTEN\T™ and 7"\ 7 are twosingle feasibility
non-Euclidean polyhedravhich can be partitioned
into a set ofsingle feasibility polyhedraand thus be
described through (14) with! = 0.

In order to conclude the proof, the general casa ofter-
secting polyhedra has to be discussed. We follow three main
steps. Step 1: generate one polyhedrontbfple feasibility
and Z — 2 polyhedra, generally non-Euclidean and possibly
empty and disconnected, of single, double, (n —21)th-ple
feasibility. Step 2: théth-ple feasibility non-Euclidean poly-
hedron is partitioned into severah-ple feasibility polyhe-
dra. Step 3: anyth-ple feasibility polyhedron witti > 1 is
further partitioned into at mostsubsets (14) where in each
one of them a certain feasible value function is greater than
all the others. The procedure is depicte®ig. 1whenn=3.

Case2: binary inputs m, # 0.

The proof can be repeated in the presence of binary in-

and in general it is not convex. Indeed, as some initial statesputs,m, # 0. In this case the switching sequencegsare
can be feasible for different switching sequences, the setsgiven by all combinations of region indices ahahary in-

9", i=1,...,s", in general, can overlap. The solution
ug(x(0)) to the original problem (9)—(11) can be computed
in the following way. For every polyhedrafi’/ in (18):

Q) t7inglm=gforalll #i,1=1,...,sY,and for
alm=1,...,N" then the switching sequeneeg is

putsi.e.,i=1, ..., (s-mg)". The continuous component of
the optimal input is given by (19) or (20). Such an optimal
continuous component of the input has an associated opti-
mal sequence;, whose component provides the remaining
binary components of the optimal input.

Case3: binary statesn; # 0.
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(a) (b)

Fig. 1. Graphical illustration of the main steps for the proof of Theorem 3

when three polyhedra intersect. Step 1: the three intersecting polyhedra are

partitioned into one polyhedron of triple feasibility (1,2,3), two polyhedra
of double feasibility(1, 2) and (1, 3), three polyhedra of single feasibility
(1), (2), (3). The sets (1), (2) and (1,2) are non-Euclidean polyhedra. Step
2: the sets (1), (2) and (1,2) are partitioned into six polyhedra of single
feasibility. Step 3: value functions are compared inside the polyhedra of
multiple feasibility.

F. Borrelli et al. / Automatica 41 (2005) 1709-1721

(2) is continuous on quadratic and affine boundaries of
typesb andc;

(3) might be discontinuous only on affine boundaries of
typea;

and the optimizern;;

(1) is an affine function of the states inside ewéjg;

(2) is continuous and unique on affine boundaries of
typeb;

(3) is non-unique on quadratic boundariescept possibly
at isolated points

(4) might be non-unique on affine boundaries of tgpe

(5) might be discontinuous on affine boundaries of tgpe

Based on Proposition 1 one can highlight the only source
of discontinuity of the value function: affine boundaries of
type a The following corollary gives a useful insight into
the class of possible value functions.

The proof can be repeated in the presence of binary states

by a simple enumeration of all the possib@é discrete state
evolutions. U

From the result of the theorem above one immediately
concludes that the value functiofj is piecewise quadratic:

JE(x(0)) = x(0)' Hix(0) + Hix(0) + HS if x(0) € %,
(21)

The proof of Theorem 3 gives useful insights into the prop-
erties of the setsz), in (14). We will summarize them next.

Each set%}; has an associated multiplicifywvhich means
thatj switching sequences are feasible for problem (9)—(11)
starting from a statec(k) € #;. If j =1, thenZ, is a
polyhedron. In general, if > 1 the boundaries 0%5( can
be described either by an affine function or by a quadratic

Corollary 1. Jj is a lower-semicontinuous PWQ function
onZ%o.

Proof. The proof follows from the result on the minimiza-
tion of lower-semicontinuous point-to-set maps Befge,
1997). Below we give a simple proof without introducing
the notion of point-to-set maps.

Only points where a discontinuity occurs are relevant for
the proof, i.e., states belonging to boundaries of tgpe
From Assumption 1 it follows that the feasible switching
sequences for a given staté0) are all the feasible switch-

ing sequences associated with any@élwhose closur@f,
containsx(0). Consider a state (0) belonging to bound-
aries of typea and the proof of Theorem 3. The only case
of discontinuity can occur when (i) japle feasible sef?;

function. In the sequel boundaries which are described by jhtersects ani-ple feasible set?, with i < j, (ii) there ex-
quadratic functions but degenerate to hyperplanes or sets ofgig 5 pointx(0) € 21, #, and a neighbor/”(x(0)) with

hyperplanes will be considered affine boundaries.
Quadratichoundaries arise from the comparison of value

x,y € N (x(0),x € 21, x¢Prandy € P2, y¢ P1. The
proof follows from the previous statements and the fact that

functions associated with feasible switching sequences, thusjg(x(o)) is the minimum of allJ* (x(0)) for all feasible

a maximum of;j — 1 quadratic boundaries can be present
in aj-ple feasible set. Thaffineboundaries can be of three
types. Typea: they are inherited from the origingple fea-
sible non-Euclidean polyhedron. In this case beyond such
boundaries the multiplicity of the feasibility changes. Type
b: they are artificial cuts needed to describe the origjidé
feasible non-Euclidean polyhedron as a segtplie feasible
polyhedra. Beyond typk boundaries the multiplicity of the
feasibility does not change. Typethey arise from the com-
parison of quadratic value functions which degenerate in an
affine boundary.

In conclusion, we can state the following proposition:

Proposition 1. The value function/;’

(1) is a quadratic function of the states inside ea@b;

switching sequences. [

The result of Corollary 1 will be extensively used in the
following sections. Even if value function and optimizer are

discontinuous, one can work with the cIOSL@ of the

original sets@i without explicitly considering their bound-
aries. In fact, if a given state(0) belongs to several regions

,@(1), ce, ?ég, then the minimum value among the optimal

values (21) associated with each regi@b, ce, %6’ allows
us to identify the region of the se®g, ..., %5 containing
x(0).

Next we show some interesting properties of the optimal
control law when we restrict our attention to smaller classes
of PWA systems.
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Corollary 2. Assume that the PWA systéhis continuous in order to obtain uniqueness of the solution and use the

and thatE=0in (7)andZ s =R" in (11) Wwhich means that  result of Theorem 4 which excludes the existence of non-

there are no state constraintse., P is unbounded in the  convex ellipsoidal sets. It is reasonable to believe that there

x-spacg. Then the value function/§ in (11)is continuous are other conditions under which the state-feedback solution
is PPWA without claiming uniqueness.

Proof. Problem (9)—(11) becomes a multiparametric

program with only input constraints when the state The previous results can be extended to piecewise linear
at time k is expressed as a function of the state at Cost functions, i.e., cost functions based on the 1-norm or

time 0 and the input sequenas, ..., ux_1, i.€., xx = the co-norm.

fewa((- - - (fewa(xo, u0), u1), ..., ug—2), ur—1). J in (9) _ _

will be a continuous function afg anduo, ..., uy—1 since ~ Theorem 5. Consider the optimal control proble(®)—(11)

it is the composition of continuous functions. The input With p =1, 0o and let Assumptiod hold. Then there exists

constraints o, . .., uy_1 are convex by assumption. The @ solution in the form of a PPWA state-feedback control law

proof follows from the continuity ofl and Theorem 1. J (e (k)) = F;ix(k) + G;'( if x(k) € % (23)
Note thatE = 0 is a sufficient condition for ensuring whereZ:, i =1, ..., Ny, is a polyhedral partition of the

that constraints (7) are convex in the optimization variables set4; of feasible states (k).

uo, ..., uy. In general, even for continuous PWA systems

with state constraints it is difficult to find weak assumptions Proof. The proof is similar to the proof of Theorem 3. Fix a
ensuring the continuity of the value functiolj. Ensuring certain switching sequeneg, consider the problem (9)—(11)

the continuity of the optimal control law (k) = uj (x(k)) and constrain the state to switch according to the sequence
is even more difficult. A list of sufficient conditions fary, v; to obtain problem (16)—(17). Problem (16)—(17) can be
to be continuous can be found Fiacco (1976)In general, viewed as a finite-time optimal control problem with a per-

they require the convexity (or a relaxed form of it) of the formance index based on 1-norm es-norm for a linear
costJ (Uy, x(0)) in Uy for eachx(0) and the convexity of  time-varying system with time-varying constraints and can
the constraints in (11) itV for eachx(0). Such conditions  be solved by using the multiparametric linear program as de-
are clearly very restrictive since the cost and the constraintsscribed inBorrelli (2003) Its solution is a PPWA feedback

in problem (11) are a composition of quadratic and linear control law

functions, respectively, with the PWA dynamics of the sys- uf)(x(O)) — Flix(0)+ G, Wx e T,

tem.

The next theorem provides a condition under which the J=1.....N"", (24)
solutionu; (x(k)) of the optimal control problem (9)—(11)  and the value functiod; is PWA on polyhedra and convex.
is a PPWA state-feedback control law. The rest of the proof follows the proof of Theorem 3. Note

that in this case the value functions to be compared are PWA
Theorem 4. Assume that the optimizet/y (x(0)) of and not PWQ. [

(9)—(11) is unique for allx(0). Then the solution to the

optimal control problen{9)—(11)is a PPWA state-feedback By comparing Theorems 3 and 5 it is clear that while for
control law of the form performance indices based on 1 @&r norms the solution

is PWA on polyhedra, in the 2-norm case one may need to

up(x(k)) = Fex(k) + G if x(k) € # k=0,....,N -1, deal with non-convex ellipsoidal regions.

(22)
where#,, i =1,..., N/, is a polyhedral partition of the 7. Computation of the optimal control law via dynamic
setZ; of feasible states (k). programming
Proof. In Proposition 1 we concluded that the value func-  |n the previous section the properties enjoyed by the so-

tion J§(x(0)) is continuous on quadratic type boundaries. |ution of hybrid optimal control problems were investigated.
By hypothesis, the optimizes(x(0)) is unique. Theorem 3 The proof of Theorem 3 is constructive, but it is based on
implies thatF"/ x(0) + G"/ = F'"x(0) + G, Vx(0) be- the enumeration of all the possible switching sequences of
longing to the quadratic boundary. This can occur only if the the hybrid system, the number of which grows exponen-
quadratic boundary degenerates to a single feasible point ortially with the time horizon. Although the computation is
to affine boundaries. The same arguments can be repeategerformed off-line (the on-line complexity is the one associ-
foruj(x(k)), k=1,...,.N-1. [ ated with the evaluation of the PWA control law (22)), more
efficient methods than enumeration are desirable.
Remark 1. Theorem 4 relies on a rather strong uniqueness In Bemporad and Morari (1999the main idea is
assumption. Sometimes, problem (9)—(11) can be modifiedto translate problem (9)—(11) into a linear or quadratic
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mixed-integer program that can be solved by using stan- 2

dard commercial software. This approach does not provide 15 Fox+G,

the state-feedback law (13) or (23) but only the optimal 1

control sequencé’;; (x(0)) for a given initial statex(0). In & 05 Fiz+G,

Borrelli (2003)the state-feedback law (13) or (23) is com-

puted by means of multiparametric mixed-integer program- 'Oii

ming. However, the use of multiparametric mixed-integer @ -2 -1 0 1 2
programming has a major drawback: the solver does not _
exploit the structure of the optimal control problem. In L= ETC if 2 DRy Uoy() = ?ng !:%ERZ
fact, a large part of the information associated with prob- 2 Fa+G,ifz DR, 2 AR LEELL
lem (9)—(11) becomes hidden when it is reformulated as a 1.5 15

mixed-integer program. In this section we show how linear 1 1

and quadratic parametric programming can be used to solve 05 0.5

the Hamilton—Jacobi—Bellman equations associated with O 0

CFTOC problem (9)—(11). IBaotic, Christophersen, and 05

Morari (2003) we have compared the dynamic program- (b)' 2 1 0o 1 2 (C)-1_2 1 0 1 2

ming and the mixed-integer multiparametric programming
approach. Fig. 2. lllustration of the ordered region single-valued function: (a) Multi
The PWA solution (13) will be computed proceeding valued PWA mapl; (b) Ordered region single valued functiday; (c)
backwards in time using two tools: a linear or quadratic ©Ordered region single valued functidp;.
multiparametric programming solver (depending on the cost
function used) and a special technique to store the solu-
tion which will be illustrated in the following sections. The
algorithm will be presented for optimal control based on
a quadratic performance criterion. Its extension to optimal
control based on linear performance criteria is straightfor-
ward.

depicted inFig. 2, wherex € R, Nyp =2, F; =0, G1 =0,
RB1=[-21], Fpr=1,G>=0,%2=]0, 2].

In the following we assume that the séfé in the optimal
solution (13) can overlap. When we refer to the PWA func-
tion u; (x(k)) in (13) we will implicitly mean the ordered
region single-valued function associated with the mapping

13).
7.1. Preliminaries and basic steps 13)
Example 7.1.Let Jf : Z1 — RandJJ : Z2 — R be

Consider the PWA map defined as two quadratic functions/;"(x) £ y'L1x + M1x + N1 and

(:xePBi> Fix+G; fori=1,...,Ny, (25) J§(x) £ x'Lox + Max + No, where#1 and %, are convex
polyhedra and/*(x) = +oo if x ¢ Z;, i € {1,2}. Letu] :
whereZ;, i =1,..., Ny, are subsets of the-space. Note ~ #1 — R™, u3 : #2 — R™ be vector functions. Le#1 N

that if there exist/, m € {1,..., Ny} such that forx e Ao 2 A3 # ¥ and define
RN Ry, Fix + G # Fpx + G, the mapl (25) is not

single valued. J*(x) = min{J{ (x), J3 (x)}, (26)
Definition 8. Given a PWA map (25) we definfowa(x) = u*(x) & { ”1?; :; jﬁgx; i jz*(x)’ (27)
{,(x) as theordered region single-valuddnction associated ol 1) = J3 (),

with (25) when whereu* (x) can be a set valued function. Leg =L, — L1,

] . ,, M3 = My — M1, N3= N2 — N1. Then, corresponding to the
— . . ap . . ap .
(0(%) =Fjx+Gjlx e Aj and¥i <j:x¢ R, three following cases:
jell, ..., Ny},
o . ] (i) JF(x)<JI5(x) Vx € X3,
and write it in the following form: (i) JF()> T30 Va € A,

Fix + Gy if x € B, (i) 3x1, x2 € Z3|J{ (x1) < J5(x1) and Ji (x2) > J5 (x2),
Lo(x) = : the expressions (26) and a real-valued function that can be
Fy,x +Gy, if xe2Zy,. extracted from (27) can be written equivalently as:

Note that given a PWA map (25) the correspondarg @

dered region single-valuefiinction {, changes if the order . ) B
. )Z[hm if x € %,

used to store the region#; and the corresponding affine .
J3(x) if x € A,

gains change. For illustration purposes consider the example

(28)
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. wix) if x € 2, whereZ C R" is a compact setf_: R" x R" — R",_
u(x) = () if x € X (29)  4:2% —> R andl: R x R” — R is a convex quadratic

function of x andu. We aim at determining the regio#
(2) As in (28) and (29) by switching the indices 1 and 2. of variablesx such that program (33) is feasible and the

&) optimumJ*(x) is finite, and at finding the expressioi(x)
of (one of) the optimizer(s). We point out that the constraint
Min{JF (), JE (X)) if x € X3 f(x,u) € 2 implies a constraint o as a function ofx
T = J*(x)l 12 i o :9?1’ (30) sinceu can assume only values wheféx, u) is defined.
J%k if P Next we show how to solve several forms of problem (33).
5 (x) if x € %o,
Lemma 1 (one to one problemn Problem (33) where f
ui(x) if x e Z3N{x]| is linear, q is quadratic and strictly convexand Z is a
x'L3x + M3x + N3 >0}, polyhedron can be solved by one mp-QP
* | 7]
W (x) = uz(x) if x € #3N {x]| (31)

x"Lax + M3x + N3<0},
ui(x) if x € Z1,
uz(x) if x € %o, Lemma 2 (one to one problem of multiplicity)d Problem
v (33) where £ is linear, g is a multiple quadratic function

of multiplicity d andZ is a polyhedron can be solved by d
where (28)—(31) have to be considered as PWA and PPWQmp-QPs

functions in theordered regionsense.

Proof. SeeBemporad et al. (2002) I

Proof. The multiparametric program to be solved is
Example 7.1 shows how to
J*(x)=min  {I(x,u)+
e avoid the storage of the intersections of two polyhedra in "

cases (i) and (ii); min{g1(f (x, u)), ..., ga(f (x, u))}}
e avoid the storage of possibly non-convex regiehs, %3 subj. to f(x,u) € #, (34)
and #7\ %3,

e work with multiple quadratic functions instead of and itis equivalentto
quadratic functions defined over non-convex and non-

polyhedral regions. minl(x, u) +q1(f (x, u)),
subj. to f(x, u) € #,
The three points listed above will be the three basic ingre- J*(x) = min { : ' (35)
dients for storing and simplifying the optimal control law L
(13). Next we will show how to compute it. minl(x, u) +qa(f (x, u))}

subj. to f(x,u) € #
Remark 2. To distinguish between cases (i), (i) and (iii)
of Example 7.1, in general, one needs to solve an indefinite The ith sub-problems in (35)
guadratic program, namely,
Ji(x) = minl (e, u) + gi(f (x,w) (36)

min  x'Lzx + M3x + N3 .
x subj. to f(x,u) € # (37)

subj. to x € #s. (32)

In our approach, to avoid such a test form (31) correspond- IS & 0ne to one problenand therefore it is solvable by an
ing to case (iii) can be used. The only drawback is that form MP-QP. Let the solution of thith mp-QPs be

(31) is, in general, a non-minimal representation of the value . o o _
function and therefore it increases the complexity of evalu- «'(x) = F*/x +G"/, VxeJ"/, j=1,...,N", (38)
ating and storing the optimal control profile (13).

where7 ' = U?’:lﬂ"'*f is a polyhedral partition of the con-
7.2. Multiparametric programming with multiple quadratic ey set7 of feasiblex for theith sub-problem and&v’’ is

functions the corresponding number of polyhedral regions. The feasi-
. _ _ ble set? satisfies? =7 1=...=7 since the constraints

v A The solutionu*(x) to the original problem (34) is ob-
o) = min 10, u) + g (f (x, u) tained by comparing and storing the solution @fmp-
st f(x,u) e A, (33) QP sub-problems (36)—(37) as explained in Example 7.1.
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Consider the cas¢=2, and consider the intersection of the mp-QP sub-problem differ from the one of tita mp-QP
polyhedraZ > and7 %! fori=1,..., Nt 1=1,... N"2 sub-problemj # j.

Forall7 %t ng 2l & 71D.2D £ g the optimal solution is The lower-semicontinuity assumption giix) allows one
stored in an ordered way as described in Example 7.1, whileto use the closure of the se# in (41). The cost function in
paying attention to the fact that a region could be already problem (33) is lower-semicontinuous since it is a compo-
stored. Moreover, when storing a new polyhedron with the sition of a lower-semicontinuous function and a continuous
corresponding value function and optimizer, the relative or- function. Then, since the domain is compact, problem (41)

der of the regions already stored must not be changed. Theadmits a minimum. Therefore, for a giveq there exists

result of thisintersect and comparprocedure is

w(x)=Fx+G' ifxe%,
A2 (x: X' LI(Hx+ M (Hx<N'(j), j=1,....n'},
(39)

where# = U]l.vjl.%f is a polyhedron and the value function
(40)

T =Jrx) ifxel j=1... N7,

wherefj’.*(x) are multiple quadratic functions defined over

the convex polyhedr@f. The polyhedraZ/ can contain
several regions?' or can coincide with one of them. Note

one mp-QP in problem (41) which yields the optimal solu-
tion. There might exist other mp-QP solutions in (41) feasi-
ble atx that are neither optimal nor feasible for the original
problem (33). However, sinegx) is lower-semicontinuous,
such solutions will be discarded when the corresponding
value functions are compared. The procedure based on solv-
ing mp-QPs and storing the results as in Example 7.1 will

be the same as in Lemma 2 but the dom#ia= U;le%j
of the solution can be a non-Euclidean polyhedronl

If fis PPWA and defined ovesregions then we have an
s to X problemwhereX can belong to any of the problems
listed above. In particular, we have anto r problem of
multiplicity dif f is PPWA and defined ovarregions and
is a multiple PPWQ function of multiplicitg, defined over
r polyhedral regions. The following lemma can be proven
along the lines of the proofs given before.

that (39) and (40) have to be considered as PWA and PPWQ

functions in theordered regionsense.
If d > 2 then the value function in (40) is intersected with
the solution of the third mp-QP sub-problem and the pro-

Lemma 4. Problem(33)wheref is linear and q is a lower-
semicontinuous PPWQ function of multiplicity defined
over r polyhedral regions and strictly convex on each poly-

cedure is iterated by making sure not to change the relativehedron is a one to r problem of multiplicity d and can be

order of the polyhedra and corresponding gain of the solu-

tion constructed in the previous steps. The solution will still
have the same form (39)—(40)J

Lemma 3 (one to r problem Problem(33) wheref is lin-
ear, q is a lower-semicontinuous PPWQ function defined
over r polyhedral regions and strictly convex on each poly-
hedron and Z is a polyhedroncan be solved by r mp-QPs

Proof. Letg(x) £ 4;,if x € #;, be the PWQ function where
the closures#; of #; are polyhedra ang; strictly convex
quadratic functions. The multiparametric program to solve
is

nLinl(x, u) +q1(f(x, u)),

subj. to f (x, u) € #1
fx,u) e %

J*(x) =min { : (41)

mini(x, u) + g, (f (v, w))

subj. to f (x, u) € &,
fx,u) e R

The proof follows the lines to the proof of the previous
theorem with the exception that the constraints of itie

solved byr - d mp-QPs

An stor problem of multiplicityd can be decomposed into
s one tor problems of multiplicityd. An sto one problem
can be decomposed intcose to one problems.

7.3. Algorithmic solution of the HIB equations

In the following we will substitute the CPWA system
equations (8) with the shorter form

x(k+1) = fewax (k), u(k)), (42)
whereprA -2 — R" and fPWA(x: u)=Alx + Blu + fi
if [¥] e Z',i=1,...,s,and{Z'} is a polyhedral partition
of 2.

Consider the dynamic programming formulation of the
CFTOC problem (9)—(11),

J7(x(j) = min [|Qx;ll2 + | Ruj 2
J

(43)
(44)

+ IS (fPwa(r(). 1)
subj. to fewa(x(j). u;) € X j41
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for j=N —1,...,0, with terminal conditions Algorithm 7.1.
Input: CFTOC problem (9)—(11)

%*N =2y (45) Output: Solution (13) in the ordered region sense.
Jy@x) =1[IPx|2, (46) 1 letRy = {7}
. ) ) 2 letJy (x) :=x"Px
where Z'; is the set of all states(j) for which problem 3 fork=N—1,....1,
(43)—(44) is feasible: 4 fori=1,..., |Repl,
- 5 forj=1,...,s,
Zj={x € R"3u, fewalx,u) € Xj11}. (47) 6 let Spij=1)
7 SOLVE the mp-QP

Eqgs. (43)-(47) are the discrete-time version of the well-

.. i / /
known Hamilton—Jacobi—Bellman equations for continuous- Ski.j <= MIN X Ox; 4w Ruy

time optimal control problems. +J 1 (Ajxk + Bjuk + f)

Assume for the moment that there are no binary inputs Ajxk + Bjug + fj € Riy1,i
and binary states;, =n,=0. The HIB equations (43)—(46) subj. to : Xk ~j
can be solved backwards in time by using a multiparametric m

quadratic programming solver and the results of the previous
section. 8 end
Consider the first step of the dynamic program (43)—(46) 9  end
10 Let Ry = {e%k,i,jyl}i’j’[. Denote by % ), its

. ! N .
T 1(xn_1) A {L[mn} 10xn_1ll2 + | Run_1ll2 elements, and by Jen and up , (x) the associated
N-1

- costs and optimizers, with 7 € {1, ..., |R¢|}
+ In (frwa(xn -1, un-1)), (48) 11 KEEP only triplets (J;"), (x), u} , (x). Zi.n)
subj. tOprA(xN_l, un—1) € L. (49) for which

Ix € By x ¢ Rra,¥d #h  OR

The cost to go function’}; (x) in (48) is quadratic, the ter- Ax € T T p(6) < Jiq(x), Vd # h N
minal regionZ ; is a polyhedron and the constraints are 12 ~ CREATE multiplicity information and additional
PWA. problem (48)—(49) is as to one problenthat can be regions for an ordered region solution as
solved by solvings mp-QPs (Lemma 4). From the second explained in Example 7.1
stepj = N — 2 to the last onei = O the cost to go func- 13 end
tion J;‘H(x) is a lower-semicontinuous PPWQ with a cer- ) )
tain muitiplicity d;1, the terminal region?’; 1 is a poly- In Algorithm 7.1, the Stru‘?t“rfsk,i,j stores the matri-
hedron (in general non-Euclidean) and the constraints areC€S defining quadratic functiod’; ; ,(-), affine function
PWA. Therefore, problem (43)-(46) is arto N’ ; prob- u.;, () and polyhedra#y ; ;1. for all I:
lem with multiplicityd;1 (where N7_ , is the number of
polyhedra of the cost to go functiéxn]*+l), which can be  Skij = U{(Jlj,i,j-,l(x)’ i, 1)y Ri j.0)s (50)
solved by solvings N, 1dj+1 mp-QPs (Lemma 4). The re- !
sulting optimal solution will have form (13) considered in where the indices in (50) have the following meanikds
the ordered region sense. the time stepi, indexes the piece of the “cost-to-go” function

In the presence of binary inputs the procedure can be re-that the DP algorithm is consideringindexes the piece of
peated, with the difference that all the possible combinations the PWA dynamics the DP algorithm is considering, bind
of binary inputs must be enumerated. Therefor@na to dexes the polyhedron in the mp-QP solution ofthg, j)th
one problembecomes a’? to one problemand so on. In mp-QP problem.
the presence of binary states the procedure can be repeated Step 11 of Algorithm 7.1 aims at discarding regic#s
either by enumerating them all or by solving a dynamic pro- that are completely covered by some other regions that have
gramming algorithm at time stdgfrom a relaxed state space lower cost. Obviously, if there are some parts of the region
to the set of binary states feasible at tilne- 1. .y that are not covered at all by other regions (first con-

Next we summarize the main steps of the dynamic dition) we need to keep it. Note that comparing the cost
programming algorithm discussed in this section. We use functions (second condition) is, in general, non-convex opti-

boldface characters to denote sets of polyhedra,R e~ mization problem. One might consider solving the problem
{Zi}i=1,.r, Where Z; is a polyhedron andR| is the exactly, but since the algorithm works even if some remov-
cardinality of the seR. Furthermore, when we s&0LVE able regions are kept, we usually formulate LMI relaxation
an mp-QP we mean to compute and store the trifiiet; of the problem at hand. While executing Step 11 of Algo-

of expressions for the value function, the optimizer and the rithm 7.1 we can simultaneously obtain the information of
polyhedral partition of the feasible space. multiplicity of polyhedral subsets of the regic#y ;.
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The output of Algorithm 7.1 is the state-feedback control 9. Conclusions
law (13) considered in the ordered region sense. The online
implementation of the control law requires simply the evalu-  For discrete-time linear hybrid systems, we have de-
ation of the PWA controller (13) in the ordered region sense scribed an off-line procedure to synthesize optimal control
(note that the order the solution is stored is important). laws based on the minimization of quadratic and linear per-

formance indices subject to linear constraints on inputs and

states. The procedure is based on a combination of dynamic
8. Discontinuous PWA systems programming and multiparametric quadratic programming.
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