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Abstract

In this paper we study the solution to optimal control problems for constrained discrete-time linear hybrid systems based on quadratic
or linear performance criteria. The aim of the paper is twofold. First, we give basic theoretical results on the structure of the optimal
state-feedback solution and of the value function. Second, we describe how the state-feedback optimal control law can be constructed by
combining multiparametric programming and dynamic programming.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent technological innovations have caused a consider-
able interest in the study of dynamical processes of a mixed
continuous and discrete nature, denoted as hybrid systems.
In their most general form hybrid systems are characterized
by the interaction of continuous-time models (governed by
differential or difference equations), and of logic rules and
discrete event systems (described, for example, by temporal
logic, finite state machines, if-then-else rules) and discrete
components (on/off switches or valves, gears or speed se-
lectors, etc.). Such systems can switch between many op-
erating modes where each mode is governed by its own
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characteristic dynamical laws. Mode transitions are triggered
by variables crossing specific thresholds (state events), by
the lapse of certain time periods (time events), or by external
inputs (input events) (Antsaklis, 2000). A detailed discus-
sion of different modeling frameworks for hybrid systems
that appeared in the literature goes beyond the scope of this
paper; the main concepts can be found inAntsaklis (2000),
Branicky, Borkar, and Mitter (1998), Bemporad and Morari
(1999), Lygeros, Tomlin, and Sastry (1999).

Different methods for the analysis and design of con-
trollers for hybrid systems have emerged over the last few
years (Sontag, 1981; Lygeros et al., 1999; Bemporad &
Morari, 1999). Among them, the class of optimal controllers
is one of the most studied. The approaches differ greatly in
the hybrid models adopted, in the formulation of the optimal
control problem and in the method used to solve it.

In this paper we focus on discrete-time linear hybrid
models. In our hybrid modeling framework we allow (i)
the system to be discontinuous, (ii) both states and inputs
to assume continuous and discrete values, (iii) events to be
both internal, i.e., caused by the state reaching a particular
boundary, and exogenous, i.e., forced by a switch to some
other operating mode, and (iv) states and inputs to fulfill
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linear constraints. We will focus on discrete-time piecewise
affine (PWA) models. Discrete-time PWA models can de-
scribe a large number of processes, such as discrete-time lin-
ear systems with static piecewise-linearities; discrete-time
linear systems with discrete states and inputs; switching sys-
tems where the dynamic behavior is described by a finite
number of discrete-time linear models together with a set of
logic rules for switching among these models; approxima-
tion of nonlinear discrete-time dynamics, e.g., via multiple
linearizations at different operating points.

In discrete-time hybrid systems an event can occur only at
instants that are multiples of the sampling time, and many in-
teresting mathematical phenomena occurring in continuous-
time hybrid systems such as Zeno behaviors do not exist.
However, the solution to optimal control problems is still
complex: the solution to the HJB equation can be discontin-
uous and the number of possible switches grows exponen-
tially with the length of the horizon of the optimal control
problem. Nevertheless, we will show that for the class of
linear discrete-time hybrid systems we cancharacterizeand
computethe optimal control law exactlywithout gridding
the state space.

The solution to optimal control problems for discrete-time
hybrid systems was first outlined bySontag (1981). In his
plenary presentation (Mayne, 2001) at the 2001 European
Control Conference, Mayne presented an intuitively appeal-
ing characterization of the state-feedback solution to opti-
mal control problems for linear hybrid systems with per-
formance criteria based on quadratic and linear norms. The
detailed exposition presented in the initial part of this pa-
per follows a similar line of argumentation and shows that
the state-feedback solution to the finite time optimal control
problem is a time-varying PWA feedback control law, pos-
sibly defined over non-convex regions. Moreover, we give
insight into the structure of the optimal state-feedback solu-
tion and of the value function.

In the second part of the paper we describe how the op-
timal control law can be efficiently computed by means of
multiparametric programming. In particular, we propose a
novel algorithm that solves the Hamilton–Jacobi–Bellman
equation by using a simple multiparametric solver. In collab-
oration with different companies and institutes, the results
described in this paper have been applied to a wide range of
problems (Baotic, Vasak, Morari, & Peric, 2003; Bemporad,
Borodani, & Mannelli, 2003; Bemporad, Giorgetti, Kol-
manovsky, & Hrovat, 2002; Bemporad & Morari, 1999;
Borrelli, Bemporad, Fodor, & Hrovat, 2001; Ferrari-Trecate
et al., 2002; Mignone, 2002; Möbus, Baotic, & Morari, 2003;
Torrisi & Bemporad, 2004). Simple examples that highlight
the main features of the hybrid system approach presented
in this paper can be found inBorrelli, Baotic, Bemporad,
and Morari (2003).

Before formulating optimal control problems for hy-
brid systems we will give a short overview on multipara-
metric programming and on discrete-time linear hybrid
systems.

2. Definitions and basic results

We will use the following non-standard definitions:

Definition 1. A polyhedron is a set that equals the intersec-
tion of a finite number of closed halfspaces. An open set
R whose closurēR is a polyhedron is called open polyhe-
dron. A “neither open nor closed polyhedron” is a neither
open nor closed setR whose closurēR is a polyhedron. A
non-Euclidean polyhedron is a set whose closure equals the
union of a finite number of polyhedra.

Definition 2. A collection of setsR1, . . . ,RN is apartition
of a set� if (i)

⋃N
i=1Ri = �, (ii) Ri ∩ Rj = ∅, ∀i �= j .

MoreoverR1, . . . ,RN is a polyhedral partitionof a poly-
hedral set� if R1, . . . ,RN is a partition of� and theR̄i ’s
are polyhedral sets, wherēRi denotes the closure of the set
Ri .

Definition 3. A function h : � → Rk, where� ⊆ Rs ,
is PWA if there exists a partitionR1, . . . ,RN of � and
h(�)=H i�+ ki , ∀� ∈ Ri , i = 1, . . . , N .

Definition 4. A function h : � → Rk, where� ⊆ Rs ,
is PWA on polyhedra(PPWA) if there exists a polyhedral
partitionR1, . . . ,RN of � andh(�)=H i�+ ki , ∀� ∈ Ri ,
i = 1, . . . , N .

Piecewise quadratic (PWQ) functions and piecewise
quadratic functions on polyhedra (PPWQ) are defined anal-
ogously.

Definition 5. A function q : �→ R, where� ⊆ Rs , is a
multiple quadratic functionof multiplicity d ∈ N+ if q(�)=
min{q1(�) � �′Q1�+ l1�+ c1, . . . , qd(�) � �′Qd�+ ld�+
cd}, Qi > 0, ∀i = 1, . . . , d and� is a convex polyhedron.

Definition 6. A function q : �→ R, where� ⊆ Rs , is a
multiple PWQ on polyhedra(multiple PPWQ) if there ex-
ists a polyhedral partitionR1, . . . ,RN of � and q(�) =
min{q1

i (�) � �′Q1
i �+l1i �+c1

i , . . . , q
di

i (�) � �′Qdi

i �+l
di

i �+
c

di

i }, ∀� ∈ Ri , i=1, . . . , N . We definedi to be the multiplic-

ity of the functionq in the polyhedronRi , andd=∑N
i=1 di

to be the multiplicity of the functionq. (Note that� is not
necessarily convex.)

3. Basics of multiparametric programming

Consider the nonlinear mathematical program dependent
on a parameter vectorx appearing in the cost function and
in the constraints

J ∗(x)= inf
z

f (z, x)

subj. tog(z, x)�0

z ∈ M, (1)
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where z ∈ Rs is the optimization vector,x ∈ Rn is the
parameter vector,f : Rs × Rn → R is the cost function,
g : Rs × Rn → Rng are the constraints andM ⊆ Rs .

A small perturbation of the parameterx in (1) can cause
a variety of outcomes, i.e., depending on the properties of
the functionsf andg the solutionz∗(x) may vary smoothly
or change abruptly as a function ofx. We denote byK∗ the
set of feasible parameters, i.e.,

K∗ = {x ∈ Rn | ∃z ∈ M, g(z, x)�0}, (2)

by R : Rn → 2Rs

, where 2R
s

denotes the set of all subsets
of Rs , the point-to-set map that assigns the set of feasiblez

R(x)= {z ∈ M | g(z, x)�0} (3)

to a parameterx, by J ∗ : K∗ → R ∪ {−∞} the real-valued
function which expresses the dependence onx of the mini-
mum value of the objective function overK∗, i.e.,

J ∗(x)= inf
z
{f (z, x) | x ∈ K∗, z ∈ R(x)}, (4)

and byZ∗ : K∗ → 2Rs

the point-to-set map which expresses
the dependence onxof the set of optimizers, i.e,Z∗(x̄)={z ∈
R(x̄)|f (z, x̄)= J ∗(x̄)} with x̄ ∈ K∗.

J ∗(x) will be referred to as the optimal value function
or simply value function, Z∗(x) will be referred to as the
optimal set. We will denote byz∗ : Rn → Rs one of the
possible single valued functions that can be extracted from
Z∗, andz∗ will be called theoptimizer function. If Z∗(x) is
a singleton for allx, thenz∗(x) is the only element ofZ∗(x).

Our interest in problem (1) will become clear in the fol-
lowing sections. We can anticipate here that optimal control
problems for nonlinear systems can be reformulated as the
mathematical program (1) wherez is the input sequence to
be optimized andx the initial state of the system. Therefore,
the study of the properties ofJ ∗ andZ∗ is fundamental for
the study of properties of state-feedback optimal controllers.

Fiacco (1983, Chapter 2)provides conditions under which
the solution of nonlinear multiparametric programs (1) is lo-
cally well behaved and establishes properties of the solution
as a function of the parameters. In the following we report
a basic result (Hogan, 1973) which focuses on a restricted
set of functionsf (z, x) andg(z, x):

Theorem 1 (Hogan, 1973). Consider the multiparametric
nonlinear program(1). Assume that M is a convex and
bounded set inRs , f is continuous and the components of g
are convex onM × Rn. Then, J ∗(x) is continuous at each
x ∈ K∗.

Unfortunately very little can be said without continuity
assumption onf and convexity assumption ong. Below we
restrict our attention to two special classes of multiparamet-
ric programming.

3.1. Multiparametric quadratic program

Consider the multiparametric program

J ∗(x)= 1
2x′Y x+ min

z

1
2z′Hz+ z′F x

subj. to Cz�c + Sx,
(5)

wherez ∈ Rnz is the optimization vector,x ∈ Rn is the
vector of parameters, andC ∈ Rq×nz , c ∈ Rq , S ∈ Rq×n

are constant matrices. We refer to the problem of computing
z∗(x) andJ ∗(x) in (5) as (right-hand side)multiparametric
quadratic program(mp-QP).

Theorem 2 (Bemporad, Morari, Dua, & Pistikopoulos,
2002). Consider the mp-QP(5). AssumeH � 0 and[

Y
F

F ′
H

]
�0. The setK∗ is a polyhedral set, the value func-

tion J ∗ : K∗ → R is PPWQ, convex and continuous and
the optimizerz∗ : K∗ → Rnz is PPWA and continuous.

4. Hybrid systems

Several modeling frameworks have been introduced for
discrete-time hybrid systems. Among them,PWA systems
(Sontag, 1981) are defined by partitioning the state space
into polyhedral regions and associating with each region a
different affine state-update equation

x(t + 1)= Aix(t)+ Biu(t)+ f i

if

[
x(t)

u(t)

]
∈ Pi , i = {1, . . . , s}, (6)

wherex ∈ Rnc × {0, 1}n$ , u ∈ Rmc × {0, 1}m$ , {Pi}si=1 is a
polyhedral partition of the set of the state+input spaceP ⊂
Rn+m, n � nc + n$, m � mc + m$. We denote byxc ∈ Rnc

and uc ∈ Rmc the real components of the state and input
vector, respectively. We will give the following definitions
of continuous PWA system.

Definition 7. We say that the PWA system (6) iscontinuous
if the mapping(xc(t), uc(t)) �→ xc(t +1) is continuous and
n$ =m$ = 0. The PWA system (6) iscontinuous in the real
input spaceif the mapping(xc(t), uc(t)) �→ xc(t + 1) is
continuous w.r.t.uc. Analogously, we define PWA systems
continuous in the real state space.

Our main motivation for focusing on discrete-time models
stems from the need to analyze these systems and to solve
optimization problems, such as optimal control or schedul-
ing problems, for which the continuous time counterpart
would not be easily computable.

PWA systems are equivalent to interconnections of lin-
ear systems and finite automata. InHeemels, De Schutter,
and Bemporad (2001)the authors have proven the equiv-
alence of linear discrete-time PWA systems and other
classes of discrete-time hybrid systems. PWA models can
be generated automatically through appropriate conversion
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procedures (Bemporad, 2004) from discrete hybrid au-
tomata, a very general class of linear hybrid systems that
can be modeled in the language HYSDEL (Torrisi & Bem-
porad, 2004).

5. Problem formulation

Consider the PWA system (6) subject to hard input and
state constraints

Ex(t)+ Lu(t)�Mc (7)

for t �0, and denote byconstrained PWA system(CPWA)
the restriction of the PWA system (6) over the set of states
and inputs defined by (7),

x(t + 1)= Aix(t)+ Biu(t)+ f i if

[
x(t)

u(t)

]
∈ P̃i

, (8)

where{P̃i}si=1 is the new polyhedral partition of the sets of
state+input spaceRn+m obtained by intersecting the setsPi

in (6) with the polyhedron described by (7). The union of

the polyhedral partitions̃P�⋃s
i=1 P̃

i
will implicitly define

the feasible regionRfeasin the input space as a function ofx:

Rfeas(x)= {u ∈ Rmc × {0, 1}m$ |(x, u) ∈ P̃}.
We assume thatRfeas(x) is a compact set for anyx and the
following:

Assumption 1. System (8) is continuous in the real input
and real state space.

Assumption 1 requires that the PWA function that de-
fines the update of the continuous states is continuous on
the boundaries of contiguous polyhedral cells, and there-

fore allows one to work with the closure of setsP̃
i

without
the need of introducing multi-valued state update equations.

With abuse of notation in the following sectionsP̃
i

will al-

ways denote the closure ofP̃
i
. Discontinuous PWA systems

will be discussed in Section 8.
We define the following cost function:

J (UN , x(0)) � ‖P xN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p, (9)

and consider the constrained finite-time optimal control
(CFTOC) problem

J ∗0 (x(0)) � min
UN

J (UN , x(0)) (10)

subj. to




xk+1= Aixk + Biuk + f i

if

[
xk

uk

]
∈ P̃i

, i = 1, . . . , s

xN ∈ Xf

x0 = x(0),

(11)

where the column vectorUN � [u′0, . . . , u′N−1]′ ∈ RmcN ×
{0, 1}mlN is the optimization vector,N is the optimal con-
trol horizon andXf is a polyhedral terminal region. In (9),
‖Qx‖p denotes thep-norm of the vectorQx if p= 1,∞ or
x′Qx if p=2. In (11) we have omitted the constraintsuk ∈
Rfeas(xk), k = 1, . . . , N , assuming that they are implicit in

the first constraints, i.e., if there exists noP̃
i

that contains
[ xk

uk
] then this is an infeasible point. We will use this implicit

notation throughout the paper.
Note that we distinguish between the inputu(t) and the

statex(t) of plant (8) at timet and the variablesuk andxk

of the optimization problem (11).
In the following, we will assume thatQ=Q′� 0,R=R′ �

0, P � 0, for p = 2, and thatQ, R, P are full column rank
matrices forp= 1,∞. We will also denote byXk ⊆ Rnc ×
{0, 1}n$ the set of statesxk that are feasible for (9)–(11):

Xk =




x ∈ Rnc × {0, 1}n$

∣∣∣∣∣∣∣∣∣

∃ u ∈ Rmc × {0, 1}m$,

∃ i ∈ {1, . . . , s}[
x

u

]
∈ P̃i

and

Aix + Biu+ f i ∈ Xk+1




,

k = 0, . . . , N − 1,

XN =Xf . (12)

Note that the optimizer functionU∗N may not be uniquely
defined if the optimal set of problem (9)–(11) is not a sin-
gleton for somex(0).

In the following we need to distinguish between optimal
control based on the 2-norm and optimal control based on
the 1-norm or∞-norm.

As a last remark, we want to point out that it is almost im-
mediate to extend the results of the following sections to dif-
ferent formulations of hybrid optimal control problems, such
as reference tracking problems or problems where penalties
for switching between two different regions of operation are
weighted in the cost function.

6. Solution properties

Theorem 3. Consider the optimal control problem(9)–(11)
with p = 2 and let Assumption1 hold. Then, there exists a
solution in the form of a PWA state-feedback control law

u∗k(x(k))= F i
kx(k)+Gi

k if x(k) ∈ Ri
k, (13)

whereRi
k, i = 1, . . . , Nk is a partition of the setXk of

feasible statesx(k), and the closureR̄
i

k of the setsRi
k has

the following form:

R̄
i

k � {x : x(k)′Li
k(j)x(k)+Mi

k(j)x(k)�Ni
k(j),

j = 1, . . . , ni
k}, k = 0, . . . , N − 1, (14)
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and

x(k + 1)= Aix(k)+ Biu∗k(x(k))+ f i

if

[
x(k)

u∗k(x(k))

]
∈ P̃i

, i = {1, . . . , s}. (15)

Proof. The piecewise linearity of the solution was first
mentioned bySontag (1981). Mayne (2001)sketched a
proof. In the following we will give the proof foru∗0(x(0));
the same arguments can be repeated foru∗1(x(1)), . . . ,

u∗N−1(x(N − 1)).
Case1: no binary inputs and states(ml = nl = 0).
Depending on the initial statex(0) and on the input se-

quenceU = [u′0, . . . , u′k], the statexk is either infeasible or

it belongs to a certain polyhedroñP
i
, k = 0, . . . , N − 1.

The number of all possible locations of the state sequence
x0, . . . , xN−1 is equal tosN . Denote by{vi}sN

i=1 the set of all
possible switching sequences over the horizonN, and byvk

i

thekth element of the sequencevi , i.e.,vk
i = j if xk ∈ P̃j

.
Fix a certainvi and constrain the state to switch according

to the sequencevi . problem (9)–(11) becomes

J ∗vi
(x(0)) � min{UN }

J (UN , x(0)) (16)

subj. to




xk+1= Avk
i xk + Bvk

i uk + f vk
i ,[

xk

uk

]
∈ P̃vk

i

k = 0, . . . , N − 1,

xN ∈ Xf ,

x0 = x(0).

(17)

Problem (16)–(17) is equivalent to a finite-time optimal con-
trol problem for a linear time-varying system with time-
varying constraints and can be solved by using the approach
of Bemporad et al. (2002). The first moveu0 of its solution
is the PPWA feedback control law

ui
0(x(0))= F̃ i,j x(0)+ G̃i,j ,

∀x(0) ∈Ti,j , j = 1, . . . , Nr i , (18)

whereDi=⋃Nr i

j=1T
i,j is a polyhedral partition of the convex

setDi of feasible statesx(0) for problem (16)–(17).Nr i

is the number of regions of the polyhedral partition of the
solution and it is a function of the number of constraints in
problem (16)–(17). The upper indexi in (18) denotes that
the inputui

0(x(0)) is optimal when the switching sequence
vi is fixed.

The setX0 of all feasible states at time 0 isX0=⋃sN

i=1D
i

and in general it is not convex. Indeed, as some initial states
can be feasible for different switching sequences, the sets
Di , i = 1, . . . , sN , in general, can overlap. The solution
u∗0(x(0)) to the original problem (9)–(11) can be computed
in the following way. For every polyhedronTi,j in (18):

(1) If Ti,j ∩Tl,m=∅ for all l �= i, l=1, . . . , sN , and for
all m = 1, . . . , Nr l , then the switching sequencevi is

the only feasible one for all the states belonging toTi,j

and therefore the optimal solution is given by (18), i.e.

u∗0(x(0))= F̃ i,j x(0)+ G̃i,j , ∀x ∈Ti,j . (19)

(2) If Ti,j intersects one or more polyhedraTl1,m1,

Tl2,m2, . . . , the states belonging to the intersection
are feasible for more than one switching sequence
vi, vl1, vl2, . . . , and therefore the corresponding value
functions J ∗vi

, J ∗vl1
, J ∗vl2

, . . . in (16) have to be com-
pared in order to compute the optimal control law.
Consider the simple case when only two polyhedra
overlap, i.e.Ti,j ∩Tl,m �T(i,j),(l,m) �= ∅. We will
refer toT(i,j),(l,m) as adouble feasibility polyhedron.
For all states belonging toT(i,j),(l,m) the optimal so-
lution is

u∗0(x(0))=


F̃ i,j x(0)+ G̃i,j , ∀ x(0) ∈T(i,j),(l,m) :
J ∗vi

(x(0)) < J ∗vl
(x(0))

F̃ l,mx(0)+ G̃l,m, ∀ x(0) ∈T(i,j),(l,m) :
J ∗vi

(x(0)) > J ∗vl
(x(0)){

F̃ i,j x(0)+ G̃i,j or
F̃ l,mx(0)+ G̃l,m ∀ x(0) ∈T(i,j),(l,m) :

J ∗vi
(x(0))= J ∗vl

(x(0)).

(20)

BecauseJ ∗vi
and J ∗vl

are quadratic functions ofx(0)

on Ti,j and Tl,m, respectively, we find the ex-
pression (14) of the control law domain. The sets
Ti,j\Tl,m andTl,m\Ti,j are twosingle feasibility
non-Euclidean polyhedrawhich can be partitioned
into a set ofsingle feasibility polyhedra, and thus be
described through (14) withLi

k = 0.

In order to conclude the proof, the general case ofn inter-
secting polyhedra has to be discussed. We follow three main
steps. Step 1: generate one polyhedron ofnth-ple feasibility
and 2n−2 polyhedra, generally non-Euclidean and possibly
empty and disconnected, of single, double,. . . , (n−1)th-ple
feasibility. Step 2: theith-ple feasibility non-Euclidean poly-
hedron is partitioned into severalith-ple feasibility polyhe-
dra. Step 3: anyith-ple feasibility polyhedron withi > 1 is
further partitioned into at mosti subsets (14) where in each
one of them a certain feasible value function is greater than
all the others. The procedure is depicted inFig. 1whenn=3.

Case2: binary inputs, m$ �= 0.
The proof can be repeated in the presence of binary in-

puts,m$ �= 0. In this case the switching sequencesvi are
given by all combinations of region indices andbinary in-
puts, i.e.,i=1, . . . , (s ·m$)N . The continuous component of
the optimal input is given by (19) or (20). Such an optimal
continuous component of the input has an associated opti-
mal sequencevi , whose component provides the remaining
binary components of the optimal input.

Case3: binary states, nl �= 0.



1714 F. Borrelli et al. / Automatica 41 (2005) 1709–1721

1

2

3

1,2,3

1,2

1,3

1

2

3
(a) (b)

Fig. 1. Graphical illustration of the main steps for the proof of Theorem 3
when three polyhedra intersect. Step 1: the three intersecting polyhedra are
partitioned into one polyhedron of triple feasibility (1,2,3), two polyhedra
of double feasibility(1, 2) and(1, 3), three polyhedra of single feasibility
(1), (2), (3). The sets (1), (2) and (1,2) are non-Euclidean polyhedra. Step
2: the sets (1), (2) and (1,2) are partitioned into six polyhedra of single
feasibility. Step 3: value functions are compared inside the polyhedra of
multiple feasibility.

The proof can be repeated in the presence of binary states
by a simple enumeration of all the possiblenN

$ discrete state
evolutions. �

From the result of the theorem above one immediately
concludes that the value functionJ ∗0 is piecewise quadratic:

J ∗0 (x(0))= x(0)′H i
1x(0)+H i

2x(0)+H i
3 if x(0) ∈ Ri

0,

(21)

The proof of Theorem 3 gives useful insights into the prop-
erties of the setsRi

k in (14). We will summarize them next.
Each setRi

k has an associated multiplicityj which means
that j switching sequences are feasible for problem (9)–(11)
starting from a statex(k) ∈ Ri

k. If j = 1, thenRi
k is a

polyhedron. In general, ifj > 1 the boundaries ofRi
k can

be described either by an affine function or by a quadratic
function. In the sequel boundaries which are described by
quadratic functions but degenerate to hyperplanes or sets of
hyperplanes will be considered affine boundaries.

Quadraticboundaries arise from the comparison of value
functions associated with feasible switching sequences, thus
a maximum ofj − 1 quadratic boundaries can be present
in a j-ple feasible set. Theaffineboundaries can be of three
types. Typea: they are inherited from the originalj-ple fea-
sible non-Euclidean polyhedron. In this case beyond such
boundaries the multiplicity of the feasibility changes. Type
b: they are artificial cuts needed to describe the originalj-ple
feasible non-Euclidean polyhedron as a set ofj-ple feasible
polyhedra. Beyond typeb boundaries the multiplicity of the
feasibility does not change. Typec: they arise from the com-
parison of quadratic value functions which degenerate in an
affine boundary.

In conclusion, we can state the following proposition:

Proposition 1. The value functionJ ∗k

(1) is a quadratic function of the states inside eachRi
k;

(2) is continuous on quadratic and affine boundaries of
typesb andc;

(3) might be discontinuous only on affine boundaries of
typea;

and the optimizeru∗k

(1) is an affine function of the states inside eachRi
k;

(2) is continuous and unique on affine boundaries of
typeb;

(3) is non-unique on quadratic boundaries, except possibly
at isolated points;

(4) might be non-unique on affine boundaries of typec;
(5) might be discontinuous on affine boundaries of typea.

Based on Proposition 1 one can highlight the only source
of discontinuity of the value function: affine boundaries of
type a. The following corollary gives a useful insight into
the class of possible value functions.

Corollary 1. J ∗0 is a lower-semicontinuous PWQ function
onX0.

Proof. The proof follows from the result on the minimiza-
tion of lower-semicontinuous point-to-set maps in (Berge,
1997). Below we give a simple proof without introducing
the notion of point-to-set maps.

Only points where a discontinuity occurs are relevant for
the proof, i.e., states belonging to boundaries of typea.
From Assumption 1 it follows that the feasible switching
sequences for a given statex(0) are all the feasible switch-

ing sequences associated with any setR
j
0 whose closurēR

j

0
containsx(0). Consider a statex(0) belonging to bound-
aries of typea and the proof of Theorem 3. The only case
of discontinuity can occur when (i) aj-ple feasible setP1
intersects ani-ple feasible setP2 with i < j , (ii) there ex-
ists a pointx(0) ∈ P1, P2 and a neighborN(x(0)) with
x, y ∈N(x(0)), x ∈ P1, x /∈P2 andy ∈ P2, y /∈P1. The
proof follows from the previous statements and the fact that
J ∗0 (x(0)) is the minimum of allJ ∗vi

(x(0)) for all feasible
switching sequencesvi . �

The result of Corollary 1 will be extensively used in the
following sections. Even if value function and optimizer are

discontinuous, one can work with the closurēRj
k of the

original setsRj
k without explicitly considering their bound-

aries. In fact, if a given statex(0) belongs to several regions

R̄1
0, . . . , R̄

p
0 , then the minimum value among the optimal

values (21) associated with each regionR̄1
0, . . . , R̄

p
0 allows

us to identify the region of the setR1
0, . . . ,R

p
0 containing

x(0).
Next we show some interesting properties of the optimal

control law when we restrict our attention to smaller classes
of PWA systems.
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Corollary 2. Assume that the PWA system(8) is continuous,
and thatE=0 in (7) andXf =Rn in (11) (which means that
there are no state constraints, i.e., P̃ is unbounded in the
x-space). Then, the value functionJ ∗0 in (11) is continuous.

Proof. Problem (9)–(11) becomes a multiparametric
program with only input constraints when the state
at time k is expressed as a function of the state at
time 0 and the input sequenceu0, . . . , uk−1, i.e., xk =
fPWA((· · · (fPWA(x0, u0), u1), . . . , uk−2), uk−1). J in (9)
will be a continuous function ofx0 andu0, . . . , uN−1 since
it is the composition of continuous functions. The input
constraints onu0, . . . , uN−1 are convex by assumption. The
proof follows from the continuity ofJ and Theorem 1. �

Note thatE = 0 is a sufficient condition for ensuring
that constraints (7) are convex in the optimization variables
u0, . . . , un. In general, even for continuous PWA systems
with state constraints it is difficult to find weak assumptions
ensuring the continuity of the value functionJ ∗0 . Ensuring
the continuity of the optimal control lawu(k) = u∗k(x(k))

is even more difficult. A list of sufficient conditions forU∗N
to be continuous can be found inFiacco (1976). In general,
they require the convexity (or a relaxed form of it) of the
costJ (UN , x(0)) in UN for eachx(0) and the convexity of
the constraints in (11) inUN for eachx(0). Such conditions
are clearly very restrictive since the cost and the constraints
in problem (11) are a composition of quadratic and linear
functions, respectively, with the PWA dynamics of the sys-
tem.

The next theorem provides a condition under which the
solution u∗k(x(k)) of the optimal control problem (9)–(11)
is a PPWA state-feedback control law.

Theorem 4. Assume that the optimizerU∗N (x(0)) of
(9)–(11) is unique for all x(0). Then the solution to the
optimal control problem(9)–(11)is a PPWA state-feedback
control law of the form

u∗k(x(k))= F i
kx(k)+Gi

k if x(k) ∈ Ri
k k = 0, . . . , N − 1,

(22)

whereRi
k, i = 1, . . . , Nr

k , is a polyhedral partition of the
setXk of feasible statesx(k).

Proof. In Proposition 1 we concluded that the value func-
tion J ∗0 (x(0)) is continuous on quadratic type boundaries.
By hypothesis, the optimizeru∗0(x(0)) is unique. Theorem 3
implies thatF̃ i,j x(0)+ G̃i,j = F̃ l,mx(0)+ G̃l,m, ∀x(0) be-
longing to the quadratic boundary. This can occur only if the
quadratic boundary degenerates to a single feasible point or
to affine boundaries. The same arguments can be repeated
for u∗k(x(k)), k = 1, . . . , N − 1. �

Remark 1. Theorem 4 relies on a rather strong uniqueness
assumption. Sometimes, problem (9)–(11) can be modified

in order to obtain uniqueness of the solution and use the
result of Theorem 4 which excludes the existence of non-
convex ellipsoidal sets. It is reasonable to believe that there
are other conditions under which the state-feedback solution
is PPWA without claiming uniqueness.

The previous results can be extended to piecewise linear
cost functions, i.e., cost functions based on the 1-norm or
the∞-norm.

Theorem 5. Consider the optimal control problem(9)–(11)
with p= 1,∞ and let Assumption1 hold. Then there exists
a solution in the form of a PPWA state-feedback control law

u∗k(x(k))= F i
kx(k)+Gi

k if x(k) ∈ Ri
k, (23)

whereRi
k, i = 1, . . . , Nr

k , is a polyhedral partition of the
setXk of feasible statesx(k).

Proof. The proof is similar to the proof of Theorem 3. Fix a
certain switching sequencevi , consider the problem (9)–(11)
and constrain the state to switch according to the sequence
vi to obtain problem (16)–(17). Problem (16)–(17) can be
viewed as a finite-time optimal control problem with a per-
formance index based on 1-norm or∞-norm for a linear
time-varying system with time-varying constraints and can
be solved by using the multiparametric linear program as de-
scribed inBorrelli (2003). Its solution is a PPWA feedback
control law

ui
0(x(0))= F̃ i,j x(0)+ G̃i,j , ∀x ∈Ti,j ,

j = 1, . . . , Nr i , (24)

and the value functionJ ∗vi
is PWA on polyhedra and convex.

The rest of the proof follows the proof of Theorem 3. Note
that in this case the value functions to be compared are PWA
and not PWQ. �

By comparing Theorems 3 and 5 it is clear that while for
performance indices based on 1 or∞ norms the solution
is PWA on polyhedra, in the 2-norm case one may need to
deal with non-convex ellipsoidal regions.

7. Computation of the optimal control law via dynamic
programming

In the previous section the properties enjoyed by the so-
lution of hybrid optimal control problems were investigated.
The proof of Theorem 3 is constructive, but it is based on
the enumeration of all the possible switching sequences of
the hybrid system, the number of which grows exponen-
tially with the time horizon. Although the computation is
performed off-line (the on-line complexity is the one associ-
ated with the evaluation of the PWA control law (22)), more
efficient methods than enumeration are desirable.

In Bemporad and Morari (1999)the main idea is
to translate problem (9)–(11) into a linear or quadratic
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mixed-integer program that can be solved by using stan-
dard commercial software. This approach does not provide
the state-feedback law (13) or (23) but only the optimal
control sequenceU∗N (x(0)) for a given initial statex(0). In
Borrelli (2003)the state-feedback law (13) or (23) is com-
puted by means of multiparametric mixed-integer program-
ming. However, the use of multiparametric mixed-integer
programming has a major drawback: the solver does not
exploit the structure of the optimal control problem. In
fact, a large part of the information associated with prob-
lem (9)–(11) becomes hidden when it is reformulated as a
mixed-integer program. In this section we show how linear
and quadratic parametric programming can be used to solve
the Hamilton–Jacobi–Bellman equations associated with
CFTOC problem (9)–(11). InBaotic, Christophersen, and
Morari (2003) we have compared the dynamic program-
ming and the mixed-integer multiparametric programming
approach.

The PWA solution (13) will be computed proceeding
backwards in time using two tools: a linear or quadratic
multiparametric programming solver (depending on the cost
function used) and a special technique to store the solu-
tion which will be illustrated in the following sections. The
algorithm will be presented for optimal control based on
a quadratic performance criterion. Its extension to optimal
control based on linear performance criteria is straightfor-
ward.

7.1. Preliminaries and basic steps

Consider the PWA map� defined as

� : x ∈ Ri �→ Fix +Gi for i = 1, . . . , NR, (25)

whereRi , i = 1, . . . , NR, are subsets of thex-space. Note
that if there existl, m ∈ {1, . . . , NR} such that forx ∈
Rl ∩ Rm, Flx + Gl �= Fmx + Gm the map� (25) is not
single valued.

Definition 8. Given a PWA map (25) we definefPWA(x)=
�o(x) as theordered region single-valuedfunction associated
with (25) when

�o(x)= Fj x +Gj |x ∈ Rj and∀i < j : x /∈Ri ,

j ∈ {1, . . . , NR},
and write it in the following form:

�o(x)=

�
F1x +G1 if x ∈ R1,

...

FNRx +GNR if x ∈ RNR .

Note that given a PWA map (25) the correspondingor-
dered region single-valuedfunction �o changes if the order
used to store the regionsRi and the corresponding affine
gains change. For illustration purposes consider the example

-2 -1 0 1 2
-1

-0.5
0

0.5
1

1.5
2

F2 x + G2

F1 x + G1ζ(
x)

-2 -1 0 1 2
-1

-0.5
0

0.5
1

1.5
2

ζ12(x) =
F1x + G1 if x ∈     1
F2x + G2 if x ∈    2

-2 -1 0 1 2
-1

-0.5
0

0.5
1

1.5
2
ζ21(x) =

F2x + G2 if x ∈     2
F1x + G1 if x ∈    1

(a)

(b) (c)

Fig. 2. Illustration of the ordered region single-valued function: (a) Multi
valued PWA map�; (b) Ordered region single valued function�12; (c)
Ordered region single valued function�21.

depicted inFig. 2, wherex ∈ R, NR = 2, F1 = 0, G1 = 0,
R1= [−2, 1], F2= 1, G2= 0, R2= [0, 2].

In the following we assume that the setsRk
i in the optimal

solution (13) can overlap. When we refer to the PWA func-
tion u∗k(x(k)) in (13) we will implicitly mean the ordered
region single-valued function associated with the mapping
(13).

Example 7.1. Let J ∗1 : R1 → R and J ∗2 : R2 → R be
two quadratic functions,J ∗1 (x) � x′L1x + M1x + N1 and
J ∗2 (x) � x′L2x +M2x +N2, whereR1 andR2 are convex
polyhedra andJ ∗i (x) = +∞ if x /∈Ri , i ∈ {1, 2}. Let u∗1 :
R1 → Rm, u∗2 : R2 → Rm be vector functions. LetR1 ∩
R2 �R3 �= ∅ and define

J ∗(x) � min{J ∗1 (x), J ∗2 (x)}, (26)

u∗(x) �
{

u∗1(x) if J ∗1 (x)�J ∗2 (x),

u∗2(x) if J ∗1 (x)�J ∗2 (x),
(27)

whereu∗(x) can be a set valued function. LetL3=L2−L1,
M3=M2−M1, N3=N2−N1. Then, corresponding to the
three following cases:

(i) J ∗1 (x)�J ∗2 (x) ∀x ∈ R3,
(ii) J ∗1 (x)�J ∗2 (x) ∀x ∈ R3,

(iii) ∃x1, x2 ∈ R3|J ∗1 (x1) < J ∗2 (x1) andJ ∗1 (x2) > J ∗2 (x2),

the expressions (26) and a real-valued function that can be
extracted from (27) can be written equivalently as:

(1)

J ∗(x)=
� J ∗1 (x) if x ∈ R1,

J ∗2 (x) if x ∈ R2,
(28)
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u∗(x)=
� u∗1(x) if x ∈ R1,

u∗2(x) if x ∈ R2.
(29)

(2) As in (28) and (29) by switching the indices 1 and 2.
(3)

J ∗(x)=

�
min{J ∗1 (x), J ∗2 (x)} if x ∈ R3,

J ∗1 (x) if x ∈ R1,

J ∗2 (x) if x ∈ R2,

(30)

u∗(x)=

�

u∗1(x) if x ∈ R3 ∩ {x|
x′L3x +M3x +N3�0},

u∗2(x) if x ∈ R3 ∩ {x|
x′L3x +M3x +N3�0},

u∗1(x) if x ∈ R1,

u∗2(x) if x ∈ R2,

(31)

where (28)–(31) have to be considered as PWA and PPWQ
functions in theordered regionsense.

Example 7.1 shows how to

• avoid the storage of the intersections of two polyhedra in
cases (i) and (ii);
• avoid the storage of possibly non-convex regionsR1\R3

andR2\R3;
• work with multiple quadratic functions instead of

quadratic functions defined over non-convex and non-
polyhedral regions.

The three points listed above will be the three basic ingre-
dients for storing and simplifying the optimal control law
(13). Next we will show how to compute it.

Remark 2. To distinguish between cases (i), (ii) and (iii)
of Example 7.1, in general, one needs to solve an indefinite
quadratic program, namely,

min
x

x′L3x +M3x +N3

subj. to x ∈ R3. (32)

In our approach, to avoid such a test form (31) correspond-
ing to case (iii) can be used. The only drawback is that form
(31) is, in general, a non-minimal representation of the value
function and therefore it increases the complexity of evalu-
ating and storing the optimal control profile (13).

7.2. Multiparametric programming with multiple quadratic
functions

Consider the multiparametric program

J ∗(x) � min
u

l(x, u)+ q(f (x, u))

s.t. f (x, u) ∈ R, (33)

whereR ⊆ Rn is a compact set,f : Rn × Rm → Rn,
q : R → R, and l : Rn × Rm → R is a convex quadratic
function of x and u. We aim at determining the regionX
of variablesx such that program (33) is feasible and the
optimumJ ∗(x) is finite, and at finding the expressionu∗(x)

of (one of) the optimizer(s). We point out that the constraint
f (x, u) ∈ R implies a constraint onu as a function ofx
sinceu can assume only values wheref (x, u) is defined.

Next we show how to solve several forms of problem (33).

Lemma 1 (one to one problem). Problem (33) where f

is linear, q is quadratic and strictly convex, and R is a
polyhedron can be solved by one mp-QP.

Proof. SeeBemporad et al. (2002). �

Lemma 2 (one to one problem of multiplicity d). Problem
(33) wheref is linear, q is a multiple quadratic function
of multiplicity d andR is a polyhedron can be solved by d
mp-QPs.

Proof. The multiparametric program to be solved is

J ∗(x)=min
u
{l(x, u)+
min{q1(f (x, u)), . . . , qd(f (x, u))}}

subj. to f (x, u) ∈ R, (34)

and it is equivalent to

J ∗(x)=min




min
u

l(x, u)+ q1(f (x, u)),

subj. tof (x, u) ∈ R,
...

min
u

l(x, u)+ qd(f (x, u))}
subj. tof (x, u) ∈ R




. (35)

The ith sub-problems in (35)

J ∗i (x) � min
u

l(x, u)+ qi(f (x, u)) (36)

subj. tof (x, u) ∈ R (37)

is a one to one problemand therefore it is solvable by an
mp-QP. Let the solution of theith mp-QPs be

ui(x)= F̃ i,j x + G̃i,j , ∀x ∈Ti,j , j = 1, . . . , Nr i , (38)

whereTi =⋃Nr i

j=1T
i,j is a polyhedral partition of the con-

vex setTi of feasiblex for the ith sub-problem andNr i is
the corresponding number of polyhedral regions. The feasi-
ble setX satisfiesX=T1=· · ·=Td since the constraints
of thed sub-problems are identical.

The solutionu∗(x) to the original problem (34) is ob-
tained by comparing and storing the solution ofd mp-
QP sub-problems (36)–(37) as explained in Example 7.1.
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Consider the cased=2, and consider the intersection of the
polyhedraT1,i andT2,l for i=1, . . . , Nr 1, l=1, . . . , Nr 2.
For allT1,i∩T2,l �T(1,i),(2,l) �= ∅ the optimal solution is
stored in an ordered way as described in Example 7.1, while
paying attention to the fact that a region could be already
stored. Moreover, when storing a new polyhedron with the
corresponding value function and optimizer, the relative or-
der of the regions already stored must not be changed. The
result of thisintersect and compareprocedure is

u∗(x)= F ix +Gi if x ∈ Ri ,

Ri � {x : x′Li(j)x +Mi(j)x �Ni(j), j = 1, . . . , ni},
(39)

whereR=⋃NR
j=1R

j is a polyhedron and the value function

J ∗(x)= J̃ ∗j (x) if x ∈ Dj , j = 1, . . . , ND, (40)

whereJ̃ ∗j (x) are multiple quadratic functions defined over

the convex polyhedraDj . The polyhedraDj can contain
several regionsRi or can coincide with one of them. Note
that (39) and (40) have to be considered as PWA and PPWQ
functions in theordered regionsense.

If d > 2 then the value function in (40) is intersected with
the solution of the third mp-QP sub-problem and the pro-
cedure is iterated by making sure not to change the relative
order of the polyhedra and corresponding gain of the solu-
tion constructed in the previous steps. The solution will still
have the same form (39)–(40).�

Lemma 3 (one to r problem). Problem(33) wheref is lin-
ear, q is a lower-semicontinuous PPWQ function defined
over r polyhedral regions and strictly convex on each poly-
hedron, andR is a polyhedron, can be solved by r mp-QPs.

Proof. Letq(x) � qi , if x ∈ Ri , be the PWQ function where
the closuresR̄i of Ri are polyhedra andqi strictly convex
quadratic functions. The multiparametric program to solve
is

J ∗(x)=min




min
u

l(x, u)+ q1(f (x, u)),

subj. tof (x, u) ∈ R̄1
f (x, u) ∈ R

...

min
u

l(x, u)+ qr(f (x, u))}
subj. tof (x, u) ∈ R̄r

f (x, u) ∈ R




. (41)

The proof follows the lines to the proof of the previous
theorem with the exception that the constraints of theith

mp-QP sub-problem differ from the one of thejth mp-QP
sub-problem,i �= j .

The lower-semicontinuity assumption onq(x) allows one
to use the closure of the setsRi in (41). The cost function in
problem (33) is lower-semicontinuous since it is a compo-
sition of a lower-semicontinuous function and a continuous
function. Then, since the domain is compact, problem (41)
admits a minimum. Therefore, for a givenx, there exists
one mp-QP in problem (41) which yields the optimal solu-
tion. There might exist other mp-QP solutions in (41) feasi-
ble atx that are neither optimal nor feasible for the original
problem (33). However, sinceq(x) is lower-semicontinuous,
such solutions will be discarded when the corresponding
value functions are compared. The procedure based on solv-
ing mp-QPs and storing the results as in Example 7.1 will

be the same as in Lemma 2 but the domainR =⋃NR

j=1R
j

of the solution can be a non-Euclidean polyhedron.�

If f is PPWA and defined overs regions then we have an
s to X problemwhereX can belong to any of the problems
listed above. In particular, we have ans to r problem of
multiplicity d if f is PPWA and defined overs regions andq
is a multiple PPWQ function of multiplicityd, defined over
r polyhedral regions. The following lemma can be proven
along the lines of the proofs given before.

Lemma 4. Problem(33)wheref is linear and q is a lower-
semicontinuous PPWQ function of multiplicity d, defined
over r polyhedral regions and strictly convex on each poly-
hedron, is a one to r problem of multiplicity d and can be
solved byr · d mp-QPs.

An sto r problem of multiplicityd can be decomposed into
s one tor problems of multiplicityd. An s to one problem
can be decomposed into sone to one problems.

7.3. Algorithmic solution of the HJB equations

In the following we will substitute the CPWA system
equations (8) with the shorter form

x(k + 1)= f̃PWA(x(k), u(k)), (42)

wheref̃PWA : P̃→ Rn andf̃PWA(x, u)=Aix + Biu+ f i

if [ x
u
] ∈ P̃i

, i=1, . . . , s, and{P̃i} is a polyhedral partition

of P̃.
Consider the dynamic programming formulation of the

CFTOC problem (9)–(11),

J ∗j (x(j)) � min
uj

‖Qxj‖2+ ‖Ruj‖2
+ J ∗j+1(f̃PWA(x(j), uj )) (43)

subj. tof̃PWA(x(j), uj ) ∈ Xj+1 (44)
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for j =N − 1, . . . , 0, with terminal conditions

XN =Xf (45)

J ∗N (x)= ‖P x‖2, (46)

whereXj is the set of all statesx(j) for which problem
(43)–(44) is feasible:

Xj = {x ∈ Rn|∃u, f̃PWA(x, u) ∈ Xj+1}. (47)

Eqs. (43)–(47) are the discrete-time version of the well-
known Hamilton–Jacobi–Bellman equations for continuous-
time optimal control problems.

Assume for the moment that there are no binary inputs
and binary states,m$=n$=0. The HJB equations (43)–(46)
can be solved backwards in time by using a multiparametric
quadratic programming solver and the results of the previous
section.

Consider the first step of the dynamic program (43)–(46)

J ∗N−1(xN−1) � min{uN−1}
‖QxN−1‖2+ ‖RuN−1‖2

+ J ∗N (f̃PWA(xN−1, uN−1)), (48)

subj. tof̃PWA(xN−1, uN−1) ∈ Xf . (49)

The cost to go functionJ ∗N (x) in (48) is quadratic, the ter-
minal regionXf is a polyhedron and the constraints are
PWA. problem (48)–(49) is ans to one problemthat can be
solved by solvings mp-QPs (Lemma 4). From the second
stepj = N − 2 to the last onej = 0 the cost to go func-
tion J ∗j+1(x) is a lower-semicontinuous PPWQ with a cer-
tain multiplicity dj+1, the terminal regionXj+1 is a poly-
hedron (in general non-Euclidean) and the constraints are
PWA. Therefore, problem (43)–(46) is ans to Nr

j+1 prob-
lem with multiplicitydj+1 (whereNr

j+1 is the number of
polyhedra of the cost to go functionJ ∗j+1), which can be
solved by solvingsNr

j+1dj+1 mp-QPs (Lemma 4). The re-
sulting optimal solution will have form (13) considered in
the ordered region sense.

In the presence of binary inputs the procedure can be re-
peated, with the difference that all the possible combinations
of binary inputs must be enumerated. Therefore, aone to
one problembecomes a 2m$ to one problemand so on. In
the presence of binary states the procedure can be repeated
either by enumerating them all or by solving a dynamic pro-
gramming algorithm at time stepk from a relaxed state space
to the set of binary states feasible at timek + 1.

Next we summarize the main steps of the dynamic
programming algorithm discussed in this section. We use
boldface characters to denote sets of polyhedra, i.e.,R :=
{Ri}i=1,...,|R|, whereRi is a polyhedron and|R| is the
cardinality of the setR. Furthermore, when we saySOLVE
an mp-QP we mean to compute and store the tripletSk,i,j

of expressions for the value function, the optimizer and the
polyhedral partition of the feasible space.

Algorithm 7.1.

Input: CFTOC problem (9)–(11)
Output: Solution (13) in the ordered region sense.

1 let RN = {Xf }
2 let J ∗N,1(x) := x′P x

3 for k =N − 1, . . . , 1,
4 for i = 1, . . . , |Rk+1|,
5 for j = 1, . . . , s,
6 let Sk,i,j = {}
7 SOLVE the mp-QP

Sk,i,j ← min
uk

x′kQxk + u′kRuk

+J ∗k+1,i (Aj xk + Bj uk + fj )

subj. to

{
Aj xk + Bj uk + fj ∈ Rk+1,i[

xk

uk

]
∈ P̃j

8 end
9 end

10 Let Rk = {Rk,i,j,l}i,j,l . Denote by Rk,h its
elements, and by J ∗k,h and u∗k,h(x) the associated
costs and optimizers, with h ∈ {1, . . . , |Rk|}

11 KEEP only triplets (J ∗k,h(x), u∗k,h(x),Rk,h)

for which
∃x ∈ Rk,h : x /∈Rk,d ,∀d �= h OR
∃x ∈ Rk,h : J ∗k,h(x) < J ∗k,d(x),∀d �= h

12 CREATE multiplicity information and additional
regions for an ordered region solution as
explained in Example 7.1

13 end.

In Algorithm 7.1, the structureSk,i,j stores the matri-
ces defining quadratic functionJ ∗k,i,j,l(·), affine function
u∗k,i,j,l(·) and polyhedraRk,i,j,l , for all l:

Sk,i,j =
⋃

l

{(J ∗k,i,j,l(x), u∗k,i,j,l(x),Rk,i,j,l)}, (50)

where the indices in (50) have the following meaning:k is
the time step,i indexes the piece of the “cost-to-go” function
that the DP algorithm is considering,j indexes the piece of
the PWA dynamics the DP algorithm is considering, andl in-
dexes the polyhedron in the mp-QP solution of the(k, i, j)th
mp-QP problem.

Step 11 of Algorithm 7.1 aims at discarding regionsRk,h

that are completely covered by some other regions that have
lower cost. Obviously, if there are some parts of the region
Rk,h that are not covered at all by other regions (first con-
dition) we need to keep it. Note that comparing the cost
functions (second condition) is, in general, non-convex opti-
mization problem. One might consider solving the problem
exactly, but since the algorithm works even if some remov-
able regions are kept, we usually formulate LMI relaxation
of the problem at hand. While executing Step 11 of Algo-
rithm 7.1 we can simultaneously obtain the information of
multiplicity of polyhedral subsets of the regionRk,h.
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The output of Algorithm 7.1 is the state-feedback control
law (13) considered in the ordered region sense. The online
implementation of the control law requires simply the evalu-
ation of the PWA controller (13) in the ordered region sense
(note that the order the solution is stored is important).

8. Discontinuous PWA systems

Without Assumption 1 the optimal control problem
(9)–(11) may be feasible but may not admit an optimizer
for somex(0) (the problem in this case should be to find
an infimum rather than the minimum).

Under the assumption that the optimizer exists for all
statesx(k), the approach explained in the previous sections
can be applied to discontinuous systems by considering three
elements. First, the PWA system (8) has to be defined on
each polyhedron of its domainand all its lower dimensional
facets. Secondly, dynamic programming has to be performed
“from” and “to” any lower dimensional facet of each poly-
hedron of the PWA domain. Finally, value functions are not
lower-semicontinuous, which implies that Lemma 3 cannot
by used. Therefore, when considering the closure of polyhe-
dral domains in multiparametric programming (41), a post-
processing is necessary in order to remove multiparametric
optimal solutions which do not belong to the original set
but only to its closure. The tedious details of the dynamic
programming algorithm for discontinuous PWA systems are
not included in this paper but can be immediately extracted
from the results of the previous sections.

In practice, the approach just described for discontinu-
ous PWA systems can easily be numerically prohibitive. The
simplest approach from a practical point of view resorts to
introducing gaps between the boundaries of any two poly-
hedra belonging to the PWA domain (or, equivalently, to
shrinking by a quantityε the size of every polyhedron of
the original PWA system). In this way, one deals with PWA
systems defined over a disconnected union of closed polyhe-
dra. By doing so, one can use the approach discussed previ-
ously in this paper for continuous PWA systems. However,
the optimal controller will not be defined at the points in the
gaps and at points when the only feasible solution is in the
gaps. Also, the computed solution might be arbitrarily dif-
ferent from the original solution to problem (9)–(11) at any
feasible pointx. Despite this, if the dimensionε of the gaps
is close to the machine precision and comparable to sen-
sor/estimation errors, such an approach is very appealing in
practice. To the best of our knowledge in some cases this ap-
proach is the only computationally tractable for computing
controllers for discontinuous hybrid systems fulfilling state
and input constraints that are implementable in real-time.

Without Assumption 1, problem (9)–(11) is well defined
only if an optimizer exists for allx(0). In general, this is
not easy to check. The dynamic programming algorithm
described in this paper could be used for such test but the
details are not included in this paper.

9. Conclusions

For discrete-time linear hybrid systems, we have de-
scribed an off-line procedure to synthesize optimal control
laws based on the minimization of quadratic and linear per-
formance indices subject to linear constraints on inputs and
states. The procedure is based on a combination of dynamic
programming and multiparametric quadratic programming.
In collaboration with different companies and institutes,
the results described in this paper have been applied to a
wide range of problems (Baotic et al., 2003; Bemporad
et al., 2002, 2003; Bemporad & Morari, 1999; Borrelli et
al., 2001; Ferrari-Trecate et al., 2002; Möbus et al., 2003;
Torrisi & Bemporad, 2004). Simple examples that highlight
the main features of the hybrid system approach presented
in this paper can be found inBorrelli et al. (2003).
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