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a b s t r a c t

This paper proposes a novelmodel predictive control (MPC) schemebased onmultiobjective optimization.
At each sampling time, the MPC control action is chosen among the set of Pareto optimal solutions
based on a time-varying, state-dependent decision criterion. Compared to standard single-objective
MPC formulations, such a criterion allows one to take into account several, often irreconcilable, control
specifications, such as high bandwidth (closed-loop promptness) when the state vector is far away from
the equilibrium and lowbandwidth (good noise rejection properties) near the equilibrium. After recasting
the optimization problem associated with the multiobjective MPC controller as a multiparametric
multiobjective linear or quadratic program, we show that it is possible to compute each Pareto optimal
solution as an explicit piecewise affine function of the state vector and of the vector of weights to be
assigned to the different objectives in order to get that particular Pareto optimal solution. Furthermore,
weprovide conditions for selecting Pareto optimal solutions so that theMPC control loop is asymptotically
stable, and show the effectiveness of the approach in simulation examples.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Multiobjective control problems are based on the optimiza-
tion of multiple and often conflicting performance criteria that
take into account different control specifications. Approaches to
multiobjective control were proposed in the 1990s in Karbowski
(1999), Li (1990), De Nicolao and Locatelli (1993) and Shtessel
(1996), and problems such asmixedH2/H∞ control receivedmuch
attention, in particular LMI-based design techniques (see Scherer,
Gahinet, and Chilali (1997) and Shimomura (2000) and the ref-
erences therein). More recently, in the context of model predic-
tive control (MPC), a multiobjective controller was proposed in De
Vito and Scattolini (2007), where the authors, rather than look-
ing for Pareto optimal solutions in the standardmultiobjective set-
ting (Chinchuluun & Pardalos, 2007), look for the optimal control
sequence that minimizes the max of a finite number of objectives.
This paper considers a multiobjective MPC problem in which

the optimal control sequence corresponds to one of the Pareto
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optimal solutions. As multiple Pareto solutions may exist, we pro-
vide conditions for selecting a Pareto solution that is optimal for
a desired weighted sum of the different objectives and that pre-
serves closed-loop asymptotic stability. A related problem formu-
lation in the context of MPC was done in Magni, Scattolini, and
Tanelli (2008), where the authors consider a discrete set of per-
formance indices that are switched depending on the value of the
state vector, under stability constraints.
To address computational issues, in this paper we also inve-

stigate multiparametric multiobjective linear programming (mp-
moLP) to handle multiobjective MPC problems with convex
piecewise affine cost functions, and a special class ofmultiobjective
quadratic programming (mp-moQP) to handlemultiobjectiveMPC
problems with a single quadratic and multiple convex piecewise
affine cost functions. Multiparametric programming has been lar-
gely investigated in the last eight years as a technique for provi-
ding explicit MPC solutions, namely for characterizing the MPC
command action as an explicit piecewise affine function of the
state and reference vectors; see Bemporad, Morari, Dua, and
Pistikopoulos (2002), Tøndel, Johansen, and Bemporad (2003a)
and Seron, DeDoná, and Goodwin (2000) for the case of standard
linear MPC problems with quadratic costs and linear constraints,
and Alessio and Bemporad (2008) for a recent survey on explicit
MPC.
For addressing the multiparametric multiobjective problem, in

this paper we exploit the fact that Karush–Kuhn–Tucker (KKT)
conditions for multiobjective optimization map into standard KKT
conditions for a scalar optimization problem in which the cost
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function is theweighted sum of the objectives, and inwhich differ-
ent weights provide different Pareto optimal solutions (Chinchu-
luun & Pardalos, 2007). By exploiting this result, mp-moLP
(mp-moQP) can be rephrased as a multiparametric LP (QP) prob-
lem in which some of the parameters (the weights) appear in the
cost function, and the rest of the parameters (the current states) in
the right-hand side of the constraints.
Studies on parametric LP with a single parameter in the cost

function date back to the 1950s with the work of Saaty and Gass
(1954). This was extended in Gass and Saaty (1955) to cover the
case of two parameters, also providing ideas for the general mul-
tiparametric LP (mp-LP) case. By duality, mp-LP problems with
parameters only in the cost function are equivalent tomp-LP prob-
lems with parameters only in the right-hand side (rhs) of the
constraints (Borrelli, Bemporad, & Morari, 2003; Gal & Nedoma,
1972). Multiparametric LP problems with parameters in both the
cost function and the rhs of the constraints have been addressed
in Barić, Baotić, and Morari (2005) and Barić, Jones, and Morari
(2006). Alternatively, by looking at the KKT conditions, such prob-
lems can be treated as multiparametric linear complementarity
(mp-LC) problems. Studies on parametric linear complementar-
ity problems were done in the 1970s (Cottle, 1972; Kaneko, 1977;
Maier, 1972; Murty, 1971); see also Murty and Yu (1988, Ch. 5),
and later in Danao (1997) and Tammer (1998). Properties of mp-
LC problemswere studied in Xiao (1995) and algorithms for multi-
parametric LC problems were given in Gailly, Installe, and Smeers
(2001) and, more recently, in Columbano, Fukuda, and Jones (in
press) and Jones and Morari (2006). Multiparametric generalized
LC problems were addressed in Palopoli, Bicchi, and Sangiovanni-
Vincentelli (2002). In this paper, we adopt the mp-LC formulation
to solve the multiobjective MPC problem for both the mp-moLP
and mp-moQP cases.
The main contribution of the paper is twofold. First, the mul-

tiobjective MPC scheme is formulated so that, through a partic-
ular criterion for selecting Pareto-optimal solutions, closed-loop
stability is guaranteed (Section 2). Second, the geometry of Pareto
optimal solutions is explicitly characterized for the two cases con-
sidered (Sections 3 and 4), which allows us to recast the selection
problem as a simple linear programming (mp-moLP) or convex
programming (mp-moQP) problem with as many variables as the
number of objectives.
A preliminary version of this paper focusing in more detail on

the mp-moLP case has appeared in Bemporad and Muñoz de la
Peña (2009).

2. Problem formulation

Consider the problem of regulating a process modeled by the
following linear discrete-time system:

x(t + 1) = Ax(t)+ Bu(t) (1)

under the linear input and state constraints

x(t) ∈ X, u(t) ∈ U, (2)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector, and
t ∈ N denotes the time step.We assume thatX ⊆ Rn andU ⊆ Rm
are convex full-dimensional polyhedral sets containing the origin
in their interior.
The standard MPC approach is based on minimizing a perfor-

mance criterion repeatedly at each time step t over a finite predic-
tion horizon of N steps, [t, t + N]. The solution of such an optimal
control problem depends on the current state x(t) and leads to an
optimal control sequence of lengthN whose first sample u(t) is ap-
plied to process (1), the remaining future optimal moves are dis-
carded, the optimization is repeated at the next time step t+1 over
a shifted time horizon, and so on (for this reason, the procedure is
also known as receding horizon control). In this paper, instead of
minimizing a single performance criterion, we consider the case
of having l + 1 different performance indices, l ∈ N, and follow a
multiobjective optimization approach.
Multiobjective optimization is the process of simultaneously

optimizing two or more (possibly) conflicting objectives subject to
certain constraints.Wewill show thatmultiobjective optimization
in the context of MPC leads to the design of a controller whose
performance index is allowed to vary in time and even to depend
on the state vector x(t), hence increasing the tuning versatilitywith
respect to standard MPC.
Consider the followingmultiobjective optimal control problem:

min
U

J(U, x) (3a)

subject to

xk+1 = Axk + Buk, x0 = x
xk ∈ X, k = 1, . . . ,N
uk ∈ U k = 0, . . . ,N − 1
xN ∈ Ω,

(3b)

where J(U, x) = [J0(U, x), J1(U, x), . . . , Jl(U, x)]′ : Rs × Rn →
Rl+1 is a vector function, l ≥ 1, s = Nm, U = [u′0, . . . , u

′

N−1]
′ is the

sequence of future control moves to be optimized, xk is the k-steps
ahead predicted state from the initial state x = x(t), and Ω is a
terminal polyhedral set containing the origin in its interior. Each
performance index is defined as

Ji(U, x) =
N−1∑
k=0

Li(xk, uk)+ Fi(xN), (4)

where the stage costs Li : Rn+m → R and the terminal costs
Fi : Rn → R, i = 0, . . . , l, satisfy the following assumption.

Assumption 1. For all i = 0, . . . , l, function Li : Rn+m → R is
jointly convex with respect to (x, u), function Fi : Rn → R is
convex with respect to x, Li(0, 0) = 0, Fi(0) = 0, and there exist
K-functions1 σ1, σ2 such that Li(x, u) ≥ σ1(‖x‖) for all u ∈ U,
Fi(x) ≥ σ1(‖x‖) and Fi(x) ≤ σ2(‖x‖) for some norm ‖ · ‖.

In general, the performance indices Ji(U, x) are conflicting and it
is not possible to obtain a solution that optimizes all the objectives
at the same time. In order to obtain an optimal input trajectory U ,
an additional decision criterion must be taken into account that
provides a trade-off between the different performance indices. In
thisworkwepropose to choose the optimal input trajectory among
the set of Pareto optimal solutions of (3). Pareto optimality (Pareto,
Bousquet, & Busino, 1964) is a measure of efficiency in multiobjec-
tive optimization:

Definition 2 (Chinchuluun & Pardalos, 2007). A feasible point Up is
Pareto optimal if and only if there exists no other feasible point U
such that Ji(U, x) ≤ Ji(Up, x), ∀i = 0, . . . , l and Jj(U, x) < Jj(Up, x)
for at least one index j ∈ {0, . . . , l}.

In otherwords, at a Pareto optimal point no objective can be further
decreased without increasing at least another objective.
Finding the set of Pareto optimal solutions of a multiobjective

optimization problem (i.e., solving themultiobjective optimization
problem) can be a hard task. For the class of problems considered
here it is possible to use the so-called weighting method to solve
(3) (Boyd & Vandenberghe, 2004; Chinchuluun & Pardalos, 2007).
The weighting method is based on assigning a different weight
to each performance index, hence obtaining a scalar objective
function. Consider the following scalarization of the multiobjective
problem (3) defined as

1 A K function σ : R → R is a strictly increasing continuous function of its
argument and satisfies σ(0) = 0.
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U∗(x, α) = argmin
U

α′J(U, x)

s.t. (3b)
(5)

where α = [α0, . . . , αl]′ ∈ Rl+1 is a weight vector, αi ≥ 0,
∀i = 0, . . . , l,

∑l
i=0 αi = 1.

As described in Boyd and Vandenberghe (2004, Chapter 4.7.4),
for each given α > 02 the solution U∗(x, α) of (5) is also a Pareto
optimal solution of (3), usually different for different values of
α ∈ Rl+1. For convex vector optimization problems as in (3), it
is also true that for every Pareto optimal point Up there exists a
vector α ≥ 0 such that Up = U∗(x, α). Hence, the corresponding
solutions of (5) for all possible weight vectors α cover the whole
set of Pareto optimal solutions of (3). Note that when some of
but not all the components of α are zero, the solution may not be
Pareto optimal.We can either restrictα > 0 in (5) or, alternatively,
tolerate possibly non-Pareto optimal solutions by leaving α ≥ 0.
Both choices are not harmful, as will be discussed in Remark 5.
In order to uniquely define a Pareto optimal solution to the

multiobjective MPC problem (3), at each time step t a weight
vector α(t) must be selected. The optimal future input trajectory
associated with the MPC controller is then given by the optimizer
of (5) for α = α(t), x = x(t). The decision criterion for α(t) clearly
affects the overall stability and performance of the closed loop. In
what follows we present an optimization-based decision method
that guarantees that the closed-loop system is asymptotically
stable.

2.1. Proposed multiobjective MPC scheme

InMPCdesign theperformance index is used to tune theproper-
ties of the closed-loop system (stability, robustness, speed of con-
vergence to the target state, etc.). In general, different choices of
weights in the performance index provide a different closed-loop
response. In this paper we propose to use a time-varying and pos-
sibly state-dependent target weight αd(t) ∈ Rl+1 at each time step
t as an additional tuning parameter. The reference weight vector
αd may take into account different priorities of the objectives de-
pending on time and on the value of the state vector; for exam-
ple, one may penalize the command input less when the state is
far from the origin and more when the state is near the origin to
ensure good noise rejection properties in the steady state. On the
other hand, arbitrary switching of α(t) may lead to instability, so
the objective of the proposed MPC controller is to choose α(t) as
close as possible to the desired αd(t) at each sampling time t in a
way that closed-loop stability is guaranteed. To this end, let

α∗(x, αd, Ja) = argmin
α
f (α − αd) (6a)

s.t. V ∗(x, α) ≤ Ja (6b)
l∑
i=0

αi = 1 (6c)

αi ≥ 0, i = 0, . . . , l, (6d)
where V ∗ : Rn+l+1 → R, V ∗(x, α) = α′J(U∗(x, α), x), is the value
function associated with Problem (5), f : Rl+1 → R is a convex
function that penalizes the deviation of α from the target weight
vector αd, and Ja is a value that depends on the optimal solution of
the MPC at the previous time step, defined in Eq. (7) below.
The proposed multiobjective MPC algorithm is summarized

by Algorithm 1, which is executed at each time step t . In Algo-
rithm 1, with a slight abuse of notation, we have set α∗(t) =
α∗(x(t), αd(t), Ja(t)) and U∗(t) = U∗(x(t), α∗(t)). Note that the
multiobjective MPC controller can be thought as a stabilizing MPC
controller with a time-varying and possibly state-dependent per-
formance index.

2 Vector inequalities denote the corresponding set of element-wise comparisons.
Algorithm 1Multiobjective MPC algorithm

1. Get x(t), αd(t);
2. Let U∗(t − 1) = [u′0, u

′

1, . . . , u
′

N−1]
′ be the optimal sequence

predicted at time t − 1 starting from x(t − 1), and let xN be the
corresponding optimal state for time step t − 1+ N ;

3. Set Us(t) = [u′1, u
′

2, . . . , u
′

N−1, (KxN)
′
]
′;

4. Evaluate
Ja(t) = α∗(t − 1)′J(Us(t), x(t)); (7)

5. Compute α∗(t) by solving (6) for x = x(t), αd = αd(t),
Ja = Ja(t);

6. Compute U∗(t) by solving (5) for x = x(t), α = α∗(t);
7. Set u(t) equal to the first optimal move in the sequence U∗(t);
8. End.

Solving Problem (6) may be time consuming due to the pres-
ence of the value function V ∗(x, α) in (6b). In this paper we focus
on two instances in which Problem (6) can be solved efficiently,
due to the fact that a multiparametric solution of Problem (5) can
be obtained. We study the case in which Li and Fi in (4) are con-
vex piecewise affine functions in Section 3, and then extend in Sec-
tion 4 to the case in which one of the objective functions is convex
and quadratic. In the following sectionwe study the stability prop-
erties of the proposed scheme.

2.2. Stability properties

Closed-loop stability properties are guaranteed by following
a standard terminal region/terminal constraint approach (Mayne,
Rawlings, Rao, & Scokaert, 2000).

Theorem 3. Let Li and Fi, i = 0, . . . , l, satisfy Assumption 1. Assume
that there exists a linear feedback u = Kx such that the following
conditions hold:

Fi((A+ BK)x)− Fi(x)+ Li(x, Kx) ≤ 0, i = 0, . . . , l (8a)
x ∈ Ω → (A+ BK)x ∈ Ω, (8b)
Kx ∈ U, ∀x ∈ Ω. (8c)

If Problem (3) is feasible for x = x(0), then Problems (6), (5) are
feasible at all time steps t ≥ 0 and system (1) in a closed loop with
the MPC controller defined by Algorithm 1 is asymptotically stable.

Proof. The proof consists of two parts.We first prove the recursive
feasibility of Problems (5) and (6) under the assumption that
Problem (3) is feasible at time t = 0. Thenwe prove that, under the
stated assumptions, ν(t) = V ∗(x(t), α∗(t)) = α∗(t)J(U∗(t), x(t))
is a decreasing sequence of values that implies asymptotic stability
of system (1) in a closed loop with the proposed MPC scheme of
Algorithm 1.
Part 1. By taking into account (8b)–(8c), it is easy to see that if

U∗(t − 1) satisfies (3b) for x = x(t − 1), then Us(t) satisfies (3b)
for x = x(t). As Problem (5) is feasible at t = 0, it can be
proved recursively that Problem (5) is feasible at all time steps
t ≥ 0. Feasibility of Problem (6) follows because, by definition, the
optimal cost obtained by solving (5) for x = x(t) andα = α∗(t−1)
is not greater than Ja(t). This implies that α = α∗(t − 1) is always
a feasible solution of Problem (6).
Part 2. The contractive constraint included in (6) guarantees

that ν(t) ≤ Ja(t). We prove next that Ja(t) ≤ ν(t − 1). By
taking into account the definitions of ν(t) and Ja(t), we have that
Ja(t)−ν(t−1) = α∗(t−1)′(J(Us(t), x(t))− J(U∗(t−1), x(t−1))).
By letting α∗(t−1) = [α∗0(t−1), . . . , α

∗

l (t−1)]
′
∈ Rl+1, we have

Ja(t)−ν(t−1) =
∑l
i=0 α

∗

i (t−1)(Ji(Us(t), x(t))−Ji(U
∗(t−1), x(t−

1))). Let x[t+N−1] and x[t+N] be the optimal state xN for Problem (5)
computed at time t − 1 and t , respectively. By taking into account
the optimality ofU∗(t−1) and the definition ofUs(t), it follows that
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Ji(Us(t), x(t))− Ji(U∗(t−1), x(t−1)) = Fi(x[t+N])−Fi(x[t+N−1])+
Li(x[t+N−1], Kx[t+N−1])−Li(x(t−1), u(t−1)), which by (8) implies
that

Ji(Us(t), x(t))− Ji(U∗(t − 1), x(t − 1)) ≤
− Li(x(t − 1), u(t − 1)) ≤ 0

(9)

∀i = 0, . . . , l, ∀t ≥ 1. Hence, by taking convex combinations
with coefficients α∗i (t − 1) ≥ 0, ∀i = 0, . . . , l of the terms
in (9) and recalling (6b), we obtain ν(t) ≤ Ja(t) ≤ ν(t − 1).
Hence, ν(t) is a non-increasing sequence lower bounded by zero,
which admits a limit ν∞ ∈ R as t → 0. By (9) this also pro-
ves that limt→∞

∑l
i=0 α

∗

i (t)Li(x(t), u(t)) = 0. Since
∑l
i=0 α

∗

i (t)
L(x(t), u(t)) ≥ σ1(‖x(t)‖) → 0 for t → ∞ and all u(t) ∈ U,
convergence of x(t) to zero is easily proved. Taking into account
Assumption 1 and following the same lines of thought as in Lazar,
Heemels, Weiland, and Bemporad (2006), stability can also be
proved. �

The most restrictive assumption is that the stability condi-
tions (8) must be satisfied simultaneously by each of the consid-
ered performance indices for the same feedback u = Kx, which
is a key requirement to guarantee the stability properties of the
closed-loop system. In order to satisfy these constraints, different
terminal cost functions Fi can be used in order to increase the de-
grees of freedom of the design.
The closed-loop stability properties of the multiobjective MPC

controller are not affected by αd(t), as the feasibility of Problem (6)
is independent of αd(t), whose choice only determines the closed-
loop performance. Hence, αd(t) does not need to be decided a
priori, but it can be changed arbitrarily during online operation of
the controller without loosing stability properties.
The stability result of Theorem 3 holds for all costs satisfying

Assumption 1.

3. Multiparametric multiobjective LP

Let Assumption 1 hold and assume that Li : Rn+m → R and Fi :
Rn → R are convex and piecewise affine functions. In particular,
as in Bemporad, Borrelli, and Morari (2002), let

Li(x, u) = ‖Qix‖∞ + ‖Riu‖∞, Fi(x) = ‖Pix‖∞ (10)

Assumption 1 is satisfied if Qi ∈ Rqi×n, Ri ∈ Rri×m are matrices
with full column-rank, ∀i = 0, . . . , l (Lazer, Muñoz de la Peña,
Heemels, & Alamo, 2008). It is easy to enforce the assumptions of
Theorem 3 when using stage and terminal costs as in (10). In fact,
in the special case of matrix A stable, one can apply the techniques
reported in Bemporadet al. (2002) to find a common matrix P that
satisfies condition (8) for K = 0. More generally, as proposed
in Lazar et al. (2006), one can use nonlinear optimization to find
a set of matrices Pi and a gain K satisfying ‖Pi(A + BK)P−Li ‖∞ +
‖QiP−Li ‖∞ + ‖RiKP

−L
i ‖∞ ≤ 1, where P

−L
i = [P

′

i Pi]
−1P ′i .

By following an approach similar to the one in Bemporadet al.
(2002), Problem (3) can be recast into the multiparametric multi-
objective linear program

min
z

Cz
Gz ≤ b+ Sx

(11)

where z ∈ Rd is the vector of optimization variables, x ∈ Rn is a
vector of parameters, and C ∈ R(l+1)×d defines the linear vector
function of dimension l+ 1, where each row of matrix C defines a
different scalar objective function C = [c0 . . . cl]′, ci ∈ Rd, i =
0, . . . , l. Vector z has dimension d = s + (l + 1)(2N − 1), as it
includes the s components of U and one set of (2N − 1) additional
non-negative variables per objective (4), each one upperbounding
the corresponding piecewise affine termas in (10) of the stage cost;
see Bemporadet al. (2002).
According to the weighting method, the set of Pareto optimal
points of Problem (11) can be fully characterized from the corre-
sponding solutions of the following optimization problem:

min
z

α′Cz
Gz ≤ b+ Sx

(12)

for all possible weight vectors α such that α = [α0, . . . , αl]′ ∈
Rl+1, αi ≥ 0, ∀i = 0, . . . , l,

∑l
i=0 αi = 1. Problem (12) is equiva-

lent to

min
z

(c ′0 + µ
′Cµ)z

Gz ≤ b+ Sx,
(13)

where, in order to get rid of the equality constraint
∑l
i=0 αi = 1,

we have expressed α0 = 1 −
∑l
i=1 αi, µ = [α1 . . . αl] ∈ Rl, and

Cµ = [(c1 − c0) . . . (cl − c0)]′ ∈ Rl×d.
Most of the multiparametric LP solvers only handle parameters

either in the cost function or in the rhs of the constraints (which,
by duality, is totally equivalent). By exploiting the KKT conditions
of Problem (13), in Bemporad and Muñoz de la Peña (2009) we
characterized the explicit solution of this class of problems, whose
properties are summarized below. By assuming that all the compo-
nents of z are lower bounded3 by a quantity zmin, Problem (13) can
be recast as the multiparametric linear complementarity problem
(mp-LCP)[
w1
w2

]
−

[
0 −G
G′ 0

] [
z1
z2

]
=

[
b− Gzmin
c0

]
+

[
0 S
C ′µ 0

] [
µ
x

]
[
w1
w2

]′ [
z1
z2

]
= 0,

(14)

where z2 = z − zmin, z1 = λ, w2 are the Lagrange multipliers
associated with the constraints z ≥ zmin, and w1 is the vector of
slack variables satisfying Gz + w1 = b + Sx. Problem (14) can be
solved by existingmp-LCP solvers (Columbano et al., in press; Jones
& Morari, 2006); or in a less efficient way, by exploiting equiva-
lence results between linear complementarity and mixed-integer
problems (Heemels, De Schutter, & Bemporad, 2001), by multi-
parametric mixed-integer linear programming solvers (Dua & Pis-
tikopoulos, 2000).

Lemma 4. Consider the multiparametric linear problem (13) with
parameters µ ∈ Rl in the cost function and x ∈ Rn in the rhs of the
constraints. Then the set F∗ of parameters (µ, x) for which (13) has a
solution is a convex polyhedron, the value function V ∗ : F∗ → R is
continuous w.r.t. (µ, x), convex and piecewise affine w.r.t. µ for any
given x andw.r.t. x for any givenµ. Moreover, there exists a piecewise
affine optimizer function z∗ : F∗ → Rd of (µ, x) defined as

z∗(µ, x) = φix+ γi if
[
Hµi 0
0 Hxi

] [
µ
x

]
≤

[
Kµi
K xi

]
,

i = 1, . . . , nr .
(15)

Proof. See Bemporad and Muñoz de la Peña (2009). �

Remark 5. As discussed earlier, non-strictly positive values of µ
may lead to non-Pareto optimal solutions. However, we can either
restrictµ > 0 in (17) or, alternatively, tolerate possibly non-Pareto
optimal solutions by leaving µ ≥ 0. In the first case, the stability
result of Theorem 3 still holds.

3.1. Online selection of the weight vector

We consider now the online selection problem (6) of the wei-
ght vector α∗(x, αd, Ja) for the particular case of f convex and

3 This is always the case when the setU of admissible inputs is bounded.
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piecewise affine:

f (α − αd) = max{f αj (α − αd)+ f
0
j }, j = 1, . . . , nf . (16)

A possible choice for f in (16) is f (α − αd) = ‖α − αd‖∞.

Theorem 6. Let I(x) ⊆ {1, . . . , nr} be the set of indices i of the
regions CRxi = {x ∈ Rn : Hxi x ≤ K

x
i } to which x belongs. Given

αd = [αd0, µd1, . . . , µdl] ∈ Rl+1, withαd0 = 1−
∑
µdi, the solution

to Problem (6) is α∗(x, αd, Ja) = [1−
∑l
i=1 µ

∗

i , µ
∗

1, . . . , µ
∗

l ]
′, where

µ∗ can be determined by solving the linear programming problem

min
µ,β

β

s.t. β ≥ f αj

[
0

µ− µd

]
+ f 0j , j = 1, . . . , nf

(φix+ γi)′(c ′0 + C
′

µµ) ≤ Ja, ∀i ∈ I(x)
l∑
i=1

µi ≤ 1, µi ≥ 0, i = 1, . . . , l,

(17)

with l+ 1 variables and nf + card(I(x))+ 2 constraints.

Proof. For a fixed x, the value function V ∗(µ, x) is a piecewise
affine and convex function ofµ that, by the structure of the regions
CRi proved in Lemma 4, is defined over the regions CRµi = {µ ∈
Rl : Hµi µ ≤ K

µ

i } indexed by i ∈ I(x). Hence, thanks to the result
of Schechter (1987) for convex piecewise affine functions, for every
fixed x the value function V ∗(µ, x) by Lemma 4 can be evaluated as
the maximum of the affine functions {(φix + γi)′(c ′0 + C

′
µµ)}i∈I(x).

�

Unfortunately, Problem (17) in general is not jointly convex with
respect to (µ, β) and (x, µd, Ja), due to the fact that V ∗(µ, x)may
not be a jointly convex function of (µ, x). Henceforth, multipara-
metric convex programming approaches like the one suggested
in Bemporad and Filippi (2006) and Muñoz de la Peña, Bemporad
and Filippi (2006) cannot be applied to determine µ∗ as an (ap-
proximated) function of (x, µd, Ja), and Problem (17) needs to be
solved online for the given values of x(t), µd(t), Ja(t) and the cor-
responding set of constraints indexed by I(x(t)).

4. Multiparametric multiobjective QP with a single quadratic
objective

If all the objective functions were quadratic, Problem (3) would
be a multiparametric multiobjective quadratic program. By apply-
ing the weighting method to find Pareto optimal solutions, one
would get a multiparametric quadratic program with parameters
in the quadratic part of the objective function, besides parame-
ters in the rhs of the constraints and in the affine part of the ob-
jective function, which makes the multiparametric solution very
difficult to obtain. However, if only one of the objective functions
is quadratic and the remaining functions are piecewise affine it
is possible to cast (5) as a (non-strictly) convex multiparametric
quadratic program, for which multiparametric solvers are avail-
able (Jones &Morari, 2006; Tøndel, Johansen, & Bemporad, 2003b).
It may be very convenient from a practical viewpoint to allow one
of the objectives to be quadratic, as when constraints are not ac-
tive the corresponding optimal control action would be a standard
linear state feedback. Without loss of generality, let us choose

L0(x, u) = x′Q0x+ u′R0u
F0(x) = x′P0x

(18)

and let Li, Fi be as in (10), i = 1, . . . , l. According to the standard
transformations in linearMPC (Bemporadet al., 2002) and the tech-
niques reviewed in the previous section, Problem (5) can be cast
into the following multiparametric quadratic programming prob-
lem:
min
z

α0

(
1
2
z ′Hz + x′F ′z +

1
2
x′Yx

)
+

l∑
i=1

αic ′i z

Gz ≤ b+ Sx
(19)

where H � 0, the parameters are x and α = [α0, . . . , αl]′ ∈ Rl+1,
αi ≥ 0, i = 0, . . . , l, and the optimization vector z =

[
U
e

]
∈

Rs+(2N−1)l, e ∈ R(2N−1)l. We assume without loss of generality that
the first optimal move u = [I 0 . . . 0]z. We denote the optimal
solution of this problems as V ∗(α, x).

Theorem 7. Given x(t), Ja(t) and

αd(t) = [αd0(t), αd1(t), . . . , αdl(t)] ∈ Rl+1

with αd0(t) = 1 −
∑l
i=1 αdi(t), the multiobjective MPC law defined

by Algorithm 1 with L0(x, u), F0(x) as in (18) and Li, Fi as in (10),
i = 1, . . . , l can be computed by solving:
(i) the multiparametric quadratic programming problem offline

V ∗µ(µ, x) = minz
1
2
z ′Hz + x′F ′z +

1
2
x′Yx+ µ′Cµz

Gz ≤ b+ Sx,
(20)

where µ = [µ1 . . . , µl]′ ∈ Rl, µi ≥ 0, and Cµ = [c1, . . . , cl]′;
(ii) the convex programming problemonlinewith optimizer µ∗(t) =

µ∗(x(t), µd(t), Ja(t))

min
µ

f
([
1
µ

]
−

[
1

µd(t)

])
s.t. V ∗µ(x(t), µ) ≤ Ja(t)

(
1+

l∑
i=1

µi

)
µi ≥ 0, i = 1, . . . , l,

(21)

for µd(t) = 1
α0d(t)
[αd1(t), . . . , αdl(t)] ∈ Rl; and

(iii) by setting u(t) = [I 0 . . . 0]z∗(µ∗(t), x(t)), where z∗(µ, x) is
an optimizer function of (20) and is piecewise affine.

Proof. (i) As the quadratic term of the objective function in (19)
only depends on α0, we can introduce the change of weights α0 =

1
1+
∑l
i=1 µi

, αi =
µi

1+
∑l
j=1 µj

, i = 1, . . . , l, with µi ≥ 0. Hence,

V ∗(α, x) = 1
1+
∑l
i=1 µi

V ∗µ(µ, x). (ii) By the results of Mangasarian

and Rosen (1964) for convex multiparametric programming it
follows that V ∗µ(µ, x) is a jointly convex function of (µ, x), and
hence a convex function of µ for any fixed x ∈ Rn, which proves
that (21) is a convex programming problem with l variables, one
convex constraint, and l non-negativity constraints. (iii) Easily
follows, as an optimizer function z∗(µ, x) is also an optimizer
function for Problem (19), whose parametric solution is piecewise
affine (Tøndel et al., 2003b).

Problem (20) can be solved by multiparametric quadratic pro-
gramming algorithms that handle non-strictly convex Hessianma-
trices, as in Tøndel et al. (2003b). Alternatively, by exploiting the
KKT conditions of optimality for Problem (20) this can be recast as
the mp-LCP[
w1
w2

]
−

[
0 −G
G′ H

] [
z1
z2

]
=

[
b− Gzmin
Hzmin

]
+

[
0 S
C ′µ F

] [
µ
x

]
[
w1
w2

]′ [
z1
z2

]
= 0,

(22)

where, exactly as in the mp-moLP case (Bemporad & Muñoz de la
Peña, 2009), z2 = z− zmin, z1 = λ,w2 are the Lagrange multipliers
associated with the constraints z ≥ zmin, w1 is the vector of slack
variables satisfying Gz + w1 = b + Sx, and solved by multipara-
metric linear complementarity algorithms like the one in Jones and
Morari (2006).
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Note that Problem (21) is a (piecewise-smooth) convex op-
timization problem of small scale (only l optimization variables
are involved), for which several solution algorithms are avail-
able (Boyd & Vandenberghe, 2004). In particular, the gradients and
the Hessians of the constraints in (21), where defined, are easily
obtained from the explicit solution of Problem (20).

4.1. Fully offline solution

An alternative method to the weighting approach taken in the
previous sections is to impose α0 = 1 and drop the constraint∑l
i=0 αi = 1. Both weighting methods are equivalent in that the

corresponding optimization problems span the same set of Pareto
optimal solutions, except the one in which the quadratic objective
has zero weight. Then, Problem (19) can be solved offline directly
by multiparametric quadratic or linear complementarity solvers
with respect to the parameter vector (x, α1, . . . , αl).
Problem (21) can be therefore solved offline as the multipara-

metric convex programming problem

α∗(x, αd, Ja) = argmin
α

f (α − αd)
s.t. V ∗(x, α) ≤ Ja

αi ≥ 0, i = 1, . . . , l
α0 = α0d = 1,

(23)

where (x, αd1, . . . , αdl, Ja) ∈ Rn+l+1 is the vector of parameters
and α1, . . ., αl the optimization variables, after α0 = 1 is sub-
stituted. Problem (23) can be solved in approximate explicit form
with arbitrary precision using for instance the approach of Bem-
porad and Filippi (2006) and Muñoz de la Peña et al. (2006). The
limitation of the approach (Bemporad & Filippi, 2006; Muñoz de
la Peña et al., 2006) is the curse of dimensionality due to simpli-
cial partitions. However, such a limitation is mitigated by the fact
that, from a practical viewpoint, there is no need for excessive pre-
cision in solving (23), as small deviations of the weights α are not
likely to change the MPC action u(t) significantly, especially when
constraints are active.
In summary, the posed multiobjective MPC problem can be

solved by getting α∗(t) as an approximate explicit solution to
the convex multiparametric programming problem (23), and by
getting u(t) from the exact explicit solution to themultiparametric
quadratic programming problem (19) with α0 = 1.

5. Example

Consider a linear system (1) defined by matrices A =
[
1 1
0 1

]
,

B =
[
0.5
1

]
subject to the operating constraints |x1(t)|, |x2(t)| ≤

10, |u(t)| ≤ 10. Consider the following objective functions: J0
of the form (18) defined by Q0 =

[
0.1 0
0 1

]
, R0 = 0.2, P0 =[

0.5649 0.4054
0.4054 1.6027

]
, and J1 of the form (10) defined by Q1 =

[
1 0
0 0.1

]
,

R1 = 0.1, P1 =
[
9.6085 1.1401
−0.2965 9.4107

]
. For K = [−0.5 − 1.4] the

constraint (A+ BK)′P0(A+ BK)− P0 < −Q0 − K ′R0K is satisfied,
and 1 − ‖P1(A + BK)P−L1 ‖∞ − ‖Q1P

−L
1 ‖∞ − ‖R1KP

−L
1 ‖∞ ≥ 0 is

also satisfied, with P−L1 = [P
′

1P1]
−1P ′1. Hence, (8a) is satisfied for

the common local controller u = Kx for i = 0 and for i = 1 (Lazar
et al., 2006). Also, consider the terminal region

Ω =

x ∈ R2

∣∣∣∣∣∣∣∣∣


0 1
1 0
0 −1
−1 0
−0.5 −1.4
0.5 1.4

 x ≤

10
10
10
10
10
10




defined by the positive invariant set of the system in a closed loop
with the local controller K . The setΩ satisfies (8b) and (8c) for the
common local controller u = Kx. In summary, the cost functions J0,
J1 and the terminal regionΩ satisfy the assumptions of Theorem 3.
We compare a multiobjective MPC controller based on the

piecewise affine cost J1 and quadratic cost J0 with the correspond-
ing standardMPC controllers. For a comparison of a multiobjective
MPC controller based on piecewise affine costs only, see the exam-
ple in Bemporad and Muñoz de la Peña (2009).
Consider the multiobjective MPC controller hQPmo based on the

vector objective function J = [J0 J1]′ with N = 2, and let the target

weight vector beαd(t) =
[

1
1+0.02‖x(t)‖22

0.02‖x(t)‖22
1+0.02‖x(t)‖22

]′
. Also consider

the (single-objective) controller hLP1 (x(t)) = E0U∗(x(t), [0 1]′),
where U∗(x, α) is the solution of (5) with J = [J0 J1]′ and
N = 2, U∗(t) is the optimal input trajectory of the proposed
multiobjective scheme for J , and E0 = [I 0 . . . 0] is such
that E0U = u0, and consider the (single-objective) MPC law
hQP0 based on the cost function J0 and subject to the same set of
constraints of hLP1 . Controller h

QP
0 also guarantees that the closed-

loop system is asymptotically stable and has the same feasibility
region as the one of hLP1 . However, h

QP
0 provides a slower closed-

loop convergence to the origin than hLP1 but more robustness with
respect to measurement noise. The target weight vector αd(t)was
chosen to give priority to hLP1 when the state is far from the origin,
and to hQP0 near the origin. Note that the goal of this example is not
to prove that any of the controllers outperforms the others, but to
demonstrate how the targetweight vector can be used to smoothly
move between two different performance objectives, capturing
the best closed-loop properties of both without destabilizing the
system.
A set of simulations was carried out starting from different

states inside the feasibility region of the controllers (note that this
region is equal for all of them). In the simulations we consider
the presence of random measurement noise w(t), that is u(t) =
h(x(t) + w(t)), with ‖w(t)‖∞ ≤ 0.5 and w(t) = 0 for all t ≤ 30.
In order to measure the robustness of the closed-loop systemwith
respect to measurement noise the following values of signal-to-
noise (SNR) ratios are measured:

SNRu =

f∑
t=31
‖u(t)‖2

f∑
t=31
‖w(t)‖2

, SNRx =

f∑
t=31
‖x(t)‖2

f∑
k=31
‖w(t)‖2

, (24)

where f is the total number of simulated time steps. Conver-
gence performance is evaluated according to the time tr needed
for ‖x(t)‖2 to go below 10% of its initial value. The average results
over 100 simulations with N = 2 and f = 100 are shown in the
following table.

Controller SNRu SNRx tr

hQP0 0.4807 0.6313 7.11
hLP1 1.3141 0.9196 3.11
hQPmo 0.5090 0.6352 4.08

The results show that the multiobjective controller hQPmo provides
SNR ratios similar to hQP0 , with a time tr similar to the one provided
by hLP1 .
In the upper plots of Fig. 1, the state and input trajectories of a

simulation with initial state x(0) = [7.5 7.5]′ are shown. It can be
seen that both hLP1 and the proposed controller h

QP
mo converge faster

to the origin than hQP0 . In the lower plot are shown the second com-
ponents of the targetweight vectorαd(t) and of the optimalweight
vectorα∗(t) solving the online convex programming problem (23).
The explicit solution of (20) was obtained by applying the mul-

tiparametric LCP solver of Jones andMorari (2006) to (22), with re-
spect to the same three parameters (the two-dimensional state x
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Fig. 1. Upper three plots: closed-loop trajectories for hQP0 (x) (dashed line), h
LP
1 (x)

(solid thin line), and hQPmo(x) (solid line). Lowest plot: trajectories ofαd2(t) (solid line)
and α∗2 (t) (dashed line).

Fig. 2. Explicit LCP solution for controller hQPmo with respect to the parameter vector
[x′ µ]′ .

and the scalar weightµ), as in Theorem 7. Fig. 2 shows the regions
of the explicit piecewise affine solution z∗(µ, x) of Problem (20),
where nr = 80. Fig. 3 shows a close-up for µ ∈ [0, 10] of the
section for x1 = 3. Note that the facet-to-facet property does not
hold for this class of non-strictly convexmultiparametric quadratic
programming problems. Note also that orthogonality does not hold
anymore as in the piecewise-affine case. This can be easily justified
by looking at the critical regions of the multiparametric problem
(20), that are easily obtained from the associated KKT conditions.
A section forµ = 0.5 is shown in Fig. 4, where region sections cor-
respond to the explicit solution of the mpQP problem defined by
µ = 0.5. Even in this case the facet to facet-to-facet property does
not hold; see e.g. around the value x = [−7 − 7]′ in Fig. 4.

6. Conclusions

This paper has proposed anMPC formulation based onmultiple
performance criteria that enjoys closed-loop stability properties.
Compared to standard MPC formulations based on a single perfor-
mance index, the multiobjective criterion allows one to take into
Fig. 3. Section of the LCP solution for controller hQPmo for x1 = 3.

Fig. 4. Section of the LCP solution for controller hQPmo for µ = 0.5.

account several, often irreconcilable, control specifications, such as
high bandwidth (closed-loop promptness) far away from conver-
gence, and low bandwidth (good noise rejection properties) near
convergence. The corresponding optimization problemwas solved
as a multiparametric linear complementarity problem that pro-
vides the optimal Pareto solution as a piecewise affine function of
the state vector and of the set of parameters that weight the differ-
ent criteria in the equivalent scalarized problem. Thanks to such an
explicit characterization of the solution, given a higher-level refer-
ence signal specified at each time step for the preferredweights, an
optimal selection of the weights can be computed online by solv-
ing a simple convex programming problem, namely a linear pro-
grammingproblemwhen all objectives are convexpiecewise affine
functions, or a convex programming problem when one of the ob-
jectives is quadratic and the others are convex piecewise affine.
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