
Automatica 35 (1999) 407—427

Control of systems integrating logic, dynamics, and constraints1
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Systems described by interdependent physical laws, logic rules, and operating constraints
are described by linear equations and inequalities involving continuous and integer variables. Model
predictive control based on mixed-integer quadratic programming provides a systematic controller
synthesis procedure.

Abstract

This paper proposes a framework for modeling and controlling systems described by interdependent physical laws, logic rules, and
operating constraints, denoted as mixed logical dynamical (MLD) systems. These are described by linear dynamic equations subject to
linear inequalities involving real and integer variables. MLD systems include linear hybrid systems, finite state machines, some classes
of discrete event systems, constrained linear systems, and nonlinear systems which can be approximated by piecewise linear functions.
A predictive control scheme is proposed which is able to stabilize MLD systems on desired reference trajectories while fulfilling
operating constraints, and possibly take into account previous qualitative knowledge in the form of heuristic rules. Due to the
presence of integer variables, the resulting on-line optimization procedures are solved through mixed integer quadratic programming
(MIQP), for which efficient solvers have been recently developed. Some examples and a simulation case study on a complex gas supply
system are reported. ( 1999 Elsevier Science Ltd. All rights reserved.

Keywords: Hybrid systems; Predictive control; Dynamic models; Binary logic systems; Boolean logic; Mixed-integer programming;
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1. Introduction

The concept of model of a system is traditionally asso-
ciated with differential or difference equations, typically
derived by physical laws governing the dynamics of the
system under consideration. Consequently, most of the
control theory and tools have been developed for such
systems, in particular for systems whose evolution is
described by smooth linear or nonlinear state transition
functions. On the other hand, in many applications the
system to be controlled is also constituted by parts de-

*Corresponding author. Tel.:#41 1 632 7626; fax:#41 1 632 1211;
e-mail: morari@aut.ee.ethz.ch.

1This paper was not presented at any IFAC meeting. This paper
was recommended for publication in revised form by Associate Editor
A. L. Tits under the direction of Editor T. Bas,ar, and accepted by the
Guest Editors J. M. Schumacher, A. S. Morse, C. C. Pantelides, and
S. Sastry.

scribed by logic, such as for instance on/off switches or
valves, gears or speed selectors, evolutions dependent on
if-then-else rules. Often, the control of these systems is left
to schemes based on heuristic rules inferred by practical
plant operation.

Recently, in the literature researchers started dealing
with hybrid systems, namely hierarchical systems con-
stituted by dynamical components at the lower level,
governed by upper level logical/discrete components
(Grossmann et al., 1993; Branicky et al., 1998). Hybrid
systems arise in a large number of application areas, and
are attracting increasing attention in both academic the-
ory-oriented circles as well as in industry. Our interest is
motivated by several clearly discernible trends in the
process industries which point toward an extended need
for new tools to design control and supervisory schemes
for hybrid systems and to analyze their performance.

For this class of systems, design procedures have been
proposed which naturally lead to hierarchical, hybrid
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control schemes, with continuous controllers at the lower
level calibrated for each dynamical subsystem in order to
provide regulation and tracking properties, and discrete
controllers supervising, resolving conflicts, and planning
strategies at a higher level (Lygeros et al., 1996). How-
ever, in some applications a precise distinction between
different hierarchic levels is not possible, especially when
dynamical and logical facts are dramatically interdepen-
dent. For such a class of systems, not only it is not clear
how to design feedback controllers, but even how to
obtain models in a systematic way.

This paper proposes a framework for modeling and
controlling models of systems described by interacting
physical laws, logical rules, and operating constraints.
According to techniques described e.g. in Williams
(1993), Cavalier et al. (1990) and Raman and Grossmann
(1992), propositional logic is transformed into linear in-
equalities involving integer and continuous variables.
This allows to arrive at mixed logical dynamical (MLD)
systems described by linear dynamic equations subject to
linear mixed-integer inequalities, i.e. inequalities involv-
ing both continuous and binary (or logical, or 0—1)
variables. These include physical/discrete states, continu-
ous/integer inputs, and continuous/binary auxiliary vari-
ables. MLD systems generalize a wide set of models,
among which there are linear hybrid systems, finite state
machines, some classes of discrete event systems, con-
strained linear systems, and nonlinear systems whose
nonlinearities can be expressed (or, at least, suitably
approximated) by piecewise linear functions.

Mixed-integer optimization techniques have been in-
vestigated in (Raman and Grossmann, 1991; Raman and
Grossmann, 1992), for chemical process synthesis. For
feedback control purposes, we propose a predictive con-
trol scheme which is able to stabilize MLD systems on
desired reference trajectories while fulfilling operating
constraints, and possibly take into account previous
qualitative knowledge in the form of heuristic rules.
Moving horizon optimal control and model predictive
control have been widely adopted for tracking problems
of systems subject to constraints (Lee and Cooley, 1997;
Mayne, 1997; Qin and Badgewell, 1997). These methods
are based on the so called receding horizon philosophy:
a sequence of future control actions is chosen according
to a prediction of the future evolution of the system and
applied to the plant until new measurements are avail-
able. Then, a new sequence is determined which replaces
the previous one. Each sequence is evaluated by means of
an optimization procedure which take into account two
objectives: optimize the tracking performance, and pro-
tect the system from possible constraint violations. In the
present context, due to the presence of integer variables,
the optimization procedure is a mixed integer quadratic
programming (MIQP) problem (Fletcher and Leyffer,
1995; Lazimy, 1985; Roschchin et al., 1987), for which
efficient solvers exist (Fletcher and Leyffer, 1994). A first

attempt to use on-line mixed-integer programming to
control dynamic systems subject to logical conditions has
appeared in (Tyler and Morari, n.d.). Other attempts of
combining MPC to hybrid control have also appeared in
Slupphaug and Foss (1997) and Slupphaug et al. (1997).

This paper is organized as follows. In Section 2 some
basic facts from propositional calculus, Boolean algebra,
and mixed-integer linear inequalities are reviewed. These
tools are used in Section 3 to motivate the definition of
MLD systems and provide examples of systems which
can be modeled within this framework. Stability defini-
tions and related issues are discussed in Section 4. Sec-
tion 5 deals with the optimal control of MLD systems
and shows how heuristics can eventually be taken into
account. These results are then used in Section 6 to
develop a mixed-integer predictive controller (MIPC),
which essentially solves on-line at each time step an
optimal control problem through MIQP, and apply the
optimal solution according to the aforementioned reced-
ing horizon philosophy. A brief description of available
MIQP solvers is given in Section 7. Finally, a simulation
study on the complex gas supply system reported in
Akimoto et al. (1991) is described in Section 8.

2. Propositional calculus and linear integer programming

By following standard notation (Williams, 1977; Cava-
lier et al., 1990; Williams, 1993), we adopt capital letters
X

i
to represent statements, e.g. “x50” or “Temperature

is hot”. X
i
is commonly referred to as literal, and has

a truth value of either “T” (true) or “F” (false). Boolean
algebra enables statements to be combined in compound
statements by means of connectives: “'” (and), “s” (or),
“&” (not), “P” (implies), “%” (if and only if ), “=”
(exclusive or) (a more comprehensive treatment of
Boolean calculus can be found in digital circuit design
texts, e.g. Christiansen (1997) and Hayes (1993). For
a rigorous exposition, see e.g. Mendelson (1964). Con-
nectives are defined by means of the truth table reported
in Table 1. Other connectives may be similarly defined.
Connectives satisfy several properties (see e.g. Christian-
sen, 1997), which can be used to transform compound
statements into equivalent statements involving different
connectives, and simplify complex statements. It is
known that all connectives can be defined in terms of
a subset of them, for instance Ms,&N, which is said to be
a complete set of connectives. Below we report some
properties which will be used in the sequel

X
1
PX

2
is the same as&X

1
sX

2
, (1a)

X
1
PX

2
is the same as&X

2
P&X

1
, (1b)

X
1
%X

2
is the same as (X

1
PX

2
)'(X

2
PX

1
). (1c)

Correspondingly one can associate with a literal X
i

a logical variable d
i
3M0, 1N, which has a value of either 1
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Table 1
Truth table

X
1

X
2

&X
1

X
1
sX

2
X

1
'X

2
X

1
PX

2
X

1
%X

2
X

1
=X

2

F F T F F T T F
F T T T F T F T
T F F T F F F T
T T F T T T T F

if X
i
"T, or 0 otherwise. Integer programming has been

advocated as an efficient inference engine to perform
automated deduction (Cavalier et al., 1990). A proposi-
tional logic problem, where a statement X

1
must be

proved to be true given a set of (compound) statements
involving literals X

1
,2 , X

n
, can be in fact solved by

means of a linear integer program, by suitably translating
the original compound statements into linear inequalities
involving logical variables d

i
. In fact, the following prop-

ositions and linear constraints can easily be seen to be
equivalent (Williams, 1993, p. 176)

X
1
sX

2
is equivalent to d

1
#d

2
51, (2a)

X
1
'X

2
is equivalent to d

1
"1, d

2
"1, (2b)

&X
1

is equivalent to d
1
"0, (2c)

X
1
PX

2
is equivalent to d

1
!d

2
40, (2d)

X
1
%X

2
is equivalent to d

1
!d

2
"0, (2e)

X
1
=X

2
is equivalent to d

1
#d

2
"1. (2f )

We borrow this computational inference technique to
model logical parts of processes (on/off switches, discrete
mechanisms, combinational and sequential networks)
and heuristics knowledge about plant operation as inte-
ger linear inequalities. As we are interested in systems
which have both logic and dynamics, we wish to establish
a link between the two worlds. In particular, we need to
establish how to build statements from operating events
concerning physical dynamics. As will be shown in a mo-
ment, we end up with mixed-integer linear inequalities, i.e.
linear inequalities involving both continuous variables
x3Rn and logical (indicator) variables d3M0,1N. Consider
the statement X¢[ f (x)40], where f : RnÂR is linear,
assume that x3X, where X is a given bounded set, and
define

M¢max
x|X

f (x), (3a)

m¢min
x|X

f (x). (3b)

Theoretically, an over[under]-estimate of M[m] suffi-
ces for our purpose. However, more realistic estimates
provide computational benefits (Williams, 1993, p. 171).

It is easy to verify that

[ f (x)40]'[d"1] is true

iff f (x)!d4!1#m(1!d), (4a)

[ f (x)40]s[d"1] is true iff f (x)4Md, (4b)

&[ f (x)40] is true iff f (x)5e, (4c)

where e is a small tolerance (typically the machine pre-
cision), beyond which the constraint is regarded as viol-
ated. By Eqs. (1a) and (4b), it also follows

[ f (x)40]P[d"1] is true iff f (x)5e#(m!e)d,

(4d)

[ f (x)40]%[d"1] is true iff G
f (x)4M(1!d),

f (x)5e#(m!e)d.

(4e)

Finally, we report procedures to transform products of
logical variables, and of continuous and logical variables,
in terms of linear inequalities, which however require the
introduction of auxiliary variables (Williams, 1993,
p. 178). The product term d

1
d
2

can be replaced by
an auxiliary logical variable d

3
¢d

1
d
2
. Then, [d

3
"1]%

[d
1
"1]'[d

2
"1], and therefore

d
3
"d

1
d
2

is equivalent to G
!d

1
#d

3
40,

!d
2
#d

3
40,

d
1
#d

2
!d

3
41.

(5a)

Moreover, the term d f (x), where f : RnÂR and d3M0, 1N,
can be replaced by an auxiliary real variable y¢d f (x),
which satisfies [d"0]P [y"0], [d"1]P [y" f (x)].
Therefore, by defining M, m as in Eq. (3), y"d f (x) is
equivalent to

y4Md,
y5md,
y4f (x)!m(1!d),
y5f (x)!M(1!d).

(5b)

Alternative methods and formulations for transform-
ing propositional logic problems into equivalent integer
programs exist. For instance, Cavalier et al. (1990) com-
pare the approach above with the approach which utiliz-
es conjunctive normal forms (CNF), and conclude that
efficiency of a modeling approach depends on the form of
logical statements. The problem of finding minimal forms,
is also well known in the digital network design realm,
where the need arises to minimize the number of gates
and connections. A variety of methods exist to perform
such a task. The reader is referred to Hayes (1993, Chap-
ter 5) for a detailed exposition.

3. Mixed logical dynamical (MLD) systems

In the previous section we have provided some tools to
transform logical facts involving continuous variables
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into linear inequalities. These tools will be used now to
express relations describing the evolution of systems
where physical laws, logic rules, and operating con-
straints are interdependent. Before giving a general def-
inition of such a class of systems, consider the following
system:

x(t#1)"G
0.8x(t)#u (t) if x (t)50,

!0.8x(t)#u (t) if x (t)(0,
(6)

where x (t)3[!10, 10], and u (t)3[!1, 1]. The condition
x(t)50 can be associated to a binary variable d(t) such
that

[d(t)"1]%[x(t)50]. (7)

By using the transformation (4e), Eq. (7) can be expressed
by the inequalities

!md(t)4x(t)!m,

!(M#e)d4!x!e,

where M"!m"10, and e is a small positive scalar.
Then Eq. (6) can be rewritten as

x(t#1)"1.6d (t)x(t)!0.8x(t)#u (t). (8)

By defining a new variable z(t)"d(t)x(t) which, by
Eq. (5b), can be expressed as

z(t)4Md(t),

z(t)5md(t),

z(t)4x(t)!m(1!d(t)),

z(t)5x(t)!M(1!d(t)),

the evolution of system (6) is ruled by the linear equation

x(t#1)"1.6z(t)!0.8x(t)#u(t)

subject to the linear constraints above. This example can
be generalized by describing mixed logical dynamical
(MLD) systems through the following linear relations:

x(t#1)"A
t
x(t)#B

1t
u(t)#B

2t
d(t)#B

3t
z(t) (9a)

y(t)"C
t
x(t)#D

1t
u(t)#D

2t
d(t)#D

3t
z(t) (9b)

E
2t

d(t)#E
3t

z(t)4E
1t

u(t)#E
4t

x(t)#E
5t

(9c)

where t3Z,

x"C
x
#

xlD , x
#
3Rn#, xl3M0,1Nnl, n¢n

#
#nl

is the state of the system, whose components are distin-
guished between continuous x

#
and 0—1 xl;

y"C
y
#

ylD , y
#
3Rp#, yl3M0, 1Npl, p¢p

#
#pl

is the output vector,

u"C
u
#

ulD , u
#
3Rm#, ul3M0, 1Nml, m¢m

#
#ml

is the command input, collecting both continuous
commands u

#
, and binary (on/off) commands ul (discrete

commands, i.e. assuming values within a finite set of
reals, can be modeled as 0—1 commands, as described
later); d3M0, 1Nrl and z3Rr# represent respectively auxili-
ary logical and continuous variables.

The form (9) involves linear discrete-time dynamics.
One might formulate a continuous time version by re-
placing x(t#1) by xR (t) in Eq. (9a), or a nonlinear version
by changing the linear equations and inequalities in
Eq. (9) to more general nonlinear functions. We restrict
the dynamics to be linear and discrete-time in order to
obtain computationally tractable control schemes, as will
be described in the next sections. Nevertheless, we believe
that this framework permits the description of a very
broad class of systems.

In principle, the inequality in Eq. (9) might be satisfied
for many values of d(t) and/or z(t). On the other hand, we
wish that x(t#1) and y(t) were uniquely determined by
x(t) and u(t). To this aim, we introduce the following
definition

Definition 1. Let I
Bt

denote the set of all indices
i3M1,2, rlN, such that [B

2t
]iO0, where [B

2t
]i denotes

the ith column of B
2t

. Let I
Dt

, J
Bt
, J

Dt
be defined analog-

ously by collecting the positions of nonzero columns of
D

2t
, B

3t
, and D

3t
respectively. Let I

t
¢I

Bt
XI

Dt
,

J
t
¢J

Bt
XJ

Dt
. A MLD system (9) is said to be well posed

if, ∀t3Z,

(i) x(t) and u(t) satisfy Eq. (9c) for some d(t)3M0,1Nrl,
z(t)3Rr#, and xl (t#1)3M0, 1Nnl ;

(ii) ∀i3I
t

there exists a mapping D
it
: Rn`mÂ M0,1N

such that the ith component d
i
(t)"D

it
(x(t),u(t)), and

∀j3J
t

there exists a mapping Z
jt
:Rn`mÂ R such

that z
j
(t)"Z

jt
(x(t), u(t)).

A MLD system (9) is said to be completely well posed if in
addition I

t
"M1,2 , rlN and J

t
"M1,2 , r

c
N, ∀t3Z.

Note that the functions D
it
, Z

jt
are implicitly defined

by the inequalities (9c). Note also that these functions are
nonlinear, the nonlinearity being caused by the integer
constraint d

i
3M0, 1N.

In the sequel, we shall say that an auxiliary variable
d
i
(t) (z

j
(t)) is well posed if i3I

t
( j3J

t
), or indefinite

otherwise.
Hereafter, we shall assume that system (9) is well posed.

This property entails that, once x(t) and u(t) are assigned,
x(t#1) and y(t) are uniquely defined, and therefore tra-
jectories in the x-space and y-space for system (9) can be
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defined. In particular, we will denote by x(t, t
0
, x

0
, ut~1

t0
)

the trajectory generated in accordance to Eq. (9) by ap-
plying the command inputs u(t

0
), u(t

0
#1), 2, u(t!1)

from initial state x(t
0
)"x

0
. Although typically a model

derived from a real system is well posed, a simple numer-
ical test for checking this property is reported in the
appendix.

In order to transform propositional logic into linear
inequalities, and because of the physical constraints
present during plant operation (e.g. saturating actuators,
safety conditions, 2), we include in the control problem
the following constraint:

C
x

uD3C¢GC
x

uD3Rn`m : Fx#Gu4HH . (10)

Since typically physical constraints are specified on con-
tinuous components, often Eq. (10) can be expressed
as the Cartesian product C"C

#
][0, 1]nl`ml where

C
#
¢M[x#

u#
]3Rn#`m# :F

#
x
#
#G

#
u
#
4H

#
N. Note that the con-

straint Fx#Gu4H can be included in (9c).
To express logical facts involving continuous state

variables by using the tools presented in Section 2 we will
often have to define upper- and lower-bounds as in
Eq. (3), therefore from now on we assume that

Assumption 1. C is a polytope.

Note that assuming that C is bounded is not restrictive
in practice. In fact, continuous inputs and states are often
bounded by physical reasons, and logical input/state
components are intrinsically bounded. The following de-
velopments will be meaningful if, in addition, C has
a nonempty interior.

In the sequel, we shall denote by E ) E the standard
Euclidean norm. Note that for pure logical vectors v,
E v E2 is a nonnegative integer corresponding to the num-
ber of nonzero components of v. The symbol B(x

0
, d) will

denote the ball Mx: Ex!x
0
E4dN.

Observe that the class of MLD systems includes the
following important classes of systems:

f Linear hybrid systems.
f Sequential logical systems (Finite State Machines,

Automata) (n
#
"m

#
"p

#
"0).

f Nonlinear dynamic systems, where the nonlinearity
can be expressed through combinational logic (nl"0).

f Some classes of discrete event systems (n
#
"p

#
"0).

f Constrained linear systems (nl"ml"pl"rl"r
#
"0).

f Linear systems (nl"ml"pl"rl"r
#
"0, E

it
"0,

i"1,4,5).

The terms “combinational” and “sequential” are bor-
rowed from digital circuit design jargon. The remaining
part of this section is devoted to show in detail examples
of systems that can be expressed as MLD systems.

3.1. Piece-wise linear dynamic systems

Consider the following piece-wise linear time-invariant
(PWLTI) dynamic system

x(t#1)"G
A

1
x(t)#B

1
u(t) if d

1
(t)"1,

F
A

s
x(t)#B

s
u(t) if d

s
(t)"1,

(11)

where d
i
(t)3M0, 1N, ∀i"1,2 , s, are 0—1 variables sat-

isfying the exclusive-or condition

s
=
i/1

[d
i
(t)"1]. (12)

System (11) is completely well posed iff C can be par-
titioned in s parts C

i
such that

C
i
WC

j
"0, ∀iOj, (13a)

s
Z
i/1

C
i
"C (13b)

and d
i
’s are defined as

[d
i
"1]%CC

x
uD3C

iD , (14)

A frequent representation of Eq. (11) arises in gain-
scheduling, where the linear model (and, consequently,
the controller) is switched among a finite set of models,
according to changes of the operating conditions. Several
nonlinear models can be approximated by a model of the
form (11), although this approximation capability is lim-
ited for computational reasons by the number s of logical
variables.

When the sets C
i

are polytopes of the form
C

i
"M[x

u
] :S

i
x#R

i
u4¹

i
N, theQimplication in Eq. (14)

corresponds to

[d
i
"0]P

ni
¨
j/1

[Sj
i
x#Rj

i
u'¹j

i
], (15)

where Sj
i

denotes the jth row of Sj
i
. Eq. (15) cannot be

easily tackled. However, it is easy to see that Eq. (15) is
implied by Eqs. (12) and (13), and therefore can be omit-
ted. In fact, let [x

u
]3C

i
and d

i
"0. Then, by Eq. (12) there

exists some d
j
"1, which implies [x

u
]3C

j
, a contradiction

by Eq. (13a). Eqs. (12)— (14) are therefore equivalent to

S
i
x(t)#R

i
u(t)!¹

i
4M*

i
[1!d

i
(t)], (16a)

s
+
i/1

d
i
(t)"1, (16b)

where M*
i
¢max

x|C
S
i
x(t)#R

i
u(t)!¹

i
. Eq. (11) can be

rewritten as

x(t#1)"
s
+
i/1

[A
i
x(t)#B

i
u (t)]d

i
(t). (17)
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Unfortunately, Eq. (17) is nonlinear, since it involves
products between logical variables, states, and inputs. We
adopt the procedure (5b) to translate Eq. (17) into equiv-
alent mixed-integer linear inequalities. To this aim, set

x(t#1)"
s
+
i/1

z
i
(t), (18)

z
i
(t)¢[A

i
x(t)#B

i
u(t)]d

i
(t) (19)

and define the vectors M"[M
1 2 M

n
]@,

m"[m
1 2 m

n
]@ as

M
j
¢ max

i/1,2, s
Gmax
*xu+ | C

Aj
i
x#Bj

i
uH, (20)

m
j
¢ min

i/1,2, s
Gmax
*xu+ | C

Aj
i
x#Bj

i
.uH . (21)

Note that by Assumption 1, M and m are finite, and can
be either estimated or exactly computed by solving 2ns
linear programs. Then, Eq. (19) is equivalent to

z
i
(t)4Md

i
(t),

z
i
(t)5md

i
(t),

z
i
(t)4A

i
x(t)#B

i
u(t)!m(1!d

i
(t)),

z
i
(t)5A

i
x(t)#B

i
u(t)!M(1!d

i
(t)).

(22)

Therefore, Eqs. (16), (18), and (22) represent Eq. (11) in
the form Eq. (9).

For s'2, the number of 0—1 variables can be reduced
by setting h¢vlog

2
sw (vxw denoting the smallest inte-

ger greater than or equal to x), and

i¢
h~1
+
j/0

2jd
j
(t)3M0,2 , s!1N. (23)

Consider, for instance, s"5 (h"3), and i"5"(101)
2
.

Eq. (22) can be replaced by

z
5
(t)4Md

0
(t), z

5
(t)5md

0
(t),

z
5
(t)4M(1!d

1
(t)), z

5
(t)5m(1!d

1
(t)),

z
5
(t)4Md

2
(t), z

5
(t)5md

2
(t),

z
5
(t)4A

5
x(t)#B

5
u(t)#(M!m)

][(1!d
0
(t))#d

1
(t)#(1!d

2
(t))],

z
5
(t)5A

5
x(t)#B

5
u(t)!(M!m)

][(1!d
0
(t))#d

1
(t)#(1!d

2
(t))]. (24)

The condition i4s45 (i.e. iO6,7) provides the extra
constraint

d
1
(t)#d

2
(t)41. (25)

Note that, although the number of logical variables has
been minimized, now d

j
’s are no longer constrained by

the strong exclusive-or condition (12)—(16b). On the
other hand, the number of inequalities has increased
from 5]4 in Eq. (22) to 5]8 in Eq. (24). Therefore, the

computational benefits arising from adopting (12)—(14)
instead of Eqs. (23)— (25) depend on the particular algo-
rithm which is used as a solver. For instance, while
enumerative methods take great advantage of a reduc-
tion of logical variables, it is not easy to predict the effect
on branch and bound algorithms (Williams, 1993).

3.2. Piece-wise linear output functions

In practical applications, it frequently happens that
a process can be modeled as a linear dynamic system
cascaded by a nonlinear output function y"h(x). When
this can be approximated by a piece-wise linear function,
by introducing some auxiliary logical variables d, we
obtain the MLD form (9). As an example, consider the
following system

x(t#1)"Ax(t)#Bu(t),

y(t)"sat(Cx(t))
(26)

along with x3X, X bounded, where sat( ) ) is the standard
saturation function (see Fig. 1)

sat(y)"G
!1 if y4!1,
y if !14y41,
1 if y51.

(27)

Introduce the following auxiliary logical variables d
1
(t),

d
2
(t), defined as

[Cx'1]P[d
2
"1], (28a)

[Cx(!1]P[d
1
"1], (28b)

[Cx(1]P[d
2
"0], (28c)

[Cx'!1]P[d
1
"0]. (28d)

By setting M¢max
x|X

MCxN, m¢min
x|X

MCxN, the logi-
cal conditions (28) can be rewritten, respectively, as

!Cx#(M!1)d
2
5!1, (29a)

Cx!(m#1)d
1
5!1, (29b)

Cx#(1!m)(1!d
2
)51, (29c)

Cx!(1#M)(1!d
1
)4!1. (29d)

Fig. 1. Saturation function z"sat(Cx) and role of d
1
, d

2
.

412 A. Bemporad, M. Morari/Automatica 35 (1999) 407—427



Also, d
1
, d

2
are related by the logical equations

[d
1
"1]P[d

2
"0], (30a)

[d
2
"1]P[d

1
"0] (30b)

which can be rewritten as

d
1
!(1!d

2
)40, (31a)

d
2
!(1!d

1
)40. (31b)

Introduce the auxiliary variable z¢sat(Cx). It is clear
that

[d
1
"0]P[z4Cx], (32a)

[d
2
"0]P[z5Cx], (32b)

or, equivalently,

z!(M!m)d
1
4Cx, (33a)

z#(M!m)d
2
5Cx (33b)

and that

z5!1, (34a)

z!(M#1)(1!d
1
)4!1, (34b)

z41, (34c)

z#(1!m)(1!d
2
)51. (34d)

It is easy to verify that the above relations correctly
define z also in the case Cx"$1, which is not explicitly
taken into account in (28). In conclusion, the output
relation in (26) can be represented by the linear inequali-
ties (29), (31), (33), (34), and consequently (26) belongs to
the class of MLD systems (9).

The modeling of non-differentiable functions by using
an integer variable for each discontinuity or point of
non-differentiability is also discussed by Raman and
Grossmann (1991).

3.3. Discrete inputs

Control laws typically provide command inputs
ranging on a continuum. However, in applications fre-
quently one has to cope with command inputs which are
inherently discrete. Sometimes, the quantization process
can be neglected, for instance when the control law is
implemented on a digital microprocessor with a suffi-
ciently high number of bits. On the other hand, some
applications present intrinsically discrete command vari-
ables, such as ‘‘on/off ’’ switches, gears or speed selectors,
number of individuals or wares, etc. In this case, the
quantization error cannot be neglected, since it may lead
to very poor performance or even instability. This type of

commands can be easily modeled by logical variables.
Consider, for instance, the following system:

x(t#1)"Ax(t)#Bu(t),

u(t)3Mu
1
, u

2
, u

3
, u

4
N.

(35)

By defining two logical inputs ul1
(t), ul2

(t)3M0, 1N, and an
auxiliary variable z(t) such that

[ul1
(t)"0, ul2

(t)"0]P[z(t)"u
1
],

[ul1
(t)"0, ul2

(t)"1]P[z(t)"u
2
],

[ul1
(t)"1, ul2

(t)"0]P[z(t)"u
3
],

[ul1
(t)"1, ul2

(t)"1]P[z(t)"u
4
],

it follows that Eq. (35) admits the equivalent representa-
tion (9)

x(t#1)"Ax(t)#Bz(t),

1

!1

1

!1

1

!1

1

!1

z(t)4

u
4
!u

1
u
4
!u

1
0 0

u
4
!u

2
u
2
!u

4
u
2
!u

1
u
1
!u

2
u
3
!u

4
u
4
!u

3
u
1
!u

3
u
3
!u

1
0 0

u
1
!u

4
u
1
!u

4

ul(t)#

u
1

!u
1

u
4

!u
1

u
4

!u
1

u
4

u
4
!2u

1

,

where ul(t)¢[ul1
(t) ul2

(t)]@. In alternative, by defining
a four-dimensional logical input ul(t)¢[ul1

(t) ul2
(t) ul3

(t)
ul4

(t)]@, Eq. (35) can be transformed as

x(t#1)"Ax(t)#B[u
1

u
2

u
3

u
4
] ul(t),

C
0

0D4C
1 1 1 1

!1 !1 !1 !1D ul(t)#C
!1

1 D .

3.4. Qualitative outputs

Systems having qualitative outputs can be transformed
in the form Eq. (9). Consider, for instance, the following
example of a thermal system:

x(t#1)"ax(t)#bu (t),

½(t)"G
COLD if x(t)45°C,

COOL if 5°C(x(t)415°C,

NORMAL if 15°C(x(t)435°C,

WARM if 35°C(x(t)460°C,

HOT if 60°C(x(t)490°C,

TOOHOT if x(t)'90°C.

(36)
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Qualitative properties can be conventionally enumerated
and associated with an integer y. Here we associate y"1
with ½"‘‘COLD’’, y"2 with ½"‘‘COOL’’,2 , y"6
with ½"‘‘TOO HOT’’. Similarly to the procedure ad-
opted to define the saturation function (27), define the
following logical variables:

[d
1
(t)"1]%[x(t)45],

[d
2
(t)"1]%[x(t)415],

[d
3
(t)"1]%[x(t)435],

[d
4
(t)"1]%[x(t)460],

[d
5
(t)"1]%[x(t)490],

which must satisfy the logical conditions

[d
1
(t)"1]P[d

2
(t)"d

3
(t)"d

4
(t)"d

5
(t)"1],

[d
2
(t)"1]P[d

3
(t)"d

4
(t)"d

5
(t)"1],

[d
3
(t)"1]P[d

4
(t)"d

5
(t)"1],

[d
4
(t)"1]P[d

5
(t)"1].

By using Eq. (4e), these logical conditions can be rewrit-
ten in the form (9c). Then, y(t)¢1d

1
(t)#2(d

2
(t)!d

1
(t))#

3(d
3
(t)!d

2
(t))#4(d

4
(t)!d

3
(t))#5(d

5
(t)!d

4
(t))#6(1

!d
5
(t)), which represents an equivalent output of the

system which can take only six different values, and has
the form (9b). This type of modeling is useful to include
heuristics and rules of thumb in optimal control prob-
lems, as detailed later in Section 5.

3.5. Bilinear systems

Consider the class of nonlinear systems of the form

x(t#1)"Ax(t)#Bu(t)#
m
+
i/1

u
i
(t) C

i
x(t),

x3Rn, u3Rm. (37)

If we assume that the input u(t) is quantized, these can be
transformed into MLD system (9). For the sake of simpli-
city, consider m"1, and let

u(t)"Dd(t), D¢u
0
[20 2 2r~1], d(t)3M0, 1Nr

(38)

similarly to Eq. (23). Then, x(t#1)"Ax(t)#BDd(t)#
d@(t)D@C

1
x(t). By introducing the auxiliary continuous

vector z(t)"d@(t)D@C
1
x(t) and recalling (5b) the bilinear

system (37)— (38) can be rewritten in the form (9).

3.6. Finite state machines (automata)

We consider here finite-state machines whose events
are generated by an underlying LTI dynamic system.
A typical and important example of systems which can be
modeled within this framework are real-time systems,

where physical processes are controlled by embedded
digital controllers. Consider, for instance, the simple
automaton and linear system depicted in Fig. 2, and
described by the relations

[xl(t)"0]'[x
#
40]P[xl(t#1)"0],

[xl(t)"0]'[x
#
'0]P[xl(t#1)"1],

[xl(t)"1]P[xl(t#1)"0],

x
#
(t#1)"ax

#
(t)#bu(t).

(39)

The (0—1) finite-state xl(t) remains in 0 as long as the
continuous state x

#
(t) is non-positive. If x

c
(t)'0 at some

t, then x
#

generates a digital impulse, i.e. xl(t#1)"1,
xl(t#2)"0. The automaton’s dynamics is hence driven
by events generated by the underlying linear system. Let
x¢[x@

#
x@l]@, and introduce the auxiliary logical variables

d
1
(t), d

2
(t) defined as

[d
1
(t)"1] %[x

#
(t)40], (40a)

[d
2
(t)"1] %[xl(t)"0]'[d

1
(t)"0]. (40b)

By Eq. (4e), Eq. (40a) can be rewritten as

x
#
(t)4M(1!d

1
(t)), (41a)

x
#
(t)5e#(m!e)d

1
(t), (41b)

where e'0 is a small tolerance (machine precision), and
by Eq. (5a),

d
2
(t)4(1!d

1
(t)), (42a)

d
2
(t)4(1!xl(t)), (42b)

d
2
(t)5(1!d

1
(t))#(1!xl(t))!1. (42c)

The mixed-integer linear inequalities (41)— (42) along with
the equality xl(t#1)"d

2
(t) define the automaton part

in system (39), which hence is a MLD system. As a further
example, Branicky et al. (1998) describe how to associate
a finite automaton similar to the one depicted in Fig. 2
with hysteresis phenomena which frequently occur in dif-
ferent contexts (e.g. magnetic, electrical, etc.). Finally, time
dependence can be emulated in the time-invariant MLD

Fig. 2. Automaton driven by conditions on an underlying dynamic
system.
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framework by modeling time as the output of a digital
clock, which is a finite-state machine in free evolution.

4. Stability of MLD systems

Since we treat systems having both real and logical
states evolving within a bounded set C, we adapt here
standard definitions of stability (see e.g. (Keerthi and
Gilbert, 1988) to MLD systems.

Definition 2. A vector x
e
3Rnc]M0, 1Nnl is said to be an

equilibrium state for (9) and input u
e
3Rmc]M0, 1Nml if

[x@
%
u@
%
]@3C and x(t, t

0
, x

%
, u

%
)"x

%
, ∀t5t

0
, ∀t

0
3Z. The

pair (x
%
, u

%
) is said to be an equilibrium pair.

Definition 3. Given an equilibrium pair (x
%
, u

%
), x

%
3Rnc]

M0, 1Nnl is said to be stable if, given t
0
3Z, ∀e'0 &d(e, t

0
)

such that DDx
0
!x

%
DD4dNDDx(t, t

0
,x

0
, u

e
)!x

%
DD4e,

∀t5t
0
.

Definition 4. Given an equilibrium pair (x
%
, u

%
), x

%
3Rnc]

M0, 1Nnl is said to be asymptotically stable if x
%

is stable
and &r'0 such that ∀x

0
3B(x

%
, r) and ∀e'0 &¹(e, t

0
)

such that DDx(t, t
0
,x

0
, u

%
)!x

%
DD4e, ∀t5¹.

Definition 5. Given an equilibrium pair (x
%
, u

%
),

x
%
3Rn#]M0, 1Nnl is said to be exponentially stable if x

%
is

asymptotically stable and in addition &d'0, a'0,
04b(1 such that ∀x

0
3B(x

%
, d) and DDx(t, t

0
,x

0
, u

%
)!x

%
DD

4abt~t0DDx
0
!x

%
DD .

Note that asymptotic convergence of the logical com-
ponent xl(t) to xl%

is equivalent to the existence of a finite
time t

e
such that xl (t),xl%

, ∀t5t
%
(Passino et al., 1994).

Consequently, local stability properties could be restated
for the continuous part x

#
only, by setting xl"xl%

. Note
also that there exists a set around the continuous part
x
#%

of the equilibrium state x
%

such that, by perturbing
x
#
(t) within that set, the equations of motion are again

satisfied for xl(t)"xl%
.

For an equilibrium pair (x
%
, u

%
), in the time-invariant

case a corresponding equilibrium value can be estab-
lished for well-posed components of auxiliary variables
via the functions D

i
, Z

j
introduced earlier. In addition,

for indefinite components we relax the concept of ‘‘equi-
librium’’ through the following definition

Definition 6. Let (x
%
, u

%
) be an equilibrium pair for

a MLD system, and let the system be well posed. Assume
that I¢lim

t?=
I

t
and J¢lim

t?=
J

t
exist. For i3I,

j3J, let d
%,i

, z
%,j

the corresponding equilibrium auxiliary
variables. An auxiliary vector d (or z) is said to be definite-
ly admissible if d

i
"d

%,i
, ∀i3I, (z

j
"z

%,j
, ∀j3J), and &t

%
such that

E
2t

d#E
3t

z4E
1t

u
%
#E

4t
x
%
#E

5t
, ∀t5t

%
. (43)

Note that for time-invariant MLD systems, I,I
t
,

J,J
t
, ∀t3Z, and Eq. (43) reduces to only one set of

linear inequalities.

Example 4.1. Consider the following system

x(t#1)"0.8C
cos a(t) !sin a(t)
sin a(t) cos a(t) Dx(t)#C

0
1D u(t),

y(t)"[1 0]x(t),

a(t)"G
n
3

if [1 0] x(t)50,

!n
3

if [1 0] x(t)(0,
(44)

x(t)3[!10, 10]][!10, 10],

u(t)3[!1, 1].

According to Eq. (22), by using auxiliary variables
z(t)3R4 and d(t)3M0, 1N such that [d(t)"1]%[[1 0]x(t)
50], Eq. (44) can be rewritten in the form (9) as

x(t#1)"[I I]z(t)

10

!10!e

!M

!M

M

M

M

M

!M

!M

0

0

0

0

d(t)#

0

0

I

!I

0

0

I

M

!I

0

0

0

0

0

0

0

0

0

I

!I

0

0

I

!I

0

0

0

0

z(t)4

0

0

0

0

0

0

B

!B

B

!B

0

0

1

!1

u(t)#

1 0

!1 0

0

0

0

0

A
1

!A
1

A
2

!A
2

I

!I

0

0

x(t)#

10

!e

0

M

M

M

M

M

0

0

N

N

1

1

,

where B"[0 1]@, A
1
,A

2
are obtained by Eq. (44)

by setting respectively a"n
3
, !n

3
, M"4(1#J3)

[1 1]@#B, N¢10[1 1]@, and e is a properly small posit-
ive scalar. The evolution starting from x(0)"[1 1]@ for
u(t),0, ∀t50, is depicted in Fig. 3a. It is easy to prove
that the origin [0 0]@ is exponentially stable and has the

Fig. 3. Evolution of system (44). (a) State x(t). (b) Logical variable d(t).
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whole set C as domain of attraction. However, if one
defines a new system having state rx(t)"[x@(t) d(t!1)]@,
neither [0 0 0]@nor [0 0 1]@ are equilibria, since d(t), as
shown in Fig. 3b, keeps oscillating as t proceeds.

5. Optimal control of MLD systems

In the previous sections we have presented a modeling
framework for systems described by dynamics, logic, and
constraints. In the following sections we motivate this
choice by providing tools for synthesizing controllers for
such a class of systems. To this aim, for a MLD system of
the form Eq. (9), consider the following problem:

Problem 1. Given an initial state x
0
and a final time ¹, find

(if it exists) the control sequence uT~1
0

¢Mu(0), u(1),2 ,
u(¹!1)N which transfers the state from x

0
to x

f
and

minimizes the performance index

J(uT~1
0

,x
0
)¢

T~1
+
t/0

DDu(t)!u
f
DD2
Q1
#DDd(t,x

0
, ut

0
)!d

f
DD2
Q2

#DDz(t,x
0
,ut

0
)!z

f
DD2
Q3
#DDx(t,x

0
,ut~1

0
)!x

f
DD2
Q4

#DDy(t,x
0
, ut~1

0
)!y

f
DD2
Q5

(45)

subject to

x(¹,x
0
, uT~1

0
)"x

f
(46)

and the M¸D system dynamics Eq. (9), where DDxDD2
Q
¢x@Qx,

Q
i
"Q@

i
50, i"1,2 , 5, are given weight matrices, and

x
f
, u

f
, d

f
, z

f
, y

f
are given offset vectors satisfying

Eqs. (9b)— (9c).

Note that if d
f
"0 and Q

2
is diagonal, the second

quadratic term is equivalent to the linear term
+rl

i/0
Q

ii
d
i
(t,x

0
, ut

0
).

Problem 1 can be solved as a mixed-integer quadratic
programming (MIQP) problem. In fact, let x(t) be a com-
pact notation for x(t,x

0
, ut~1

0
), the same convention being

used for d(t), z(t). From Eq. (9a), for time-invariant sys-
tems we have the solution formula

x(t)"Atx
0
#

t~1
+
i/0

Ai[B
1
u(t!1!i)#B

2
d(t!1!i)

#B
3
z(t!1!i)], (47)

where the relation between x(t) and x
0
, ut~1

0
is only

apparently linear, because d(i), z(i) hide a nonlinear
dependence on x

0
and ut~1

0
, as observed earlier. By

plugging Eq. (47) into Eqs. (9c) and (45), and by defining
the vectors

)¢C
u(0)
F

u(¹!1)D, *¢C
d(0)
F

d(¹!1)D,

$¢C
z(0)
F

z(¹!1)D, V¢C
)
*
$D,

we obtain the following equivalent formulation:

minV V@S
1
V#2(S

2
#x@

0
S
3
)V

s.t. F
1
V4F

2
#F

3
x
0
,

(48)

where matrices S
i
, F

i
, i"1, 2, 3, are suitably defined.

Then, existence, uniqueness, and continuity with respect
to x

0
of the optimal control sequence can be investigated

as feasibility, uniqueness, and continuity with respect to
parameters of the solution of the MIQP problem (48).

Example 5.1. Consider again the MDL system of
Example 4.1. In order to optimally transfer the state
from x

0
"[!1 1]@ to x

f
"[0 0]@, the performance

index (45) is minimized subject to Eq. (46) and the MLD
system dynamics Eq. (44), along with the weights
Q

1
"1, Q

2
"0.01, Q

3
"0.01I

4
, Q

4
"I

2
, Q

5
"0, and

z
f
"[0 0 0 0]@, d

f
"1, u

f
"0. The resulting optimal

trajectories are shown in Fig. 4. Fig. 5 shows the effect of
varying the ratio between weights, in particular the input
weight Q

1
takes the values 10~6, 0.1, 10.

5.1. Soft constraints and constraint priority

In practical applications, it is common use to distin-
guish between hard constraints, which cannot be violated
(for instance motor voltage limits), and soft constraints,
whose violation is allowed (e.g. bounds on temperatures),
even if penalized. When dealing with soft constraints, one

Fig. 4. Optimal control of system (44).
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Fig. 5. Optimal control of system (44). Comparison between different
relative weights (Q

2
"0.01, Q

3
"0.01I

4
, Q

4
"I

2
).

would like to fulfill two requirements. First, if the set of
feasible solutions to the hard constrained problem is
nonempty, the minimizer should belong to that set.
Second, if such a set is empty, one should be able
to decide a trade-off between the cost and constraint
violation.

Consider the following optimization problem:

min
x|X

x@Sx

s.to. Ax4B,
(49)

where the set X is a bounded polyhedron. The simplest
way to soften constraints is to modify Eq. (49) in the
following problem

min
x|X,ez0

x@Sx#e@M
1
e

s.t. Ax!Ce4B,
(50)

where e3Rs is a vector of slack variables, C is a vector
whose components are 0 or 1 according if the corre-
sponding constraint is hard or soft, and M

1
is a (large)

penalty weight matrix. The problem with the formulation
Eq. (50) is that the first requirement is not guaranteed.
As an alternative, define a logical variable d such
that [d"0] %[e

i
"0, ∀i"1,2,s], and minimize

x@Sx#e@M
1
e#M

2
d with respect to x, e, and d, where

M
2
'max

x|X
x@Sx, and M

1
decides the trade-off between

cost and constraint violation, when no feasible solution
exists to the hard-constrained problem.

Constraint violation can also be considered at r levels
of priority, by introducing r 0—1 variables d

i
, i"1,2, r,

by letting

[d
1
"0]%[e

1
"2"e

i1
"0],

[d
2
"0]%[d

1
"0]'[e

i1`1
"2"e

i2
"0]

F F

[d
r
"0]%[d

1
"2"d

r~1
"0]

'[e
ir~1`1

"2"e
ir
"0],

and by minimizing x@Sx#e@M
1
e#M

2
+r

i/1
d
i
.

Note that soft constraints and constraint priority can
be directly considered in the MLD structure (9). In fact,
constraints in Eq. (9c) can be softened and/or prioritized
by incorporating the slack vector e(t) in the z-vector,
and the auxiliary logical variables d

1
(t),2 , d

r
(t) in the

d-vector.

5.2. Integrating heuristics, logic, and dynamics

As shown by Raman and Grossmann (1991, 1992) for
process synthesis, logic and heuristics can be integrated
through propositional logic. This type of qualitative
knowledge is useful for two purposes. First, in many
cases solutions which reflect the operator’s experience are
simply preferred. Second, it may help to expedite the
search for feasible solutions, for instance by generating
a base case. On the other hand, qualitative knowledge are
typically just rules of thumb which may not always hold,
lead to solutions which are far away from optimality, and
even be contradictory.

Heuristic rules can be expressed as ‘‘soft’’ logic facts, by
considering instead of the clause D which expresses the
rule the following

Ds». (51)

Since the clause is also a disjunction, the conversion of
Eq. (51) into linear inequalities is straightforward, for
instance [&P

1
sP

2
]s» yields

1!d
1
#d

2
#v51, (52)

where v can also be interpreted as a slack variable that
allows the violation of the inequality. Since Eq. (52) only
involves 0—1 variables, in this case the variable v can be
treated as a continuous nonnegative variable, despite the
fact that it will take only 0-1 values. As a further example,
consider [¹5¹

HOT
]P[d

1
"1]s[v"1], which is

equivalent to ¹!¹
HOT

!M(d
1
#v)40, where M is

a known upper bound on ¹!¹
HOT

and v is a binary
variable that represents the violation of the heuristics
(Raman and Grossmann, 1992).

When the fulfillment of heuristic rules is impossible or
destroys optimality, one should violate the weaker (more
uncertain) set of rules. A discrimination between weak
and strong rules can be obtained by penalizing with
different weights w

i
the violation variables v

i
. The penalty

w
i
is a nonnegative number expressing the uncertainty of

the corresponding logical expression. The more uncer-
tain the rule according to the designer’s experience, the
lower the penalty for its violation.

For the optimal control problem at hand, one can add
the linear term w@v in Eq. (45) and minimize with respect
to V and v. As an alternative, if the performance index
should not be mixed with heuristics violation penalties,
one can first find the vector v* which minimizes w@v
subject to linear constraints involving V, and v (a mixed
integer linear problem (MILP)), set v"v*, and then
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minimize Eq. (45) with respect to V only. This corres-
ponds to a preprocessing of the given set of logical,
dynamical, and heuristic conditions in order to obtain
the feasible set which better takes into account qualitat-
ive knowledge.

6. Predictive control of MLD systems

As observed in the previous sections, a large quantity
of situations can be modeled through the MLD structure.
Then, it is interesting from both a theoretical and practi-
cal point of view to ask whether or not a MLD system
can be stabilized to an equilibrium state or can track
a desired reference trajectory, possibly via feedback con-
trol. Finding such a control law is not an easy task, the
system being neither linear nor even smooth. In this
section, we show how predictive control provides suc-
cessful tools to perform this task. For the sake of nota-
tional simplicity, the index t will be dropped from Eq. (9),
by assuming that the system is time-invariant.

As mentioned in Section 1, the main idea of predictive
control is to use a model of the plant to predict the future
evolution of the system. Based on this prediction, at each
time step t the controller selects a sequence of future
command inputs through an on-line optimization pro-
cedure, which aims at maximizing the tracking perfor-
mance, and enforces fulfillment of the constraints. Only
the first sample of the optimal sequence is actually ap-
plied to the plant at time t. At time t#1, a new sequence
is evaluated to replace the previous one. This on-line
‘‘re-planning’’ provides the desired feedback control
feature.

Consider an equilibrium pair (x
%
, u

%
) and let (d

%
, z

%
) be

definitely admissible in the sense of Definition 6. Let the
components d

%,i
, z

%,j
, iNI, jNJ, correspond to desired

steady-state values for the indefinite auxiliary variables.
Let t be the current time, and x(t) the current state.
Consider the following optimal control problem

min
MvT~1

0
N
J(vT~1

0
,x(t))¢

T~1
+
k/0

DDv(k)!u
%
DD2
Q1
#DDd(kDt)!d

%
DD2
Q2

#DDz(kDt)!z
%
DD2
Q3
#DDx(kDt)!x

%
DD2
Q4

#DDy(kDt)!y
%
DD2
Q5

(53)

s.t. G
x(¹Dt)"x

%
,

x(k#1Dt)"Ax(kDt)#B
1
v(k)#B

2
d(kDt)#B

3
z(kDt),

y(kDt)"Cx(kDt)#D
1
v(k)#D

2
d(kDt)#D

3
z(kDt),

E
2
d(kDt)#E

3
z(kDt)4E

1
v(k)#E

4
x(kDt)#E

5
,

(54)

where Q
1
"Q@

1
'0, Q

2
"Q@

2
50, Q

3
"Q@

3
50,

Q
4
"Q@

4
'0, Q

5
"Q@

5
50, x(kDt)¢x(t#k,x(t),vk~1

0
),

and d(kDt), z(kDt), y(kDt) are similarly defined. Assume for
the moment that the optimal solution Mv*

t
(k)N

k/0,2,T~1

exists. According to the receding horizon philosophy
mentioned above, set

u(t)"v*
t
(0), (55)

disregard the subsequent optimal inputs v*
t
(1),2 ,

v*
t
(¹!1), and repeat the whole optimization procedure

at time t#1. The control law (53)—(55) will be referred to
as the mixed integer predictive control (MIPC) law. Note
that once x

%
, u

%
have been fixed, consistent steady-state

vectors d
%
, z

%
can be obtained by choosing feasible points

in the domain described by Eq. (9c), for instance by
solving a MILP (see also Section 6.1).

Several formulations of predictive controllers for
MLD systems might be proposed. For instance, the
number of control degrees of freedom can be reduced
to N

u
(¹, by setting u(k),u(N

u
!1), ∀k"N

u
,2 ,¹.

However, while in other contexts this amounts to hugely
down-sizing the optimization problem at the price of
a reduced performance, here the computational gain is
only partial, since all the ¹ d(kDt) and z(kDt) variables
remain in the optimization. Infinite horizon formulations
are inappropriate for both practical and theoretical rea-
sons. In fact, approximating the infinite horizon with
a large ¹ is computationally prohibitive, as the number
of 0—1 variables involved in the MIQP depends linearly
on ¹. Moreover, the quadratic term in d might oscillate,
as exemplified in Example 1, Fig. 3b, and hence ‘‘good’’
(i.e. asymptotically stabilizing) input sequences might be
ruled out by a corresponding infinite value of the perfor-
mance index; it could even happen that no input se-
quence has finite cost.

Theorem 1. ¸et (x
%
, u

%
) be an equilibrium pair and (d

%
, z

%
)

definitely admissible. Assume that the initial state x(0) is
such that a feasible solution of problem (53) exists at time
t"0. ¹hen ∀Q

1
"Q@

1
'0, Q

2
"Q@

2
50, Q

3
"Q@

3
50,

Q
4
"Q@

4
'0, and Q

5
"Q@

5
50 the MIPC law (53)—(55)

stabilizes the system in that

lim
t?=

x(t)"x
%
,

lim
t?=

u(t)"u
%
,

lim
t?=

DDd(t)!d
%
DD
Q2
"0,

lim
t?=

DDz(t)!z
%
DD
Q3
"0,

lim
t?=

DDy(t)!y
%
DD
Q5
"0,

while fulfilling the dynamic/relational constraints (9c).

Note that if Q
2
'0 (or Q

3
'0, Q

5
'0), convergence of

d(t) (or z(t), y(t)) follows as well.

Proof. The proof easily follows from standard Lyapunov
arguments. Let U*

t
denote the optimal control sequence
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Mv*
t
(0),2 , v*

t
(¹!1)N, let

»(t)¢J(U*
t
, x(t))

denote the corresponding value attained by the perfor-
mance index, and let U

1
be the sequence Mv*

t
(1),2 ,

v*
t
(¹!2), u

%
N. Then, U

1
is feasible at time t#1, along

with the vectors d(kDt#1)"d(k#1Dt), z(kDt#1)"
z(k#1Dt), k"0,2 ,¹!2, d(¹!1Dt#1)"d

%
, z(¹!1D

t#1)"z
%
, being x(¹!1Dt#1)"x(¹Dt)"x

%
and

(d
%
, z

%
) definitely admissible. Hence,

»(t#1)4J(U
1
,x(t#1))"»(t)!DDx(t)!x

%
DD
Q4
!DDu(t)

!u
%
DD
Q1
!DDd(t)!d

%
DD
Q2

!DDz(t)!z
%
DD
Q3
!DDy(t)!y

%
DD
Q5

(56)

and »(t) is decreasing. Since »(t) is lower-bounded by 0,
there exists »

=
"lim

t?=
»(t), which implies »(t#1)!

»(t)P0. Therefore, each term of the sum

DDx(t)!x
%
DD
Q4
#DDu(t)!u

%
DD
Q1
#DDd(t)!d

%
DD
Q2

#DDz(t)!z
%
DD
Q3
#DDy(t)!y

%
DD
Q5
4»(t)!»(t#1)

converges to zero as well, which proves the theorem. h

Remark 1. Despite the fact that very effective methods
exist to compute the (global) optimal solution of the
MIQP problem (53)— (55) (see Section 7 below), in the
worst case the solution time depends exponentially on
the number of integer variables. In principle, this might
limit the scope of application of the proposed method to
very slow systems, since for real-time implementation the
sampling time should be large enough to allow the
worst-case computation. However, the proof of Theorem
Table does not require that the evaluated control se-
quences MU*

t
N=
t/0

are global optima. In fact, Eq. (56) just
requires that

J(U*
t`1

, x(t#1))4J(U
1
, x(t#1)). (57)

The sequenceU
1
is available from the previous computa-

tion (performed at time t), and can be used to initialize
the MIQP solver at time t#1. The solver can then be
interrupted at any intermediate step to obtain a subopti-
mal solutionU*

t`1
which satisfies (57). For instance, when

Branch and Bound methods are used to solve the MIQP
problem, the new control sequence U*

t
can be selected as

the solution to a QP subproblem which is integer-feasible
and has the lowest value. Obviously in this case tracking
performance deteriorates.

Remark 2. Since in general the implicitly defined func-
tions D

i
, Z

j
are not continuous, convergence of the

well-posed components of d, z cannot be inferred by
convergence of x and u. For instance, a variable d defined
as [d"1]%[x'0] has a corresponding D function
which is discontinuous in x"0.

Remark 3. Nothing can be inferred about the asymptotic
behavior of the indefinite components of d, z, unless Q

2
,

Q
3
'0. However, the behavior of unweighted indefinite

variables are clearly of little interest.

Remark 4. The stability result proved in Theorem 1 is
not affected by the presence of positive linear terms in
Eq. (53). For instance, if z3R, z

e
"0 and the constraint

z(t)50 is present, a term of the form q
3
z, q

3
50 can be

included in Eq. (53). Hence, soft constraints or heuristic
rules can be taken into account by modifying the perfor-
mance index Eq. (53) as detailed in Section 5, without
corrupting the warranty of stability.

Remark 5. Note that because of its receding horizon
mechanism, MIPC is a closed-loop approach, and is
clearly more robust than pure open-loop optimal con-
trol. On the other hand, MIPC control can be also
adopted for off-line computation of open-loop input tra-
jectories. Let N be the duration in time steps of the batch
operation to be designed. Since short horizons ¹ can be
implemented within MIPC, this would require the solu-
tion of N MIQP problems of size ¹. On the other hand,
pure optimal control would require the solution of one
MIQP problem of size N. Assuming a worst case ex-
ponential dependence on the size of the problem, the first
would have a complexity of N2T, while the second of 2N.
For N"100, ¹"5 this is equivalent to 3200 versus
about 1030. This gain in computational efficiency,
however, may be paid at the price of a deteriorated
performance, due to the gap between the open-loop per-
formance objective minimized at each step and the actual

Fig. 6. Closed-loop regulation problem for system (44). Closed-loop
trajectories (thick lines) and optimal solution at t"0 (thin lines, right
plots).
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Fig. 7. Closed-loop tracking problem for system (44), with y(t)"x
1
(t).

performance. Note that this gap increases as the predic-
tion horizon ¹ gets shorter.

Example 6.1. Consider again the MDL system of
Examples 4.1 and 5.1. In order to stabilize the system to
the origin, the feedback control law (53)— (55) is adopted,
along with the parameters ¹"3, u

%
"0, d

%
"0,

z
%
"[0 0 0 0]@, x

%
"[0 0]@, y

%
"0, and the same

weights of Example 5.1 (Fig. 4). Fig. 6 shows the resulting
trajectories. The trajectories obtained at time t"0 by
solving the optimal control problem (53)—(54) are also
reported in the right plots (thin lines). Consider now
a desired reference r(t)"sin(t/8) for the output y(t). We
apply the same MIPC controller, with the exception of
Q

4
"10~8I

2
, Q

5
"1. The steady-state parameters are

selected as y
%
"r(t), and u

%
, x

%
, d

%
, z

%
consistently (see

Section 6.1 below). Fig. 7 shows the resulting closed-loop
trajectories. Notice that the constraint !14u(t)41
prevents the system from tracking the peaks of
the sinusoid, and therefore the output trajectory is
chopped.

6.1. Tracking problems

For tracking problems, the goal is that the output y(t)
follows a reference trajectory r(t). For each time step t, the
values for y

%
,x

%
,u

%
,d

%
,z
%

in Eq. (53) corresponding to r(t)
can be computed by solving the following MIQP prob-
lem

min
Mx%,u%,d%,z%N

DDy
%
!r(t)DD2

Q5
#o(DDx

%
DD2#DDu

%
DD2#DDd

%
DD2#DDz

%
DD2)

(58a)

s.t. G
x
%
"Ax

%
#B

1
u
%
#B

2
d
%
#B

3
z
%
,

E
2
d
%
#E

3
z
%
4E

1
u
%
#E

4
x
%
#E

5
,

(58b)

where y
%
"Cx

%
#D

1
u
%
#D

2
d
%
#D

3
z
%
. The parameter

o'0 is any (small) positive number, and is needed to
ensure strict convexity of the value function (58a). This
procedure allows to define a set-point y

%
which is as close

as possible to r(t), compatibly with the constraints.

7. MIQP solvers

With the exception of particular structures, mixed-
integer programming problems involving 0—1 variables
are classified as NP-complete, which means that in the
worst case, the solution time grows exponentially with
the problem size (Raman and Grossmann, 1991). Despite
this combinatorial nature, several algorithmic ap-
proaches have been proposed and applied successfully to
medium and large size application problems (Floudas,
1995), the four major ones being

f Cutting plane methods, where new constraints (or
‘‘cuts’’) are generated and added to reduce the feasible
domain until a 0—1 optimal solution is found.

f Decomposition methods, where the mathematical struc-
ture of the models is exploited via variable partitioning,
duality, and relaxation methods.

f ¸ogic-based methods, where disjunctive constraints or
symbolic inference techniques are utilized which can be
expressed in terms of binary variables.

f Branch and bound methods, where the 0—1 combina-
tions are explored through a binary tree, the feasible
region is partitioned into sub-domains systematically,
and valid upper and lower bounds are generated at
different levels of the binary tree.

For MIQP problems, Fletcher and Leyffer (1995)
indicate Generalized Benders’ Decomposition (GBD)
(Lazimy, 1985), Outer Approximation (OA), LP/QP
based branch and bound, and Branch and Bound as the
major solvers. See Roschchin et al. (1987) for a review of
these methods.

Several authors agree on the fact that branch and
bound methods are the most successful for mixed integer
programs. Fletcher and Leyffer (1995) report a numerical
study which compares different approaches, and Branch
and Bound is shown to be superior by an order of
magnitude. While OA and GBD techniques can be at-
tractive for general mixed-integer nonlinear problems
(MINLP), for MIQP at each node the relaxed QP prob-
lem can be solved without approximations and reason-
ably quickly (for instance, the Hessian matrix of each
relaxed QP is constant).

As described by Fletcher and Leyffer (1995), the
Branch and Bound algorithm for MIQP consists of solv-
ing and generating new QP problems in accordance with
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a tree search, where the nodes of the tree correspond to
QP subproblems. Branching is obtained by generating
child-nodes from parent-nodes according to branching
rules, which can be based, for instance, on a priori
specified priorities on integer variables, or on the amount
by which the integer constraints are violated. Nodes
are labeled as either pending, if the corresponding QP
problem has not yet been solved, or fathomed, if the
node has already been fully explored. The algorithm
stops when all nodes have been fathomed. The success
of the branch and bound algorithm relies on the fact
that whole subtrees can be excluded from further
exploration by fathoming the corresponding root
nodes. This happens if the corresponding QP subprob-
lem is either infeasible or an integer solution is obtained.
In the second case, the corresponding value of the cost
function serves as an upper bound on the optimal
solution of the MIQP problem, and is used to further
fathoming other nodes having greater optimal value or
lower bound.

Some of the simulation results reported in this paper
have been obtained in Matlab by using the commercial
Fortran package (Fletcher and Leyffer, 1994) as a MIQP
solver. This package can handle both dense and sparse
MIQP problems. The latter has proven to be particularly
effective to solve most of the optimal control problems
for MLD systems. In fact, because of Eq. (47), the con-
straints have a triangular structure, and in addition most
of the constraints generated by representation of logic
facts involve only a few variables, which often leads to
sparse matrices.

8. A case study: control of a gas supply system

The theoretical framework for modeling and control-
ling MLD systems developed in the previous sections is
applied to the Kawasaki Steel Mizushima Works gas
supply system described in (Akimoto et al., 1991).

8.1. Gas supply system

The system is depicted in Fig. 8. A steel-works gener-
ates three by-product gas, namely blast furnace gas
(B gas), coke oven gas (C gas), and mixed gas (M gas)
such as converter gas. These are known disturbances
whose flow rates F

BR
, F

CR
, F

MR
fluctuate with time. In

order to provide a stable supply of high-caloric gas F
BS

,
F
CS

, F
MS

to the joint electric power plant, three holders
dampen the by-product gas flows. The electric power
plant is constituted by five boilers. Nos. 1 and 2 can use
B and M gas and heavy oil as fuel, nos. 3, 4, and 5 can
also use C gas. M gas is mixed with B gas to increase the
thermal values (in calories) of the B gas. It is desired to
save heavy oil by supplying by-product gas to boilers at
a stationary rate. The physical quantities describing the

Fig. 8. Gas supply system.

model and the numerical values of the parameters are
reported in Tables 2 and 3, respectively.

In order to model the system in discrete time, gas
flow rates are assumed to be constant over the samp-
ling period *¹. Then, the dynamics of gas holders is
given by

»
B
(t#1)"»

B
(t)#*¹[F

BR
(t)!F

BS
(t)!aF

M
(t)], (59a)

»
C
(t#1)"»

C
(t)#*¹[F

CR
(t)!F

CS
(t)!(1!a)F

M
(t)],

(59b)

»
M
(t#1)"»

M
(t)#*¹[F

MR
(t)!F

MS
(t)#F

M
(t)], (59c)

where the amount of gas in each holder cannot exceed
upper and lower limits:

»
B
4»

B
(t)4»M

B
, (60a)

»
C
4»

C
(t)4»M

C
, (60b)

»
M
4»

M
(t)4»M

M
. (60c)

Due to boiler operation constraints at the joint electric
power plant, the following input constraints hold for the
supply amounts of B gas and C gas:

F
BS
4F

BS
(t)4FM

BS
, (61a)

F
CS
4F

CS
(t)4FM

CS
. (61b)

In addition,

F
MS

(t)50, (62a)

F
M
(t)50. (62b)

From the thermal balance before and after M gas is
mixed with B gas, and considering the heating value of
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Table 2
Physical quantities

Symbol Meaning Unit

F
BR

(t), F
CR

(t), F
MR

(t) Residual gas flow rates m3/h
»
B
(t), »

C
(t), »

M
(t) Gas volume held in the gas holder m3

F
M
(t) M gas flow rate produced from B#C m3/h

F
BS

(t), F
CS

(t), F
MS

(t) Gas flow rates suppliedto electric plant m3/h
r
1

Evaluated value of gas yen/kcal
r
2

Profit obtained through combustion-of-gas-only yen/h
r
3
—r

8
Loss due to gas discharge of shortage ateach holder yen/m3

r
9

Loss because combustion-of-gas-only forless than 2*¹ hours yen
r
10

—r
15

Penalty for suppressing the fluctuation of gas amount held yen/m3

r
16

, r
17

Penalty for two/three boilers switchedsimultaneously yen

Table 3
Model parameters

Symbol Meaning Value Unit

a Mixing ratio of B and C gas 0.52
»M

B
Upper limit of B gas holder 180 km3

»
B

Lower limit of B gas holder 50 km3

»N
B

Standard value of B gas holder 110 km3

»M
C

Upper limit of C gas holder 120 km3

»
C

Lower limit of C gas holder 10 km3

»N
C

Standard value of C gas holder 50 km3

»M
M

Upper limit of M gas holder 90 km3

»
M

Lower limit of M gas holder 7 km3

»N
M

Standard value of M gas holder 40 km3

FM
BS

Upper limit of B gas supply 1000 km3/h
F
BS

Lower limit of B gas supply 0 km3/h
FM
CS

Upper limit of C gas supply 750 km3/h
F
CS

Lower limit of C gas supply 0 km3/h
qN
BI

Upper limit of B gas calorie 1050 kcal/m3

q
BI

Lower limit of B gas calorie 720 kcal/m3

F*
CS

Minimum value of gas-only 15 km3/h
q
B

B gas calorie 742 kcal/m3

q
C

C gas calorie 4600 kcal/m3

q
M

M gas calorie 2520 kcal/m3

*¹ Sampling time 2 h
¹ Horizons 4 Steps

the calorie-increased B gas, F
MS

, F
BS

must also satisfy the
constraints

(q
BI
!q

B
)F

BS
(t)#(q

BI
!q

M
)F

MS
(t)40, (63a)

!(qN
BI
!q

B
)F

BS
(t)!(qN

BI
!q

M
)F

MS
(t)40. (63b)

Let F*
CS

be the minimum amount of C gas required for
combustion-of-gas-only in an holder, and define n(t) as
the number of boilers burning C gas

n(t)"G
0 if F

CS
4F

CS
(t)(F*

CS
,

1 if F*
CS
4F

CS
(t)(2F*

CS
,

2 if 2F*
CS
4F

CS
(t)(3F*

CS
,

3 if 3F*
CS
4F

CS
(t)(FM

CS
,

where it is assumed that if C gas is enough for n(t) boilers,
n(t) boilers burn C gas. The number of boilers n(t) can be
expressed as the sum of the 0—1 variables n

1
(t), n

2
(t), n

3
(t),

defined by the relations

[n
1
(t)"0]%[F

CS
5F*

CS
],

[n
2
(t)"0]%[F

CS
52F*

CS
],

[n
3
(t)"0]%[F

CS
53F*

CS
],

[n
3
(t)"1]P[n

1
(t)"1], [n

2
(t)"1],

[n
2
(t)"1]P[n

1
(t)"1],

[n
1
(t)"0]P[n

2
(t)"0], [n

3
(t)"0],

[n
2
(t)"0]P[n

3
(t)"0]

or, by transforming into linear inequalities,

F
CS

(t)5F*
CS
#(F

CS
!F*

CS
)[1!n

1
(t)], (64a)

F
CS

(t)4F*
CS
!e#(FM

CS
!F*

CS
#e)n

1
(t), (64b)

F
CS

(t)52F*
CS
#(F

CS
!2F*

CS
)[1!n

2
(t)], (64c)

F
CS

(t)42F*
CS
!e#(FM

CS
!2F*

CS
#e)n

2
(t), (64d)

F
CS

(t)53F*
CS
#(F

CS
!3F*

CS
)[1!n

3
(t)], (64e)

F
CS

(t)43F*
CS
!e#(FM

CS
!3F*

CS
#e)n

3
(t), (64f )

n
3
(t)!n

1
(t)40, (64g)

n
3
(t)!n

2
(t)40, (64h)

n
2
(t)!n

1
(t)40, (64i)

n(t)"n
1
(t)#n

2
(t)#n

3
(t), (64j)

where e is a properly small positive constant. Moreover,
the following specifications must be taken into account:

1. When the combustion-of-gas-only is practiced it
should be continued for at least 2*¹ hours.

2. If the number of boilers for combustion-of-gas-only
decreases, the number of the decrease should be one at
the time, and hence simultaneous changeover of mul-
tiple boilers needs high penalty.
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In order to take into account these conditions, define
n(t)!n(t!1)"*n`(t)!*n~(t), *n`(t),*n~(t)50, and
introduce three 0-1 variables k

1
(t), k

2
(t), k

3
(t), such that

*n~(t)"k
1
(t)#k

2
(t)#k

3
(t). Then

k
1
(t)5k

2
(t), (65a)

k
1
(t)5k

3
(t), (65b)

k
2
(t)5k

3
(t), (65c)

n
1
(t)#n

2
(t)#n

3
(t)!n(t!1)#k

1
(t)#k

2
(t)#k

3
(t)

50, (65d)

n
1
(t)#n

2
(t)#n

3
(t)!n(t!1)#k

1
(t)#k

2
(t)#k

3
(t)

43[1!k
1
(t)]. (65e)

In order to take into account the second specification,
let

s(t)"G
*n~(t) if *n`(t!1)'0

0 if *n`(t!1)"0

and let c
1
(t)3M0,1N such that [c

1
(t)"1]%[n(t!1)'

n(t!2)]. Then, by recalling Eq. (5b),

!n(t!1)#n(t!2)57
2
!4c

1
(t), (66a)

n(t!1)!n(t!2)44c
1
(t), (66b)

s(t)50, (66c)

s(t)43c
1
(t), (66d)

s(t)4k
1
(t)#k

2
(t)#k

3
(t), (66e)

s(t)5k
1
(t)#k

2
(t)#k

3
(t)!3[1!c

1
(t)]. (66f )

Note that this formulation assumes that boilers nos.
3—5 are activated according to a predefined hierarchy,
otherwise a more complex description which distin-
guishes the numbers of the boilers burning C gas should
be adopted.

In order to take into account the profit figure defined
in Akimoto et al. (1991), consider the following profit
variable:

p(t)¢r
1
*¹[q

B
F

BS
(t)#q

C
[F

CS
(t)!F*

CS
n(t)]#q

M
F
MS

(t)]

#r
2
*¹n(t)

which should be maximized. This can be achieved by
minimizing a new (slack) variable w(t) defined by the
inequalities

p(t)5p
%
(t)!w(t), (67a)

w(t)50, (67b)

where p
%
(t) a goal profit value, defined below.

In conclusion, the gas supply system can be represent-
ed as a time-varying MLD system described by

x(t)¢

»
B
(t)

»
C
(t)

»
M
(t)

n(t!1)

n(t!2)

, u(t)¢

F
BS

(t)!F
BR

(t)

F
CS

(t)!F
CR

(t)

F
MS

(t)!F
MR

(t)

F
M
(t)

,

d(t)¢

n
1
(t)

n
2
(t)

n
3
(t)

c
1
(t)

k
1
(t)

k
2
(t)

k
3
(t)

, z(t)¢C
s(t)

w(t)D ,

and Eqs. (59)— (67).

8.2. Predictive control of the gas supply system

As during actual plant operation human operators try
to keep the volume of gas in each holder as constant as
possible at normal values »N

B
, »N

C
, »N

M
, respectively, it is

natural to define these values as set-points for »
B
, »

C
, »

M
.

The approach described in Section 6 requires the exist-
ence of an equilibrium pair, and hence in principle only
step gas flow disturbances allow the definition of such an
equilibrium. We hence assume that F

BR
(kDt)"F

BR,%
(t)

¢F
BR

(¹Dt) for all k5¹ (F
CR,%

(t) and F
MR,%

(t) are defined
analogously), relying on the fact that the receding hor-
izon mechanism will mitigate such a restrictive assump-
tion about future disturbances (Campo and Morari,
1989), and that these disturbances are in any case ob-
tained by other controlled processes. Then, by defining
n
e
(t)"n

1,%
(t)#n

2,%
(t)#n

3,%
(t) as the number of boilers

which can be fed by a constant gas rate F
CR,%

(t), we set
x
e
(t)¢[»N

B
»N

C
»N

M
n
e
(t) n

e
(t)]@, u

e
¢[0 0 0 0]@, d

e
(t)¢

[n
1,t

(t) n
2,%

(t) n
3,%

(t) 0 0 0 0]@, z
e
¢[0 0]@, and define

the quantity p
e
(t) in (Eq. (67a)) accordingly. Note that,

because of the terminal constraint x(¹Dt)"x
e
(t), feasibil-

ity is guaranteed only for gas flow disturbances which are
constant for t5¹.

The feedback control law (53)— (55) is adopted in order
to operate the gas supply system. In addition, we add in
(53) the linear term Q$w(kDt). Since w

%
"0, w(t)50, as

observed in Remark 4 such a modification does not alter
the stability results of Theorem 1. The resulting trajecto-
ries are depicted in Figs. 9 and 10, and correspond to the
prediction horizon ¹"4, and weights Q$"50,
Q

1
"diag(10~2, 10~1, 10~1, 102), Q

2
"diag (10~2, 10~2,

10~2, 10~2, 103,Qr
16

, Qr
17

), Q
3
"diag(r

9
, 10~3), Q

4
"

diag(1
2
(r
10
#r

11
), 1

2
(r
12
#r

13
), 1

2
(r
14
#r

15
), 10~4, 10~4).
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Fig. 9. Predictive control of the gas supply system, w(kDt)50, ∀k, ∀t. Thick lines: F
BS

, F
CS

, F
MS

, F
M
, »

B
, »

C
, »

M
, n; thin lines: F

BR
, F

CR
, F

MR
; dashed

lines: »N
B
, »N

C
, »N

M
.

Fig. 10. Predictive control of the gas supply system, w(kDt)50, ∀k, ∀t. Slack variable w and profit variable p (thick lines), p
e

(thin line).

In order to maximize the profit, one could be tempted
to remove the constraint (67b). On the other hand, with
such a modification stability properties are no longer
guaranteed. For converging gas flow disturbances,
a compromise is obtained by introducing constraint (67b)
only after a finite time t

S
'0, namely by imposing in the

optimization problem the constraints w(kDt)50 only for
k5¹!t#t

S
. In this way, stability is restored, and

feasibility preserved. Figs. 11 and 12 show the results
obtained by setting t

S
"12. Note that the risky approach

consisting of maximizing profit without constraining w(t)
results in a more aggressive transient behavior, as wit-
nessed by the »

B
, »

C
, and »

M
trajectories.

8.3. Computational complexity

At each time step t, the MIQP problem which derives
from Eqs. (9), (45), and (46) has the structure (48), involves
121 linear constraints, 25 continuous variables, and 28
integer variables. The problem has a sparseness of
around 93%. Concerning computational times, on a Sun
SPARCStation 4 at time t"0, for instance, the MIQP
problem is solved by the sparse version of the package
(Fletcher and Leyffer, 1994) in 1.20 s (8 QP subproblems).
Simulation computational time is also saved by exploit-
ing the information about the previous solution, namely
by shifting the previous optimal solution, which is a
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Fig. 11. Predictive control of the gas supply system, w(kDt)50 ∀k5¹!t#t
S
. Thick lines: F

BS
, F

CS
, F

MS
, F

M
, »

B
, »

C
, »

M
, n; thin lines: F

BR
, F

CR
, F

MR
;

dashed lines: »N
B
, »N

C
, »N

M
.

Fig. 12. Predictive control of the gas supply system, w(kDt)50, ∀k, ∀t. Slack variable w and profit variable p (thick lines), p
e

(thin line).

Table 4
Profit and loss coefficients for on-line optimization.

Symbol Value Symbol Value

r
1

0.0025 r
10

0.01
r
2

200 r
11

0.01
r
3

0.0019 r
12

0.10
r
4

0.0022 r
13

0.10
r
5

0.0021 r
14

0.01
r
6

100 r
15

0.01
r
7

100 r
16

500
r
8

100 r
17

1000
r
9

500

feasible initial condition, as observed in the proof of
Theorem 1. Considering that for the gas supply system
*¹"2 h, real time implementation of the proposed
scheme is reasonable.

9. Conclusions

Motivated by the key idea of transforming proposi-
tional logic into linear mixed-integer inequalities, and by
the existence of techniques for solving mixed-integer
quadratic programming, this paper has presented
a framework for modeling and controlling systems de-
scribed by both dynamics and logic, and subject to
operating constraints, denoted as mixed logical dynam-
ical (MLD) systems. For these systems, a systematic
control design method based on model predictive
control ideas has been presented, which provides stabil-
ity, tracking, and constraint fulfillment properties. The
proposed strategy seems to be particularly appealing
for higher-level control and optimization of complex
systems.
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Appendix A

Below we describe a simple algorithm to test well-
posedness of a system in the form (9). Consider the
problem of checking if for all v3X

v
there exists only one

vector s3X
s
satisfying

s"H
1
w#H

2
v,

K
1
w4K

2
v#K

3

for some w3X
w

(X
v(sw)

are of the form Ri]M0, 1Nj,
i, j50). If this does not hold, then there exist vectors
v3X

v
, s

~
Os

`
3X

s
, and an index i3M1,2 , n

s
N such that

si
~
"H

1
w

~
#H

2
v,

si
`
"H

1
w

`
#H

2
v,

K
1
w

~
4K

2
v#K

3
,

K
1
w

`
4K

2
v#K

3
,

si
~
(si

`
,

where si denotes the ith component (or row) of s. An
algorithm for testing this condition is the following

Algorithm 1
1. Let e be a small tolerance.
2. For i"1,2 , n

s

2.1. Test feasibility of the problem

G
Hi

1
(w

~
!w

`
)4!e,

K
1
w
~
4K

2
v#K

3
,

K
1
w
`
4K

2
v#K

3
.

(A.1)

2.2. If Eq. (A.1) is feasible, the system is not well
posed. Stop.

3. Stop. The system is well posed.

Note that there is no need to check Eq. (A.1) for Hi
1
"0,

as it is trivially infeasible. To test well-posedness of sys-
tems (9), one can apply Algorithm 1 along with

s"C
x(t#1)

y(t) D , v"C
x(t)

u(t)D , w"C
d(1)

z(t)D ,

H
1
"C

B
2

B
3

D
2

D
3
D , H

2
"C

A B
1

C D
1
D ,

K
1
"[E

2
E
3
], K

2
"[E

4
E

1
], K

3
"E

5
.

Checking if A, B
1
, B

2
, B

3
satisfy the integrality condition

on xl(t#1) is usually not needed, as typically

xjl(t#1)"eiC
d(t)

xl(t)D ,

where ei denotes the ith row of the (rl#nl) identity
matrix.
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