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a b s t r a c t

Jump Box–Jenkins (BJ) models are a collection of a finite set of linear dynamical submodels in BJ form
that switch over time, according to a Markov chain. This paper addresses the problem of maximum-
a-posteriori estimation of jump BJ models from a given training input/output dataset. The proposed
solution method estimates the coefficients of the BJ submodels, the state transition probabilities
of the Markov chain regulating the switching of operating modes, and the corresponding mode
sequence hidden in the dataset. In particular, the posterior distribution of all the unknown variables
characterizing the jump BJ model is derived and then maximized using a coordinate ascent algorithm.
The resulting estimation algorithm alternates between Gauss–Newton optimization of the coefficients
of the BJ submodels, a method derived based on an instance of prediction error methods tailored to BJ
models with switching coefficients, and approximated dynamic programming for optimization of the
sequence of active modes. The quality of the proposed estimation approach is evaluated on a numerical
example based on synthetic data and in a case study related to segmentation of honeybee dances.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Hybrid modelling framework

The behaviour of many real-world systems is characterized by
the interaction between discrete (logical) and continuous (physi-
cal) states. Examples include power electronic circuits, electrical
household appliances, robot grasping (alternation of free and con-
tact motion), just to cite a few. Hybrid models allow describing
such nonlinear and complex systems as multiple, but simple,
submodels with continuous state variables, each one character-
izing the local behaviour of the system at a given operating
mode (Bemporad & Morari, 1999; Henzinger, 1996; Sontag, 1981;
Torrisi & Bemporad, 2004).

A similar hybrid modelling framework is also used in tempo-
ral segmentation of time series, where segments are clustered
according to some (usually hidden) temporal patterns. Exam-
ples of time series segmentation include: human motion and
action recognition, which consists of recognizing the activities of
a person (e.g., walking, running, jumping) from video frames or
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motion capture sensors (Fox, Hughes, Sudderth, & Jordan, 2014;
Gong, Medioni, & Zhao, 2014; Ozay, Lagoa, & Sznaier, 2015);
audio segmentation for automatic speech recognition (Ostendorf,
Digalakis, & Kimball, 1996); stock market analysis under different
volatility regimes (Fu, Chung, Ng, & Luk, 2001; Nguyen, 2018);
and many others. In these applications, the discrete state is given
by the cluster where the segment belongs to, while each local
submodel describes the behaviour of the time series within the
temporal segment.

Depending on the modelling application, the time evolution
of the discrete state can be governed by deterministic rules, as in
hybrid automata (Henzinger, 1996; Torrisi & Bemporad, 2004),
mixed logical dynamical models (Bemporad & Morari, 1999), and
piecewise-affine (PWA) models (Sontag, 1981), or by stochastic
jumps, as in discrete hybrid stochastic automata (Bemporad &
Di Cairano, 2011), hidden Markov models (HMM) (Rabiner, 1990)
and, more in general, Markov jump models (Bemporad, Breschi,
Piga, & Boyd, 2018; Costa, Fragoso, & Marques, 2006).

1.2. Paper contribution

This paper addresses the estimation of jump dynamical mod-
els where the time transition of the discrete state is described by a
stochastic Markov chain and in each operating mode the dynam-
ics are described by Box–Jenkins (BJ) model. BJ structures have
the advantage of being more general and flexible than simple
autoregressive (AR) models, due the presence of both the moving
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average and the autoregressive term, and have widely proven
their efficiency in time series analysis and forecasting (Box, Jenk-
ins, Reinsel, & Ljung, 2015). The main difficultly in data-driven
modelling of jump BJ models is caused by the breaking of the
Markovian structure, as the output observations are not any-
more conditionally independent given the current mode and the
regressor containing past measured data. Furthermore, even in
the simpler case of non-switching (namely, time-invariant) BJ
models, the estimation of the model coefficients usually requires
solving a nonconvex optimization problem (Ljung, 1999).

In this paper, we derive the posterior distribution of all the
parameters defining the jump BJ model, namely the coefficients
Θ of the time-invariant BJ submodels, the transition matrix M
governing the switching of the (stochastic) discrete state, the
variance σ 2

v of the noise affecting the output observations, and
the hidden sequence ST of active modes. Then, the posterior
distribution is maximized by a coordinate-ascent optimization
algorithm which alternates between two steps: (i) maximization
w.r.t. the Θ , σ 2

v and the entries of the transition matrix M;
(ii) inference of the active mode sequence ST . The maximization
w.r.t. the model coefficients Θ is carried out by using a Gauss–
Newton method, derived based on an instance of prediction error
methods (Ljung, 1999) tailored to BJ models with switching co-
efficients. The noise variance σ 2

v and the transition matrix M
maximizing the posterior distribution are computed analytically.
Finally, inference of the discrete-state sequence ST is performed
using a suboptimal moving-horizon approach, which can be inter-
preted as an approximation of the Viterbi algorithm for discrete
dynamic programming (DP). It is also shown that such a moving-
horizon approach is actually optimal and equivalent to the Viterbi
algorithm for the special case of switching autoregressive models.

This paper extends the works in Bemporad et al. (2018),
Breschi, Bemporad, Piga, and Boyd (2018) in two main directions:
(i) it considers general jump Box–Jenkins models, while only ARX
(resp. ARMAX) models can be handled through the formulation
in Bemporad et al. (2018) (resp. Breschi et al., 2018); (ii) the
approach in Bemporad et al. (2018), Breschi et al. (2018) is based
on the minimization of a deterministic cost function, where the
hyper-parameters which weight the mode transitions and the
norm of the submodel parameters must be tuned by the user. On
the other hand, in the MAP formulation considered in this paper
such regularization hyper-parameters depend on the entries of
the transition matrix M and on the noise variance σ 2

v , and they
are optimized along with the mode sequence and parameters of
the local models.

1.3. Related works

The presence of unobserved time-varying discrete state makes
the data-driven modelling of hybrid and jump models a chal-
lenging problem which has attracted the attention of many re-
searchers both from the system identification and the machine
learning community. In order to facilitate the learning task, it
is commonly assumed that the outputs are generated by a pro-
cess satisfying a Markovian assumption. For example, in hidden
Markov models the output observations are conditionally inde-
pendent given the discrete state (Baum, Petrie, Soules, & Weiss,
1970; Fridman, 1994; Rabiner, 1990), which in turn is assumed
to be generated by a first-order Markov chain. However, HMMs
do not consider the dynamics of the continuous state. This limi-
tation is relaxed in switching autoregressive models, where the
current output observation is conditionally independent given
both the current discrete state and past (noisy) signal measure-
ments (Bako, 2011; Breschi, Piga, & Bemporad, 2016; Ferrari-
Trecate, Muselli, Liberati, & Morari, 2003; Naik, Mejari, Piga, &
Bemporad, 2017; Ohlsson & Ljung, 2013; Ozay et al., 2015; Piga,

Bemporad, & Benavoli, 2020; Piga & Tóth, 2013). However, simple
autoregressive models may lead to inaccurate results both in
modelling dynamical systems and in time-series analysis, due to
the assumption of noise only influencing the process output.

Only few contributions relax the Markovian assumption in
data-driven modelling of switching models in an input–
output form, and consider output-error model structures (Canty,
O’Mahony, & Cychowski, 2012; Goudjil, Pouliquen, Pigeon, &
Gehan, 2017; Rosenqvist & Karlström, 2005), i.e., a special case
of the BJ structure considered in this paper. Besides considering
a less flexible model structure than BJ, the estimation approaches
in Canty et al. (2012), Goudjil et al. (2017), Rosenqvist and
Karlström (2005) neither reconstruct nor exploit the stochastic
information regarding the switching of the discrete state. This
information can be useful, for example, in applications where
the knowledge of the discrete state at the previous time step is
useful to predict the current discrete state (e.g., in stochastic jump
models that switch rarely, given that the probability of remaining
in the same mode is very high). In Fox, Sudderth, Jordan, and
Willsky (2011), Bayesian estimation of more general switching
state-space models is considered. The advantage of Fox et al.
(2011) w.r.t. our approach is that the size of the discrete state
(or equivalently, the number of linear time-invariant dynamical
systems) is not fixed a-priori, but automatically reconstructed
from data using an approximated Dirichlet process. However,
Gibbs sampling is used to retrieve the continuous state and the
unobserved sequence of the discrete state. Thus, the sampling
space increases with the size of the training dataset, and many
samples may be needed to obtain accurate results with large
datasets. On the other hand, no Monte Carlo sampling is used
by our approach and, at each step of the coordinate ascent
optimization algorithm, the maximization is performed either
analytically or iteratively via a Gauss–Newton method.

For completeness, we remark that it is always possible to
transform Box–Jenkins models (which are described in an input–
output form) into equivalent state-space representations. Thus,
jump Box–Jenkins systems could be seen as Markov Jump Linear
Systems (MJLS) (Costa et al., 2006), with a state-space repre-
sentation of each local model. Although several methods have
been developed for identification of MJLS (Cinquemani, Porreca,
Ferrari-Trecate, & Lygeros, 2007; Kun Huang, Wagner, & Yi Ma,
2004; Özkan, Lindsten, Fritsche, & Gustafsson, 2015; Yang, Qin,
Pan, Yang, & Li, 2017; Zheng, Derrode, & Pieczynski, 2019), these
methods cannot be directly employed to estimate Box–Jenkins
systems. In fact, these approaches are developed for state-space
models and thus do not take into account the particular structure
of the dynamical matrices coming from the state-space realiza-
tion of Box–Jenkins systems.

Preliminary ideas of this work were presented in Breschi, Piga,
and Bemporad (2019). With respect to Breschi et al. (2019), this
paper contains rigorous mathematical derivations of the posterior
distribution of the model parameters, a more detailed description
of the proposed numerical optimization algorithms, a discus-
sion on the problem of inferring the hidden mode sequence and
the output signal from past input–output samples, and a more
exhaustive evaluation on the performance of the method.

1.4. Paper outline

The paper is organized as follows. Jump Box–Jenkins sys-
tems are introduced in Section 2. In Section 3, the posterior
distribution of the model parameters is derived, under prop-
erly assumed prior distributions. The coordinate ascent algorithm
used to compute the maximum of the posterior distribution is
described in Section 4. Specifically, Section 4.1 describes the
Gauss–Newton method used to optimize w.r.t. the coefficients
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of the linear dynamical BJ submodels given the mode sequence,
while the moving-horizon approach used to optimize w.r.t. the
mode sequence (given the other model parameters) is described
in Section 4.2. In Section 5, the problem of inferring the hidden
mode sequence and the output signal, given past input–output
samples, is addressed. Two case studies are reported in Section 6.
In the first one, synthetic data are used and numerical analy-
ses are carried out to assess the performance of the proposed
identification algorithm. Then, the benchmark example originally
proposed in Oh, Rehg, Balch, and Dellaert (2008), and concerning
automated segmentation of a honeybee waggle dance, is consid-
ered. Conclusions and directions for future research are finally
discussed in Section 7.

1.5. Notation

The following notation will be used throughout the paper. The
set of integers is denoted by Z, the set of positive real number
by R+, the set of real matrices of dimension n × m by Rn,m.
Given a matrix M , [M]i,: denotes its ith row and [M]i,j its entry
in position (i, j). For a random matrix M ∈ Rn,m, we refer to p(M)
as the probability distribution of vec(M), where vec(M) ∈ Rnm is
the vector obtained by stacking the columns of M on top of one
another. The indicator function I of a logic condition Q is

I(Q ) =

{
1 if Q is true,
0 otherwise.

(1)

For α > 0, Γ (α) denotes the Gamma function

Γ (α) =

∫
+∞

0
xα−1e−x dx. (2)

2. System description

Let UT
= {ut}

T
t=1 be an input sequence, ut ∈ R, exciting a

single-input single-output dynamical system, and YT
= {yt}Tt=1,

yt ∈ R the corresponding noise-corrupted outputs

yt = yot + vt . (3a)

where vt ∈ R is the noise term. We model the system as a
collection of a finite number K of linear submodels, where the
noise-free output yot satisfies the equation

yot = G(q−1, θ st )ut , (3b)

while vt is modelled as (coloured) noise satisfying

vt = H(q−1, θ st )et , (3c)

where et is a zero-mean Gaussian random variable generated
by a white noise stationary process with variance σ 2

e . The linear
filters G(q−1, θ st ), H(q−1, θ st ) have time-varying coefficients θ st ,
where the superscript st ∈ K = {1, . . . , K } denotes the hidden
active mode (or equivalently, discrete state) at time t , and q is the
time-shift operator (i.e., q−dut = ut−d, for d ∈ Z). Furthermore,
data are assumed to be generated by an open-loop experiment,
thus the input sequence u is independent of the stochastic process
generating the noise et .

For simplicity of notation, the initial conditions of the signals
y, u, v, e are assumed zero.

2.1. Continuous-state dynamics

For a fixed mode i ∈ K, the dynamical model (3b)–(3c) is
assumed to have a Box–Jenkins structure, with G(q−1, θ i) and
H(q−1, θ i) being rational functions of the time operator q−1, i.e.,

G(q−1, θ i) =
B(q−1, θ i)
A(q−1, θ i)

=
bi1q

−1
+ · · · + binbq

−nb

1 + ai1q−1 + · · · + ainaq
−na

, (4a)

H(q−1, θ i) =
C(q−1, θ i)
D(q−1, θ i)

=
1 + c i1q

−1
+ · · · + c inc q

−nc

1 + di1q−1 + · · · + dindq
−nd

, (4b)

In (4b) na, nb nc and nd indicate the dynamical order of the BJ
submodel, and the parameter vector θ i

∈ Rnθ describing the ith
Box–Jenkins submodel is given by

θ i
=

[
ai1 . . . aina bi1 . . . binb c i1 . . . c inc di1 . . . dind

]′
. (5)

Note that, as commonly assumed in Prediction Error Methods
(PEM) for LTI system identification (Ljung, 1999), G is a strictly
proper filter (i.e., G(0, θ i) = 0) and H is monic (i.e., H(0, θ i) = 1)
for all i ∈ K.

It is worth stressing that, because of the time-varying nature
of the filters G(q−1, θ st ) and H(q−1, θ st ), the rational functions
in (4) cannot be simply treated as the ratio of Z-transforms: the
time-domain equations in (3b)–(3c) have the following meaning
in terms of difference equations:

yot =G(q−1, θ st )ut → yot = −

na∑
k=1

astk y
o
t−k +

nb∑
k=1

bstk ut−k, (6a)

vt =H(q−1, θ st )et → vt = −

na∑
k=1

dstk vt−k +

nc∑
k=1

cstk et−k. (6b)

Remark 1. In the specific case of switching ARX models, the
polynomials C(q−1, θ i) and D(q−1, θ i) reduce to

C(q−1, θ i) = 1, D(q−1, θ i) = A(q−1, θ i), ∀i ∈ K. (7a)

By summing Eqs. (6), for C(q−1, θ i) and D(q−1, θ i) in (7a), we thus
obtain

A(q−1, θ st )(yot + vt ) = B(q−1, θ st )ut + et . (7b)

Using the definition of the noisy output yt in (3), Eq. (7b) can be
rewritten in terms of the well known expression of switching ARX
models (Garulli, Paoletti, & Vicino, 2012):

A(q−1, θ st )yt = B(q−1, θ st )ut + et . ■ (7c)

To compact the notation, in the following we denote by Θ the
vector stacking the parameters θ i, i.e., Θ = [θ1′

. . . θK ′

]
′
∈ RnΘ ,

with nΘ = Knθ . Furthermore, the dependence of G(q−1, θ st ) and
H(q−1, θ st ) on the time-shift operator q−1 will be made explicit
only when necessary.

2.2. Discrete-state dynamics

The discrete state st is not observed, and it is supposed to be
generated by a discrete-time stochastic Markov process with state
transition matrix M, i.e.,

p(st |st−1, st−2, . . . , s0) = p(st |st−1) = [M]st−1,st ,

t = 1, . . . , T , (8)

with

[M]i,j ≥ 0, i, j = 1, . . . , K , (9)
K∑

j=1

[M]i,j = 1, i = 1, . . . , K , (10)

and s0 is the (unknown) initial discrete state.
In the following, the sequence of discrete states up to time T ,

including the initial state s0, is denoted by ST , i.e., ST
= {sτ }Tτ=0.
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3. Learning problem

Under the assumption that the size K of the discrete state
(namely, the number of local subsystems) is known, the following
unknown variables characterize the Box–Jenkins model (3)–(4):

• Θ ∈ RnΘ : collection of parameters θ i defining each Box–
Jenkins submodel (4);

• σ 2
e ∈ R+: variance of noise et ;

• M ∈ RK ,K : state transition matrix;
• ST : sequence of (hidden) discrete states.

The objective of this paper is to compute the parameters Θ, σ 2
e ,M

and the discrete-state sequence ST that maximize the joint poste-
rior distribution p(Θ, σ 2

e ,M, ST
|YT ,UT ) given the training output

and input sequences YT and UT .

Remark 2. In case the number K of local linear models is not
known a priori, it can be chosen, for instance, via holdout cross
validation. This requires one to split the available training dataset
into two subsets, one used to estimate the model parameters and
the other one to assess the performance of the estimated model.
Different values of K should be considered, with an upper-bound
dictated by the maximum tolerated complexity of the resulting
Jump Box–Jenkins model (3). The value of K leading to the best
performance is then chosen. ■

3.1. Priors over the unknown parameters

In order to compute the posterior distribution of the unknown
variables Θ, σ 2

e ,M, ST , the following priors are assumed.

1. The unknown variables Θ, σ 2
e ,M, ST are statistically inde-

pendent of the input data UT , i.e.,

p(Θ, σ 2
e ,M, ST

|UT ) = p(Θ, σ 2
e ,M, ST ), (11)

and the joint prior p(Θ, σ 2
e ,M, ST ) factorizes as

p(Θ, σ 2
e ,M, ST ) = p(Θ, σ 2

e )p(M, ST ). (12)

2. The joint probability distribution p(Θ, σ 2
e ) is a Gaussian

Inverse-Gamma with parameters λ, α0, β0 > 0, and it
factorizes as p(Θ, σ 2

e ) = p(Θ|σ 2
e )p(σ

2
e ), with

p(Θ|σ 2
e ) = N

(
0, σ 2

e λ2InΘ

)
, (13a)

p(σ 2
e ) = Γ −1 (α0, β0) . (13b)

In (13b) Γ −1 (α0, β0) denotes the Inverse-Gamma distribu-
tion with parameters α0 and β0, having probability density
function:

p
(
σ 2
e ; α0, β0

)
=

β
α0
0

Γ (α0)
(σ 2

e )
−α0−1e

−
β0
σ2
e . (13c)

A Gaussian Inverse-Gamma prior is assumed for p(Θ, σ 2
e ),

as it represents the conjugate prior of a Gaussian likelihood
with unknown mean and variance (Bishop, 2006, Ch. 2).
This choice allows us to obtain an analytical expression for
the conditional posterior of Θ and σ−2

v given the mode
sequence ST .

3. The joint probability distribution of ST and M factorizes as

p(ST ,M) = p(ST
|M)p(M), (14)

where the components of the ith row Mi,: follow a Dirichlet
distribution with parameters α1, . . . , αK and probability
density function

p(Mi,1, . . . ,Mi,K ) =
Γ (α1 + · · · + αK )
Γ (α1) · · · Γ (αK )

K∏
j=1

M
αj−1
i,j , (15)

where p(Mi,1, . . . ,Mi,K ) is defined over the simplex

Mi,j ≥ 0,
K∑

j=1

Mi,j = 1, i = 1, . . . , K . (16)

Furthermore, the rows of the transitions matrix M are
assumed to be statistically independent with each others,
i.e., p(M) =

∏K
i=1 p(Mi,:). Thus,

p(M) =

(
Γ (α1 + · · · + αK )
Γ (α1) · · · Γ (αK )

)K K∏
i,j=1

M
αj−1
i,j . (17)

Based on the modelling assumptions discussed in Sec-
tion 2.2, the probability distribution p(ST

|M) is equal to

p(ST
|M) =p(s0)

T∏
t=1

p(st |st−1) = p(s0)
T∏

t=1

Mst−1,st (18a)

=p(s0)
K∏
i,j

T∏
t=1

MI(st−1=i & st=j)
i,j (18b)

=p(s0)
K∏
i,j

M#(st−1=i & st=j)
i,j , (18c)

where # counts the number of times the joint event st−1 =

i and st = j occurs in the sequence ST , i.e.,

#(st−1 = i & st = j) =

T∑
t=1

I(st−1 = i & st = j),

and p(s0) is the probability of the initial state s0. In order to
keep the derivations in the paper simple, we assume that
p(s0) is known and uniform, i.e.,

p(s0) =
1
K

, for all s0 = 1, . . . , K . (18d)

The extension to the case of unknown p(s0) is straightfor-
ward.
By combining (17) and (18), the joint probability distribu-
tion p(S,M) is given by:

p(S,M) =
1
K

(
Γ (α1 + · · · + αK )
Γ (α1) · · · Γ (αK )

)K

×

K∏
i,j

M
#(st−1=i & st=j)+αj−1
i,j . (19)

3.2. Likelihood

We now analyse the likelihood of the model parameters Θ, σ 2
e ,

M, ST given the input UT and output dataset YT .
Following the same ideas used in prediction-error-method for

identification of LTI systems (Ljung, 1999), the output observation
yt is factorized into a predictor ŷt|t−1 and a prediction error εt as
follows

yt = ŷt|t−1 + εt , (20)

where the output predictor ŷt|t−1 only depends on past input and
output observations U t−1

= {uh}
t−1
h=1 and Y t−1

= {yh}t−1
h=1, and on

the mode sequence up to time t (i.e., St ).
In order to guarantee that the predictor ŷt|t−1 and the predic-

tion error εt are conditionally independent given past observa-
tions U t−1,Y t−1 and current discrete mode st , the prediction error
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is chosen as

εt = e(t) =H−1(θ st )vt = H−1(θ st )(yt − yot ) =

=H−1(θ st )(yt − G(θ st )ut ), (21)

where the time-domain operator H−1(θ st ) has the following
meaning in terms of difference equations:

εt = H−1(θ st )vt → C(θ st )εt = D(θ st )vt . (22)

Thus, the predictor ŷt|t−1 can be reconstructed from (20)
and (21), and it is given by

ŷt|t−1 =yt − εt = yt − H−1(q−1, θ st )(yt − yot ) =

=yt − H−1(q−1, θ st )(yt − G(q−1, θ st )ut ) (23)

Note that, since H−1(0, θ st ) = 1 and G(0, θ st ) = 0, then ŷt|t−1
only depends on past input and output data, and thus ŷt|t−1
is independent of et . Although not explicitly indicated in the
definition of the predictor (23), as already mentioned, we stress
that ŷt|t−1 depends on the whole mode sequence up to time t
because of the recursive definition in (23).

Thus,

p(yt |Θ, σ 2
e , St ,Y t−1,U t−1) = N

(
yt; ŷt|t−1, σ

2
e

)
. (24)

Remark 3. Let us consider the switching ARX model introduced
in Remark 1. Using the definition of the prediction error and
predictor in (21) and (23), or simply model equation (7c), the
following well known expression for the prediction error and
predictor are obtained:

εt = e(t) =A(q−1, θ st )yt − B(q−1, θ st )ut , (25a)

ŷt|t−1 =
(
1 − A(q−1, θ st )

)
yt − B(q−1, θ st )ut . ■ (25b)

Let us factorize the likelihood p(YT
|Θ, σ 2

e ,M, ST ,UT ) as

p(YT
|Θ, σ 2

e ,M, ST ,UT ) (26a)

=

T∏
t=1

p(yt |Θ, σ 2
e ,M, ST ,Y t−1,UT ) = (26b)

=

T∏
t=1

p(yt |Θ, σ 2
e , St ,Y t−1,U t−1) = (26c)

=

T∏
t=1

N
(
yt; ŷt|t−1, σ

2
e

)
, (26d)

where the last equality comes from (24) and (26c) holds because
of system causality and conditional independence of yt of the
future mode sequence, given St and past input/output samples.

Thus

p(YT
|Θ, σ 2

e ,M, ST ,UT ) = (27a)

=
1

(2πσ 2
e )T/2 e

−
1

2σ2
e

∑T
t=1(yt−ŷt|t−1)2

= (27b)

=
1

(2πσ 2
e )T/2 e

−
1

2σ2
e

∑T
t=1

(
H−1(θ st )(yt−G(θ st )ut)

)2
. (27c)

3.3. Posterior distribution

Using Bayes’ rule, the posterior distribution of the model pa-
rameters is factorized, up to the proportionality normalization
constant 1

p(YT |UT )
, as

p(Θ, σ 2
e ,M, ST

|YT ,UT ) ∝

∝p(YT
|Θ, σ 2

e ,M, ST ,UT )p(Θ, σ 2
e ,M, ST ). (28)

Algorithm 1 Maximum-a-posteriori estimation of Jump Box–
Jenkins models.
Input: Training set (UT , YT ); initial guess on the mode sequence

ST (0) = (s(0)0 , . . . , s(0)T ); maximum number kmax of iterations.

1. iterate for k = 1, . . .

1.1 Compute Θ (k), σ
2(k)
e ,M (k) as the solution of

argmax
Θ,σ2

e ,M
p(Θ, σ 2

e ,M, ST (k−1)
|YT ,UT );

1.2 Compute ST (k) as the solution of

argmax
ST

p(Θ (k), σ 2(k)
e ,M (k), ST

|YT ,UT );

2. until k = kmax or ST (k)
= ST (k−1)

Output: Estimated parameters Θ⋆
= Θ (k), σ 2⋆

e = σ
2(k)
e , M⋆

=

M (k) and mode sequence ST⋆
= ST (k).

Thus, from the likelihood (27) and the priors assumed in Sec-
tion 3.1, the posterior (28) becomes

p(Θ, σ 2
e ,M, ST

|YT ,UT ) ∝ (29a)

∝ e
−

1
2σ2

e

∑T
t=1

(
H−1(θ st )(yt−G(θ st )ut)

)2
(29b)

×
1

(σ 2
e )T/2+nΘ /2+α0+1 e

−
1

2λ2σ2
e

Θ ′Θ

e
−

β0
σ2
e (29c)

×

K∏
i,j

M
#(st−1=i & st=j)+αj−1
i,j , (29d)

where all the proportionality terms independent of the variables
Θ, σ 2

e ,M, ST do not appear in Eq. (29) as they do not affect
the maximization of the posterior distribution p(Θ, σ 2

e ,M, ST
|

YT ,UT ).
The following section addresses the computation of the

maximum-a-posteriori (MAP) estimate of the unknown variables
Θ, σ 2

e ,M, ST .

4. Optimization algorithm

The posterior distribution p(Θ, σ 2
e ,M, ST

|YT ,UT ) is
maximized with respect to the model parameters Θ, σ 2

e ,M and
the mode sequence ST through the iterative coordinate ascent
approach outlined in Algorithm 1. At each iteration k, Algorithm
1 alternates between:

• Step 1.1: maximization over Θ, σ 2
e ,M, for a fixed mode

sequence ST (k−1) computed at the previous iteration k − 1;
• Step 1.2: maximization w.r.t. ST , for fixed parameters Θ (k),

σ
2(k)
e ,M (k) computed at Step 1.1.

The final solution of Algorithm 1 depends on the initial guess
ST (0), and there is no guarantee that the computed solution is
the global maximizer of the posterior p(Θ, σ 2

e ,M, ST
|YT ,UT ). To

improve the quality of the solution, Algorithm 1 can be run N
times, starting from different initial sequences ST (0) and then
selecting the best result.

It is worth remarking that since Algorithm 1 implements a
coordinate-ascent approach, the posterior distribution p(Θ, σ 2

e ,
M, ST

|YT ,UT ) is not decreasing at every iteration. This condition
holds when Steps 1.1 and 1.2 are solved at the global optimum or
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simply by choosing at the k + 1-th iteration Θ (k), σ 2(k)
e , M (k) and

ST (k) as initial conditions for Θ , σ 2
e , M and ST , respectively.

The use of coordinate-descent optimization for fitting jump
models has been recently proposed by the authors in Bemporad
et al. (2018). However, Bemporad et al. (2018) do not address
the estimation of jump models in a probabilistic framework, and
the fitting problem is formulated as a suitable-constructed cost
function, which is minimized only w.r.t. the parameters Θ and
the mode sequence ST . Furthermore, the method in Bemporad
et al. (2018) assumes a structure where the output observations
are conditionally independent given the current mode and past
signal measurements. Thus, jump Box–Jenkins models cannot be
handled with the approach in Bemporad et al. (2018). Therefore,
although coordinate-ascent (or equivalently descent) optimiza-
tion is the high-level algorithm both in this paper and Bemporad
et al. (2018), the single steps in coordinate-ascent optimization
are completely different from this paper and Bemporad et al.
(2018).

In the following sections we show how to solve the maximiza-
tion problems in Steps 1.1 and 1.2.

4.1. Optimizing parameters Θ, σ 2,M

We first note that, for a fixed mode sequence ST (k−1), the op-
timization of the posterior p(Θ, σ 2

e ,M, ST (k−1)
|YT ,UT ) (Eq. (29))

w.r.t. Θ, σ 2
e and w.r.t. M can be performed independently.

4.1.1. Optimizing Θ and σ 2
e

The optimization over the parameters Θ is performed nu-
merically, via a Gauss–Newton approach, as described in the
following.

First, note that maximizing the posterior (29) over Θ for a
fixed mode sequence ST (k−1) is equivalent to solve the minimiza-
tion problem

min
Θ

J(Θ) ≜
T∑

t=1

εt (Θ, ST (k−1))2 +
1
λ2 Θ ′Θ, (30a)

where the time evolution of the prediction error εt is described
in (21), and equivalently rewritten as

C(θ s(k−1)
t )εt (Θ, ST (k−1)) = D(θ s(k−1)

t )
(
yt − yot

)
(31a)

with

yot : A(θ s(k−1)
t )yot = B(θ s(k−1)

t )ut . (31b)

To alleviate the notation, the dependence of the mode se-
quence ST (k−1) and of the single mode s(k−1)

t on the iteration k−1
will be dropped in the rest of the paragraph.

Note that, as typical in Bayesian inference, the term 1
λ2

Θ ′Θ

in (30) acts as a quadratic regularization and it is due to the prior
distribution on Θ (Eq. (13a)).

Problem (30) can be solved by a Gauss–Newton algorithm by
properly extending numerical algorithms for PEM estimation to
linear models with time-varying coefficient Specifically, at each
Gauss–Newton iteration h, Θ is updated from the value Θ (h−1)

computed at the previous iteration as follows:

Θ (h)
= Θ (h−1)

− α
(
∇

2
Θ J(Θ (h−1))

)−1
∇Θ J(Θ (h−1)), (32)

where α > 0 is a scaling factor which can be computed through
line search (Boyd & Vandenberghe, 2004, Ch. 9), ∇Θ J(Θ) is the
gradient of the cost J , i.e.,

∇Θ J(Θ) = 2
T∑

t=1

εt (Θ, ST )
∂εt (Θ, ST )

∂Θ
+ 2λ−2Θ, (33a)

and ∇
2
Θ J(Θ) is the Hessian of J . As discussed in Ljung (1999,

Ch. 10.2), the Hessian ∇
2
Θ J(Θ) is approximated as follows, based

on the Levenberg–Marquardt modification of the Gauss–Newton
algorithm:

∇
2
Θ J(Θ) ≈ 2

T∑
t=1

∂εt (Θ, ST )
∂Θ

(
∂εt (Θ, ST )

∂Θ

)′

+ 2λ−2I, (33b)

with I being the identity matrix of proper dimension.
For fixed Θ = Θ (h−1) and ST

= ST (k−1), the prediction error
εt (Θ, ST ) (required to calculate the gradient ∇Θ J(Θ) in (33a))
can be computed recursively through the difference equations
in (31b).

As for the computation of the gradient ∂εt (Θ,ST )
∂Θ

of the predic-
tion error εt at time t , proper modifications and extensions of the
numerical algorithms commonly used in PEM for LTI systems are
needed to take into account the hybrid nature of jump BJ models,
characterized by time-varying linear dynamical filters G(q−1, θ st )
and H(q−1, θ st ). By taking the partial derivatives on the left and
right side of (31a) w.r.t. each element of the parameter vector Θ ,
we can derive recursive formulas for ∂εt (Θ)

∂cij
(with j = 1, . . . , nc

and i = 1, . . . , K ) and ∂εt (Θ)
∂dij

(with j = 1, . . . , nd and i =

1, . . . , K ):

C(θ st )
∂εt (Θ)

∂c ij
= −εt−j(Θ)I(st = i),

C(θ st )
∂εt (Θ)

∂dij
=

(
yt−j − yot−j

)
I(st = i),

with yot simulated (for fixed Θ) using (31b).
As for the gradient ∂εt (Θ)

∂aij
(with j = 1, . . . , na and i = 1, . . . , K )

and ∂εt (Θ)
∂bij

(with j = 1, . . . , nb and i = 1, . . . , K ), we have

C(θ st )
∂εt (Θ)

∂aij
= −D(θ st )

∂yot
∂aij

,

C(θ st )
∂εt (Θ)

∂bij
= −D(θ st )

∂yot
∂bij

,

where ∂yot
∂aij

and ∂yot
∂bij

can be computed taking the partial derivatives

of the left and right side of (31b), thus obtaining the recursive
equations:

A(θ st )
∂yot
∂aij

= −yot−jI(st = i), (34a)

A(θ st )
∂yot
∂bij

= ut−jI(st = i). (34b)

Remark 4. Consider again the switching ARX model discussed in
Remarks 1 and 3. In this case, the objective function J(Θ) in (30a)
is quadratic in the unknown variables Θ . Specifically, using the
expression of the prediction error in (21), the cost J(Θ) is given
by

J(Θ) =

T∑
t=1

(
A(q−1, θ st )yt − B(q−1, θ st )ut

)2
+

1
λ2 Θ ′Θ, (35)

and its (global) minimum can be computed analytically using
standard least-squares formulas. ■

The Gauss–Newton algorithm is run until a maximum number
of iterations is reached or when the following condition on the
weighted norm of the gradient ∇Θ J(Θ (h)) is satisfied:

(∇Θ J(Θ (h)))′(∇2
Θ J(Θ (h)))−1

∇Θ J(Θ (h)) ≤ ϵJ . (36)
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Once the Gauss–Newton algorithm is terminated and the
parameters Θ (k) maximizing the posterior distribution p(Θ, σ 2

e ,

M, ST (k−1)
|YT ,UT ) (for a fixed mode sequence ST (k−1)) are ob-

tained, the optimal parameter σ
2(k)
e maximizing p(Θ, σ 2

e ,M,

ST (k−1)
|YT ,UT ) in (29) can be computed analytically and it is

given by:

σ 2(k)
e =

β0+
1
2λ

−2Θ (k)′Θ (k)
+

1
2

∑T
t=1

(
εt (Θ (k), ST (k−1))

)2
T+nΘ

2 + α0 + 1
.

4.1.2. Optimizing the transition matrix M
The optimization of the posterior distribution
p(Θ, σ 2

e ,M, ST (k−1)
|YT ,UT ) in (29) with respect to the entries

of the transition matrix M can be performed separately for each
row Mi,:, using the method of Lagrange multipliers to take into
account the equality constraint

∑K
j=1 Mi,j = 1. Specifically, after

taking the log of (29), the Lagrangian is given by

L(Mi,:, γ ) = γ

⎛⎝1−

K∑
j=1

Mi,j

⎞⎠+

K∑
j=1

(#(st−1 = i & st = j)+αj−1) log(Mi,j), (37)

where γ is the Lagrange multiplier. Taking and zeroing the partial
derivatives of L w.r.t. Mi,j and γ we obtain

∂L
∂γ

= 0 →

K∑
j=1

Mi,j = 1, (38a)

∂L
∂Mi,j

= 0 → Mi,j =
#(st−1 = i & st = j) + αj − 1

γ
. (38b)

By substituting (38b) into (38a) we obtain

γ =

K∑
j=1

#(st−1 = i & st = j) + αj − 1. (39)

Finally, by substituting (39) into (38b), the following optimal
values for the transition probabilities Mi,j are obtained:

Mi,j =
#(st−1 = i & st = j) + αj − 1∑K
j=1 #(st−1 = i & st = j) + αj − 1

=

=
#(st−1 = i & st = j) + αj − 1∑K
j=1 #(st−1 = i) +

∑K
j=1(αj − 1)

. (40)

Note that (40) has a very intuitive interpretation. Indeed, the
MAP estimate of Mi,j is equal to the sampling frequency (up to the
additive term αj − 1 due the prior on Mi,j) given by the number
of times a switch from mode i to mode j occurs in the sequence
ST , divided by the number of times mode i is active.

4.2. Optimization of the mode sequence ST

In order to optimize the posterior distribution p(Θ (k), σ
2(k)
e ,

M (k), ST
|YT ,UT ) over the mode sequence ST , the log of the poste-

rior is taken and only the terms depending on ST are considered,
i.e.

log
(
p(Θ, σ 2

e ,M, ST
|YT ,UT )

)
∝ (41a)

∝ −
1

2σ 2
e

T∑
t=1

(
H−1(θ st )

(
yt − G(θ st )ut

))2
(41b)

+

T∑
t=1

K∑
i,j

I(st−1 = i & st = j) logMi,j, (41c)

where the dependence of Θ, σ 2
e ,M on the iteration k is dropped

to alleviate the notation. Using the definition of the prediction
error εt in (21), Eq. (41) is equivalent to:

log
(
p(Θ, σ 2

e ,M, ST
|YT ,UT )

)
∝ (42a)

∝

T∑
t=1

−
1

2σ 2
e

εt
(
Θ, St)2  

Lt (St )

(42b)

+

T∑
t=1

K∑
i,j

I(st−1 = i & st = j) logMi,j  
Ltrans(st−1,st )

. (42c)

Note that, in the general Box–Jenkins modelling framework con-
sidered in the paper, the prediction error εt (Θ, St ) depends on
the whole sequence St of discrete states up to time t , according
to the recursive definition (22). Thus, maximizing the log of the
posterior distribution (42) with respect to the mode sequence
ST requires to try all possible instances of ST . This leads to
a combinatorial problem with K T+1 possible feasible solutions.
To reduce the complexity of this combinatorial problem, a sub-
optimal solution is computed. The main idea, discussed in the
following, is to simulate the prediction error εt (Θ, St ) by fixing
part of the sequence St and consequently trying a smaller number
of instances of St .

According to this idea, a sub-optimal moving-horizon approach
is proposed to maximize the objective function (42), which is
rewritten in the compact form

QT
(
ST )

=

T∑
t=1

Lt (St ) +

T∑
t=1

Ltrans(st−1, st ). (43)

At each time step t , we consider a moving-horizon window
of length Tc containing all possible subsequences {st+1, st+2, . . . ,

st+Tc} = St+Tc
t+1 from time t+1 to time t+Tc. Then, for all possible

sequences St+Tc
t+1 , we compute the discrete mode st maximizing

the objective in (43) truncated to time t + Tc, and defined as

Qt+Tc

(
St+Tc

)
=

t+Tc∑
h=1

Lh(Sh) +

t+Tc∑
h=1

Ltrans(sh−1, sh). (44)

For each possible instance of St+Tc , the past discrete states up to
time t −1 (i.e., St−1) in (44) are fixed to the previously optimized
values.

Here below we describe in detail the approach used to max-
imize the objective function (43) w.r.t. ST . We remind that the
sequence ST includes the initial discrete state s0.

(i) First, for all possible Tc-length sequences in STc
1 , the optimal

initial mode

s̃0(S
Tc
1 ) = argmax

s0
QTc

(
STc
0

)
(45)

is computed. Note that an optimal initial mode s̃0(S
Tc
1 ) is associ-

ated to each sequence STc
1 ;

(ii) A step forward is made and all possible sequences STc+1
2 are

considered. The optimal mode at time t = 1 is then computed as

s̃1(S
Tc+1
2 ) = argmaxs1 QTc+1(S

Tc+1
0 )

s.t. s0 = s̃0(S
Tc
1 ).

(46)

As in the previous step, an optimal mode s̃1 is associated to all
possible sequences STc+1

2 . Note also that, for each sequence STc
1 ,

the initial mode s0 is fixed in (46) to the optimal value s̃0(S
Tc
1 )

previously computed in (45);
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(iii) The procedure is repeated up to time t = T − Tc − 1.
Specifically, for a generic time step t ≤ T − Tc − 1, the optimal
mode s̃t associated to each possible sequence STc+t

t+1 is defined
recursively

s̃t (S
t+Tc
t+1 ) = argmaxst Qt+Tc (S

t+Tc
0 )

s.t. sk = s̃k(S
k+Tc
k+1 ),

k = 0, . . . , t − 1.
(47)

(iv) At time t = T −Tc , the optimal sub-sequence is computed
(ST

T−Tc )
⋆ by solving

(ST
T−Tc )

⋆
= argmaxST

T−Tc
QT (ST

0 )

s.t. sk = s̃k(S
k+Tc
k+1 ),

k = 0, . . . , T − Tc − 1.
(48)

The remaining modes s⋆T−Tc−1, . . . , s
⋆
0 are obtained via backward

recursion from (47), by setting s⋆t = s̃t ((S
t+Tc
t+1 )⋆) for t = T − Tc −

1, . . . , 0.
Note that, at each time sample t = 1, . . . , T − Tc − 1, the cost

QTc+t is computed K Tc+1 times, namely for all possible sequences
St+Tc
t . Then, the maximum over st is taken according to (47).

Thus, the complexity of the proposed optimization strategy is
O

(
(T − Tc)K Tc+1

)
. The length of horizon window Tc acts as a

knob to tradeoff between complexity and suboptimality in the
optimization of the posterior distribution w.r.t. the whole mode
sequence ST .

Remark 5. In the specific and simple case of ARX models, the
objective function QT in (43) to be maximized is given by

QT
(
ST )

=

T∑
t=1

(
Lt (st ) + Ltrans(st−1, st )

)
, (49)

with

Lt (st ) = −
1

2σ 2
e

εt (Θ, st)2 =

= −
1

2σ 2
e

(
A(q−1, θ st )yt − B(q−1, θ st )ut

)2
. (50)

Since the prediction error εt (and thus the term Lt (st )) does
not depend on the whole discrete-state sequence St , but only
on the current mode st , the (global) maximum of the objective
QT w.r.t. the mode sequence ST can be computed with polyno-
mial complexity by the Viterbi algorithm for discrete dynamic
programming (Viterbi, 1967), which coincides with the proposed
moving-horizon approach for Tc = 1. ■

5. Inference

Assume that optimal parameters Θ⋆, M⋆ and σ 2⋆
e have been

estimated by running Algorithm 1 on a training dataset and
consider a new dataset of inputs Ũ t−1

= {ũτ }
t−1
τ=1 and outputs (up

to time t−1) Ỹ t−1
= {ỹτ }

t−1
τ=1. We want now to use the estimated

jump BJ model to infer the mode sequence Ŝt
= (ŝ0, ŝ1, . . . , ŝt )

and predict the output ŷt at time t .
According to the probabilistic framework considered in the pa-

per, inference is performed by maximizing the joint distribution
p(yt , St |Θ⋆, σ 2⋆

e ,M⋆, Ũ t−1, Ỹ t−1) w.r.t. yt and St . First, p(yt , St |Θ⋆,

σ 2⋆
e ,M⋆, Ũ t−1, Ỹ t−1) is factorized (up to a proportionality con-

stant) as

p(yt , St |Θ⋆, σ 2⋆
e ,M⋆, Ũ t−1, Ỹ t−1) =

∝p(yt |St , Θ⋆, σ 2⋆
e ,M⋆, Ũ t−1, Ỹ t−1)

× p(St−1
|Θ⋆, σ 2⋆

e ,M⋆, Ũ t−1, Ỹ t−1)

× p(st |St−1, Θ⋆, σ 2⋆
e ,M⋆, Ũ t−1, Ỹ t−1)

=p(yt |St , Θ⋆, σ 2⋆
e ,M⋆, Ũ t−1, Ỹ t−1)

× p(St−1
|Θ⋆, σ 2⋆

e ,M⋆, Ũ t−1, Ỹ t−1)p(st |st−1,M⋆). (51)

By substituting (24) and (42c) into (51) and taking the log of
p(yt , St |Θ⋆, σ 2⋆

e ,M⋆, Ũ t−1, Ỹ t−1), we obtain

Q̃t (yt , St ) = log
(
p(yt , St |Θ⋆, σ 2⋆

e ,M⋆, Ũ t−1, Ỹ t−1)
)

∝ −
1

2σ 2⋆
e

∥yt − ŷt|t−1(Θ⋆, St )∥2
2+

+

K∑
i,j

I(st−1 = i & st = j) logM⋆
i,j

+

t−1∑
τ=1

−
1

2σ 2⋆
e

ετ

(
Θ⋆, Sτ

)2
+

t−1∑
τ=1

K∑
i,j

I(sτ−1 = i & sτ = j) logM⋆
i,j. (52)

At each time t , inference is thus performed by maximizing
Q̃t (yt , St ), i.e.,

{ŷt , Ŝt
} = argmax

yt ,St
Q̃t (yt , St ). (53)

Note that, for any given sequence Ŝt , the output ŷt maximizing
Q̃t (yt , St ) is the predictor ŷt|t−1(Θ⋆, Ŝt ). According to (23) and
the definition of filters H(q−1, θ ŝt ) and G(q−1, θ ŝt ), the predictor
ŷt|t−1(Θ⋆, Ŝt ) is given by

ŷt|t−1 = ŷot +

nc∑
i=1

c⋆ŝt
i (ỹt−i − ŷt−i|t−1−i)+

+

nd∑
j=1

d⋆ŝt
j (ŷot−j − ỹt−j), (54a)

where c⋆ŝt
i (resp. d⋆ŝt

j ) denotes the element ci (resp. dj) of the
parameter vector Θ∗ and associated to mode ŝt .

Note that the predictor ŷt|t−1 in (54a) is independent of the
(unknown) output at time t , while it depends on the simulated
noiseless output, which is recursively computed as

ŷot = −

na∑
i=1

a⋆ŝt
i ŷot−i +

nb∑
j=1

b⋆ŝt
j ũt−j. (54b)

As for the sequence Ŝt solving (53), a sub-optimal solution can
be computed using the same moving-horizon method presented
in Section 4.2.

5.1. Recursive inference

Instead of solving problem (53) every time a new input–
output pair is available, inference on ŷt and Ŝt can be performed
recursively. Indeed, the predictor ŷt|t−1 in (54) depends on past
computed predictors ŷt−i|t−1−i. As for the sequence St , by simply
noticing that the cost Q̃t (yt , St ) in (52) can be written in the
recursive form

Q̃t (yt , St ) ∝ Q̃t−1(yt−1, St−1)

−
1

2σ 2⋆
e

∥yt − ŷt|t−1(Θ⋆, St )∥2
2+

+

K∑
i,j

I(st−1 = i & st = j) logM⋆
i,j,

the moving-horizon algorithm discussed in Section 4.2 can be
used to infer a (sub-optimal) mode sequence Ŝt by exploiting
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Table 1
True parameters vs estimated parameters (jBJ=jump Box–Jenkins, jARX=jump ARX model).

i = 1 i = 2 i = 3 i = 4

True jBJ jARX True jBJ jARX True jBJ jARX True jBJ jARX

ai1 0.60 0.59 0.09 −0.50 −0.50 −0.06 0.10 0.08 0.07 −0.70 −0.68 −0.59
ai2 0.10 0.09 0.01 −0.10 −0.10 −0.43 −0.10 −0.14 −0.34 0.40 0.37 0.41
ai3 0.30 0.30 0.50 −0.10 −0.13 −0.15 0.10 0.09 −0.43 0.20 0.22 0.17
bi1 0.80 0.79 0.82 −1.00 −1.00 −1.01 −0.20 −0.18 −0.18 4.00 4.00 4.00
bi2 −0.80 −0.81 −1.16 1.00 0.97 0.54 −0.20 −0.16 −0.17 1.00 1.09 1.41
bi3 0.80 0.82 1.41 0.10 0.15 0.67 0.60 0.62 0.66 −0.10 −0.09 0.36
c i1 0.99 1.09 – −0.20 −0.12 – 0.20 0.19 – 0.20 −0.01 –
c i2 0.80 0.87 – 0.20 0.14 – −0.10 −0.12 – −0.30 −0.34 –
c i3 0.10 0.16 – −0.20 −0.18 – 0.5 0.49 – 0.30 0.43 –
di1 0.10 0.18 – −0.25 −0.15 – 0.25 0.21 – −0.25 −0.46 –
di2 0.70 0.69 – −0.25 −0.32 – −0.40 −0.41 – 0.40 0.47 –
d3 0.10 0.16 – −0.25 −0.25 – −0.30 −0.30 – 0.10 0.07 –

the computations already performed at time t − 1 to compute
Q̃t−1(yt−1, St−1). This leads to an additional approximation, since
the sequence of prediction errors is not simulated all over again,
but the predictors and prediction errors obtained at the previous
time steps are used along with the inferred sequence St−1 to
update the predicted output and then compute st .

6. Case studies

The quality of the models estimated using the proposed ap-
proach is shown on a simulation example using synthetic data
and on an experimental case study addressing unsupervised seg-
mentation of honeybee dances.

Algorithm 1 is run under the assumption that the number of
modes K and the order na, nb, nc and nd of the BJ sub-models (as in
classical linear system identification algorithms) are fixed by the
user. The hyper-parameters of the Gaussian Inverse-Gamma prior
distribution in (13) are set to λ = 104 and α0 = β0 = 1, while all
the parameters of the Dirichlet distribution (15) are set to αk = 1
for all k = 1, . . . , K . Since no prior knowledge on the variables
Θ, σ 2

e ,M, ST is assumed to be available, these hyper-parameters
are chosen to have broad (large variance) ‘‘uninformative’’ prior
distributions. Algorithm 1 is iterated for a maximum of kmax = 50
iterations.

In both the considered examples, Algorithm 1 is initialized
with different initial guesses on the mode sequence ST (0), and
the jump BJ model is selected as the outcome that returns the
maximum value of the posterior distribution (29).

In optimizing the posterior w.r.t. Θ (Section 4.1.1), the pa-
rameters Θ are updated via the Gauss–Newton method (32). The
parameter α in (32) is chosen through exact line search, that is
performed over 100 equally-spaced grid points in the interval
[0 1]. The Gauss–Newton method is terminated when either the
maximum number of iterations hmax = 50 is reached or when the
terminal condition (36) is satisfied, with tolerance ϵJ = 10−8.

At the kth iteration of Algorithm 1, the mode sequence ST (k)

is updated using the suboptimal moving-horizon approach pre-
sented in Section 4.2, with horizon length Tc = max (na, nc, nd).

The true mode sequence ST is used only for validation pur-
poses to evaluate the accuracy of the reconstructed sequence ST⋆,
which is measured through the following label accuracy index

LtrueT =
1
T

T∑
t=1

I(s⋆t = st ) · 100 %. (55)

The quality of the predicted output is assessed in terms of the
best fit rate (BFR) index defined as

BFR = max
{
1 −

∥ỹ − ŷ∥2

∥ỹ − mỹ∥2
, 0

}
· 100 %, (56)

Fig. 1. Numerical example. Directed graph indicating admissible mode
transitions.

with ỹ and ŷ denoting the vector stacking the measured and
predicted output, respectively, and mỹ being the vector stacking
the sample mean of the measured output.

All the tests were run on a MacBook Pro 2.8 GHz Intel i7 in
MATLAB R2018b.

6.1. Numerical example using synthetic data

As a data-generating system, let us consider a jump Box–
Jenkins system described by (3), with K = 4 modes, so to evaluate
whether the algorithm is able to reconstruct the four submodels.
The linear filters of each BJ sub-model are characterized by na =

nb = nc = nd = 3, with coefficients reported in Table 1. The
operating mode switches every 100 samples according to the
directed graph reported in Fig. 1, starting from s0 = 3.

The system is excited by a white noise input sequence of
length T = 20, 000, uniformly distributed in the interval
[−1, 1]. The noise term et corrupting the output signal is a zero-
mean Gaussian random variable with standard deviation σe =

0.9. This corresponds to a Signal-to-Noise-Ratio (SNR) equal to

SNR = 10 log
∑T

t=1 (yt − et)2∑T
t=1 e

2
t

= 8.7 dB. (57)

Table 1 shows the true coefficients Θ of the jump BJ (jBJ)
data-generating system, along with the estimated parameters.
These model parameters are computed by executing Algorithm
1 for five different randomly generated initial sequences ST (0).
For the sake of comparison, the estimated parameters of a jump
ARX (jARX) model are reported in the same table. This estimate
is obtained by using the approach proposed in this paper for
C(q−1, θ i) = 1 and D(q−1, θ i) = A(q−1, θ i). Due to the inconsistent
noise structure, it can be noticed that the estimated parameters
for the jump ARX model are biased.

The label accuracy indexes LtrueT attained with the jump BJ
model and the jump ARX model on the training set are equal to
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Fig. 2. Numerical example. True mode sequence S T̃ (black) vs sequence esti-
mated with the jump ARX model (dashed blue) and the jump BJ model (dashed
red). Black and dashed red lines are almost overlapping. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)

99.4% and 98.5%, respectively. Thus, a proper choice of the local
models’ structure seems to have its main benefits in a correct
estimation of the local submodels, rather than in reconstructing
the true sequence of the discrete state. Since no approximation
is introduced in computing the mode sequence for the jump
ARX model, these label accuracy indexes also show that the sub-
optimal method introduced in Section 4.2 is a viable solution
to trade-off between reconstruction accuracy and computational
complexity.

To further compare the accuracy of the jump BJ and jump ARX
models, both are used to reconstruct the hidden mode sequence
and predict the output in a validation dataset of length T̃ = 2000,
not used for training. Validation data are generated with new
noise and input sequences, with input uniformly distributed in
the interval [−5, 5], and discrete state starting from s0 = 2 and
then evolving according to the switching rules described by the
direct graph in Fig. 1. By using the previously identified jump
models (either BJ or ARX), the mode and the output sequences
are reconstructed as explained in Section 5.

Label accuracy indexes Ltrue
T̃

= 98.6% and Ltrue
T̃

= 96.3% are
attained for the jump BJ and the jump ARX model, respectively.
These results are due to the differences between the recon-
structed sequences shown in Fig. 2, where it can be noticed that
a jump ARX model leads to spikes that are inconsistent with the
behaviour of the data-generating system.

The outputs predicted by the two models are compared in
Fig. 3, along with the attained prediction errors of BFR=85.6% and
73.5% attained for the jBJ model and the jARX model, respec-
tively. Although the difference between the inferred sequences
is negligible within the considered interval (see Fig. 2), the jump
BJ model generally leads to more accurate prediction of the
output signal with respect to a jump ARX model. This is due to
inconsistency of the jump ARX model structure.

The effect of the approximation introduced by the recursive
inference presented in Section 5.1 is evaluated by iteratively

Fig. 4. Numerical example. Length of the dataset T vs CPU time required to fit
the jump BJ model.

estimating the mode sequence and predicting the output signal in
the considered validation set. The label accuracy index obtained
with the jBJ model is Ltrue

T̃
= 98.6% and it is similar to the

one attained by performing batch inference. Therefore, at least in
the considered case, the two procedures are equally effective in
inferring the mode sequence. However, the best fit rate decrease
from BFR=85.6% to 80.3% when the output is predicted iteratively.
For a jARX model, the label accuracy index and the best fit rate
drop to Ltrue

T̃
= 93.4% and BFR=71.2%, respectively.

The robustness of the proposed estimation method is assessed
by performing a Monte Carlo simulation with 25 realizations of
the initial state s0 ∈ {1, 2, 3, 4} and of the input and noise signals.
Table 2 reports the mean values and standard deviations for the
estimated parameters, showing that the true value of the system’s
parameters lies within the uncertainty intervals defined by the
standard deviation. The achieved mean label accuracy index L̄trueT
is 99.4%.

Finally, the computational CPU time required to run Algorithm
1 is evaluated for datasets of different length T . The CPU time
increases with T according to the trend shown in Fig. 4, and most
of the computational time is spent in maximizing the posterior
distribution w.r.t. the model parameters Θ via the Gauss–Newton
method.

6.2. Experimental case study: segmenting honeybee dance

The effectiveness of the proposed approach is shown on the
benchmark example described in Oh et al. (2008). The goal is
to segment a honeybee dance sequence into the K = 3 possi-
ble operating regimes, namely “turn right”, “waggle” and “turn
left”. The available dataset consists of the 2D coordinates of
the bee’s body (xt , yt ) and its head angle θt . Six dance time-
trajectories are available and shown in Fig. 5(a), where the man-
ually labelled groundtruth operating modes are highlighted with
different colours.

Fig. 3. Numerical example. [Left] True output (black) vs predicted output with estimated jump ARX (dashed blue) and jump BJ model (red). [Right] Absolute value
of the prediction error attained by the jump ARX (dashed blue) and the jump BJ model (red). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Table 2
Numerical example. Monte Carlo simulation: true vs estimated jump BJ model parameters (mean ± standard deviation).

i = 1 i = 2 i = 3 i = 4

True mean ± std True mean ± std True mean ± std True mean ± std

ai1 0.60 0.60 ± 0.02 −0.50 −0.51 ± 0.06 0.10 0.10 ± 0.04 −0.70 −0.69 ± 0.05
ai2 0.10 0.10 ± 0.02 −0.10 −0.08 ± 0.08 −0.10 −0.10 ± 0.05 0.40 0.38 ± 0.10
ai3 0.30 0.30 ± 0.01 −0.10 −0.09 ± 0.08 0.10 0.10 ± 0.03 0.20 0.19 ± 0.07
bi1 0.80 0.80 ± 0.02 −1.00 −0.80 ± 1.00 −0.20 −0.20 ± 0.02 4.00 3.80 ± 1.00
bi2 −0.80 −0.80 ± 0.03 1.00 1.02 ± 0.12 −0.20 −0.21 ± 0.03 1.00 1.02 ± 0.18
bi3 0.80 0.81 ± 0.03 0.10 0.09 ± 0.07 0.60 0.59 ± 0.03 −0.10 −0.09 ± 0.04
c i1 0.99 1.04 ± 0.18 −0.20 −0.12 ± 0.13 0.20 0.20 ± 0.03 0.20 0.22 ± 0.21
c i2 0.80 0.84 ± 0.15 0.20 0.15 ± 0.10 −0.10 −0.09 ± 0.02 −0.30 −0.26 ± 0.14
c i3 0.10 0.13 ± 0.12 −0.20 −0.16 ± 0.10 0.5 0.49 ± 0.03 0.30 0.25 ± 0.12
di1 0.10 0.16 ± 0.19 −0.25 −0.18 ± 0.11 0.25 0.25 ± 0.03 −0.25 −0.21 ± 0.18
di2 0.70 0.69 ± 0.01 −0.25 −0.25 ± 0.14 −0.40 −0.40 ± 0.02 0.40 0.38 ± 0.12
di3 0.10 0.15 ± 0.13 −0.25 −0.25 ± 0.09 −0.30 −0.30 ± 0.02 0.10 0.09 ± 0.08

Fig. 5. Benchmark example. Honeybee dance trajectories for sequences 1 to 6. True (upper panel) vs estimated motion patterns (lower panel), with ‘‘turn right’’
motion (blue), ‘‘waggle’’ dance (red) and ‘‘turn left’’ motion (green). (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

Fig. 6. Honeybee dance example: true (black) vs estimated mode sequence (dashed red) for the 4th, 5th and 6th trajectories.

Algorithm 1 is run for each of the six sequences, setting K = 3
and by considering as an output signal the cosine of the bee’s
head angle (namely, YT

= {cos(θt )}Tt=1). The remaining data
(namely sin(θt ) and (xt , yt )) are treated as inputs of the model,
after normalizing and detrending the 2D coordinates.

For each of the six sequences, first-order BJ submodels (i.e.,
na = nb = nc = nd = 1) are estimated. Algorithm 1 is initialized
with two possible mode sequences ST (0). The first one is con-
structed by cyclically changing the mode every 50 samples, and
the other one is obtained by randomly permuting the elements
of the first sequence.

The trajectories of the honeybee dance for all the six sequences
are plotted in Fig. 5(b), along with the reconstructed motion

patterns. The same information is also reported in Fig. 6 for the
4th, 5th and 6th dance sequence. By comparing the trajectories in
Fig. 5, it can be seen that the proposed method generally detects
the actual motion pattern for the first sequence and for the 4th,
5th and 6th dance sequence. Instead, Algorithm 1 returns less
accurate estimates of the motion patterns for the second and the
third sequence, which are characterized by significant variations
in the head angle during waggle dances, which makes segmen-
tation more challenging. Nonetheless, a drop in performance for
the same datasets is also experienced when using the approach
for identification of jump models presented in Fox et al. (2011).
Indeed, as shown in Table 3, the label accuracy indexes LtrueT (55)
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Table 3
Benchmark example. Label accuracy index LtrueT % achieved with Algorithm 1 vs
median label accuracy obtained in Fox et al. (2011).
Sequence 1 2 3 4 5 6

Algo 1 79.0 61.0 59.4 83.8 83.7 85.1
Algo (Fox et al., 2011) 46.5 44.1 45.6 83.2 93.2 88.7

attained by using Algorithm 1 is comparable, and in some cases
greater, than the median label accuracy achieved in Fox et al.
(2011).

7. Conclusions

This paper has proposed a maximum-a-posteriori (MAP) es-
timation algorithm to fit jump Box–Jenkins (BJ) models to an
input/output data set collected from a dynamical system. The
posterior distribution of the unknown parameters characteriz-
ing the model is computed analytically and then maximized
by combining an extension of the prediction-error methods tai-
lored to BJ models with time-varying coefficients and suboptimal
moving-horizon dynamic programming, which is used to recon-
struct the discrete-state sequence with limited computational
complexity. Although convergence to the global optimum is not
guaranteed, numerical evidence shows the effectiveness of the
overall approach.

Extensions of this work include autotuning of the number K
of operating modes and derivation of confidence intervals of the
estimated parameters.
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