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Abstract

This paper addresses the problem of identi�cation of hybrid dynamical systems, by focusing the attention on hinging hyperplanes and
Wiener piecewise a ne autoregressive exogenous models, in which the regressor space is partitioned into polyhedra with a ne submodels
for each polyhedron. In particular, we provide algorithms based on mixed-integer linear or quadratic programming which are guaranteed
to converge to a global optimum. For the special case where the estimation data only seldom switches between the di4erent submodels,
we also suggest a way of trading o4 between optimality and complexity by using a change detection approach.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Hybrid systems are systems with both continuous and
discrete dynamics, the former typically associated with
physical principles, the latter with logic devices. Most of
the literature on hybrid systems has dealt with modeling
(Branicky, Borkar, & Mitter, 1998; Heemels, De Schutter,
& Bemporad, 2001), stability analysis (Branicky, 1998;
Johansson & Rantzer, 1998), control (Bemporad & Morari,
1999; Branicky et al., 1998; Lygeros, Tomlin, & Sastry,
1999), veri�cation (Bemporad, Torrisi, & Morari, 2000c;
Chutinan & Krogh, 2003), and fault detection (Bemporad,
Mignone, & Morari, 1999; Lunze, 2000). The di4erent tools
rely on a model of the hybrid system. Getting such a model
from data is an identi�cation problem, which does not seem
to have received enough attention in the hybrid systems
community, except for the recent contributions (Bemporad,
Garulli, Paoletti, & Vicino, 2003; Ferrari-Trecate, Muselli,
Liberati, & Morari, 2003). On the other hand, in other
�elds there has been extensive research on identi�cation of
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general nonlinear black-box models (SjEoberg et al., 1995).
A few of these techniques lead to piecewise a ne (PWA)
models of nonlinear dynamical systems (Batruni, 1991;
Breiman, 1993; Choi & Choi, 1994; Ernst, 1998; Gad,
Atiya, Shaheen, & El-Dessouki, 2000; Heredia & Arce,
1996; Hush & Horne, 1998; JuliJan, Desages, & Aga-
mennoni, 1999; JuliJan, JordJan, & Desages, 1998; Kahlert
& Chua, 1992; Medeiros, Resende, & Veiga, 1999;
Murray-Smith & Johansen, 1997; Pucar and SjEoberg, 1998;
Skeppstedt, Ljung, & Millnert, 1992; StrEomberg, Gustafs-
son, & Ljung, 1991). Owing to the equivalence between
PWA systems (Bemporad, Ferrari-Trecate, & Morari,
2000a; Heemels et al., 2001; Sontag, 1996) and several
classes of hybrid systems, they can be used to obtain hybrid
models.
As will be pointed out, if the guardlines (i.e. the hy-

perplanes de�ning the partition of the PWA mapping, see
Eq. (2)) are known, the problem of identifying PWA sys-
tems can easily be solved using standard techniques for lin-
ear systems. However, when the guardlines are unknown
the problem becomes much more di cult. There are two
alternatives to tackle such a problem:

(1) De�ne a priori a grid of cells within which the system
dynamics is linear;

(2) Estimate the grid along with the linear models.
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The former approach is used, e.g., in JuliJan et al. (1999), and
gives a simple estimation process for the linear submodels,
but su4ers from the curse of dimensionality in the sense that
the number of a priori given cells will have to be very large
for reasonable Lexibility even in the case of moderately
many regressors. The second approach allows for e cient
use of fewer cells, but leads to potentially (very) many local
minima, which may make it di cult to apply local search
routines. Depending on how the partition is determined, one
can distinguish between four di4erent types of approaches:

• All parameters, both the parameters determining the par-
tition (guardlines) and the parameters of the submodels,
are identi�ed simultaneously (Batruni, 1991; Gad et al.,
2000; JuliJan et al., 1998; Pucar & SjEoberg, 1998). This
category includes, e.g. neural networks with PWA acti-
vation functions.

• All parameters are identi�ed simultaneously for a model
class with a very simple partition, and new submod-
els/regions are added when needed (Breiman, 1993;
Ernst, 1998; Heredia & Arce, 1996; Hush & Horne,
1998; JuliJan et al., 1998; Pucar & SjEoberg, 1998).

• The partition and submodels are identi�ed iteratively or
in several steps, each step considering either the partition
or the submodels (Bemporad et al., 2003; Ferrari-Trecate
et al., 2003; Medeiros et al., 1999; Murray-Smith &
Johansen, 1997; Skeppstedt et al., 1992).

• The partition is determined using only information about
the distribution of the regression vectors (Choi & Choi,
1994; StrEomberg et al., 1991).

Most of these approaches (Batruni, 1991; Breiman, 1993;
Choi & Choi, 1994; Ernst, 1998; Gad et al., 2000; Heredia
& Arce, 1996; Hush & Horne, 1998; JuliJan et al., 1998;
Pucar & SjEoberg, 1998) assume that the system dynam-
ics is continuous, while, e.g., Bemporad et al. (2003) and
Ferrari-Trecate et al. (2003) allow for discontinuities. For
a more detailed description of the di4erent approaches; see
Roll (2003).
A common problem for the contributions mentioned

above is that they can only guarantee suboptimal solutions.
In contrast to this, in this paper we focus on the approach
where both the partition and the submodels are identi�ed
simultaneously, and point to reformulations of the identi�-
cation problem for two subclasses of PWA models that lead
to mixed-integer linear or quadratic programming problems
that can be solved for the global optimum. These classes
are the hinging hyperplane ARX (HHARX) models and
piecewise a9ne Wiener models (W-PWARX). Although
the worst-case complexity is high, these algorithms may
be useful in cases where relatively few data are available
(e.g., where it is very costly to obtain data), and where it is
of importance to get a model which is as good as possible.
As we will see, however, for one of the two model classes,
namely Wiener models, the worst-case complexity will not
be exponential, but polynomial. We will also discuss some

ideas on how complexity can be drastically reduced for the
case of slowly varying PWA systems.
This paper extends results previously presented in

Bemporad (2000), Bemporad, Roll, and Ljung (2000b),
Bemporad, Roll, and Ljung (2001) and Roll (2001), and is
organized as follows. In Section 2 we introduce PWARX
systems and set up the identi�cation problem. In Sections 3
and 4 we present methods to obtain the global solution to
the identi�cation problem for the class of HHARX mod-
els, and more e cient suboptimal extensions in Section 5.
Section 6 deals with identi�cation methods for W-PWARX
models, while Section 7 presents simple results to translate
the identi�ed models into other existing model classes for
analysis/synthesis purposes.

2. PWARX models

To begin with, let us consider systems in the form

yt = g(�t) + et ; (1)

where �t ∈Rn is the regression vector, yt ∈R is the mea-
sured output, et ∈R is white noise, and g is a PWA function
of the form

g(�) = d′
j�+ cj if OHj�6 ODj; (2)

where dj ∈Rn, cj ∈R, OHj ∈RMj×n, ODj ∈RMj , “6” de-
notes componentwise inequality, and the sets Cj ,
{�: OHj�6 ODj}, j = 1; : : : ; s are a polyhedral partition of
the �-space. The subscripts in, e.g., OHj refer to the di4er-
ent parts of the partition, while superscripts, e.g., OHi

j will
be used to denote the ith row of OHj. To allow for a more
compact notation, we let

’t =

[
1

�t

]
; �j =

[
cj

dj

]
; and Hj = [− ODj OHj]:

In this way (2) can be written as

g(’) = ’′�j if Hj’6 0: (3)

When the regression vector ’t consists of previous inputs
and outputs,

’t = [1 yt−1 · · · yt−na ut−1 · · · ut−nb]
′ (4)

we say that system (1) is a PWARX (PieceWise a ne Au-
toRegressive eXogenous) system. We do not assume that
g is necessarily continuous over the boundaries de�ned by
the polyhedra, commonly referred to as guardlines. With-
out this assumption, De�nition (2) is not well posed in gen-
eral, as the function can be multiply de�ned over common
boundaries of the sets Cj. Although one can avoid this is-
sue by replacing some of the “6” inequalities into “¡” in
the de�nition of the regions Cj, this issue is not of practical
interest from a numerical point of view.
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2.1. Identi<cation of PWARX models

Now suppose that we are given yt and ’t , t = 1; : : : ; N ,
and want to �nd the PWARX model that best matches the
given data. The identi�cation of model (3) can be carried
out by solving the optimization problem

min
�j ;Hj

1
2N

N∑
t=1


 s∑

j=1

‖yt − ’′
t�j‖Jj(’t)


 (5a)

subject to Jj(’t) =

{
1 if Hj’t6 0

0 otherwise
(5b)

+ linear bounds over �j; Hj; (5c)

where �j, Hj, j=1; : : : ; s, are the unknowns. In (5a), we will
focus on the 1-norm (| · |) and the squared Euclidean norm
(‖ · ‖22), as they allow to express (5) as a mixed-integer lin-
ear or quadratic program (MILP/MIQP), respectively, for
which e cient solvers exist (Dash Associates, 1999; ILOG,
Inc., 1999; Sahinidis, 2000). 1 We distinguish between two
main cases:
A. Known guardlines:Hj (i.e. the partition of the’-space)

are known, �j have to be estimated. If using 2-norm in (5a),
we can see that this is an ordinary least-squares problem
which can be solved quite e ciently.
B. Unknown guardlines: Both Hj and �j are unknown.

This is a much harder problem, since it is in general a highly
nonconvex problem with several local minima. However, if
bounds on �j and Hj are known, the optimization problem
(5) can be recast as an MILP or MIQP. In the following
sections, we focus on two subsets of PWA functions, namely
the hinging hyperplanes (HH) and Wiener processes with
PWA static output mapping, and detail the mixed-integer
program associated to the identi�cation problem. In general,
the complexity of the mixed-integer program needed to solve
(5) is related to the number of samples N and regions s, and
the number of parameters Hj, �j that are unknown. Note that
in general, the guardlines Hi

j’6 0, cannot be determined
exactly from a given �nite estimation data set, as the pairs
yt; ’t are a discrete set of points which can be divided by a
continuum of possible guardlines.

3. Hinging hyperplane models

Hinging hyperplane (HH) models were introduced by
Breiman (1993). They are de�ned as a sum of hinge func-
tions gi(’) = ±max{’′�+i ; ’′� −

i }, which each consists
of two half-hyperplanes, parameterized by �+i and �−i , re-
spectively (see Fig. 1). The ± sign is needed to represent
both convex and nonconvex functions. Using an alternative

1 The problem could also be recast as an MILP by using in�nity norm
over time (i.e. maxt=1; :::;N instead of

∑N
t=1), although this would be

highly sensitive to possible outliers in the estimation data.

Fig. 1. Hinging hyperplanes and hinge function y=±max{’′�+i ; ’′� −
i },

where ’ = [1 �′]′.

parameterization we obtain the following HHARX (hinging-
hyperplane autoregressive exogenous) model

yt = ’′
t�0 +

M∑
i=1

simax{’′
t�i; 0}+ et ; (6)

where si is either +1 or −1, depending on the sign of the
max function, and for simplicity here it is �xed a priori. 2

Since−z+max{z; 0}=max{−z; 0}, ∀z ∈R, there are redun-
dancies in (6) (i.e., the structure is not globally identi�able,
so the same system can be described by several di4erent
sets of parameter values), which can be partially avoided by
introducing the requirement

w′�1¿ · · ·¿w′�M ¿ 0; i∈ [1; M ]; (7)

where w is any nonzero vector in Rn, e.g., w = 1 ,
[1 1 : : : 1]′ (or any random vector).

4. Identi�cation algorithms for HH models

The �rst algorithm for estimating HH models was pro-
posed by Breiman (1993). Later, in Pucar and SjEoberg
(1998) it was shown that the original algorithm is a special
case of Newton’s method, and a modi�cation was pro-
vided which guarantees convergence to a local minimum.
Other algorithms have been proposed based on tree HH
models (Ernst, 1998). In this paper, we propose an alterna-
tive approach based on mixed-integer programming, which

2 The results of this paper can be easily extended to the case where si
is also a parameter to be optimized, at the price of introducing additional
binary and continuous variables in the resulting optimization problem. In
the present setting, the identi�cation algorithm presented in the following
section provides the global optimum for the problem of �nding the best
HH model consisting of M1 convex hinging pairs and M2 concave hinging
pairs, where M1 + M2 = M , and convexity/concavity depends on the
chosen si .
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Fig. 2. Identi�cation of a single hinge function. (a) Data samples (∗)
and globally optimal model (dashed). (b) Locally (solid) and globally
(dashed) optimal model.
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Fig. 3. Cost as a function of hinge position for Example 1.

provides a global minimum, at the price of an increased
computational e4ort.
For a noiseless system consisting of one single hinge,

the method proposed in Breiman (1993) was shown to con-
verge to the global minimum. However, for noisy systems
or systems with multiple hinges, local minima may lead
to problems even in very simple cases, as the following
example shows.

Example 1. Consider the problem of �tting a hinge function
to the six data samples given in Fig. 2(a), using a 2-norm
criterion. Fig. 2(a) also shows the corresponding globally
optimal function, with the optimal cost 0.98. In Fig. 3 the
cost is plotted as a function of the position of the hinge, and
we can see that there is a local minimum between 4 and 5
with the cost 2.25. The corresponding function is plotted in
Fig. 2(b). Furthermore, simple calculations show that
Breiman’s method will not converge to the optimal solu-
tion (regardless of the initial value), but will in most cases
converge to the local minimum. The modi�ed method pro-
vided in Pucar and SjEoberg (1998) will converge to the
global optimum if starting su ciently close to it, but will
converge to the local optimum if the hinge is originally
placed between 4 and 5.

Consider the problem of estimating a HH function of the
form (6) from the estimation data set {yt; ’t}N

t=1. Let us

introduce the notation

�= (�0 : : : �M );

g(’t;�) = ’′
t�0 +

M∑
i=1

simax{’′
t�i; 0}:

We choose the optimal parameters �∗ by solving

�∗ , argmin V (�),
N∑

t=1

|yt − g(’t;�)| (8a)

subject to

� j−6 �j6 � j+;

1′�i¿ 0; i∈ [1; M ]; (8b)

where the inequalities in (8b) are componentwise. As we
will see, (8) can be reformulated as an MILP. Another possi-
bility is to use the squared Euclidean norm (yt −g(’t;�))2,
which gives a problem that can be recast as an MIQP.
Note that in (8) we search for parameters �j that lie in the

given range � j−6 �j6 � j+. Given that �j relates linearly
yt to past inputs and outputs (cf. Eq. (6)), it is reasonable to
assume that overestimates of �j are available from the na-
ture of the system generating the data. In case the prescribed
bounds � j−, � j+ are selected excessively tight, the identi�-
cation problem setup (8) would simply lead to a suboptimal
solution. This situation may be easily detected if any of the
above constraints is active at the optimizer, in which case
the optimization may be repeated with larger bounds.

4.1. Optimization problem

MILP formulation: To recast (8) as an MILP, we intro-
duce the binary variables �it (taking values in {0; 1}):
[�it = 0]↔ [’′

t�i6 0]; i∈ [1; M ]; t ∈ [1; N ] (9)

and the new continuous variables zit

zit =max{’′
t�i; 0}= ’′

t�i�it : (10)

Relations (9) and (10) can be transformed intomixed-integer
linear inequalities, by using a slight modi�cation of standard
techniques described in Bemporad and Morari (1999) (see
also Roll, 2003). By assuming that the bounds over �i are all
�nite, Eqs. (9) and (10) are equivalent 3 to the inequalities

zit¿ 0;

zit6M�
it �it ;

’′
t�i6 zit ;

(1− �it)m�
it + zit6’′

t�i; (11)

3 For the equivalence to hold, the last inequality of (11) should be strict;
otherwise �it will not be uniquely determined when ’′

t �i = 0. However,
because of the continuity of the hinge functions, it does not matter in
this case if �it is 0 or 1, and therefore the nonstrict inequality will be
used to facilitate implementation.
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where M�
it and m�

it are upper and lower bounds on ’′
t�i,

respectively, derived from the bounds on �i.
Finally, by introducing auxiliary slack variables �t¿

|yt − g(’t;�)|, t = 1; : : : ; N , the following holds:

Proposition 2. The optimum of problem (8) is equivalent
to the optimum of the MILP

min
�t ;�i ;zit ;�it

N∑
t=1

�t

s:t: �t¿yt − ’′
t�0 −

M∑
i=1

sizit ;

�t¿’′
t�0 +

M∑
i=1

sizit − yt;

�it ∈{0; 1}; 06 zit6M�
it ; � i−6 �i6 � i+;

�t¿ 0 and inequalities (11); (7);

(12)

where �it , zit , �i, �t are the optimization variables, t =
1; : : : ; N , i = 1; : : : ; M , and N , M , si, yt , �t are given.
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Fig. 4. Identi�cation of model (13)—noiseless case. Identi�ed HH model.
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Fig. 5. Identi�cation of model (13)—noiseless case. (a) Estimation data. (b) Validation data.

Example 3. Consider the following HHARX model

yt = 0:8yt−1 + 0:4ut−1 − 0:1
+max{−0:3yt−1 + 0:6ut−1 + 0:3; 0}: (13)

The model is identi�ed on the data reported in Fig. 5(a), by
solving an MILP with 66 variables (of which 20 integers)
and 168 constraints. The problem was solved by using Cplex
6.5 (ILOG, Inc., 1999) (1014 LP solved in 0.68 s on a Sun
Ultra 10), and, for comparison, using BARON (Sahinidis,
2000) (73 LP solved in 3.00 s, same machine), which results
in a zero output prediction error (Fig. 5(b)). The �tted HH
model is shown in Fig. 4. After adding white Gaussian noise
et with zero mean and variance 0.01 to the output yt , the
following model

yt = 0:83yt−1 + 0:34ut−1 − 0:20
+max{−0:34yt−1 + 0:62ut−1 + 0:40; 0} (14)

is identi�ed in 1:39 s (3873 LP solved) using Cplex (7:86 s,
284 LP using BARON) on the estimation set reported in
Fig. 6(a), and produces the validation data reported in
Fig. 6(b). For comparison, we identi�ed the linear ARX
model

yt = 0:82yt−1 + 0:72ut−1 (15)

on the same estimation data, obtaining the validation data
reported in Fig. 7 (higher order ARXmodels did not produce
signi�cant improvements). Clearly, the error generated by
driving the ARX model in open-loop with the validation
input ut is much larger, and would not make (15) suitable
for instance for reachability analysis and formal veri�cation
tools, where a good performance of open-loop prediction is
a critical requirement.

MIQP Formulation: When the squared 2-norm is used
in the objective function, the optimization problem can be
recast as the MIQP

min
�i ;�it ;zit

V (�),
N∑

t=1

(yt − (’′
t�0 +

M∑
i=1

sizit))2

s:t: (11); (7):

(16)
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Fig. 6. Identi�cation of model (13)—noisy case. (a) Estimation data. (b) Validation data.

Note that the problem is not strictly positive de�nite, for
instance the cost function does not depend on �i, �it (which
only appear in the constraints). For numerical reasons, a
term !I , where !¿ 0 is a small number, may be added to
the Hessian associated to the MIQP (16).
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Fig. 7. Identi�cation of a linear ARX model—same estimation and vali-
dation data as in Fig. 6.
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Fig. 8. Identi�cation of model (13)—MILP (diamonds) vs. MIQP (squares). The horizontal axes show the number of estimation data samples. (a)
Average number of LPs and QPs. (b) Average computation time.

Example 4. Consider again the PWARX system (13). In
Fig. 8 we compare the performance in terms of LP/QPs and
total computation time of the linear criterion (12) vs. the
quadratic criterion (16). The reported numbers are computed
on a Sun Ultra 60 (2× 360 MHz) using the solver BARON
(Sahinidis, 2000), by averaging the number of LP/QPs and
computation times, respectively, for 10 estimation data sets
generated by feeding random Gaussian inputs ut and zero
output noise to system (13).

4.2. Complexity

The complexity of the MILP or MIQP problems is well
known to be NP-hard, and in particular it is worst-case
exponential in the number MN of binary variables, even
if there are good solvers available (Dash Associates, 1999;
ILOG, Inc., 1999; Sahinidis, 2000). Therefore, the approach
is computationally a4ordable only for problems with few
data, or if data are clustered together. An example of the
latter approach is given in Section 5, where a piecewise
a ne function is identi�ed over a sliding window.

4.3. Discontinuous HHARX models

In HHARX models, the output yt is a continuous function
of the regressor �t . On the other hand, hybrid systems may
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consist of PWA discontinuous mappings. In order to tackle
discontinuities, we can modify the HH model (6) in the
form

g(’t;�) = ’′
t�0 +

M∑
i=1

si(’′
t�i + ai)�it ; (17a)

[�it = 0]↔ [’′
t�i6 0]; i∈ [1; M ]; t ∈ [1; N ]; (17b)

where ai, i = 1; : : : ; M are additional free parameters,
a−i 6 ai6 a+i ; or, more in general, in the form

g(’t;�) = ’′
t�0 +

M∑
i=1

si(’′
t�i)�it ; (18a)

[�it = 0]↔ [’′
t$i6 0]; i∈ [1; M ]; t ∈ [1; N ]; (18b)

where $i, i= 1; : : : ; M are additional free vectors of param-
eters, $−

i 6 $i6 $+i , 1
′$i¿ 0. Similarly to (12), both the

identi�cation problems (17) and (18) can be again recast
as an MILP. With respect to (12), the MILP has $i or ai

as additional optimization variables. Note that the problem
may not have a unique solution, just as for general PWARX
systems.

4.4. Robust HHARX models

In formal veri�cation methods, model uncertainty needs
to be handled in order to provide safety guarantees. Typ-
ically, the model is associated with a bounded uncertainty
set, for instance a range of possible values a disturbance may
take. In the present context of HHARX models, we wish to
�nd an uncertainty description of the form

g(’t;�−)6yt6 g(’t;�+); ∀t¿ 0 (19)

for an inclusion-type of description, or the form

yt = g(’t;�∗) + nt ; n−6 nt6 n+ (20)

for an additive-disturbance-type of description. Clearly,
since the model is identi�ed from a �nite estimation data set,
ful�llment of (19) or (20) for other data than the estimation
data cannot be guaranteed, unless additional hypotheses on
the model which generates the data are assumed. Neverthe-
less, a pair of extreme models �−, �+ can be obtained by
solving (12) or (16) with the additional linear constraints

yt¿ g(’t;�); ∀t ∈ [1; N ] (21)

for estimating �− and

yt6 g(’t;�); ∀t ∈ [1; N ] (22)

for estimating �+. An additive-disturbance description can
instead be computed in two alternative ways:

(1) First, identify a model �∗ by solving (12) or (16) and
then compute

n+ , max
t=1;:::;N

yt − g(’t;�∗);

n− , min
t=1;:::;N

yt − g(’t;�∗): (23)

(2) Modify the MILP (12) by replacing �t with one variable
� only, and minimize �. The corresponding optimum �∗

provides a nominal model such that the bound on the
norm of the additive disturbance nt is minimized.

5. Using change detection to reduce complexity

Some PWA systems of interest may not switch so fre-
quently between the di4erent dynamics of the di4erent sub-
models. For such systems, it is possible to use a change
detection algorithm to roughly �nd the timepoints when
switches occur, and use this information to reduce the com-
plexity of (12) or (16) by forcing several samples, lying in
the same interval between two switches, to belong to the
same subsystem. Here we propose to use an MILP algo-
rithm over a sliding window as a change detection algo-
rithm. The formulation (12) is used, taking only data from
time t0; : : : ; t0 + L − 1 into account, where L is the length
of the window. Furthermore, only one switch is allowed in
each window. Hence, the MILP solved takes the form

min
�t ;�i ;zit ;�t

t0+L−1∑
t=t0

�t

s:t: �t¿yt − ’′
t�0 − z1t + z2t ;

�t¿’′
t�0 + z1t − z2t − yt;

�t06 : : :6 �t0+L−1;

inequalities (11) with �1t = �2t = �t :

(24)

Note that we only need two hinges (one positive and one
negative) and L discrete variables since only one switch is
allowed, compared to the MN discrete variables needed in
(12). (If the PWARX structure to be identi�ed just contains
positive hinges, we would only need one (positive) hinge
in (24).) Furthermore, the inequalities �t06 · · ·6 �t0+L−1
also help to reduce the complexity drastically.
In each position t0 of the window, the �t of the local

HHARX model (i.e. the optimal value of the cost function
in (24)) is compared to the �t of a linear model over the
same window. The value of the relative improvement of the
cost function

kt0 = 1−
V ∗
HHARX

V ∗
ARX

(25)

is assigned to the time point of the change, and as the window
is moving, these values are summed up (for each time point).
If the sum of the relative improvements for a certain time
point exceeds a prescribed threshold K0, this time point will
be considered as a possible switching time.
The advantage of using (24) instead of a standard change

detection algorithm, e.g. Brandt’s GLR method (see, e.g.
Gustafsson, 2000), is that the latter does not require linear
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Fig. 9. Identi�cation of (26). (a) System function (26) and estimation
data. (b) Identi�ed model.

Table 1
Identi�cation of (26)—values of the objective function (8a)

True system Identi�ed model

Estimation data 7.8213 7.4833
Validation data 7.8668 8.6777

separability between the classes; nor does it take the conti-
nuity of the PWA function into account.
After having obtained the estimated possible time points

of the switches as described above, we solve (12) or (16), but
using the same � variable for all samples lying in the same
time interval between two consecutive possible switches.
This will force the samples to belong to the same submodel,
and will reduce the complexity considerably. To summarize,
the algorithm consists of two phases:

(1) Use a sliding window with a local MILP algorithm to
detect possible switches and divide the time series into
segments.

(2) Use an MILP to simultaneously assign the di4erent seg-
ments to di4erent submodels and estimate the parame-
ters of the submodels.

Once again, note that in the �rst step, the MILP solved just
uses two hinges, independently of howmany hinge functions
the �nal global model contains.

Example 5. The system

yt =−0:3 + 1:2yt−1 − ut−1

+max{−1:2 + 2ut−1; 0}
−max{−0:2yt−1; 0}+ et ; (26)

where et is white Gaussian noise with variance 0.01, is iden-
ti�ed using 100 data samples. The true system function and
the data samples are shown in Fig. 9(a). The proposed slid-
ing window algorithm was used with L=15 and K0=1. This
resulted in the system shown in Fig. 9(b). Table 1 shows
the values of the objective function (8a) for the true sys-
tem and the identi�ed model, for the estimation data and a
set of validation data. As can be seen, the identi�ed model
shows a good performance. The computation time running
CPLEX on a 333 MHz Pentium II laptop was 144 s (42 s

for the sliding windows and 102 s for the �nal large MILP).
This should be compared to solving the MILP (12) directly,
which did not return a solution within a maximum allotted
time of 3 h on the same computer.

5.1. Complexity

The advantage of the described sliding window algorithm,
compared to solving (12) or (16) directly, lies in the reduc-
tion of the computational complexity. In the sliding window
phase, the complexity is linear in the number of data N when
using a window of �xed size, as opposed to the exponential
complexity of (12) and (16).
For the second phase, the complexity is closely related

to the number of possible switches. Here, the thresholding
procedure makes it possible to explicitly trade o4 between
complexity of the algorithm and optimality: The higher the
threshold value, the fewer possible switch times will be con-
sidered. If it is high enough, no switches will be allowed,
which means that all samples will be forced to belong to the
same submodel, and we will end up with a linear model. If,
on the other hand, the threshold value is chosen to be zero,
every time point will be considered as a possible switch
time, and we will again get the globally optimal solution.
As previously mentioned, the described algorithm re-

quires the system to switch only seldom, staying in each
submodel for a period at least in the order of the window
length, L. The general issue of designing input signals hav-
ing the desired properties of su ciently exciting the modes
of the system and letting the system switch seldom is a
subject for future research.

5.2. Approximating general nonlinear systems

To give another example of the described sliding window
algorithm, the problem of approximating a simple nonlinear
system is considered. The capability of approximating ar-
bitrary nonlinear systems is an interesting issue. Since HH
functions have the universal approximation property (see,
e.g., Lin & Unbehauen, 1992), they can (under mild con-
ditions) approximate any function arbitrarily well, given a
large enough number of hinges. As a very simple illustra-
tion, a quadratic NARX (nonlinear ARX) system is approx-
imated by a HHARX model in the following example.

Example 6. Consider the system

yt =−0:5y2t−1 + 0:7ut−1 + et ; (27)

where et is white Gaussian noise with variance 0.01, is
identi�ed using 100 data samples. The input is designed
to make the output change sign only seldom (about every
25 samples). The true system function and the data sam-
ples are shown in Fig. 10(a). Using the sliding window
algorithm with only one hinge in the �nal step, L = 10,
and a threshold K0 = 1, resulted in the system shown in
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Fig. 10. Identi�cation of (27). (a) System function (27) and estimation
data. (b) Identi�ed model using one hinge. (c) Identi�ed model using
three hinges.

Fig. 10(b). We can see that the parabola is approximated by
the hinge in a natural way. The computation time running
CPLEX on a 333 MHz Pentium II laptop (128 MB RAM)
was 19:7 s (17:7 s for the sliding windows and 2 s for the
�nal large MILP). Solving the MILP (12) directly required
about 1300 s of computations.
If we instead use three hinges to approximate the true

system function, we get the result shown in Fig. 10(c). The
computation time was 152 s (20 s for the sliding windows
and 132 s for the �nal large MILP).

6. Piecewise a'ne Wiener models

Let us now turn to the class of Wiener models. These
models form a common class of nonlinear models that
consist of a linear dynamical system followed by a static
nonlinearity (see Fig. 11), that we assume here invertible.
Identi�cation of Wiener models have been discussed quite
extensively in the literature (see, e.g., Hagenblad & Ljung,
2000; Kalafatis, Wang, & Cluett, 1997; Lovera, Gustafsson,
& Verhaegen, 2000; Wigren, 1993).
If the input u and the number of collected data can be

chosen arbitrarily, a technique may simply consist of �rst
estimating the nonlinearity by running quasi-static experi-
ments, inverting the nonlinearity, and then identifying the
dynamic part of the model from u to x by using standard lin-
ear methods. This way of proceeding, however, besides be-
ing impractical in several situations where the identi�cation
experiment cannot be decided (data are simply provided “as
they are”), has the disadvantage of weighting nonlinearly
the output prediction errors.
Indeed, a common approach is to �rst ignore the nonlin-

earity to come up with a �rst linear approximation. From
the output of this and the measured output a �rst estimate
of the static nonlinearity can be formed. This can then be

Fig. 11. Wiener process with PWA static output mapping.

followed by further iterations. Such approaches may easily
su4er from ending up in nonoptimal solutions.
In this section we shall consider Wiener models where

the static nonlinearity is piecewise a ne (W-PWARX mod-
els). This gives an overall piecewise a ne model with a
certain structure, which makes it possible to design an op-
timal identi�cation algorithm whose worst-case complexity
is polynomial in the number of data.
The models considered will be in the form shown in

Fig. 11, described by the relations

A(z)xt = B(z)ut ;
(28a)

yt = f(xt);

where A(z)=1+
∑na

h=1 ahz−h, B(z)=
∑nb

k=1 bkz−k and z−1

is the delay operator, z−1xt=xt−1. We assume that f(x) is a
piecewise a ne, invertible function (without restrictions we
can assume that f is strictly increasing), and parameterize
its inverse as

xt = yt − -0 +
M∑
i=1

±max {.iyt − -i; 0}: (28b)

Both signs± are allowed in order to be able to represent non-
convex functions. We assume that the number M+ of posi-
tive signs is known (without restrictions we can let these be
the �rst terms of the sum). As max{−z; 0}=−z+max{z; 0}
for all z ∈R, without loss of generality we can also assume
.i¿ 0.

6.1. Identi<cation of W-PWARX models

The algorithm described here is based on mixed-integer
programming, which identi�es W-PWARX models of the
form (28). Such PWA form is particularly useful when the
identi�ed system models an unknown part of a larger hybrid
model. We assume that we are given an estimation data set
{yt; ut}N

t=1.
Like in the HHARX case, the �rst thing to do is to get

rid of the max functions. This is done by introducing the
discrete variables �it ∈{0; 1}
[�it = 1]↔ [.iyt − -i¿ 0]; i∈ [1; M ]; t ∈ [1; N ]: (29)

Before continuing with the usual reformulation into an
MIQP, let us consider some additional structure that can be
used to reduce the complexity of the problem. Without loss
of generality, we can assume that the M+ �rst breakpoints
in the PWA output nonlinearity are ordered, and similarly
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for the M–M+ last breakpoints. Then the logic constraint

[�it = 1]→ [�jt = 1] (30)

should hold for all i; j6M+ such that j ¡ i, and for all
i; j ¿M+ such that j ¡ i. Each constraint (30) is translated
into

�it − �jt6 0 (31)

and a minimal set of inequalities is obtained by collecting
(31) only for pairs of consecutive indices i; j. Moreover,
since the output data yt can be ordered, we can also get
additional relations on �it by using (29). In fact, if �it0 = 1
and yt1 ¿yt0 , it must follow that �it1 = 1. We can translate
these relations into

�it0 − �it16 0; ∀t1 �= t0 : yt1¿yt0 : (32)

Both (31) and (32) will help to reduce the search space
considerably in the optimization.
One speci�c problem for this model structure is that we

will get products between the coe cients ah of the A(z)
polynomial and the coe cients inside the max functions,
.i and -i. Furthermore, since ah may be negative, the in-
equalities in de�nition (29) of �i(t) may change directions
if we multiply by ah. To avoid these problems, �rst de�ne
ah = a+h − a−h , where a+h ; a−h ¿ /, and /¿ 0 is any positive
scalar. Then

ahmax{.iyt−h − -i; 0}
=max {a+h .iyt−h − a+h -i; 0}
−max {a−h .iyt−h − a−h -i; 0}

=max {c+ihyt−h − d+ih; 0} −max {c−ih yt−h − d−
ih ; 0};

where

c±ih , a±h .i;

d±
ih , a±h -i; i∈ [1; M ]; h∈ [1; na]:

Let also

ci0 = c+i0 = c−i0 , .i;

di0 = d+i0 = d−
i0 , -i;

d0h , ah-0;

d00 , -0;

Od0 ,
na∑

h=0

d0h =

(
1 +

na∑
h=1

ah

)
-0:

As a+h ; a−h ¿ 0, from (29) it now follows

[�it = 1]↔ [c±ih yt − d±
ih ¿ 0]: (33)

Let us also introduce the auxiliary continuous variables

zit0 , (ci0yt − di0)�it ;

zith , [(c+ih − c−ih )yt−h − (d+ih − d−
ih )]�i(t−h);

h∈ [1; na]: (34)

Using the same techniques as in Bemporad and Morari
(1999), we can translate (33) and (34) to linear inequalities.
Now,

xt = yt − d00 +
M∑
i=1

± zit0;

ahxt−h = ahyt−h − d0h +
M∑
i=1

± zith: (35)

By (28) and (35),

xt = yt − d00 +
M∑
i=1

± zit0 =
nb∑

k=1

bkut−k

−
na∑

h=1

(
ahyt−h − d0h +

M∑
i=1

± zith

)

which provides the relation

yt =−
na∑

h=1

ahyt−h +
nb∑

k=1

bkut−k + Od0 −
M∑
i=1

na∑
h=0

± zith:

(36)

In order to �t the estimation data to model (36), we solve
the mixed-integer quadratic program (MIQP)

min
1
N

N∑
t=1+max{na;nb}

∣∣∣∣∣yt +
na∑

h=1

ahyt−h

−
nb∑

k=1

bkut−k − Od0 +
M∑
i=1

na∑
h=0

± zith

∣∣∣∣∣
2

subject to linear constr: from (31)–(34) (37)

with respect to the variables ah, bk , ci0, di0, Od0, c±ih , d
±
ih , zith,

and the binary variables �it . The solution to (37) provides
the optimal parameters a∗h , b

∗
k , and -∗0 , Od∗

0 =(1+
∑na

h=1 a∗h),
-∗i , d∗

i0, .
∗
i , c∗i0. Finally, we can obtain the estimation

f∗(x) by inverting (28b) (see Roll, 2003, for details).

Example 7. A Wiener model constituted by a �rst-order
linear system and a nonlinearity with two breakpoints is
identi�ed, using N = 20 estimation data points. The sys-
tem is �rst identi�ed using noiseless data, and then using
noisy measurements ỹ t = yt + et , where et are independent
and uniformly distributed on a symmetric interval around
0. The MIQP problem (37) is solved by running BARON
(Sahinidis, 2000) on a Sun Ultra 10. The resulting estimates
are shown in Table 2. The estimated parameters are over-
all very close to the true values, the closer the lower the
intensity of the output noise, as should be expected. The
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Table 2
Estimation results

Parameter True value et = 0 |et |¡ 0:01 |et |¡ 0:1

a1 −0:5 −0:5000 −0:4990 −0:5360
b1 2 2.0000 2.0024 2.0003
-0 −2 −2:0000 −2:0001 −1:7748
-1 0.5 0.5000 0.5095 0.5509
-2 −1:5 −1:5000 −1:4924 −1:4999
.1 0.5 0.5000 0.5016 0.5028
.2 0.5 0.5000 0.4988 0.4876
CPU — 45.44 s 51.33 s 90.34 s
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Fig. 12. Example 7—Results for a validation data set. (a) System estimated with noiseless data. (b) System estimated with output noise |et |6 0:01
(dashed), and |et |6 0:1 (dot-dashed).

estimated model was also tested on a set of validation data,
and we report in Fig. 12 the resulting one-step-ahead pre-
dicted output and output error. Note that such a good per-
formance cannot be achieved by using standard linear iden-
ti�cation techniques.

6.2. Complexity analysis

By imposing the constraints expressed by (31) and (32),
the degrees of freedom for the integer variables, and hence
the complexity, are reduced considerably. In fact, instead of
having to test 2MN di4erent cases in the worst case, only(

M + N

M

)
·
(

M

M+

)

combinations would be tested. For example, for N =20 and
M=2 this means that the number of possible combinations of
integer variables decreases from approximately 1012 to 462.
In general, for a �xed M the worst-case complexity grows
as NM . Note that this simpli�cation is possible since the
nonlinearity is one dimensional, which allows an ordering
of the breakpoints and of the output data.

7. State–space realizations

In the recent literature on hybrid systems, several for-
malisms for describing di4erent system classes have

emerged that are tailored to the analysis (stability, reach-
ability) of hybrid systems or the synthesis of control and
monitoring schemes. Many of such analysis and synthe-
sis tools are based on a piecewise a ne (PWA) (Sontag,
1981) or a mixed logical dynamical (MLD) (Bemporad &
Morari, 1999) representation of the hybrid model. In or-
der to bridge the identi�cation process with the following
analysis/synthesis task, we provide here simple results that
immediately allow mapping the HHARX or W-PWARX
models, obtained from data, into MLD and PWA models,
more suitable for analysis/synthesis purposes.

7.1. MLD realization

Mixed logical dynamical (MLD) systems (Bemporad &
Morari, 1999) are a discrete-time formalism for systems
containing both continuous and boolean/discrete variables.
The key idea is to transform the Boolean variables into 0-1
integers, and to express the relations as mixed-integer linear
inequalities, similarly to what was done in (11) and (31).
The MLD model has the form

1t+1 = 21t + G1ut + G2�t + G3zt ; (38a)

yt =H1t +D1ut +D2�t +D3zt ; (38b)

E2�t + E3zt6E1ut + E41t + E5; (38c)
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where 1∈Rnc × {0; 1}n‘ is a vector of continuous and bi-
nary states, u∈Rmc × {0; 1}m‘ are the inputs, y∈Rpc ×
{0; 1}p‘ the outputs, �∈{0; 1}r‘ , and z ∈Rrc are auxiliary
variables.
By de�ning 1t = [yt−1 : : : yt−na ut−1 : : : ut−nb]

′, where
na+ nb+1= n is the dimension of the regressor vector (cf.
Eq. (4)), and auxiliary variables �it , zit similarly to what
was done in (9)–(11), it is immediate to prove the following
proposition.

Proposition 8. HHARX models (6) admit an MLD state–
space realization with na + nb states.

The following proposition links W-PWARX systems to
MLD systems.

Proposition 9. W-PWARX models (28) admit an MLD
state–space realization with na states.

Proof. Let 1t = 21t−1 + G1ut , xt = C1t , yt = C1t − O-0 +∑M
i=1±max{ O.iC1t− O-i; 0} be a minimal state–space realiza-

tion of (28a). De�neM auxiliary binary variables [�it=1]↔
[ O.iC1t − O-i¿ 0] and M continuous variables zit =( O.iC1t −
O-i)�it . With translations into mixed-integer inequalities as in
(11) or Bemporad and Morari (1999), the MLD form can
be immediately obtained.

7.2. PWA realization

Analogously to what was de�ned in (2), a PWA state–
space system is de�ned as

1t+1 = Aj1t + Bjut + fj

yt = Cj1t + Djut + gj

for

[
1t

ut

]
∈Cj; (39)

where 1∈Rn, and {Cj}s−1
j=0 is a polyhedral partition of the

combined state-input-space. The following propositions can
be obtained as corollaries of the equivalence between MLD
and PWA systems (Bemporad et al., 2000a), and allows
to construct a PWA state–space realization of (28) via the
above MLD realization.

Proposition 10. HHARX models (6) admit a PWA state–
space realization (39) with na + nb states and at most 2M

regions.

Proposition 11. W-PWARX models (28) admit a PWA
state–space realization (39) with na states and at most 2M

regions.

Linear complementary (LC), Extended linear comple-
mentary (ELC), and Min–max-plus scaling (MMPS) state–
space realizations can also be obtained by exploiting the
equivalences described in Heemels et al. (2001).

8. Conclusions

In this paper we have addressed the problem of identi�-
cation of hybrid dynamical systems, by focusing our atten-
tion on piecewise a ne (PWARX), hinging hyperplanes
(HHARX), and Wiener piecewise a ne (W-PWARX) au-
toregressive exogenous models. In particular, for the two
latter classes we have provided algorithms that always
converge to the global optimum, based on mixed-integer
linear or quadratic programming. As a possible step in the
direction towards faster suboptimal algorithms based on the
mixed-integer approach, we have also proposed a subopti-
mal sliding window algorithm for HHARX models, for the
case when the estimation data not so frequently switches
between the di4erent submodels.
Several problems remain open, such as the choice of

persistently exciting input signals u for identi�cation (i.e.,
that allow for the identi�cation of all the a ne dynam-
ics), and criteria like Akaike’s criterion for choosing the
best order and number of hinging pairs in HHARX models.
There may also be possibilities for improving the computa-
tional e ciency by exploiting the structures of the speci�c
MILP/MIQP problems.
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