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a b s t r a c t

Although linear Model Predictive Control has gained increasing popularity for controlling dynamical
systems subject to constraints, the main barrier that prevents its widespread use in embedded
applications is the need to solve aQuadratic Program (QP) in real-time. This paper proposes a dual gradient
projection (DGP) algorithm specifically tailored for implementation on fixed-point hardware. A detailed
convergence rate analysis is presented in the presence of round-off errors due to fixed-point arithmetic.
Based on these results, concrete guidelines are provided for selecting the minimum number of fractional
and integer bits that guarantee convergence to a suboptimal solution within a pre-specified tolerance,
therefore reducing the cost and power consumption of the hardware device.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Model Predictive Control (MPC) technology is widely popular
in many industrial applications due to explicit performance opti-
mization, and its straightforward handling of constraints on inputs,
outputs and states (Bemporad, 2006;Mayne & Rawlings, 2009). An
MPC controller relies on solving a Quadratic Program to minimize
input efforts and the difference between predicted outputs and de-
sired set-points. The fact that a QP needs to be solved within each
sampling period has initially limited the diffusion ofMPC technolo-
gies to low-bandwidth applications where high computational re-
sources are available, as in the chemical and refinery industries.
However, in the last years an increasing interest in embeddedMPC
solutions is spreading inmany other industries, such as automotive
and aerospace.

EmbeddingMPC on a hardware platformposes quite a few chal-
lenges, both from a system-theoretic and an optimization point of
view. Specifically, the main requirements that make a QP solver
suitable for embedded MPC are the following: (a) the algorithm
should be simple enough to be implemented on simple hardware
platforms; (b) one must be able to compute a bound on its worst-
case execution time for computing a (reasonably good) solution;
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(c) stability and invariance guarantees for the resulting closed-loop
system must be provided despite suboptimality and/or infeasibil-
ity of the solution; (d) the algorithm should be robust to low preci-
sion arithmetic, i.e., the effect of round-off errors should be small,
no overflow should occur, and one should be able to determine a
priori the behavior of the algorithm under such hypotheses.

Ling et al. detailed in Ling, Yue, and Maciejowski (2006) an
FPGA implementation of an interior-point method for solving the
QP problem, showing that the ‘‘MPC-on-a-chip’’ idea is indeed
viable. Later, Knagge et al. proposed an active-set QP solver for
ASIC and FPGA (Knagge,Wills, Mills, & Ninness, 2009), and tested it
for MPC control of nonlinear systems. A ‘‘QP-on-a-chip’’ controller
implemented on FPGA with an iterative linear solver was tested in
hardware-in-the-loop experiments in Hartley et al. (2012).

All of the solvers proposed in such contributions require
floating-point numbers. However, when trying to minimize com-
putational effort, power consumption, and chip size, a great
positive impact is given by the choice of fixed-point number rep-
resentation (Kerrigan, Jerez, Longo, & Constantinides, 2012). Nev-
ertheless, this significant improvement in performance comes at
the price of a reduced range in which numbers can be represented
and round-off errors (Wilkinson, 1994). Because of this, algorithms
that perform well in floating-point may perform much worse
(even completely wrongly) in fixed-point. Therefore, additional
challenges arise when dealing with fixed-point arithmetic, mainly
studying round-off error accumulationduring algorithm iterations,
and establishing bounds on the magnitude of the computed vari-
ables to avoid overflows. In Jerez, Constantinides, and Kerrigan
(2012) an implementation of a modified interior-point solver in
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fixed-point is presented. The authors focus on the solution of the
linear system required in each algorithm iteration, and propose a
preconditioning technique tailored to prevent overflow errors as
well as a detailed analysis of the effects of the round-off error.

Recently, the use of first-order methods, and in particular fast
gradient methods developed by Nesterov (2004), has been ad-
vocated as a viable candidate for embedded optimization-based
control (Bemporad & Patrinos, 2012; Patrinos & Bemporad, 2012;
Richter, Jones, & Morari, 2009; Richter, Morari, & Jones, 2011).
Thesemethods can compute a suboptimal solution in a finite num-
ber of iterations,which can be bounded a priori, and they are simple
enough (usually requiring only matrix–vector products) for hard-
ware implementation. In particular, the accelerated DGP method
proposed in Bemporad and Patrinos (2012) and Patrinos and Bem-
porad (2012), called GPAD, can be applied to linear MPC problems
with general polyhedral constraints and with guaranteed global
primal convergence rates. In Rubagotti, Patrinos, and Bemporad
(2014) results of Patrinos and Bemporad (2012) are exploited to
show how GPAD can be used in MPC to provide invariance, stabil-
ity and performance guarantees in a finite number of iterations for
the closed-loop system.

1.1. Contribution

In this work, we propose a DGP method, which can be seen
as a simplified (non-accelerated) version of GPAD, specifically tai-
lored for fixed-point implementation. The main contribution of
this work is that we provide a detailed convergence rate and
asymptotic error analysis in terms of primal cost and primal fea-
sibility in the presence of round-off errors due to fixed-point arith-
metic, thus addressing successfully the last of the requirements
described previously for embedded optimization-based control. In
addition to that, we give specific guidelines on the number of frac-
tional bits that certify the convergence to a target suboptimal so-
lution, as well as on the number of integer bits to avoid overflow
errors. The machinery we use to perform the analysis is based
on the notion of the inexact oracle proposed by Devolder, Glineur,
and Nesterov (2013). However, directly applying the results of De-
volder et al. (2013) to our dual gradient projection method would
only provide us with convergence rate estimates about the quality
of the dual and not the primal iterates of the algorithm.

The reason for limiting the analysis to the non-accelerated
version of GPAD is that accelerated methods suffer from error
accumulation, as shown in Devolder et al. (2013). In Nedelcu and
Necoara (2012) andNedelcu, Necoara, and Dinh (2013) the authors
analyze the convergence rate of inexact gradient augmented
Lagrangian methods for constrained MPC, where the source of
inexactness comes from suboptimal solution of the so called inner
problem. In the present work, the source of inexactness comes
from round-off errors due to the fixed-point implementation.

1.2. Structure of the paper

After introducing some notation at the end of this section and
motivating thework in Section 2, in Section 3we give general theo-
retical results when a gradient projection (GP) algorithm runswith
an inexact oracle. In Section 4 an inexactDGPmethod is applied to a
modified version of the dual problemand its convergence ratewith
respect to primal suboptimality and infeasibility is analyzed. In
Section 5, the general results of the proposed inexact DGP method
are applied to the case of QP based on a fixed-point implemen-
tation. Simulation results and experiments on low-cost hardware
boards are presented in Section 6. Finally, conclusions are drawn
in Section 7.
The main technical contribution of this paper has appeared in
Patrinos, Guiggiani, and Bemporad (2013) without providing the
proofs of the theoretical results, that are providedhere in full detail.

The notation adopted throughout the paper is standard. Let
R, N, Rn, Rm×n denote the sets of real numbers, nonnegative
integers, column real vectors of length n, andm by n real matrices,
respectively. The transpose of a matrix A ∈ Rm×n is denoted by A′.
For any nonnegative integers k1 ≤ k2, the finite set {k1, . . . , k2}
is denoted by N[k1,k2]. For z ∈ Rn, ΠZ (z) denotes its Euclidean
projection on the set Z ⊆ Rn, while [z]+ denotes its Euclidean
projection on the nonnegative orthant, i.e., the vector whose ith
coordinate is max{zi, 0}. For a vector z ∈ Rn, ∥z∥ and ∥z∥∞

denote the Euclidean and infinity norm of z respectively, while if
A ∈ Rm×n, ∥A∥ denotes the spectral norm of A (unless otherwise
stated).

2. Motivation

When performing computations on low-cost, low-power em-
bedded devices, the adoption of a fixed-point number represen-
tation can have a great positive impact in terms of computational
speed. However, this comes at the price of a reduced precision and
a reduced range when compared to floating-point representation,
leading to the occurrence of round-off and overflow errors.

Suppose that an algorithm is running on a fixed-point hardware
with a scaling factor 2−p, where p ∈ N+ is the number of fractional
bits, and assume that real numbers are represented in fixed-
point by rounding to the closest value. Therefore, the resolution
(i.e., the smallest representable non-zero magnitude) of a fixed-
point number is equal to 2−(p+1).

It is obvious that addition and subtraction do not result in
any loss of accuracy due to rounding. However, multiplication can
suffer from rounding. In specific, multiplying two scalars ζ =

γ ξ leads to the fixed-point representation fi(ζ ) of ζ , with |ζ −

fi(ζ )| ≤ 2−(p+1).
For x, y ∈ Rn let fi(x′y) ,

n
i=1 fi(xiyi). Then the round-off

error for the inner product of x and y can be bounded as follows:

|x′y − fi(x′y)| ≤ 2−(p+1)n. (1)

If A is anm × nmatrix and x is an n-vector, then

∥Ax − fi(Ax)∥∞ ≤ 2−(p+1)n. (2)

Quadratic Programming algorithms based on Gradient Projec-
tion method require, at each iteration, the computation of the gra-
dient for the cost function. In a fixed-point architecture, instead of
the exact gradient ∇Φ(·), we have access to an approximate for-
mulation ∇̃Φ(·).

Convergence proofs have therefore to be reformulated in order
to take into account of this approximation. In addition to that, it is
of interest to find direct links between the fixed-point precision
and bounds on the gradient error, as well as solution quality.
Finally, bounds on the magnitude of all the variables are required
such that the number of integer bits can be chosen to avoid the
occurrence of overflow errors. All these topics will be covered in
the next sections.

3. Inexact gradient projection

Consider the problem

minimize Φ(y) (3)
subject to y ∈ Y ,

where Y is a nonempty closed convex subset of Rm, andΦ : Rm
→

R is convex, LΦ-smooth, i.e., there exists a LΦ > 0 such that

∥∇Φ(y) − ∇Φ(w)∥ ≤ LΦ∥y − w∥, y, w ∈ Rm.
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We assume that Φ⋆ , infy∈Y Φ(y) is finite and Y ⋆ , argminy∈Y
Φ(y) is nonempty. The goal is to find an approximate solution of
(3) by applying the GP method

y(ν+1) = ΠY


y(ν) −

1
LΦ

∇Φ(y(ν))


. (4)

However, it is assumed that the gradient of Φ cannot be computed
exactly. Instead, we have at our disposal an inexact oracle
(Devolder et al., 2013), according to the following definition.

Definition 1. Φ : Rm
→ R is equipped with a first-order (δ, L)-

oracle if for any w ∈ Rm one can compute a pair (Φδ,L(w), sδ,L(w))
∈ R × Rm such that

0 ≤ ∆δ,L(y; w) ≤
L
2
∥y − w∥

2
+ δ, ∀y ∈ Rm, (5)

where ∆δ,L(y; w) , Φ(y)− ℓδ,L(y; w), and ℓδ,L(y; w) , Φδ,L(w)+

sδ,L(w)′(y − w).

Now, there is a difference in the implementation of GP (4) with
the inexact oracle

y(ν+1) = ΠY

y(ν) −

1
L sδ,L(y(ν))


. (6)

Notice that in the inexact GP method (6), sδ,L(y(ν)) is used instead
of ∇Φ(y(ν)) and the constant L, appearing in (5), is used instead of
the Lipschitz constant LΦ .

We will now introduce two lemmas, essential in proving
convergence rates for both primal and dual versions of inexact GP;
the first is a direct extension of Chen and Teboulle (1993, Lemma
3.2) in the inexact case and therefore its proof is omitted.1

Lemma 2. Let {y(ν)} be generated by iterating (6) from any y(0) ∈ Y .
For any y ∈ Y and ν ∈ N

ℓδ,L(y(ν+1); y(ν)) +
L
2∥y(ν+1) − y(ν)∥

2

≤ ℓδ,L(y; y(ν)) +
L
2∥y(ν) − y∥2

−
L
2∥y(ν+1) − y∥2. (7)

Lemma 3. Let {y(ν)} be generated by iterating (6) from any y(0) ∈ Y .
For any y ∈ Y and ν ∈ N

ν
i=0

(Φ(y(i+1)) − Φ(y)) +

ν
i=0

∆δ,L(y; y(i))

+
L
2∥y − y(ν+1)∥

2
≤

L
2∥y − y(0)∥

2
+ (ν + 1)δ. (8)

Proof. By the second part of (5) and Lemma 2

Φ(y(ν+1)) ≤ ℓδ,L(y(ν+1); y(ν)) +
L
2∥y(ν+1) − y(ν)∥

2
+ δ

≤ ℓδ,L(y; y(ν)) +
L
2∥y − y(ν)∥

2

−
L
2∥y − y(ν+1)∥

2
+ δ, (9)

or

Φ(y(ν+1)) − Φ(y) + ∆δ,L(y; y(ν)) +
L
2∥y − y(ν+1)∥

2

≤
L
2∥y − y(ν)∥

2
+ δ. (10)

Summing over 0, . . . , ν we arrive at (8). �

1 In Chen and Teboulle (1993, Lemma 3.2) the property is proved for general
Bregman distances, see also Bertsekas (2009) and Tseng (2008).
Remark 4. Lemma 3 is the main difference of our analysis com-
pared to that of Devolder et al. (2013). It provides key inequality
(8) that will allow us to derive convergence rate estimates not only
for the primal version of inexact GP (as it is already done in De-
volder et al., 2013) but also for its dual counterpart. This way we
will be able to deduce convergence rate estimates for primal fea-
sibility and optimality in fixed-point implementations of DGP for
MPC problems.

The next theorem provides convergence rate estimates for the
inexact primal GP scheme (6). The theorem has already appeared
in Devolder et al. (2013, Theorem 4). However, since our proof can
be easily inferred by Lemma 3, we include it for completeness.

Theorem 5. Let {y(ν)}ν∈N be generated by iterating (6) from any
y(0) ∈ Y and let ȳ(ν+1) , 1

ν+1

ν
i=0 y(i+1). Then

Φ(ȳ(ν+1)) − Φ⋆
≤

L
2(ν+1)∥y

⋆
− y(ν)∥

2
+ δ. (11)

Proof. Putting y = y⋆ in (8), dropping the terms
ν

i=0 ∆δ,L(y⋆
; y(i))

and L
2∥y

⋆
− y(ν+1)∥

2 since they are nonnegative, and dividing by
(ν + 1), we arrive at

1
(ν+1)

ν
i=0

(Φ(y(i+1)) − Φ⋆) ≤
L

2(ν+1)∥y
⋆
− y(0)∥

2
+ δ. (12)

Since Φ is convex one has Φ(ȳ(ν+1)) ≤
1

(ν+1)

ν
i=0 Φ(y(i+1)),

proving (11). �

4. Inexact dual gradient projection

Consider the problem

minimize V (z) (13)
subject to g(z) ≤ 0.

We call (13) the primal problem and we assume it to be feasible. In
(13), V : Rn

→ R is a differentiable, strongly convex function with
convexity parameter κV , i.e.,

(∇V (z1) − ∇V (z2))′(z1 − z2) ≥ κV∥z1 − z2∥2

for all z1, z2 ∈ Rn, and g(z) = Az−b, b ∈ Rm. The unique solution
of (13) is denoted by z⋆. Our ultimate goal is to compute an (εV , εg)-
optimal solution for (13), defined as follows.

Definition 6. Consider two nonnegative constants εV , εg . Vector z
is an (εV , εg)-optimal solution for (13) if

V (z) − V ⋆
≤ εV (14a)

∥[g(z)]+∥∞ ≤ εg , (14b)

where (14a) is a bound on the solution suboptimality, i.e. the
discrepancy between the optimal and the achieved cost function
values, and (14b) is a bound on the solution infeasibility, i.e. the
maximal constraint violation.

Next, we consider the Lagrangian function of problem (13)

L(z, y) = V (z) + y′g(z).

The (negative of the) dual problem of (13) can be expressed as (3),
with the convex function Φ : Rm

→ R given by

Φ(y) = − inf
z∈Rn

L(z, y) (15)

and Y = Rm
+
, i.e., the nonnegative orthant (we refer the reader to

Bertsekas (1999, 2009) and Bertsekas, Nedic, and Ozdaglar (2003)
for standard results on Lagrangian duality).
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For the rest of the paper we assume that there is no duality gap,
i.e., V ⋆

= −Φ⋆. This assumption is fulfilled if, for example, Problem
(13) is a convex quadratic program that is feasible, or the Slater
condition holds (Bertsekas, 1999, 2009; Bertsekas et al., 2003).
Since V is strongly convex, z⋆

y = argminz∈RnL(z, y) is unique for
any y ≥ 0, and Φ is LΦ-smooth with LΦ = ∥A∥

2/κV (Nesterov,
2005). The gradient of Φ is given by

∇Φ(y) = −g(z⋆
y ). (16)

Furthermore, we can obtain the unique optimal solution of (13)
from any dual optimal solution y⋆

∈ Y ⋆ via

z⋆
= argmin

z∈Rn
L(z, y⋆). (17)

The gradient projection algorithm applied to the dual problem (15)
becomes (for a given y(0))

z(ν) = argmin
z∈Rn

L(z, y(ν)) (18a)

y(ν+1) =


yν +

1
LΦ

g(z(ν))


+

. (18b)

Next, assume that for every y ∈ Y , instead of ∇Φ(y) = −g(z⋆
y ),

one can only calculate an approximate gradient

∇̃Φ(y) = −g(zy) + ξ, (19)

where

∥zy − z⋆
y∥ ≤ ϵz, ∥ξ∥ ≤ ϵξ , (20)

for given positive constants ϵz, ϵξ .

4.1. Modified primal–dual pair

The goal is to construct a first-order inexact oracle for Φ (cf.
(15)) with sδ,L(y) = ∇̃Φ(y). Convergence-rate results for GPmeth-
ods in the presence of an additive disturbance ξ require the con-
straint set Y of (3) to be bounded (d’Aspremont, 2008; Devolder,
2012). For this reason, the dual problem (3) will be modified in or-
der to have a bounded constraint set. Let d ∈ Rm be such that its
ith element satisfies

di ≥ max{y⋆
i , 1} (21)

for some y⋆
∈ Y ⋆, and

Yα , {y ∈ Rm
| 0 ≤ y ≤ αd}, α ≥ 1. (22)

Furthermore, let D , ∥d∥ and Dα , maxy1,y2∈Yα ∥y1 − y2∥ = αD,
the diameter of Yα . Next, we consider the following modified dual
problem

minimize Φ(y) (23)
subject to y ∈ Yα.

Obviously we have Y ⋆
α , argminy∈Yα

Φ(y) ⊆ Y ⋆, therefore any op-
timal solution of the modified dual problem (23) is also a solution
of the original dual problem. Hence, one can compute an optimal
solution for (23) and recover the optimal solution for (13) via (17).

Remark 7. In principle, determining a vector d such that (21) holds
requires one to know bounds on the elements of a dual optimal
solution. If (13) is a parametric QP, as in embedded linear MPC,
then tight uniform bounds (valid for every admissible parameter
vector) can be computed using techniques described in Patrinos
and Bemporad (2014). In fact, one has to compute such bounds
anyway, since they are imperative for determining the worst-case
number of iterations, and consequently the worst-case running
time of the algorithm, a central concern in embedded optimization
applications (see, e.g., Bemporad & Patrinos, 2012, Patrinos &
Bemporad, 2012 and Richter et al., 2011).
4.2. Inexact oracle

We are now ready to derive an inexact oracle forΦ on Yα under
assumptions (19), (20).

Proposition 8. Consider Φ given by (15). The pair

Φδ,L(y) = −L(zy, y) − αDϵξ , (24a)

sδ,L(y) = ∇̃Φ(y) = −g(zy) + ξ (24b)

furnishes a (δα, L)-oracle for Φ on Yα , where δα , LV ϵ2
z + 2αDϵξ ,

L , 2
κV

∥A∥
2.

Proof. Since L(·, y) is LV -smooth and z⋆
y is its unconstrained

minimum, we have that

L(zy, y) − L(z⋆
y , y) ≤

LV
2 ∥zy − z⋆

∥
2.

Therefore, ∥zy − z⋆
∥ ≤ ϵz implies

L(zy, y) − L(z⋆
y , y) ≤

LV
2 ϵ2

z . (25)

In Devolder et al. (2013, Section 3.2) it is shown that if for every
y ∈ Yα one is able to compute a zy such that (25) is satisfied, then
(−L(zy, y), −g(zy)) is a (LV ϵ2

z , L)-oracle for Φ . Next consider any
w, y ∈ Yα and ξ such that ∥ξ∥ ≤ ϵξ . We have

Φ(w) = −L(z⋆
w, w) ≥ −L(zy, w)

≥ −L(zy, y) − g(zy)′(w − y)
= −L(zy, y) + (−g(zy) + ξ)′(w − y) − ξ ′(w − y)

≥ Φδ,L(y) + sδ,L(y)′(w − y), (26)

where the first inequality follows from (15) and z⋆
w = argminz∈Rn

L(z, w), the second inequality by the fact that (−L(zy, y), −g(zy))
is a (LV ϵ2

z , L)-oracle for Φ and the left part of (5), and the last
inequality by Cauchy–Schwarz and (24). On the other hand

Φ(w) ≤ −L(zy, y) − g(zy)′(w − y) +
L
2∥w − y∥2

+ LV ϵ2
z

≤ −L(zy, y) + (−g(zy) + ξ)′(w − y)

− ξ ′(w − y) +
L
2∥w − y∥2

+ LV ϵ2
z

≤ −L(zy, y) + (−g(zy) + ξ)′(w − y)

+
L
2∥w − y∥2

+ LV ϵ2
z + αDϵξ

= Φδ,L(y) + sδ,L(y)′(w − y) +
L
2∥w − y∥2

+ LV ϵ2
z + 2αDϵξ . (27)

where the first inequality follows from the fact that (−L(zy, y),
−g(zy)) is a (LV ϵ2

z , L)-oracle forΦ and the right part of (5), the third
inequality by Cauchy–Schwarz, and the equality by (24). Therefore,
(Φδ,L(y), sδ,L(y)) given by (24) is a (δα, L)-oracle for Φ on Yα . �

Notice that the oracle error δα decreases with α, achieving its
minimum value for α = 1. Furthermore, the bounding of the dual
feasible set is essential (cf. (22)), otherwise it would not be possible
to bound quantities such as ∥w − y∥, for any w, y ≥ 0.

4.3. Primal convergence rates

Under the assumptions imposed by (19), (20), the ν-th iteration
of the inexact DGP scheme applied to Problem (23) with the first-
order oracle given by Proposition 8 is

y(ν+1) = ΠYα (y(ν) +
1
L (g(z(ν)) + ξ(ν))),

with z(ν), ξ(ν) s.t. ∥z(ν) − z⋆
y(ν)

∥ ≤ ϵz, ∥ξ(ν)∥ ≤ ϵξ . (28)

The Euclidean projection onto Yα is very easy to compute, since for
w ∈ Rm we have ΠYα (w) = max{min{w, αd}, 0}.
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We will next derive global convergence rates to primal
optimality and primal feasibility for the ergodic primal iterates

z̄(ν) , 1
ν+1

ν
i=0

z(i). (29)

First, the following lemma is needed.

Lemma 9. Let {y(ν), z(ν)} be generated by iterating (28) from any
y(0) ∈ Yα . For any y ∈ Yα and ν ∈ N

L(z̄(ν), y) − V ⋆
≤

L
2(ν+1)∥y − y(0)∥

2
+ δα. (30)

Proof. For any y ∈ Yα , one has

∆δ,L(y; y(ν)) = Φ(y) + L(z(ν), y(ν))

+ αDϵξ + (g(z(ν)) − ξ(ν))
′(y − y(ν))

≥ Φ(y) + V (z(ν)) + αDϵξ + g(z(ν))
′y

− ∥ξ(ν)∥ ∥y − y(ν)∥

≥ Φ(y) + L(z(ν), y), (31)

where the equality follows from (24), the first inequality by
Cauchy–Schwarz and the second one by (20) and the fact that y(ν)

belongs to Yα . Summing over 0, . . . , ν
ν

i=0

∆δ,L(y; y(i)) = (ν + 1)Φ(y) +

ν
i=0

L(z(ν), y)

≥ (ν + 1)(Φ(y) + L(z̄(ν), y)), (32)

where the inequality follows by convexity of L(·, y) for any fixed
nonnegative y ∈ Yα . Dropping L

2∥y − y(ν+1)∥
2 from (8), using (32)

and the convexity of Φ , we obtain

Φ(ȳ(ν+1)) + L(z̄(ν), y) ≤
L

2(ν+1)∥y − y(0)∥
2
+ δα. (33)

Finally, using Φ(ȳ(ν+1)) ≥ −V ⋆ we arrive at (30). �

The next theorem gives the convergence rate towards primal
feasibility for the ergodic primal iterates generated by the inexact
dual GP (28).

Theorem 10 (Bound on Primal Infeasibility). Let {y(ν), z(ν)} be
generated by iterating (28) from any y(0) ∈ Yα . If α > 1, then for
any ν ∈ N

∥[gi(z̄(ν))]+∥∞ ≤
α2

α−1
LD2

2(ν+1) + δg
α, (34)

where δg
α , 1

α−1 LV ϵ2
z +

α
α−12Dϵξ .

Proof. Maximizing both sides of (30) with respect to y ∈ Yα and
using

max
y∈Yα

L(z̄(ν), y) = V (z̄(ν)) + α

m
i=1

di[gi(z̄(ν))]+ (35)

we obtain

V (z̄(ν)) − V ⋆
+ α

m
i=1

di[gi(z̄(ν))]+ ≤
LD2

2(ν+1)α
2
+ δα. (36)

Choose a y⋆
∈ Y ⋆

α with y⋆
≤ d (it exists by definition of d).

By the saddle-point inequality, we have that V ⋆
= L(z⋆, y⋆) ≤

L(z̄(ν), y⋆), or

V (z̄(ν)) − V ⋆
≥ −g(z̄(ν))

′y⋆
≥ −[g(z̄(ν))]

′

+
y⋆. (37)
Using this in (36), we arrive at

m
i=1

(αdi − y⋆
i )[gi(z̄(ν))]+ ≤

LD2

2(ν+1)α
2
+ δα. (38)

Since α > 1 and y⋆
≤ d,

m
i=0

(αdi − y⋆
i )[gi(z̄(ν))]+ ≥ (α − 1) min

i∈N[1,m]

{di} ·

m
i=1

[gi(z̄(ν))]+

≥ (α − 1)∥[gi(z̄(ν))]+∥∞, (39)

where the last inequality follows from (21). Therefore

∥[g(z̄(ν))]+∥∞ ≤
α2

α−1
LD2

2(ν+1) +
δα

(α−1) . � (40)

Notice that there is a trade-off in (34) between the constant of
the O(1/ν) term determining the convergence rate to feasibility,
and the maximum level of infeasibility that one is able to tolerate,
asymptotically. Asα → ∞, δg

α approaches its infimum, 2Dϵξ , while
α2

α−1 → ∞. By choosing α = 2 (the one that minimizes α2

α−1 ) we
arrive at

∥[g(z̄(ν))]+∥∞ ≤
2LD2

ν+1 + LV ϵ2
z + 4Dϵξ . (41)

Theorem 11 (Bound on Primal Suboptimality). Let {y(ν), z(ν)} be
generated by iterating (28) from any y(0) ∈ Yα . Then

V (z̄(ν)) − V ⋆
≤

L
2(ν+1) (∥y

⋆
∥
2
+ ∥y(0)∥

2) + δα, (42a)

V (z̄(ν)) − V ⋆
≥ −


α2

α−1
LD2

2(ν+1) + δg
α


D. (42b)

Proof. Choose y⋆
∈ Yα with y⋆

≤ d. By substituting y = ȳ⋆
≥ 0 in

(30), where

ȳ⋆
i =


y⋆
i , if gi(z̄(ν)) ≥ 0,

0, if gi(z̄(ν)) < 0,

and dropping the term g(z̄(ν))
′ȳ⋆ since it is nonnegative, we obtain

V (z̄(ν)) − V ⋆
≤

L
2(ν+1)∥ȳ

⋆
− y(0)∥

2
+ δα. (43)

Now

∥ȳ⋆
− y(0)∥

2
= ∥ȳ⋆

∥
2
− 2y′

(0)ȳ
⋆
+ ∥y(0)∥

2

≤ ∥y⋆
∥
2
+ ∥y(0)∥

2, (44)

since ∥ȳ⋆
∥ ≤ ∥y⋆

∥ and 2y′

(0)ȳ
⋆

≥ 0. Therefore using the last
inequality in (43), we arrive at (42a). To prove (42b), using (37)
and Cauchy–Schwarz we obtain

V (z̄(ν)) − V ⋆
≥ −

[g(z̄(ν))]+
 ∥y⋆

∥. (45)

Using (34), and a y⋆ with ∥y⋆
∥ ≤ d we get (42b). �

Notice that the constant of the O(1/ν) term in (42a) is
independent of α. In fact, if iterations (28) start from y(0) = 0, then
the cost V (z̄(ν)) is always lower than V ⋆

+ δα , the best achievable
by the corresponding scheme asymptotically, as it is shown below.
In that case, one has to worry only about feasibility.

Corollary 12. Let {y(ν), z(ν)} be generated by iterating (28) starting
from y(0) = 0. Then

V (z̄(ν)) − V ⋆
≤ δα, ∀ν ∈ N. (46)

Proof. Simply put y = 0 in (30). �
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4.4. Optimal choice of α for fixed oracle errors ϵz , ϵξ

We will next derive the value of the user-defined parameter α
that achieves the fastest convergence rate to an (εV , εg)-solution,
given oracle parameters ϵz , ϵξ . For simplicity, we assume that the
initial iterate is equal to the zero vector, i.e., y(0) = 0. In that
case one should onlyworry about convergence to primal feasibility
since, due to Corollary 12, V (z̄(ν)) − V ⋆

≤ δα , for every ν ∈ N+.
First, one must have εV ≥ δα , or

α ≤
εV − LV ϵ2

z

2Dϵξ

. (47)

Regarding εg , for sure it must be larger than 2Dϵξ , the infimum of
δg
α . Furthermore, by (34) it must satisfy εg ≥ δg

α , implying that α
must satisfy

α >
εg + LV ϵ2

z

εg − 2Dϵξ

. (48)

Notice that the right hand-side of (48) is greater than one, since
εg > 2Dϵξ . Eqs. (47), (48), pose the following restriction

εV >
εg(LV ϵ2

z + 2Dϵξ )

εg − 2Dϵξ

. (49)

4.5. Bound of the number of iterations

In order to achieve ∥[gi(z̄(ν))]+∥∞ ≤ εg , according to Theo-
rem 10 the algorithm defined by (28) will need no more than ν(α)
iterations, where

ν(α) =
LD2α2

2(εg − 2Dϵξ )α − 2(εg + LV ϵ2
z )

− 1. (50)

The tightest upper-bound on the number of iterations is given by
the next theorem.

Theorem 13. Suppose that εg > 2Dϵξ , and let εV satisfy (49). Then
an (εV , εg)-solution is obtained by iterating (28) from y(0) = 0 with
α = α⋆,

α⋆ , min


2(εg+LV ϵ2z )

εg−2Dϵξ
,

εV −LV ϵ2z
2Dϵξ


, (51)

no more than ν(α⋆) times, where ν(α) is given by (50).

Proof. Let c1 = LD2, c2 = 2(εg − 2Dϵξ ), c3 = 2(εg + LV ϵ2
z ).

Then ν(α) =
c1α2

c2α−c3
. The fastest convergence rate is achievedwhen

α = α⋆ , argmin{ν(α)|α ∈ [α, α]}, where α =
c3
c2
, α =

εV −LV ϵ2z
2Dϵξ

.

Function ν(α) is convex on [α, α] since ν ′′(α) =
2c1c23

(c2α−c3)3
≥ 0, for

α ≥ α. Setting its derivative equal to zero, we find α =
2c3
c2

, which
is the first term in the min operator in (51). �

For the nominal case (ϵz = ϵξ = 0), from (51) we obtain α⋆
= 2.

4.6. Maximum admissible oracle errors ϵz , ϵξ

Based on the results of Section 4.3, we will give explicit
formulae of the maximum admissible oracle errors ϵz , ϵξ as a
function of solution accuracy εV , εg , and consequently of the
number of iterations that are executed.

The question just posed is of significant importance in em-
bedded optimization-based control, like MPC, for the following
reason. Given hard real-time constraints dictated by hardware
specifications and sampling time, as well as sufficiently small
values for εV , εg , that guarantee closed-loop stability (seeRubagotti
et al., 2014), one wants to determine the smallest allowable oracle
precision (maximum allowable values for ϵz , ϵξ ) that achieves the
aforementioned requirements. As it will become clear in Section 5,
ϵz , ϵξ correspond to round-off errors due to fixed-point arithmetic.
The smaller the number of fractional bits is (i.e., the larger themax-
imum allowable oracle errors), the smaller the execution time and
the power consumption of the hardware device will be.

Again, for simplicity we assume that y(0) = 0. Moreover, we
suppose that ϵξ = βϵz , for some β > 0. This last assumption is
justified in Section 5. Finally, it is assumed that α = 2, since for
small ϵz , ϵξ this is usually the best choice. First, from (41), we have

2LD2

ν+1 + LV ϵ2
z + 4Dβϵz ≤ εg . (52)

By solving with respect to ϵz , we arrive at

ϵz ≤


εg
LV

+


2Dβ

LV

2
−

2LD2

LV (ν+1) −
2Dβ

LV
. (53)

Due to Corollary 12, one must have δ2 ≤ εV , or

ϵz ≤


εV
LV

+


2Dβ

LV

2
−

2Dβ

LV
. (54)

Letting ν → ∞ in (53), and taking into account that
ε/LV + (2Dβ/LV )2 is increasing as a function of ε, we conclude

that, in order to be able to converge asymptotically to an (εV , εg)-
solution, ϵz must satisfy

ϵz <


ε
LV

+


2Dβ

LV

2
−

2Dβ

LV
, (55)

where ε = min{εg , εV }. It is worth mentioning that the maximum
oracle error ϵz , that allows one to reach accuracy ε decreases as
O(

√
ε), slower than O(ε) for ε < 1 (which is usually the case of

interest).

5. Fixed-point DGP for QPs

The theory presented in Section 4 allows us to analyze the fixed-
point implementation of the DGP algorithm defined by (18) for
strictly convex quadratic programs. Consider problem (13) with
V (z) =

1
2 z

′Qz + q′z and let κV = λmin(Q ) > 0. The dual problem
(modulo a sign change) is (3) with Φ(y) =

1
2y

′Hy + h′y, and
Y = Rm

+
, where H = AQ−1A′, h = AQ−1q + b. Furthermore,

z⋆
y = Ey + e, (56)

where E = −Q−1A′, e = −Q−1q. Therefore, the DGP iterations
(18) lead to the following algorithm (y(0) = 0)

z(ν) = Ey(ν) + e (57a)

g(ν) = Az(ν) − b (57b)

y(ν+1) =

y(ν) +

1
L g(ν)


+

(57c)

with stopping criterion

∥[Az̄(ν) − b]+∥∞ ≤ ϵg (57d)

with z̄(ν) given by (29) and y(0) = 0.

5.1. Fixed-point implementation

Let the algorithm defined by (57) be embedded on a fixed-point
hardware with a scaling factor 2−p, where p ∈ N+ is the number
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of fractional bits. We assume that real numbers are represented
in fixed-point by rounding to the closest value. Therefore, the
resolution (i.e., the smallest representable non-zero magnitude) of
a fixed-point number is equal to 2−(p+1).

In a fixed-point architecture, for a given y ∈ Rm, instead of the
gradient ∇Φ(y) = −g(z⋆

y ), where z⋆
y is given by (56), we have

access to ∇̃Φ(y) of the form (19), with zy = fi(Ey + e), and
ξ = g(zy) − fi(Azy − b). Due to (2), the vectors ξ , zy satisfy (20)
with

ϵz = 2−(p+1)m
√
n, (58a)

ϵξ = 2−(p+1)n
√
m. (58b)

Since L =
2
κV

∥A∥
2, by properly scaling the problem matrices we

can assume that L = 1, therefore there is no round-off error in
computing the product 1

L g(ν).
According to Proposition 8, the pair (Φδα ,L(y), ∇̃Φ(y)) given

by (24) is a (δα, L)-oracle for Φ on Yα . The ν-th iteration of
the inexact DGP scheme (28) implemented on the fixed-point
hardware platform is

z(ν) = fi(Ey(ν) + e), (59a)

g(ν) = fi(Az(ν) − b), (59b)

y(ν+1) = max

min


y(ν) +

1
L g(ν), αd


, 0


. (59c)

5.2. Number of fractional bits

We now provide explicit bounds on the number of fractional
bits required to grant convergence of (59) to a target primal
suboptimal solution satisfying (57d).

Corollary 14. Let

z(ν)


be generated by iterating (59), with y(0) =

0. Assume that real numbers are rounded to the closest fixed-point
value. Then, the algorithm converges asymptotically to an


εg , εV


-

solution, with εg > 2Dϵξ and εV satisfying (49), if the number of
fractional bits p is such that

p ≥ log2
m

√
n

ε
LV

+
n
m

 2D
LV

2
−


n
m

2D
LV

− 1, (60)

where ε = min{εg , εV }.

Proof. Combine (55) with (58a), (58b). �

5.3. Number of integer bits

Together with round-off errors, another key issue that arises
while embedding computations on fixed-point architectures is
the occurrence of overflow errors, given by the limited range for
number representation. In particular, if the number of bits for the
integer part equals r , the computed variables can only assume
values in


−2r−1, 2r−1

− 1

, where the asymmetry is given by

the presence of the zero element. The following corollary will set
precise guidelines for choosing a number of integer bits that is
sufficiently large to avoid overflows.

Corollary 15. Let the iterations in (59) be run on a fixed-point
architecture with r bits for the integer part and y(0) = 0. Then,
occurrence of overflow errors is avoided if r is chosen such that

r ≥ log2

max


ŷ, ẑ, ĝ


+ 1


+ 1, (61)

where ŷ = α∥d∥∞, ẑ = ∥E∥∞ŷ + ∥e∥∞, ĝ = ∥A∥∞ẑ + ∥b∥∞.
Fig. 1. Primal infeasibility for different precisions p.

Fig. 2. Primal suboptimality for different precisions p.

Proof. A real number γ lies within the admissible range repre-
sentable in fixed-point with r integer bits if r ≥ log2 (γ + 1) + 1.
Since log2(·) is strictly increasing, r must be such that

r ≥ log2(max{∥y(ν)∥∞, ∥z(ν)∥∞, ∥g(ν)∥∞} + 1) + 1,

for all ν ∈ N. Using (59), one obtains ∥y(ν)∥∞ ≤ ŷ, ∥z(ν)∥∞ ≤

ẑ, ∥g(ν)∥∞ ≤ ĝ , for all ν. Again, since log2(·) is strictly increasing
we arrive at (61). �

6. Simulations

6.1. Sample evolutions

The aim of this section is to show sample infeasibility and
suboptimality evolutions generated by (59) for multiple fixed-
point precisions p, and compare them with the double-precision
case (64 bit floating-point format defined in IEEE 754 standard IEEE,
2008). Simulations were performed in Matlab R2012b equipped
with the Fixed-Point Toolbox v.3.6 on a Mid-2012 Macbook Pro
Retina running OSX 10.8.2.

We iterate (59) for a fixed number of steps ν on the dual of ran-
domly generated QP problems, with 10 optimization variables and
20 constraints. Fig. 1 shows the convergence for primal infeasibility
∥[g(z̄(ν))]+∥∞, while Fig. 2 for primal suboptimality

V (z̄(ν)) − V ⋆


of the averaged iterates. In both figures, computation in double
precision is compared with fixed-point precision for p = {2, 4, 6}.
Simulation for the double-precision evolution was performed ac-
cording to the standard DGP algorithm shown in (4), without the
upper bound given by αd.
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Fig. 3. Asymptotic infeasibility values compared to theoretical bound (34).

Fig. 4. Asymptotic suboptimality values compared to theoretical bounds (42a) and
(42b).

Curve shapes are consistent with the theoretical bounds given
by Theorems 10 and 11. In addition, the algorithm presents
a remarkable robustness to round-off errors; 4-bits and 6-bits
curves already show a convergence comparable with the double-
precision case. This fact is of particular interest for embedded
implementations, since power consumption is heavily dependent
on the number of bits used to represent numbers (Kerrigan et al.,
2012).

6.2. Bounds on primal infeasibility and primal suboptimality

The purpose of the second simulation is to test the tightness
for the primal infeasibility and suboptimality bounds given by
Theorems 10 and 11, respectively.

The analysis was performed on a worst-case scenario, running
iterations (28) with ∥ξ(ν)∥ = ϵξ to solve 100 randomly generated
QP problems, with 10 optimization variables and 20 constraints.
The goal was to compare error bound terms δα and δg

α with the
practical asymptotic values of the primal infeasibility (Fig. 3) and
suboptimality (Fig. 4) for ν → ∞. Different trials are ordered
for increasing values of D, term proportional to the constraint set
diameter.

Simulation results show an acceptable tightness for bounds,
as they exceed the practical values by a factor between 3.33 and
8.32 for infeasibility, and between 3.05 and 5.74 for suboptimality.
In addition, the linear (for infeasibility) and quadratic (for
suboptimality) theoretical dependencies on D are reflected in the
experiment results.
Fig. 5. Iterations for target infeasibility.

Fig. 6. Fractional bits for target infeasibility.

6.3. Target infeasibility

Fig. 5 shows simulation results on the practical number of
iterations needed to reach a target primal infeasibility for a sample,
random QP with 5 variables and 10 constraints. A comparison was
made between the standard, double-precision gradient projection
algorithm (4) and the fixed-point algorithm (59) with 2-bit
precision. Results are in accordance with the theoretical results
of Theorem 10 since for finite-precision, the number of iterations
grows to infinity when target infeasibility reaches a critical value,
different from zero.

Fig. 6 shows asymptotic primal infeasibility as a function of
the number of fractional bits, based on (60). Note that inequality
constraints for the primal QP have been normalized, such that all
elements of b are equal to one.

6.4. Bounds on iteration count

The following simulation is performed to test the tightness of
the theoretical bound on the number of iterations given by (50).

We let Algorithm (59) run on Matlab R2012b and Fixed-
Point Toolbox v.3.6 on a Mid-2012 Macbook Pro Retina running
OSX 10.8.2 to solve various random QPs (sizes are equal to 4
and 8 for the primal and the dual, respectively). In Fig. 7, the
practical number of iterations needed to reach decreasing target
infeasibilities is plotted against the theoretical bound; different
colors and markers are chosen for different QP solutions.

Results show that theoretical bounds are about one order of
magnitude larger than actual iterations. In addition to this, two
interesting properties emerge from the plot: (1) within one single
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Fig. 7. Comparison between the actual number of iterations and the theoretical
bounds predicted by (50) calculated on random QP problems.

Fig. 8. Mass displacement and velocity evolutions for different precisions.

QP plot, the two curves of practical and theoretical values have
similar shapes, and (2) if a first QP needs more iterations than a
second QP to be solved, then the first bound is larger; those facts
increase the confidence in the formulation of the bound.

6.5. Example: masses serially connected

The purpose of this example is to test the fixed-point imple-
mentation (57) of DGP algorithm as a QP solver for an MPC design.

The reference physical system is composed by a series of M
elements, each of mass m, connected by springs with constant k
and dampeners with constant c. The first and the last element are
connected to fixed walls, and actuators are placed between each
pair of masses to exert tensions. The state-space model is derived
by a set of first-principle ODEs, where the system states are the
displacements and velocities of the masses and the inputs are the
tensions exerted by the actuators. This is a modification of the
example proposed in Wang and Boyd (2010).

Simulations have been performed in Matlab R2012b on a Mid-
2012 Macbook Pro Retina running OSX 10.8.2. The QP problem is
built forcing the systemstates to be in [−4, 4] and inputs in [−1, 1],
and setting the stage cost equal to l(x, u) =

1
2


x′Qx + u′Ru


with

Q and R as identity matrices. The prediction horizon N is equal to
10, and the sampling time 0.5 s.

Fig. 8 shows the evolution of position and velocity for the
second mass out of a total of 3 masses. The reference dashed
lines (double precision) are obtained closing the loop with an MPC
controller supported by IBM ILOG CPLEX v.12.4 as solver of the
QP optimization problem. For the remaining plots, the controller
Table 1
Fixed-point hardware implementation.

Size (vars/constr) Time (ms) Time/Iter (µs) Code size (kB)

10/20 22.9 226 15
20/40 52.9 867 17
40/80 544.9 3382 27
60/120 1519.8 7561 43

Table 2
Floating-point hardware implementation.

Size (vars/constr) Time (ms) Time/Iter (µs) Code size (kB)

10/20 88.6 974 16
20/40 220.1 3608 21
40/80 2240 13099 40
60/120 5816 30450 73

is instead supported by fixed-point DGP algorithm implemented
with Fixed-Point Toolbox v.3.6; two simulations are performed
varying precision to 2 and 6 bits.

Results show a remarkable robustness of the closed-loop
evolutions with respect to fixed-point precision. Position and ve-
locity trajectories of the 6-bit simulation are almost undistinguish-
able with the double precision simulation, while for the 2-bit case
a small divergence shows up. This behavior is consistentwithwhat
shown in Figs. 1 and 2.

6.6. Hardware implementation

Finally, Algorithm (59) has been implemented on a 32-bit Atmel
SAM3X8E ARM Cortex-M3 processing unit; this chipset operates
at a maximum speed of 84 MHz and comes with 512 kB of flash
memory and 100 kB of RAM.

Themicrocontroller was assigned to solve randomQP problems
of increasing size, ranging from 10 to 60 primal variables and 20 to
120 primal constraints. The algorithm was stopped upon reaching
a suboptimal solution bounded by 10% primal infeasibility.

Table 1 shows the results when a fixed-point number represen-
tation is adopted,with 8 bits for the fractional part and 7 bits for the
integer part. For eachproblemsizewe report convergence time, av-
erage time per iteration (TPI) and size of the binary code; the latter
plays an important role in embedded applications, where usually
a limited amount of memory is available.

In order to evaluate the performance enhancements coming
from fixed-point computations, we repeated all the hardware sim-
ulations after switching to floating-point number representation.
Results are reported in Table 2, which shows how this implemen-
tation is about 4 times slower than the fixed-point one, and up to
twice as bigger in code size.

Fig. 9 shows the linear relationship between problem size,
expressed as variables × constraints, time per iterations, and code
size. It is important to notice how the floating-point lines have a
steeper slope than the fixed-point counterparts, meaning that the
gain in performance increases as the problem becomes larger in
size.

This implementation highlights some of the key advantages of
the fixed-point format: the computational burden and thememory
footprint are lowered, especially on devices lacking hardware
support for floating-point operations. However, it has to be noted
that the flexibility of the floating-point representation is lost,
causing reduced precision and range; the choice of the optimal
format is therefore dependent on the specific application and
computing capabilities. Especially in the case of chipsets equipped
with a floating-point unit (FPU), the benefits from switching to
fixed-point arithmetic may be substantially reduced.
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Fig. 9. Comparison between fixed-point and floating-point implementations.

7. Conclusions and future work

This paper has proposed a DGP method for embedding MPC
controllers in hardware with fixed-point arithmetic. Concrete and
theoretically-proven guidelines for selecting the minimum num-
ber of fractional and integer bits that guarantee favorable conver-
gence properties are provided. Future work includes quantifying
the effect of fixed-point arithmetic on accelerated versions of the
DGPmethod and perhapsmodifications of it to achieve the optimal
trade-off between convergence rate and round-off error accumu-
lation, as well as the implementation and testing of the algorithm
in a real process control experiment.
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