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Abstract

Discrete-time receding horizon optimal control is employed in model-based anti-windup augmentation. The optimal control formulation
enables designs that minimize the mismatch between the unconstrained closed-loop response with a given controller and the constrained
closed-loop response with anti-windup augmentation. Recently developed techniques for o4-line computation of the constrained linear
regulator’s solution, which is piecewise a ne, facilitate implementation. The resulting sampled-data, anti-windup closed-loop system’s
properties are established and its performance is demonstrated on a simulation example.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Background

In this paper we bring the receding horizon optimal con-
trol (RHOC) to bear on the anti-windup synthesis problem.
The anti-windup problem is a particular control design
task for linear systems with input constraints. The prob-
lem speci?es a linear controller that produces a desirable
small-signal closed-loop behavior but an unsatisfactory
large-signal closed-loop behavior. The objective is to aug-
ment the controller to produce an acceptable large-signal
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closed-loop response without changing the small-signal
closed-loop response. In particular, the closed-loop should
not be modi?ed until the saturation occurs.
The RHOC is a general nonlinear control strategy that has

been used successfully over the years in many di4erent ap-
plications, especially for discrete-time linear systems with
input constraints (see the excellent survey paper (Mayne,
Rawlings, Rao, & Scokaert, 2000)). In RHOC, often re-
ferred to as “model predictive control”, an open-loop opti-
mal control problem is solved over a ?nite horizon, the ?rst
element of the optimizing sequence is applied as a feedback
control, and the process is repeated at the next iteration. In
general, the RHOC requires a relatively formidable on-line
computational e4ort which has limited its applicability to rel-
atively slow processes. Recently, Bemporad, Morari, Dua,
and Pistikopoulos (2002) showed that the RHOC control
law for linear systems with constraints is a piecewise a ne
function of the state, and that it can be computed o4-line
by employing the techniques of multiparametric quadratic
programming (Bemporad et al., 2002; THndel, Johansen, &
Bemporad, 2003). Thus, the on-line complexity of RHOC
reduces to the evaluation of such a piecewise a ne map.
The RHOC algorithms are very e4ective at stabilizing

linear systems with saturation. However, in their standard
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Fig. 1. The direct approach to anti-windup synthesis.

formulation (especially those that are computationally
feasible), it is not possible to make them perform like
an arbitrary, given, continuous-time controller for small
signals. This is one of the main requirements of anti-windup
synthesis. The main way in which optimal control has been
brought to bear on the anti-windup problem previously is
through the so-called “reference governor” which appeared
in Kapasouris, Athans, and Stein (1988) and which has been
extended and/or developed in discrete-time in Gilbert and
Tan (1991), Gilbert, Kolmanovsky, and Tan (1995), Gilbert
and Kolmanovsky (1999), Bemporad, Casavola, and Mosca
(1997) and Shamma (2000), where the “measurement gov-
ernor” is introduced. In the reference governor approach to
anti-windup, the reference signal input to the prespeci?ed
controller is modi?ed, using an optimization-based nonlin-
ear and dynamic ?lter, in an attempt to keep the output of
the prespeci?ed controller from activating the saturation
nonlinearity in the closed loop. The structure of most of the
reference governor schemes is such that when the reference
is identically zero, like in many vibration attenuation prob-
lems for example, essentially no modi?cations are made
to the closed loop. Moreover, most reference governor
schemes are not well suited for arbitrarily large exogenous
disturbances acting on the closed loop. Finally, reference
governors typically try to anticipate saturation and so may
modify the closed loop in situations where the future values
of the reference would not actually lead to saturation.
A more common approach to anti-windup uses the archi-

tecture shown in Fig. 1. In this architecture, the di4erence
between the saturated and unsaturated control signal passes
into an unbiased dynamical system and the output of this dy-
namical system augments the prespeci?ed linear controller.
Early designs using this architecture were mostly ad hoc,
and often limited to static linear gains. (See, e.g., Hanus,
1988; Kothare, Campo, Morari, & Nett, 1994 for surveys of
early anti-windup techniques.) The systematic design algo-
rithms admitting linear, dynamic anti-windup compensators
have emerged more recently. (See, e.g., Bemporad et al.,
1997; Edwards & Postlethwaite, 1999; Gilbert et al., 1995;
Grimm, Hat?eld, Poslethwaite, Teel, Turner, & Zaccarian,
2003; Miyamoto & Vinnicombe, 1996; Mulder, Kothare, &
Morari, 2001; Shamma, 2000; Teel & Kapoor, 1997; Zheng,
Kothare, & Morari, 1994.) To the best of our knowledge,
the only guidelines for the synthesis of nonlinear, dynamic
anti-windup in the architecture of Fig. 1 have been given in

Teel and Kapoor (1997), with the follow-up work appearing
in Barbu, Reginatto, Teel, and Zaccarian (2001), Morabito,
Teel, and Zaccarian (2002), Teel (1999a) and Zaccarian
and Teel (2001).

1.2. Contribution

In this paper, we will combine the model-based
anti-windup synthesis ideas from Teel and Kapoor (1997)
with the results from RHOC to produce a nonlinear, dy-
namic, sampled-data anti-windup compensator that ?ts the
architecture of Fig. 1, for all intents and purposes. (Ac-
tually, it ?ts a slightly di4erent architecture where the
anti-windup compensator has an extra input corresponding
to the reference r. However, it will still have the property
that if the saturation is never reached and the anti-windup
compensator dynamics are initialized to zero then the out-
puts of the anti-windup compensator are identically zero.)
We will show how this approach enables a design aimed
at keeping small 1 the L2 error between the constrained
and unconstrained closed-loop responses, which is the def-
inition of successful anti-windup proposed in Teel and
Kapoor (1997). We will focus on achieving the successful
anti-windup for reference signals that converge to (feasible)
constants and for disturbances that converge to zero, both in
an L2 sense. Because of this, the results do not apply to a
class of references and disturbances that is as broad as that
considered in Teel and Kapoor (1997). However, it is for
this subclass of references and disturbances that RHOC’s
constrained linear regulator solution is most powerful in the
anti-windup setting. 2

Being more precise about our proposed synthesis, we will
pick the anti-windup compensator block in Fig. 1 to have
the form

ẋaw = Axaw + B�(�aw ; �) + B[u− Ru];

v1 = �(�aw ; �);

v2 =−Cyxaw − Dy�(�aw ; �)− Dy[u− Ru]; (1)

where

(1) (A; B; Cy; Dy) represents the plant from input to mea-
sured output,

(2) �aw represents a sampled and held version of the state
xaw, and � represents an averaged, sampled and held
version of the reference input; the sampling period T

1 What we will provide is a suboptimal solution to theL2 minimization
problem. This solution cannot be optimal in the continuous time sense
because of the limitations due to the sample data nature of the solution
and to the ?nite horizon e4ects.
2 It is possible to use RHOC in the anti-windup problem for the more

general class of references and disturbances considered in Teel and Kapoor
(1997). However, in the most straightforward application, many of the
advantages of optimal control are lost because of having to account for
the worst case disturbance and reference pro?les.
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is determined by the computational capabilities of the
available hardware, and

(3) �(·; ·) is synthesized using the tools of constrained
discrete-time receding horizon control for the
discrete-time linear system �+ = Ad� + Bd� (i.e.,
�(k + 1) = Ad�(k) + Bd�(k)), where
(a) the constraints on � are dictated by the character-

istics of sat(·) (see the following Assumption 2)
and the reference to the prespeci?ed controller,

(b) Ad and Bd are given by

Ad := eAT ; Bd := eAT
(∫ T

0
e−A� d�

)
B; (2)

(c) the stage cost in the receding horizon problem is
used to tune anti-windup performance; in partic-
ular, to minimize the mismatch between the con-
strained and unconstrained closed-loop responses.

The main technical challenges in proving that the con-
trol laws from Bemporad et al. (2002) provide a subop-
timal solution to the nonlinear L2 anti-windup problem
revolve around combining the discrete-time RHOC algo-
rithm of Bemporad et al. (2002) with the continuous-time
controller/plant interconnection that is prone to windup in
the presence of input saturation. When using a discrete-time
anti-windup algorithm, the dynamics that characterize the
mismatch between the unconstrained closed-loop behavior
and the saturated closed-loop behavior is a sampled-data
nonlinear system whoseL2 stability needs to be established.
Results onL2 (in fact,Lp) stability for linear sampled-data
systems can be found in Chen and Francis (1991) for the
time-invariant case, in Iglesias (1995) for the time-varying
case and in the recent paper (Zaccarian, Teel, & NeTsiUc,
2003) for a class of nonlinear systems. Here, we will use
the main result from Zaccarian et al. (2003) to establish the
L2 stability of the sampled-data system that arises in our
anti-windup problem.
The rest of our paper is organized as follows. In Section 2

we de?ne the windup problem and clarify the goals of our
anti-windup construction. In Section 3.1 we describe the
sampled-data anti-windup scheme and in Section 3.2 we pro-
vide a speci?c sampled-data anti-windup construction based
on the explicit RHOC techniques. In Section 4 we illustrate
the proposed solution on a simulation example and in Sec-
tion 5, we provide a proof for the main theorem. Finally, in
the appendix, we report proofs of some technical results.

1.3. Notation

We use Z¿k (respectively, R¿�) to denote the set of
integers (respectively, reals) greater than or equal to the
integer k (respectively, to the real �). Given a signal x(t),
t ∈R¿0, we denote by ẋ(t) = dx(t)=dt its derivative with
respect to time (often we will use the shortcut ẋ in place
of ẋ(t)). Given a sequence �(h), h∈Z¿0, we denote by
�+(h) = �(h + 1) its one-step translation with respect to

time (often we will use the shortcut �+ in place of �+(h)).
For a function v :R¿0 → Rm, we de?ne ‖v(·)‖L2 :=(∫∞
0 |v(�)|2 d�)1=2 and for a function � :Z¿0 → Rn, we de-

?ne ‖�(·)‖‘2 :=
(∑

k¿0 |�(k)|2
)1=2
. When ‖v(·)‖L2 ¡∞,

respectively ‖�(·)‖‘2 ¡∞, we say that v(·)∈L2, respec-
tively, �(·)∈ l2. Given a matrix Q, Q′ denotes the transpose
of Q and, if Q is square, Q¿ 0 means that Q is positive
de?nite, while �min(Q), �max(Q) denote the eigenvalues of
Q whose modulus is minimum and maximum, respectively.
Given two sets A;B, A ⊂ B means that A is contained
or equal to the set B.
With a slight abuse of notation, given two vectors a =

[a1; : : : ; an]′, and b= [b1; : : : ; bn]′, a6 b means that ai6 bi

for all i=1; : : : ; n. A matrix is called Hurwitz if all its eigen-
values have negative real part and it is called discrete-time
Hurwitz if all its eigenvalues have modulus smaller than 1.

2. Problem de�nition

2.1. Unconstrained closed-loop and saturation

For the anti-windup synthesis problem, a linear
continuous-time plant is given. We represent it in state–
space form as

ẋ = Ax + Bu+ Bdd+  x;

z = Czx + Dzu+ Dd zd+  z;

y = Cyx + Dyu+ Ddyd+  y; (3)

where x∈Rn is the state, y∈Rny is the measured output,
z ∈Rnz is the performance output, u∈Rnu is the control in-
put, d is a disturbance input and  x;  z;  y are the outputs of
a linear dynamic system representing uncertain dynamics,
which can be written as

% :=




 x

 z

 y


= &(s)




x

u

d


=




&x(s)

&z(s)

&y(s)






x

u

d


 ; (4)

where &(s) is a linear time-invariant asymptotically stable
system with L2 gain smaller than (& ¿ 0.
A linear controller 3 is also given in the anti-windup prob-

lem. Its state–space representation is

ẋc = Acxc + Bcuuc + Bcrr;

yc = Ccxc + Dcuuc + Dcrr; (5)

where xc ∈Rnc is the controller state, uc ∈Rny and yc ∈Rnu

are the controller input and output, respectively, and r ∈Rnz

is the reference input. The dynamical system (5) will be
denoted as the unconstrained controller henceforth, and

3 In general, controller (5) does not need to be linear for the anti-windup
construction to be applicable. However, in this paper we will assume it
to be linear, to keep the discussion simple.
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corresponds to the block in the upper left-hand corner of
Fig. 1. We assume that the unconstrained controller has
been designed so that the feedback connection of the lin-
ear plant (3) with the unconstrained controller (5) via the
unconstrained interconnection equations

u= yc; uc = y (6)

(which will be referred to as the unconstrained closed-loop
system), satis?es the following assumption:

Assumption 1. The linear unconstrained closed-loop sys-
tem (3), (5), (6) with % ≡ 0 is well-posed and internally
stable.

Lemma 1. Under Assumption 1, if the L2 gain (& of
&(s) is su7ciently small, the (perturbed) unconstrained
closed-loop (3)–(6) is well-posed and internally stable.

Proof. Observe ?rst that well-posedness of the unperturbed
closed-loop implies that (I − DyDcu) is invertible. On the
other hand, for the perturbed closed-loop system to be
well-posed it is necessary that (I −DyDcu −&uy) is invert-
ible, where &uy := &y(∞)[0 D′

c 0]
′ and &y(∞) denotes

the input–output direct link of the dynamical system &y(s).
Then, since &uy can be made arbitrarily small by making (&
su ciently small, well-posedness follows. Moreover, the
fact that internal stability is preserved for the perturbed sys-
tem can be shown by a small gain argument and selecting
once again (& su ciently small.

2.2. Input saturation and anti-windup goals

If saturation is present at the input u of the linear plant
(3), the unconstrained interconnection (6) is replaced by the
saturated interconnection

u= sat(yc); uc = y (7)

and the linearity of the closed-loop system is lost. For sim-
plicity, we will consider the decentralized saturation func-
tion, as detailed in the following assumption:

Assumption 2. The input nonlinearity sat(·) :Rnu → Rnu

is the standard decentralized saturation function, namely
sat(u) := [sat1(u1); : : : ; satnu(unu)]

′, where sati(ui) :=
max{umi;min{uMi; ui}} and where umi ¡uMi for all
i = 1; : : : ; nu.

The closed-loop system (3), (5), (7), which we will call
the saturated closed-loop system henceforth, often exhibits
unpredictable behavior and, typically, performance loss and
instability. This phenomenon is often referred to in the lit-
erature as “windup”. External anti-windup augmentation,
which we consider in this paper, consists in modifying the
unconstrained interconnection equations (6) as follows:

u= sat(yc + v1); uc = y + v2; (8)

+

+

Anti-windup
Compensator

++ Plant

d

Nonlinearity
Saturation

+

yc u y
uc

r

Controller
Unconstrained

-

v2

v1 r

Fig. 2. The L2 (external) anti-windup scheme.

where v1 and v2 are the outputs of a suitable (dynamical, in
general) system[

v1

v2

]
= +aw(xaw(0); yc; y); (9)

which is introduced in the closed-loop as shown in
Fig. 2. The complete nonlinear closed-loop system of
Fig. 2, described by Eqs. (3), (5), (8), (9) will be called
the anti-windup closed-loop system henceforth.
Generally speaking, ?lter (9) should be designed to guar-

antee the following qualitative goals for any selection of the
external inputs (r; d) and of the initial conditions:

(1) if the actuators never saturate, then the unconstrained
response is retained (namely, v1(·) ≡ 0 and v2(·) ≡ 0);

(2) if the actuators saturate, then the performance output
z(·) is as close as possible to the performance out-
put z‘(·) of the (ideal) unconstrained response starting
from the same plant/controller initial conditions.

To suitably formalize the second requirement above, we
will measure the deviation between z(·) and z‘(·) in terms of
theL2 norm of the signal (z− z‘)(·). This is a useful mea-
sure of anti-windup quality because when ‖(z− z‘)(·)‖L2 is
?nite, then under minor conditions on z(·) and z‘(·) (Teel,
1999b) (indirectly, on the external inputs r(·) and d(·)), this
implies that z(·) converges asymptotically to z‘(·), thus guar-
anteeing asymptotic recovery of the unconstrained perfor-
mance output. When formally characterizing the two quali-
tative anti-windup goals mentioned above, it helps to restrict
the attention to a limited set of references. To this aim, we
formalize in the following the concept of feasible reference,
which, as stated in Lemma 1, is well de?ned provided the
L2 gain (& of the unmodeled dynamics is su ciently small.

De�nition 1. A constant reference ro is said to be feasible if
the response of the perturbed unconstrained closed-loop (3)–
(6) to the input (r; d) = (ro; 0) is such that the steady-state
value yc;∞(ro) of the unconstrained controller output
satis?es

yc;∞(ro) = sat(yc;∞(ro)): (10)
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Based on the above de?nition, we are now ready to
introduce a formal property capturing the goals of our
sampled-data anti-windup design.

Property 1. For each reference-disturbance pair (r; d) and
initial conditions, let z‘ represent the performance output
and u‘ represent the plant input for the perturbed uncon-
strained closed-loop system (3)–(6); let z represent the per-
formance response of the anti-windup closed-loop system
(3)–(5), (8), (9). The following holds:

(1) if the anti-windup compensator (9) has zero initial
conditions and u‘(·) ≡ sat(u‘(·)), then z(·) ≡ z‘(·);

(2) if the L2 gain (& of the unmodeled dynamics (4) is
su7ciently small, then for each feasible reference ro,
there is a global 9nite L2 gain from (d(·); r(·)− ro)
to (z‘ − z)(·).

Property 1 formalizes the two particular goals of
anti-windup designs, formulated above from an intuitive
viewpoint. Item (1) imposes that whenever the initial condi-
tions and external inputs are such that the arising trajectory
would not exceed the saturation limits, then the anti-windup
compensator must not enforce any modi?cation to the lin-
ear closed-loop transfer function. Furthermore, item (2)
formalizes the requirement that, whenever saturation is ac-
tivated (thus making the desired linear trajectory unfeasible
for the saturated plant), the performance output must at
least converge (in an L2 sense) to the unconstrained per-
formance output. Evidently, the smaller the deviation z‘ − z
between the unconstrained performance and the actual one,
the better the anti-windup goal has been accomplished. For
this reason, among all of the anti-windup compensators
that solve this problem, we are interested in ones that are
e4ective at making ‖(z‘ − z)(·)‖L2 small.

3. Sampled-data L2 anti-windup

3.1. Anti-windup augmentation scheme

Consider the case where plant (3) with % ≡ 0 is asymp-
totically stable. Then, based on Teel and Kapoor (1997), we
can select the anti-windup compensator (9) as the following
?lter:

ẋaw = Axaw + B(sat(yc + v1)− yc);

v2 =−Cyxaw − Dy(sat(yc + v1)− yc); (11)

which consists of a model of the plant transfer function from
u to y and where the signal v1 is a free design parameter (to
be de?ned later). Notice that this agrees with Eq. (1) in the
Introduction by adding and subtracting Bv1 to each equation
and selecting Ru= yc + v1.
The closed-loop system represented in Fig. 2 corre-

sponds to a particular embodiment of the general scheme of
Fig. 1. The sampled-data nature of our approach stands in the

Plant
Model

static law

x aw (t)

x aw (t s (t))

v2 (t)

v1 (t)

sat (v1(t) + yc(t)) – yc(t)

k(·,·)

Smp/Hld

r(t)ra(t s (t))
Smp/Hld
Average

Anti-windup
Compensator

Fig. 3. The sampled-data anti-windup compensator.
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–σ 0

Fig. 4. The state–space response of the sampled-data compensator (11),
(13) with indications of its initial conditions.

selection of the signal v1 in (8) and (11), which will
be de?ned by assigning the anti-windup compensator
block of Fig. 2 as detailed in Fig. 3. This sampled-data
anti-windup compensator contains two principal blocks:
a continuous-time one, reproducing the dynamics of the
plant and corresponding to Eq. (11), and a discrete-time
one, driven by sampled versions of the state of the previous
block and of an averaged version of the reference input.
Note that, in Fig. 3, two time scales are represented: the

continuous time t and the sampled time ts(t), which, by way
of the two sample and hold devices of the ?gure, are related
as depicted in Fig. 4. Note also that, for the sake of gen-
erality, t = 0 is not necessarily a sampling instant. To suit-
ably represent this sampled-data nature of the anti-windup
compensator, the sampling instants ts(t) are related to the
continuous time t by

ts(t) = �t + ,
T − ,; ,∈ [0; T ); (12a)

where T denotes the sampling period, �s
T := T�s=T
, and
�q
 := max{.∈Z; .6 q}, for all q∈R. The value , :=
−ts(0) = −t−1 is the time elapsed between the initial time
t = 0 and the most recent sampling instant, denoted by t−1.
The values tk representing the sampling instants associated
with the sampled-data block can also be de?ned as follows

tk := ts((k + 1)T ) = (k + 1)T + ts(0): (12b)

According to the notation above for the discrete and con-
tinuous time scales, the discrete-time static law in Fig. 3
corresponds to

v1(t) = �(xaw(ts(t)); ra(ts(t))); (13)
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where ra(ts(·)) is a piecewise constant average of the refer-
ence signal r and is de?ned for all k¿ 0 as

ra(ts(t)) :=
1
T

∫ tk

tk−1
r(�) d�; ∀t ∈ [tk ; tk+1): (14)

As shown in Fig. 4, the information xaw(0), xaw(ts(0)),
ra(ts(0)) (where ts(0) = −,), r(t), ∀t ∈ [ − ,; 0) is a
minimal representation of the initial conditions of the
anti-windup compensators (11)–(13). In the simulations
reported in Section 4, we will use the initial conditions
(xaw(0); xaw(ts(0)); ra(ts(0))) = (0; 0; 0) and r(t) = r(0),
∀t ∈ [− ,; 0).
In this work, the synthesis of the static function �(·; ·) in

Fig. 3 will be based on the discrete-time model

�+ = Ad�+ Bd�; (15)

where the input � is subjected to suitable constraints corre-
sponding to the continuous-time input nonlinearity of (11)
and where the matrices Ad and Bd are de?ned in (2). The
sampled-data feedback will have the form (13), namely
�=�(�; �), with (�; �)=(xaw(ts(t)); ra(ts(t))) at all (contin-
uous) times t, and (in the next section) we will design (high
performance) selections for the function �(·; ·) that satisfy
the following property whenever plant (3) is asymptotically
stable:

Property 2. The function �(·; ·) is such that

(1) it is globally Lipschitz,
(2) sat(yc;∞(ro) + �(�; ro)) = yc;∞(ro) + �(�; ro),

∀�∈Rn; ro feasible,
(3) the origin is a globally exponentially stable equilib-

rium point of the system �+ = Ad�+ Bd�(�; ro).

We can now state the following main result:

Theorem 1. Under Assumptions 1 and 2, if the function
�(·; ·) satis9es Property 2, the anti-windup closed-loop
system (3)–(5), (8), (11), (13) satis9es the anti-windup
Property 1.

Proof. See Section 5.

Remark 1. We emphasize that Theorem 1 establishes a re-
sult for system (11), (13) where the second argument of
�(·; ·) is time-varying, yet assumes properties for �(·; ·) only
when its second argument is a constant, feasible reference.

3.2. Synthesis via explicit RHOC techniques

In this section, we will introduce an RHOC-based design
strategy for the synthesis of a feedback function �(·; ·) that
satis?es Property 2 (thus solving theL2 anti-windup prob-
lem by way of Theorem 1), while keeping small the ‘2 norm

of the discrete time signal

/aw := Cz�+ Dz[sat(yc;∞(ro) + �(�; ro))− yc;∞(ro)];
(16)

where � is the trajectory of (15). Note that since (15) is
the exact discretization of the continuous-time anti-windup
compensator dynamics (11), in the case where yc=yc;∞(ro),
Eq. (16) corresponds to the sampled version of the output

zaw := Czxaw + Dz(sat(yc + v1)− yc); (17)

which, according to the results in Teel and Kapoor (1997),
provides a measure of the mismatch z‘ − z between the
unconstrained and the actual output responses (in the case
where % ≡ 0 it can be actually shown that zaw = z − z‘).
Hence, minimizing the ‘2 norm of the signal /aw is especially
e4ective at providing a good solution to theL2 anti-windup
problem when the sampling period is small and yc(·) is
similar to an impulse function. When this is the case, yc(·)
can be thought of as inducing an initial condition �(0) =
xaw(t0) and thereafter satisfying yc(t) ≈ yc;∞(ro) so that
the real problem is very close to the problem for which the
RHOC strategy was designed.
According to Assumption 2, de?ne um := [um1 · · · umnu ]

′

and uM := [uM1 · · · uMnu ]
′. In the following, we will synthe-

size a globally Lipschitz static control law

�= �(�; ro)=: R�(�; yc;∞(ro)) (18)

with the constraint

um6yc;∞(ro) + �6 uM (19)

(where the above inequalities should hold componentwise)
that exponentially stabilizes the origin of

�+ = Ad�+ Bd�;

/aw = Cz�+ Dz� (20)

(i.e., it satis?es Property 2) and aims to minimize the ‘2
norm of its output /aw.
For simplicity, we will use the notation yc;∞ to denote

yc;∞(ro) hereafter. The design of R�(·; ·) is based on the result
of a ?nite horizon optimization problem

R�(�; yc;∞) := �∗0 ; (21)

where, given a ?nite number of steps N , �∗0 is the ?rst el-
ement of the minimizer V∗ of the following optimization
problem:

J ∗(�; yc;∞) :=min
V

{
J (V; �; yc;∞)

= 2′NP2N +
N∑
i=0

(|/i|2 + �′iR�i)

}
(22a)
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s:t:




20 = �;

um6 �i + yc;∞6 uM ; i = 0; : : : ; N − 1;
2i+1 = Ad2i + Bd�i; i = 0; : : : ; N − 1;
/i = Cz2i + Dz�i; i = 0; : : : ; N − 1;

(22b)

where R=R′ ¿ 0, P is the solution to the Lyapunov equation
P = A′

dPAd + C′
zCz¿ 0, and | · | denotes the standard Eu-

clidean norm.Moreover, 20 is the current state and 21; : : : ; 2N

are the predicted states for the future N sampling instants;
V := {�0; �1; : : : ; �N−1} denotes the set of free moves and
V∗ := {�∗0 ; �∗1 ; : : : ; �∗N−1} is the minimizer (the dependence
on � and yc;∞ is omitted for simplicity).
One great advantage in selecting (21)–(22) for the

sampled-data feedback (18) resides in the fact that, based
on the results of Bemporad et al. (2002) and THndel et al.
(2003), (21)–(22) can be computed analytically as a glob-
ally Lipschitz and piecewise a ne control law

R�(�; yc;∞) = Fi�+ Giyc;∞ + ai if Hi�+ Kiyc;∞

6 bi; i = 1; : : : ; nr ; (23)

where Fi, Gi, ai, Hi, Ki and bi, i = 1; : : : ; nr , are matri-
ces of suitable dimensions, whose values can be determined
explicitly by following the construction in Bemporad et al.
(2002) and THndel et al. (2003). This result is formalized
in the following lemma:

Lemma 2. The control law (21)–(22) has the form (23)
and is globally Lipschitz.

Proof. See Appendix A.

The suitability of the proposed control law as a candidate
for the solution of the anti-windup problem described in the
previous section is formalized in the following lemma:

Lemma 3. Let Ad be a discrete-time Hurwitz matrix and
P be the solution to P = A′

dPAd + C′
zCz. Then, given any

N¿ 1, the RHOC law de9ned by (21)–(22) globally ex-
ponentially stabilizes (20) while ful9lling constraint (19)
at all sampling steps.

Proof. See Appendix A.

The proof of the anti-windup result is ?nally completed
by noticing that whenever A is Hurwitz, by (2), Ad is
discrete-time Hurwitz, hence Lemma 3 ensures that the
items 2 and 3 of Property 2 hold. Moreover, since by linear-
ity the map ro �→ yc;∞(ro) is globally Lipschitz, Lemma 2
ensures that the item 1 of Property 2 holds too. Finally,
once Property 2 is satis?ed, Theorem 1 guarantees desirable
properties of the anti-windup closed-loop system.

Theorem 2. Under Assumptions 1 and 2, if A is Hurwitz,
the anti-windup closed-loop system (3), (5), (8), (11), (13)
with selection (23) satis9es the anti-windup Property 1.

Remark 2. Like in Rawlings and Muske (1993), we have
chosen P in (22a) as the solution to a Lyapunov equation to
guarantee global stability. While this choice does not auto-
matically address ‘2-optimality, this aim can be addressed
by increasing the number N of free control moves in the op-
timization problem. The price paid for this typically is an in-
crease in the number nr of cells in the polyhedral partition of
the piecewise a ne control law (23). An alternative choice,
as suggested in Bemporad et al. (2002), Chmielewski and
Manousiouthakis (1996), Scokaert and Rawlings (1998),
and Sznaier and Damborg (1987), is to choose P as the so-
lution to the Riccati equation P=(Ad+BdK)′P(Ad+BdK)+
K ′RK + C′

zCz, where K = −(R + B′
dPBd)

−1B − B′
dPAd is

the LQR gain. These references show that a semiglobal sta-
bility result is guaranteed by choosing a su ciently large
?nite number N of free moves, which can be computed for
any compact set as suggested in Bemporad et al. (2002) and
Chmielewski and Manousiouthakis (1996). This choice for
P is more directly aimed at ‘2-optimality.

Remark 3. From a purely theoretical viewpoint the result
in Theorem 2 guarantees that, when the plant model is ex-
act, the sampled-data scheme satis?es the anti-windup spec-
i?cations of Property 1 regardless of the selection of T .
Obviously, from a practical implementation viewpoint, T
should be chosen properly. On one hand, the smaller T is,
the better the anti-windup is expected to perform, as the
continuous-time behavior is better mimicked by the dis-
cretized dynamics. On the other hand, for a given number
of prediction steps N in problem (22a), if T is very small
then the prediction horizon TN is very short, so that the
anti-windup behavior may deviate considerably from the
L2-optimal solution. Moreover, as it usually happens with
discrete-time controllers, fast sampling, besides imposing
more stringent hardware requirements, may lead to numer-
ical problems, as the discrete-time model (2) used in (22b)
tends to become just a pool of discrete-time integrators.
Regarding the complexity of the piecewise a ne control

law R�(·; ·) in (23), this is related to two factors: (i) the
dimensions n of the state vector � and nu of yc;∞, and (ii)
the number nr of polyhedral cells. Thanks to the robustness
property with respect to the unmodeled dynamics addressed
and proven in our result (which guarantees that approximate
models can be implemented in the anti-windup ?lter), the
former source of complexity can be attacked by reducing
the order of the model. On the contrary, the number nr is
mainly related to the horizon length N and to the constraints
in (22a), rather than to n+ nu (Bemporad et al., 2002), and
it usually increases exponentially with N . According to the
authors’ experience, problems with n=2–10 states, nu=1–3
inputs, and N = 1–5 horizon lengths are tractable in prac-
tice on average. The complexity of the implementation also
depends on how the control law (23) is evaluated: while for
small nr (namely, nr6 100) the piecewise a ne map can
be easily stored in memory and the current cell searched
sequentially on line, for larger partitions more e cient
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approaches both in terms of memory requirements and com-
putation complexity have been proposed in Borrelli, Baotic,
Bemporad, and Morari (2001) and THndel et al. (2003).
For the reasons above, as a rule of thumb, the largest T
and the smallest N that ensure an acceptable anti-windup
performance should be chosen.

4. Simulation example

To illustrate the performance of the anti-windup construc-
tion proposed in Section 3, we consider the high pressure
boiler ?rst studied in Chien, Ergin, Ling, and Lee (1958) and
summarized in Davison (1990) (this model was also used
in Grasselli, Menini, & Valigi, 2002). The boiler model is
a 9th order plant with three control inputs u1; u2; u3, two ac-
cessible outputs y1; y2, and a scalar disturbance input that
we neglect here. The model corresponds to a linearization
of the nonlinear boiler dynamics around the operating point
of 44% full load, whose values are listed in Table 1.
In order to guarantee robust asymptotic tracking of con-

stant references, we construct a standard (unconstrained)
linear dynamic output-feedback controller by ?rst augment-
ing the system with output integrators, and then, for the re-
sulting extended system, by designing an observer (via pole
placement) and a stabilizing LQR controller. The overall
size of the controller state is nc = 2 + (9 + 2) = 13, where
the ?rst term accounts for the output integrators, and the last
term is the dimension of the observer.
Selecting the reference signal as

r(t) =




[
60

0

]
bar

m
; 06 t6 150 s;

[
60

0:03

]
bar

m
; t ¿ 150 s;

(24)

the unconstrained response corresponds to the dashed curves
in Figs. 5 and 6.
According to the steady-state values listed in Table 1, we

assume that the control inputs of the (linearized) plant are
saturated at the values uM1=−um1=0:6 kg=s, uM2=−um2=
9 kg=s, uM3 =−um3 =30◦C, respectively, which correspond
to about 50%, 60%, and 17% of the corresponding input
operating values. The response of the system when the linear
controller is saturated is represented by the dotted curves in
Figs. 5 and 6. Note the persistent oscillations of the output
signals and the loss of stability.
We ?rst construct an RHOC-based anti-windup com-

pensator for this system by using a full order prediction
model, a sample time T = 0:5 s, a horizon length N = 1
and by selecting z = [y1 y2]′ and R = 10−6I3, where I3 is
the identity matrix of order 3. The arising piecewise a ne
discrete-time law is de?ned over 27 regions in the state and
input spacesR9×R3. The results of the corresponding simu-
lation are reported in Figs. 5–7, which con?rm the desirable

Table 1
Physical meaning of the boiler inputs and outputs and their values at the
operating point of 44% full load

Name Physical quantity Values Unit

u1 Input fuel Xow 1.08 kg/s
u2 Input water Xow 14.80 kg/s
u3 Input water temperature 171.1 ◦C
y1 Pressure 84.04 bar
y2 Water level in boiler 44% m
d Output steam Xow 14.80 kg/s
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Fig. 5. Output responses to the reference signals in (24). Unconstrained
response (dashed), anti-windup response (solid), saturated response
without anti-windup (dotted).
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Fig. 6. Input responses to the reference signals in (24). Unconstrained re-
sponse (dashed), anti-windup response (solid), saturated response without
anti-windup (dotted).

unconstrained response recovery proven in Theorem 2. From
Fig. 7, it is evident that the anti-windup compensator makes
large use of all three inputs. This behavior can be modulated
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Fig. 7. Variable v1 generated by the anti-windup closed-loop system in
the response to the reference signals in (24).
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Fig. 8. Anti-windup responses with di4erent selections of the performance
output: anti-windup response with z ≈ y1 (z = [y1 0:05y2]′, solid);
anti-windup response with z ≈ y2 (z = [10−5y1 y2]′, dash–dotted);
unconstrained response (dashed); saturated response without anti-windup
(dotted).

by selecting di4erent diagonal entries in matrix R for each
input.
Output tracking performances can be tuned by chang-

ing the selection of the performance output z. Fig. 8 shows
the closed-loop output responses when selecting ?rst z ≈
y1 (z = [y1 0:05y2]′, solid curves) and then z ≈ y2 (z =
[10−5y1 y2]′, dash–dotted curves). Once again, the uncon-
strained system response corresponds to the dashed curves
and the saturated system response without anti-windup cor-
responds to the dotted curve. Note that both the anti-windup
responses show an improved behavior on the performance
output (the one most considered in the performance ?gure)
and, respectively, a degradation of the other output (which
is almost disregarded in the optimization).
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Fig. 9. Reduced order anti-windup response (dash–dotted) compared to
the full order anti-windup response (solid), to the unconstrained response
(dashed) and to the saturated response without anti-windup (dotted).

Finally, to investigate the robustness properties of
the sampled-data anti-windup scheme, we compare the
anti-windup responses when the associated discrete-time
optimal control problem is based on a reduced-order model
of the plant, instead of the full-order model considered so
far. The reduced-order model is obtained by removing the
four least signi?cant states from a balanced realization of
the full-order one. The arising piecewise a ne discrete-time
control law is de?ned over 27 regions in the state and input
spaces R5 × R3. Because of the reduced space dimension,
the corresponding controller matrices require approximately
30% less space than those of the full-order controller to be
stored in the controller memory. Simulation comparisons
are shown in Fig. 9, where z = [y1 y2]′ is used both for
the response of the full-order anti-windup (solid curves)
and for the response of the reduced-order anti-windup
(dash–dotted curves). Note that due to the model reduc-
tion, the anti-windup closed-loop system response exhibits
a worse tracking of the unconstrained response. However,
the overall performance is still more than satisfactory and
the closed-loop stability is retained, thus showing the ro-
bustness properties of the proposed anti-windup scheme.

5. Proof of Theorem 1

Proof of Theorem 1. De?ne (x‘; xc‘) as the response of the
perturbed unconstrained closed-loop system (3)–(6). Also
denote by u‘ = yc‘ the corresponding controller output, and
by z‘ the corresponding performance output. Then, introduce
the following variables:

9 :=

[
91

92

]
:=

[
x − x‘ − xaw

xc − xc‘

]
: (25)
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After some computations, the following behavior results for
the dynamics of the 9 variables: 4

9̇= Acl9+

[
&x + BDcu(I − DyDcu)−1&y

Bc(I − DyDcu)−1&y

]
x − x‘

u− u‘

0


 (26)

where Acl is the closed-loop matrix of the unconstrained
closed-loop system (3), (5), (6), with % ≡ 0, which is
Hurwitz by Assumption 1. First note that, based on (25) and
on (17), the following relations hold:

yc − yc‘ = (I − DcuDy)−1(Cc92 + DcuCy91)

+Dcu(I − DyDcu)−1&y




x − x‘

u− u‘

0


 ; (27)

x − x‘ = 91 + xaw ; (28)

z − z‘ = zaw + Cz91 + Dz(yc − yc‘) + &z




x − x‘

u− u‘

0


 : (29)

To show item 1 of Property 1, note that by item 3 of Property
2, �(0; ·) ≡ 0. Hence, since u‘(t) = sat(u‘(t)) for all t¿ 0,
it is easy to verify that (x(t); xc(t); xaw(t))=(x‘(t); xc‘(t); 0)
is a solution. Since the saturation function is globally Lip-
schitz and the unmodeled dynamics (4) are LTI, then the
right-hand side of the overall system is globally Lipschitz
and solutions are unique and de?ned for all times. Finally,
by uniqueness, the one above is the only solution, which
by (25) implies (x(t); xc(t))=(x‘(t); xc‘(t)) at all times and
item 1 of Property 1 follows from Eqs. (29) and (17).
In the rest of the proof we will show item 2 of Property

1, based on a small gain argument where theL2 gain (& of
(4) is restricted to be su ciently small. Given any feasible
reference ro, by item 2 of Property 2, we have

sat(�(xaw ; ro) + yc;∞)− yc;∞

=�(xaw ; ro)= : �◦(xaw); ∀xaw ∈Rn: (30)

We rewrite the continuous time anti-windup compensator
dynamics as

ẋaw(t) = Axaw(t) + B�◦(xaw(ts(t))) + Bw(t); (31a)

zaw(t) = Czxaw(t) + Dz�◦(xaw(ts(t))) + Dzw(t); (31b)

4 With a slight abuse of notation, we will use in the following &x , &y

and &z as a shortcut for the output % of a state–space realization of the
unmodeled dynamics (4).

where

w(t) := sat(�(xaw(ts(t)); ra(ts(t))) + yc(t))

−yc(t)− �◦(xaw(ts(t))) (31c)

and augment the continuous-time dynamics with the follow-
ing sampled-data components:

ts(t) = �t + ,
T − ,; ,∈ [0; T );
tk = ts((k + 1)T );

�aw(k) = xaw(tk): (31d)

To complete the proof, it will be useful to establish the
global, ?nite gain (L2; ‘2) stability from w to (xaw ; �aw)
for the sampled-data system (31), by which we mean that
there exists c¿ 0 such that, for each ,∈ [0; T ), xaw(0)∈Rn,
xaw(ts(0))∈Rn, w∈L2,

max{‖xaw(·)‖L2 ; ‖�aw(·)‖‘2}
6 c(|xaw(0)|+ |xaw(ts(0))|+ ‖w(·)‖L2 ): (32)

To prove (32), we apply Theorem 1 of Zaccarian et al.
(2003) to the sampled-data system (31), based on the global
Lipschitz property of the right-hand side of (31a), (31b)
and on items 1 and 3 of Property 2, which imply that �◦(·)
is globally Lipschitz and that the discrete-time system cor-
responding to (31) with ts(0) = 0 and w ≡ 0, which is
given by

�+aw = e
AT �aw +

(∫ T

0
eA(T−�)B d�

)
�◦(�aw) (33)

has a globally exponentially stable equilibrium point at the
origin.
For each t¿ 0, de?ne v1(t) = �(xaw(ts(t)); ra(ts(t))).

Then, based on Eq. (31c) and by the Lipschitz properties
of �◦(·), there exists L� ¿ 0 such that |sat(v1(t) + yc(t))−
yc(t)| = |w(t) + �◦(xaw(ts(t)))|6 |w(t)| + L�|xaw(ts(t))|,
which can be integrated on both sides to get 5

‖sat(v1 + yc)− yc‖L26 ‖w‖L2 + TL�‖�aw‖‘2 : (34)

Moreover, by Eq. (27) and theL2 gain assumptions on the
unmodeled dynamics (4), there exist positive numbers L9

and L&, such that 6

‖yc − yc‘‖L26L9‖9‖L2 + (&L&

∥∥∥∥∥
x − x‘

u− u‘

∥∥∥∥∥
L2

(35)

5 For simplicity, we drop the terms that would arise due to the deviation
of the initial condition from the steady-state condition. These terms would
appear in an additive manner with a linear gain.
6 In the following, whenever confusion may not arise, we will some-

times denote signals and functions omitting the time dependence or the
symbol “(·).”
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and by the Lipschitz property of the saturation function and
(34), we also get

‖u− u‘‖‘2 = ‖sat(yc + v1)− yc‘‖L2

6 ‖sat(yc + v1)− yc‖L2 + ‖yc − yc‘‖L2

6 ‖w‖L2 + TL�‖�aw‖‘2 + ‖yc − yc‘‖L2 : (36)

Consider now items 1 and 2 of Property 2, and the globally
Lipschitz property of the saturation function de?ned in As-
sumption 2. Then, substituting (30) into (31c), there exists
L� such that

|w(t)|6 2|yc(t)− yc;∞|+ L�|ra(ts(t))− ro|
6 2|yc‘(t)− yc∞|+ 2|yc(t)− yc‘(t)|
+L�|ra(ts(t))− ro|: (37)

Recalling that ts(t)= �t+,
T −, and tk = ts((k+1)T ) and
using Holder’s inequality to go from (38a) to (38b) below,
we also have by the de?nition in (14):

‖ra(ts(·))− ro‖2L2
=
∫ ∞

0
|ra(ts(t))− ro|2 dt

6 T
∑

k∈Z¿−1

|ra(tk)− ro|2

=
1
T

∑
k∈Z¿0

∣∣∣∣∣
∫ tk

tk−1
(r(t)− ro) dt

∣∣∣∣∣
2

+T |ra(t−1)− ro|2 (38a)

6
∑

k∈Z¿0

∫ tk

tk−1
|r(t)− ro|2 dt + T |ra(t−1)− ro|2 (38b)

6 ‖r(·)− ro‖2L2
+
∫ 0

t−1
|r(t)− ro|2 dt + T |ra(t−1)− ro|2:

The proof will be completed based on a small gain argument.
For simplicity, with a slight abuse of notation, we will use
the symbol c to denote any positive constant (so that, for
example, c+ c= c). First note that Eqs. (29), (32) and (34)
can be combined, also based on the de?nition in (17) to get

‖z − z‘‖L2 6 c

(
‖w‖L2 + ‖9‖L2

+‖yc − yc‘‖L2 +

∥∥∥∥∥
x − x‘

u− u‘

∥∥∥∥∥
L2

)
: (39)

So in the rest of the proof, we will show via a small gain
argument that there is a ?nite L2 gain from (r − ro; d)(·)
to all the terms on the right-hand side of (39). Based on

bounds (37) and (38), we have

‖w(·)‖L2 6 2‖yc‘(·)− yc∞‖L2

+2‖(yc − yc‘)(·)‖L2 + L�‖r(·)− ro‖L2 ; (40)

which, together with (32), can be used in (28) and (36)
to get∥∥∥∥∥

x−x‘

u−u‘

∥∥∥∥∥
L2

6 c

(
‖9‖L2+‖yc−yc‘‖L2+‖yc‘−yc∞‖L2

+‖r − ro‖L2 + (&

∥∥∥∥∥
x − x‘

u− u‘

∥∥∥∥∥
L2

)
: (41)

Hence, by the small gain theorem applied to Eqs. (35) and
(41), if (& is su ciently small, then∥∥∥∥∥∥∥∥

x − x‘

u− u‘

yc − yc‘

∥∥∥∥∥∥∥∥
L2

6 c(‖9‖L2 + ‖yc‘ − yc∞‖L2

+‖r − ro‖L2 ): (42)

Since Acl is Hurwitz and &(s) is asymptotically stable, by
Eq. (26) and theL2 gain assumption on (4), there is a ?nite
gain, which is proportional to (& from (x− x‘; u− u‘)(·) to
9(·), namely

‖9(·)‖L26 c(&

∥∥∥∥∥
(x − x‘)(·)
(u− u‘)(·)

∥∥∥∥∥
L2

; (43)

and applying once again the small gain theorem to (42) and
to (43), if (& is su ciently small, then∥∥∥∥∥∥∥∥∥∥∥

(x − x‘)(·)
(u− u‘)(·)
(yc − yc‘)(·)

9(·)

∥∥∥∥∥∥∥∥∥∥∥
L2

6 c(‖yc‘(·)− yc∞‖L2

+‖r(·)− ro‖L2 ): (44)

Also note that, by the asymptotic stability of the linear un-
constrained closed-loop system (3), (5), (6) stated in As-
sumption 1 and by De?nition 1, there exists a small enough
bound (& on the L2 gain of the unmodeled dynamics such
that for any feasible reference ro there is a ?nite L2 gain
from (r− ro; d)(·) to (yc‘ −yc∞(ro))(·). Hence, combining
this result with (39), (40) and (44), the proof follows.

6. Conclusions

In this paper, we employed receding horizon optimal con-
trol (RHOC) in a model-based anti-windup architecture.



560 A. Bemporad et al. / Automatica 40 (2004) 549–562

The anti-windup augmentation scheme consists of a
continuous-time ?lter whose dynamics are based on
an approximate model of the plant and a discrete-time
control law which is designed based on a RHOC al-
gorithm. By way of suitable modi?cation signals in-
jected at the input and at the output of the uncon-
strained controller, desirable stability properties of the
augmented closed-loop can be asserted for generic lin-
ear control systems for asymptotically stable linear
plants. In addition, the optimality properties of the re-
ceding horizon controller achieve high-performance
anti-windup compensation. The recent results on ex-
plicit solutions to the constrained RHOC problem can
be employed to allow the implementation of these tech-
niques in high-speed control systems. To correctly rep-
resent the continuous- and discrete-time nature of the
augmentation scheme, the system has been analyzed as
a sampled-data linear system. The performance of the
resulting construction has been studied on a simulation
example.
Future work will include establishing bounds on the level

of performance in terms of the input–output gain of the
scheme with anti-windup augmentation. To this aim, a use-
ful tool may be represented by the RHOC construction for
systems with disturbance inputs, where the disturbance is
accessible for measurement (see, e.g., (Mayne et al., 2000)),
as this is the kind of setup that the anti-windup design re-
duces to when applying the sampled-data solution proposed
here.

Appendix A. Proof of Lemmas 2 and 3

Before proving Lemma 2, we need the following
well-known fact which can be proved, for example, by
appealing to Corollary 3.7 in Clarke, Stern, and Wolenski
(1993) which characterizes the global Lipschitz property in
terms of the (local) lower Dini derivative.

Lemma A.1. Let f :Rn �→ R be a continuous and piece-
wise a7ne function, de9ned over a 9nite partition P of Rn.
Then f is globally Lipschitz.

Proof of Lemma 2. De?ne > := [�′; y′
c;∞]

′ ∈Rn+nu , and
express problem (22) as the multiparametric quadratic
program (mp-QP) Bemporad et al., 2002

?∗(>) =
1
2
>′Y>+min

V

1
2
V′HV+ >′FV

s:t: GV6W + S>; (A.1)

where ?∗ :Rnu+n �→ R, the Hessian matrix H =H ′ ¿ 0, and
H; F; Y; G; W; S are easily obtained from (22).

Solving the mp-QP (A.1) amounts to determining the op-
timizer V∗ and the value function ?∗ as a function of the

parameter >∈C, where C ⊆ Rn+nu is a given set. We re-
call here from Bemporad et al. (2002) the main proper-
ties enjoyed by the solution to multiparametric quadratic
programs.

Theorem A.1 (Bemporad et al., 2002). Considerthemulti-
parametric quadratic program (A.1) with H ¿ 0 and C
convex. Then the set of feasible parameters Cf ⊆ C is
convex, the optimizer V∗ :Cf �→ RnuN is continuous and
piecewise a7ne, and the optimal value ?∗ :Cf �→ R is
continuous, convex and piecewise quadratic.

Remark A.1. Two di4erent algorithms for solving mp-QP
problems are described in Bemporad et al. (2002) and
THndel et al. (2003), respectively. While the algorithm in
Bemporad et al. (2002) assumes C to be a compact set,
the approach of THndel et al. (2003), besides being com-
putationally more e cient, allows C = Rn+nu , and will be
therefore used in this paper to characterize the optimizer
V∗(>) globally.

By Theorem A.1, V∗(>) is piecewise a ne and contin-
uous, and therefore the same properties hold for its ?rst
component R�(�; yc;∞). As a sequence V which is feasible
for the constraints in (22) exists for all �∈Rn and for all
yc;∞ ∈Rnu , problem (22) always admits an optimal solu-
tion, which implies that �(·; ·) is de?ned over a partition
of the whole space Rnu+n. Moreover, since the number nr

of a ne functions constituting the multiparametric solution
V∗(>) is smaller or equal than the number 22Nnu of pos-
sible combinations of active constraints at optimality, then
this number is ?nite. Hence, by Lemma 4, function (23) is
globally Lipschitz.

Proof of Lemma 3. Given a value for yc;∞ that satis?es
Eq. (10), consider the optimization problem (22), and note
that it is well de?ned for all �∈Rn, because the sequence
V = [0; : : : ; 0] always satis?es the constraints (since yc;∞
is ?xed, in the following the dependence on yc;∞ will be
omitted for simplicity of notation). Since constraint (19) is
included in (22b), the solution to (always feasible) problem
(22) satis?es (19).
In the rest of the proof we will show the exponential stabil-

ity property. If V∗ := [�∗0 ; : : : ; �
∗
N−1] denotes the optimizer

of (22), by de?ning G(�) := Ad� + Bd�∗0 (�), and recalling
that by De?nition 1, um6yc;∞6 uM , then it follows that
the shifted sequence V1 := [�∗1 ; : : : ; �

∗
N−1; 0] is a feasible

(not optimal in general) solution to the optimization problem
(22) applied to G(�). Namely, J ∗(G(�))6 J (V1; G(�))
and by standard direct methods (see, e.g., Mayne et al.,
2000), the following holds:

J ∗(G(�))− J ∗(�)6− |/0|2 − �min(R)|�∗0 (�)|2: (A.2)

Moreover, by selecting the feasible sequenceV=[0; : : : ; 0],
it is easily seen by (22) that there exists a large enough
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number MJ such that

J ∗(�)6 (AN
d �)

′PAN
d �+

N−1∑
i=0

|CzAi
d�|26MJ |�|2: (A.3)

Then, introducing the function V :Rn → R¿0 de?ned
as V (�) := 9�′Q� + J ∗(�), (where Q¿ 0 satis?es the
Lyapunov equation A′

dQAd −Q=−I), we will show in the
rest of the proof that there exists a small enough 9¿ 0 such
that

9�min(Q)|�|26V (�)6 (9�max(Q) +MJ )|�|2;
V (G(�))6 (1− 9=2)V (�); (A.4)

Eqs. (A.4) are su cient to prove the theorem because
�+ = G(�) = Ad�+ Bd�∗0 (�) corresponds to dynamics (20)
in closed-loop with the RHOC control law (21), (22).
Hence, the exponential decreasing property given by the
second equation in (A.4) combined with the bounds in the
?rst equation in (A.4) implies the exponential stability of
(20)–(22).
The ?rst equation of (A.4) follows directly from (A.3) and

from the de?nition of V (·). To prove the second equation of
(A.4), consider the following inequalities, which are easily
derived from A′

dQAd − Q =−I and from equation (A.2):

V (G(�))− V (�)6 (Ad�+ Bd�∗0 (�))
′9Q(Ad�+ Bd�∗0 (�))

−�′9Q�− �min(R)|�∗0 (�)|26− 9|�|2

−�min(R)|�∗0 (�)|2+29(Bd�∗0 (�))′QAd�

+9(Bd�∗0 (�))
′QBd�∗0 (�);

which, by completing squares in the last two terms, and
de?ning c� := 2(|Bd‖QAd|)2 + |Bd‖QBd| (where the
norms of matrices are induced norms), can be bounded as
V (G(�)) − V (�)6 − 9=2|�|2 − (�min(R) − 9c�)|�∗0 (�)|2.
Then, it is su cient to pick 9¡�min(R)=c� to prove the
second equation of (A.4).
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