
Available online at www.sciencedirect.com

Automatica 39 (2003) 945–950

www.elsevier.com/locate/automatica

Technical Communique

Evaluation of piecewise a"ne control via binary search tree�

P. THndela ;∗, T.A. Johansena, A. Bemporadb

aDepartment of Engineering Cybernetics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
bDipartimento di Ingegneria dell’Informazione, University of Siena, 53100 Siena, Italy

Received 3 April 2002; accepted 26 November 2002

Abstract

We present an algorithm for generating a binary search tree that allows e"cient computation of piecewise a"ne (PWA) functions
de0ned on a polyhedral partition. This is useful for PWA control approaches, such as explicit model predictive control, as it allows the
controller to be implemented online with small computational e2ort. The computation time is logarithmic in the number of regions in the
PWA partition.
? 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Piecewise linear controllers; Hybrid systems

1. Introduction

Piecewise a"ne (PWA) controllers arise naturally in
various applications, e.g. in the presence of constraints or as
approximations of nonlinear maps. In this paper we address
the problem of evaluating a PWA function. At 0rst sight,
this may seem a trivial task, but when the function is com-
plex, a straightforward evaluation is computationally ex-
pensive. The main motivation behind this work is the recent
development of explicit solutions to model predictive con-
trol (MPC) problems, in which the solutions are complex
PWA state feedback laws. In Bemporad, Morari, Dua, and
Pistikopoulos (2002b) it was recognized that the linear MPC
problem can be formulated as a multi-parametric quadratic
program (mp-QP) and solved explicitly, with a PWA so-
lution. An algorithm to solve the mp-QP is also provided,
however, a more e"cient algorithm is developed by THndel,
Johansen, and Bemporad (2003). An alternative solution
strategy is given by Johansen, Petersen, and Slupphaug
(2002), where pre-determination of a small set of sampling

� This work was in part 0nanced by the Norwegian Research Council.
This paper was not presented at any IFAC meeting. This paper was
recommended for publication in revised form by Associate Editors Jay
H. Lee under the direction of Editor Paul van den Hof.

∗ Corresponding author.
E-mail addresses: petter.tondel@itk.ntnu.no (P. THndel),

tor.arne.johansen@itk.ntnu.no (T.A. Johansen), bemporad@dii.unisi.it
(A. Bemporad).

instants where the active set is allowed to change gives a
suboptimal solution, and in Seron, DeDon@a, and Goodwin
(2000) based on a geometric interpretation of the QP
problem. Suboptimality of mp-QP is also introduced in
Bemporad and Filippi (2003) by relaxing the optimality
conditions, and in Johansen and Grancharova (2002), by im-
posing an orthogonal structure to the state space partitioning.
In Bemporad, Borrelli, and Morari (2002) MPC problems
with 1=∞-norms are formulated as multi-parametric linear
programs (mp-LP) and solved explicitly, while extensions
to hybrid systems using multi-parametric mixed-integer
LP (mp-MILP), can be found in Bemporad, Borrelli, and
Morari (2000b), and explicit robust MPC is treated in
Bemporad, Borrelli, and Morari (2003). All of these ap-
proaches lead to PWA state feedback laws. Evaluation of
PWA functions is also of interest with other PWA con-
trol structures than explicit MPC control (e.g. Garcia &
Tarbouriech, 1999; Wredenhagen & Belanger, 1994;
Rantzer & Johansson, 2000; Hassibi & Boyd, 1998;
Slupphaug & Foss, 1999).

The most immediate way of evaluating a PWA function
is to do a sequential search through the regions represent-
ing the PWA function (see Algorithm 1 below). The use
of neighboring relations between the regions do not nec-
essarily reduce the worst case computational complexity
in a practical system, since there may be large changes in
the state between any consecutive samples. Reasons for
this may include sudden setpoint changes, mode switches,
integrator resetting, disturbances and slow sampling.

0005-1098/03/$ - see front matter ? 2003 Elsevier Science Ltd. All rights reserved.
doi:10.1016/S0005-1098(02)00308-4

mailto:petter.tondel@itk.ntnu.no
mailto:tor.arne.johansen@itk.ntnu.no
mailto:bemporad@dii.unisi.it

946 P. THndel et al. / Automatica 39 (2003) 945–950

Nevertheless, this is similar to “warm start” in numerical
optimization and will usually give some reduction in aver-
age computation e2ort. For the case of exact solutions to the
mp-QP and mp-LP problems, Borrelli, Baotic, Bemporad,
and Morari (2001b) propose a more e"cient method regard-
ing both search time and storage by exploiting properties
of the value function. This method is however not feasi-
ble to more general PWA function evaluation, and is still
fairly time consuming since it requires a sequential search.
The evaluation of a PWA function is similar to the point
location problem (Snoeyink, 1997, Chap. 30; Goodrich &
Ramaiyer, 1999) which has been subject to some research
in the computational geometry 0eld. However, this research
has been mainly focused on planar problems, and also a few
treatments of problems in three dimensions. These solutions
are not suitable for the problems faced when evaluating the
PWA solutions to control problems, which may have higher
dimensions. The o2-line mp-QP algorithm of (Bemporad
et al., 2002b) has the property that a binary tree structure
could be generated while the mp-QP problem is solved, but
it is not obvious how to modify the algorithm such that the
search tree will be balanced.

In this paper, we present an e"cient data structure for the
representation of PWA functions, in an e2ort to minimize the
time needed to evaluate the function. We also seek to min-
imize the storage required by this data structure, although
this is considered of secondary importance. The proposed
method is general, in the sense that it does not have special
requirements on the PWA function. Overlapping regions and
holes in the partition are handled by the method. The pro-
posed method gives evaluation times which are logarithmic
in the number of regions in the PWA function, while the
storage required by the data structure is polynomial in the
number of regions. It can also be used for evaluating piece-
wise quadratic as well as piecewise nonlinear functions, as
long as the functions are de0ned on a polyhedral partition.

2. Explicit constrained linear MPC

Below we give a short summary of linear MPC problems
and their explicit solutions. Consider the linear system

xt+1 = Axt + But;

yt = Cxt; (1)

where xt ∈Rn is the state variable, ut ∈Rm is the input vari-
able, A∈Rn×n, B∈Rn×m, C ∈Rdim(y)×n and (A; B) is a con-
trollable pair. The output and the control input are subject to
the bounds ymin6yt6ymax and umin6 ut6 umax, where
ymin ¡ymax and umin ¡umax. For the current xt , MPC solves
the optimization problem

J ∗(xt) = min
ut ;:::;ut+M−1

‖xt+N‖Pp

+
N−1∑
k=0

(‖xt+k+1‖Qp + ‖ut+k‖Rp) (2)

subject to xt|t = xt and

ymin6yt+k|t6ymax; k = 1; : : : ; N; (3)

umin6 ut+k6 umax; k = 0; : : : ; N − 1; (4)

xt+k+1|t = Axt+k|t + But+k ; k¿ 0; (5)

yt+k|t = Cxt+k|t ; k¿ 0; (6)

ut+M+k = 0 ∀k¿ 0: (7)

Additionally, we may require the terminal constraint

Lxt+N 6 l (8)

to be satis0ed. For p = 2, ‖x‖Ep = xTEx, 1 Q = QT¿ 0,
R=RT ¿ 0 and P¿ 0. For p=1 and∞, ‖x‖Ep=‖Ex‖p. For
ease of notation, we may in the sequel skip the index t, and
use u for ut and x for xt . These problems can be reformulated
as the following multi-parametric programs:

(1) mp-QP (p = 2):

min
U

UTHU + xTFU (9)

s:t: GU6W + Sx; (10)

where U = [uT
t ; : : : ; u

T
t+M−1]

T, see Bemporad et al.
(2002b) for details.

(2) mp-LP (p = 1 or ∞):

min
U

hTU (11)

s:t: GU6W + Sx; (12)

where U = [uT
t ; : : : ; u

T
t+M−1 !T]T and ! is a vector of

slack variables, see Bemporad, Borrelli, and Morari
(2000a) for details.

(3) Robust MPC (p = ∞). In Bemporad, Borrelli and
Morari (2003) the authors show that when introducing
uncertainty to the linear model (1), that is

xt+1 = A(w(t))xt + B(w(t))ut + Ev(t); (13)

where v(t) and w(t) are unknown but bounded input
disturbances and parametric uncertainties, respectively,
a min–max optimization problem analogous to (2)–(7)
can be solved by N mp-LPs.

(4) mp-MILP (p = 1 or∞): Here the linear model (1) is
replaced by the piecewise a"ne model.

xt+1 = Aixt + Biut + fi; if

[
xt

ut

]
∈Xi ; (14)

where A∈Rn×n, Bi ∈Rn×m and fi ∈Rn are constant
vectors and {Xi} is a polyhedral partition of the
state+input space. The problem can be reformulated
as a mp-MILP, see Bemporad, Borrelli and Morari
(2000b).

1 Although this does not strictly de0ne a norm, we choose this descrip-
tion for ease of notation.

P. THndel et al. / Automatica 39 (2003) 945–950 947

(5) mp-MIQP (p=2): The linear model is here as in (14),
but the cost function is quadratic, see Bemporad et al.,
(2002a). The explicit solution to this problem can in
some cases be PWA with a polyhedral partition, but
in general the partition is not polyhedral, as it can be
de0ned by quadratic functions. This kind of functions
is not treated in this paper, but our methods can be
extended to cover this.

(6) mp-NLP: This class of parametric programs is more
general than form (1)–(7). Both the cost function and
constraints may be non-linear functions. Exact solu-
tions to these problems have in general not been estab-
lished, but an approximation based on mp-QP giving
a PWA solution, is developed by Johansen (2002).

De�nition 1. A function u :X → Rs, is piecewise a"ne
(PWA) if X=

⋃nr
i=1 Xi ⊆ Rn, where Xi are convex polyhedral

regions with mutually disjoint interiors and u(x) = Hix +
ki; ∀x∈Xi.

In case of discontinuities over overlapping boundaries,
namely for some i, j Hix+ki
= Hjx+kj for x∈Xi∩Xj
= ∅,
we assume that u(x) is de0ned as one of the possible values.

The solutions to the problems above together with the
other problems mentioned in Section 1 are PWA functions,
which gives the control input (the 0rst m elements of the
optimal U) as an explicit function of x. We will in the
next section present an e"cient data structure which allows
e"cient evaluation of PWA functions.

3. On-line search tree

When a PWA controller is executed, the problem is to de-
cide which polyhedral region Xi the current state xt belongs
to, and then compute the control input using the correspond-
ing a"ne control law. The most direct way of doing this is
by the following sequential search through the polyhedral
regions of the partition.

Algorithm 1 (Sequential search).

1 i ← 1
2 while x
∈ Xi and i6 nr
3 i ← i + 1
4 end (while)
5 if i = nr + 1, then x
∈ X , (problem infeasible),

terminate.
6 evaluate the control input, u(x) = Hix + ki

In the worst case Algorithm 1 checks every region (and
every hyperplane) in the partition. We want a method to 0nd
the region to which a given x belongs by evaluating as few
hyperplanes as possible.

An e"cient way to exploit the convexity of polyhedral
sets is to build o2-line a binary search tree (for on-line use)

where at each level one linear inequality is evaluated. Con-
sider the set of polyhedra {X1; X2; : : : ; Xnr}, and the corre-
sponding set of a"ne functions {F1; F2; : : : ; FK} de0ning an
a"ne control law. Note that K6 nr since several regions
can have the same control law. Let all unique hyperplanes
de0ning the polyhedra in the partition be denoted by aT

j x=bj
for j=1; 2; : : : ; L, and de0ne dj(x)=aT

j x−bj. Let the index
representation J of a polyhedron denote a combination of
indexes combined with the sign of dj, e.g. J={1+; 4+; 6−}
would mean that d1(x)¿ 0; d4(x)¿ 0 and d6(x)6 0. Such
an index representation obviously de0nes a polyhedron in
the state space, P(J). We can further de0ne the set of
polyhedral regions corresponding to J as the index set
I(J) = {i|Xi ∩P(J) is full-dimensional}. For a set I of
polyhedra, we can also de0ne an index set of corresponding
a"ne functions F(I) = {k|Fk corresponds to Xi; i∈I}.

The idea is to construct a binary search tree such that
for a given x∈X , at each node we will evaluate one a"ne
function dj(x) and test its sign. Based on the sign we select
the left or the right sub-tree. Traversing the tree from the
root to a leaf node, one will end up with a leaf node giving a
unique a"ne control law Fk . The main challenge is to design
a tree of minimum depth such that we minimize the number
of hyperplanes to be evaluated to determine the solution. Of
secondary priority, is the desire to keep the total number of
nodes in the tree at a minimum, as this would decrease the
on-line memory requirements.

Each node of the tree will be denoted by Nk , and we
will use a list U to keep the indices of the nodes which are
currently unexplored. An unexplored non-leaf node Nk will
consist of (Ik ;Jk), where Jk is the index set (with signs)
of hyperplanes obtained by traversing the tree from the root
node to Nk and Ik=I(Jk). An explored non-leaf node will
contain an index jk to a hyperplane, while a leaf node will
contain an a"ne control law, Fk . See Fig. 1 for an example
of a simple search tree. We will use the notation ‘±’ for
statements which should be repeated for both ‘+’ and ‘−’.
Let | · | denote the number of elements in a set.

Note that I(J ∪ j±) ⊆ (I(J) ∩I(j±)), and that the
di2erence between these two sets can be characterized by
the following lemma:

Lemma 1. If i∈I(J)∩I(j+) but i
∈ I(J∪j+), then Xi

is split into two full-dimensional polyhedra by the hyper-
plane j, i.e. i∈I(J) ∩I(j+) ∩I(j−). The same result
holds when j+ and j− are interchanged.

Proof. Since i
∈ I(J ∪ j+) then P(J ∪ j+) ∩ Xi is
not full-dimensional. But since i∈I(J) and P(J) =
P(J ∪ j−) ∪ P(J ∪ j+) we have that P(J ∪ j−) ∩ Xi

is full-dimensional, and so is P(j−) ∩ Xi, which implies
i∈I(j−) and completes the proof.

When exploring a node of the tree, the main goal is to
reduce the number of remaining control laws as much as
possible from the current to the next level of the tree. More

948 P. THndel et al. / Automatica 39 (2003) 945–950

Fig. 1. Search tree generated from partition with nr = 6 and K = 3.

precisely, for a node Nk = (Ik ;Jk), we want to select the
hyperplane jk as arg minj max(|F(I+

k)|; |F(I−
k)|), where

I±
k = I(Jk ∪ j±). This does, however, require the com-

putation of I±
k for every j. Lemma 1 provides a computa-

tionally e"cient approximation of I±
k as I(Jk)∩I(j±).

One can further get the exact I±
k by for each i∈I(Jk) ∩

I(j+) ∩I(j−) solving the two LPs

min
x∈Xi

± dj(x): (15)

For each hyperplane j, one can from the solution of these
LPs say on which side of the hyperplane the region Xi is,
or that Xi is split by the hyperplane. As the approximation
can be used to select a few candidate hyperplanes, there is
only a small number of LPs which have to be solved. We
can now present an algorithm to build a binary search tree:

Algorithm 2 (Build search tree).

1 Compute the index sets I(j+) and I(j−) for every
j∈{1; : : : ; L}.

2 The root node of the tree is initialized as N1 ←
({1; : : : ; nr}; ∅).

3 The set of unexplored nodes is initialized as U← {N1}.
4 Select any unexplored node Nk ∈U and let U← U\Nk .
5 Compute the approximations I(Jk) ∩ I(j±) for
all j, and sort the hyperplanes by the quantity
max(|F(I(Jk) ∩I(j+))|; |F(I(Jk) ∩I(j−))|).

6 Compute (the exact) I±
k =I(Jk ∪ j±) for each of the

5rst nj elements of the sorted list of step 5 (see below for
how nj is selected). This is done by solving the LPs (15)
for each i∈I(Jk) ∩I(j+) ∩I(j−). Select jk among
these as jk = arg minj max(|F(I+

k)|; |F(I−
k)|).

7 Complete the node as Nk ← jk , and create two child
nodes, N± ← (I±

k ;Jk ∪ j±).
8 If |F(I±)|¿ 1, add N± to U. Else N± is a leaf node,

let N± ←F(I±).
9 If U
= ∅, go to step 4, else terminate.

The computationally most expensive steps of this algo-
rithm are steps 1 and 6. In step 1, one has to determine for
each hyperplane, which side every region Xi lies on. This can
be implemented by solving 2Lnr LPs (15), which is com-
putationally expensive for large problems. If the vertices of
every Xi are available, these LPs can be replaced by simple
arithmetic operations, giving considerably faster computa-
tion. If computation of the vertices is considered to expen-
sive, one can for each Xi compute a set of points Vi, such
that Xi ⊆ Conv(Vi) (Conv denotes the convex hull). Such
vertices can e.g. be found by using outer parallellotopic ap-
proximations as in Vicino and Zappa (1996). Each of the
2Lnr cases can now be determined by simple arithmetic op-
erations, except when Conv(Vi) is split by a hyperplane,
when LPs still has to be solved.

In step 6, one also has to solve LPs to 0nd the exact I±
k .

The number nj of hyperplanes which are checked in step 6
can be varied to trade-o2 between the o2-line time required
to generate the search tree and the complexity of the tree. In
the examples of Section 5, nj has been chosen to be |japprox|,
where japprox = {j|max(|F(I(Jk) ∩I(j))|; |F(I(Jk) ∩
I(j))|) = minjl max(|F(I(Jk) ∩ I(jl))|; |F(I(Jk) ∩
I(jl))|)}, which means that only hyperplanes which min-
imize the criterion in step 5 are considered in step 6. To
further decrease o2-line computation time, one can in step 5
consider only hyperplanes corresponding to remaining poly-
hedral regions Ik (e.g. j4 and j6 for node N2 in Fig. 1).
Moreover, hyperplanes de0ning the boundary only between
regions with the same control law (as j2, j5 and j6 in Fig.
1) can also be disregarded in step 5, as they are not needed
to complete the search tree.

Often the best hyperplane jk from step 6 is not unique.
Among the set of hyperplanes which are best from the crite-
rion in step 6, one can further re0ne the selection. Consider

1. minj (max(|I−
k |; |I+

k |)),
2. min (|I−

k |; |I+
k |) and min (|F(I−

k)|; |F(I+
k)|).

By considering the 0rst of these additional criteria, one tries
not only to reduce the number of possible control laws from
one level of the tree to the next, but also the number of poly-
hedral regions in which the state xt may be. Reducing the
complexity between tree levels in this way, has in exam-
ples shown bene0cial results. The second criterion consid-
ers the least complex of the two child nodes. By reducing
the complexity of this node, one can reduce the total num-
ber of nodes in the tree. This will however not contribute to
reducing the depth of the tree. The next algorithm is used
on-line to traverse the binary tree (see e.g. Aho, Hopcroft,
& Ullman, 1983).

P. THndel et al. / Automatica 39 (2003) 945–950 949

Algorithm 3 (Traverse search tree).

1 Let the current node Nk be the root node of the tree.
2 while Nk is not a leaf node
3 Evaluate the hyperplane d(x) = aTx − b corresponding

to Nk .
4 Let Nk be the child node according to the sign of d(x).
5 end (while)
6 Evaluate the control input u(x) corresponding to Nk .

In general, the worst-case number of arithmetic operations
required to search the tree and evaluate the PWA function
is (2n + 1)D + 2nm, where D is the depth of the tree, m is
the number of inputs and n is the number of states. At each
node there are n multiplications, n additions and 1 compari-
son. Moreover, 2nm operations are required to evaluate the
a"ne state feedback of the leaf node. Regarding memory
requirements for the data structure, the most e"cient is to
store each of these solutions in a table, and give a pointer
to an element in this table for each leaf node in the tree.
Similarly, there is only a small subset of all the hyperplanes
representing the regions Xi which is used in the search tree.
Moreover, each of these hyperplanes are usually used in
several nodes of the tree. So the hyperplanes should also be
stored in a table, while using pointers to this table in the
non-leaf tree nodes. This would require each leaf node in the
tree to contain one pointer to a table of control laws, while
each non-leaf node would contain one pointer to a table of
hyperplanes, and two additional pointers to its child nodes.

4. Estimated complexity of the tree

This section will give an estimate of the depth and number
of nodes in a tree for a given problem size. Such an estimate
has to be based on how good the hyperplanes selected in
step 6 of Algorithm 2 are. This estimate is given for the case
when we want to 0nd the exact region a state x belongs to
without considering that several regions can have the same
a"ne control law. In the best case we will in each node of
the tree be able to select a hyperplane which has half of the
remaining regions on each side. This will obviously give
a tree where the depth would be D = �log2(nr)�, and each
hyperplane would be stored once in the tree. Obviously this
best case estimate would not be possible for anything else
than problems with a very special partition.

We can however give a more realistic estimate. Assume
that the hyperplane selected in a node Nk has the property
max(|I−

k |; |I+
k |)=|Ik |6 1; 1∈ [0:5 1), where 1=0:5 cor-

responds to the best case. Since |Ik |= nr for the root node,
the depth of the tree would then be given by

nr1D = 1; (16)

or equivalently,

D =
⌈

ln 1=nr
ln 1

⌉
=
⌈
− ln nr

ln 1

⌉
: (17)

If the tree is ‘full’, that is the depth is the same for all leaf
nodes, the approximate number of nodes in the tree is

2D = 2

⌈
− ln nr

ln 1

⌉
≈ n−ln 2=ln 1

r : (18)

In our experience, an 1 of 2
3 is a conservative estimate when

using Algorithm 2. This would give D = �1:7 log2 nr� and
the number of nodes would be n1:7

r . However, regardless of
the size of 1, the depth of the tree would be a logarithmic
function of nr , while the number of nodes would be poly-
nomial in nr . Note that the complexity of the tree would
be considerably reduced in the case of explicit MPC solu-
tions, where we can stop dividing the tree when we know
the a"ne control law which is optimal, without knowing
the exact polyhedral region in which the state is. Moreover,
the tree is usually far from ‘full’, so the estimate of number
of nodes is conservative. The examples in the next section
therefore show a considerably lower complexity than the
given estimate.

5. Examples

In the examples of this section, Algorithm 1 is imple-
mented by storing each region in the partition, represented
by its hyperplanes, and the corresponding a"ne function pa-
rameters. Obviously this algorithm could be improved both
in terms of computational complexity and storage, e.g. by
computing unions of polyhedra where the a"ne control law
is the same as in Bemporad, Fukuda, and Torrisi (2001).

Example 1. Consider the linear system (Borrelli et al.,
2001b)

y(t) =
1
s4

u(t) (19)

which is discretized with sampling time Ts=1. The system is
subject to input constraints, −16 u(t)6 1 and output con-
straints, −106y(t)6 10. For the quadratic case (mp-QP),
an MPC controller is designed with N=6, Q=I4×4, R=0:01
and P = 0. The explicit solution consists of 213 regions.
Table 1 reports the comparison between Algorithm 1, the
algorithm from (Borrelli et al., 2001b) and Algorithm 3 in
terms of required storage and arithmetic operations to com-
pute the control input. The generated search tree has a depth
of 12, containing 1473 nodes. Six hundred and seventy four
unique hyperplanes occur in the tree, and there are 59 dif-
ferent a"ne control laws representing the PWA function.

Table 1
Performance of search tree for mp-QP solution

Alg. 1 Alg. froma Alg. 3

Storage (real numbers) 9740 1065 1615
Storage (pointers) — — 2945
Arith. ops. (worst case) 20668 3489 116

aBorrelli et al. (2001a).

950 P. THndel et al. / Automatica 39 (2003) 945–950

Table 2
Performance of search tree for mp-MILP solution

Alg. 1 Alg. 3

Storage (real numbers) 34776 1350
Storage (pointers) — 2277
Arithmetic ops. (worst case) 68834 156

The o2-line computations to generate the tree was done in
less than 1 min, using Matlab 6.0 on a 1 GHz Pentium III.

Example 2. In Borrelli, Bemporad, Fodor, and Hrovat
(2001a) the authors gave a solution to a constrained optimal
control problem, solving a traction control problem using
a hybrid model. This was formulated as an mp-MILP, and
solved explicitly. The resulting controller was a PWA func-
tion consisting of 508 polyhedral regions, giving a single
control input as a function of 5 states. The performance of
using a search tree to represent this PWA function com-
pared to a sequential search is shown in Table 2. The search
tree has a depth of 12, and consists of 1139 nodes.

6. Conclusions

We have presented a binary tree structure designed to
give very e"cient evaluation of PWA functions. Our method
gives a PWA function evaluation time which is logarithmic
in the number regions representing the PWA function. This
allows considerably faster PWA function evaluation than
existing methods. As the explicit solutions to MPC problems
are (often complex) PWA functions, the method is expected
to widely increase the sampling rates by which MPC can be
applied.

References

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1983). Data structures
and algorithms. Reading, MA: Addison-Wesley.

Bemporad, A., Borrelli, F., & Morari, M. (2000a). Explicit solution of
LP-based model predictive control. In Proceedings of the 39th IEEE
conference on decision and control (pp. 632–637). Sydney, Australia.

Bemporad, A., Borrelli, F., & Morari, M. (2000b). Piecewise linear
optimal controllers for hybrid systems. In Proceedings of the American
control conference (pp. 1190–1194). Chicago, IL.

Bemporad, A., Borrelli, F., & Morari, M. (2002a). On the optimal control
law for linear discrete time hybrid systems. In M. Greenstreet &
C. Tomlin (Eds.), Hybrid systems: computation and control (pp.
105–119). In Lecture notes in computer science, Vol. 2289. Berlin:
Springer.

Bemporad, A., Borrelli, F., & Morari, M. (2003). Min–max control of
constrained uncertain discrete-time linear systems. IEEE Transactions
on Automatic Control, submitted for publication.

Bemporad, A., Borrelli, F., & Morari, M. (2002). Model predictive
control based on linear programming—the explicit solution. IEEE
Transactions on Automatic Control, 47(12), 1974–1985.

Bemporad, A., & Filippi, C. (2003). Suboptimal explicit RHC via
approximate multiparametric quadratic programming. Journal of
Optimization Theory and Applications, 117, 1 (to appear).

Bemporad, A., Fukuda, K., & Torrisi, F.D. (2001). Convexity recognition
of the union of polyhedra. Computational Geometry, 18, 141–154.

Bemporad, A., Morari, M., Dua, V., & Pistikopoulos, E. N. (2002b). The
explicit linear quadratic regulator for constrained systems. Automatica,
38(1), 3–20.

Borrelli, F., Baotic, M., Bemporad, A., & Morari, M. (2001a).
E"cient on-line computation of constrained optimal control laws. In
Proceedings of the 40th IEEE conference on decision and control
(pp. 1187–1192). Orlando, FL.

Borrelli, F., Bemporad, A., Fodor, M., & Hrovat, D. (2001b). A hybrid
approach to traction control. In: A. Sangiovanni-Vincantelli & M.D.
Di Benedetto (Eds.), Hybrid Systems: Computation and Control
(pp. 162–174). Springer-Verlag.

Garcia, G., & Tarbouriech, S. (1999). Piecewise-linear robust control of
systems with input constraints. European Journal of Control, 5(1),
157–166.

Goodrich, M. T., & Ramaiyer, K. (1999). Point location. In J.-R.
Sack & J. Urrutia (Eds.), Handbook of computational geometry
(pp. 121–153). Amsterdam. Elsevier Science Publishers B.V.
North-Holland.

Hassibi, A., & Boyd, S. (1998). Quadratic stabilization and control of
piecewise linear systems. In Proceedings of the American control
conference, Philadelphia, PA, USA (pp. 3659–3664).

Johansen, T. A. (2002). On multi-parametric nonlinear programming and
explicit nonlinear model predictive control. In Proceedings of the 41st
IEEE conference on decision and control. Las Vegas.

Johansen, T. A., & Grancharova, A. (2002). Approximate explicit model
predictive control implemented via orthogonal search tree partitioning.
In Preprints XV IFAC world congress. Barcelona.

Johansen, T. A., Petersen, I., & Slupphaug, O. (2002). Explicit subopitmal
linear quadratic regulation with input and state constraints. Automatica,
38(7), 1099–1111.

Rantzer, A., & Johansson, M. (2000). Piecewise linear quadratic optimal
control. IEEE Transactions on Automatic Control, 45, 629–637.

Seron, M. M., DeDon@a, J. A., & Goodwin, G. C. (2000). Global analytical
model predictive control with input constraints. In Proceedings of the
39th IEEE conference on decision and control (pp. 154–159). Sydney.

Slupphaug, O., & Foss, B. A. (1999). Quadratic stabilization of
discrete-time uncertain nonlinear multi-model systems using piecewise
a"ne state feedback. International Journal of Control, 72, 686–701.

Snoeyink, J. (1997). Point location. In J. E. Goodman & J.
O’Rourke (Eds.), Handbook of discrete and computational geometry
(pp. 559–574). Boca Raton, FL: CRC Press.

THndel, P., Johansen, T. A., & Bemporad, A. (2003). An algorithm for
multi-parametric quadratic programming and explicit MPC solutions.
Automatica, 39(3), 489–497.

Vicino, A., & Zappa, G. (1996). Sequential approximation of feasible
parameter sets for identi0cation with set membership uncertainty. IEEE
Transactions on Automatic Control, 41, 774–785.

Wredenhagen, G. F., & Belanger, P. R. (1994). Piecewise-linear
LQ control for systems with input constraints. Automatica, 30(3),
403–416.

	Evaluation of piecewise affine control via binary search tree
	Introduction
	Explicit constrained linear MPC
	On-line search tree
	Estimated complexity of the tree
	Examples
	Conclusions
	References

