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a b s t r a c t

In this paperwe introduce a class of continuous-time hybrid dynamical systems called integral continuous-
time hybrid automata (icHA) for which we propose an event-driven optimization-based control strategy.
Events include both external actions applied to the system and changes of continuous dynamics (mode
switches). The icHA formalism subsumes a number of hybrid dynamical systems with practical interest,
e.g., linear hybrid automata. Different cost functions, including minimum-time and minimum-effort
criteria, and constraints are examined in the event-driven optimal control formulation. This is translated
into a finite-dimensional mixed-integer optimization problem, in which the event instants and the
corresponding values of the control input are the optimization variables. As a consequence, the proposed
approach has the advantage of automatically adjusting the attention of the controller to the frequency
of event occurrence in the hybrid process. A receding horizon control scheme exploiting the event-based
optimal control formulation is proposed as a feedback control strategy and proved to ensure either finite-
time or asymptotic convergence of the closed-loop.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Hybrid systems are capable of modelling complex processes
characterized by the coexistence and interaction of discrete and
continuous dynamics. The hybrid dynamics are usually described
either in discrete-time through difference equations, or in
continuous-time through differential equations. The trajectory of a
continuous-time hybrid system can be represented as a sequence
of continuous evolutions interleaved by discrete events (Lygeros,
Johansson, Simic, Zhang, Sastry, 2003), which cause changes in
the set of differential equations defining the continuous flow,
also called the ‘‘modes’’ of the hybrid system. Such a behavior
is exhibited, for instance, by piecewise affine systems, where
the coefficients of the linear differential or difference equations
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defining the continuous dynamics depend on linear inequality
conditions over the continuous state and input vectors.
As mode switches introduce discontinuities in the vector fields

defining the system dynamics, this may lead to weaker solution
concepts for the differential equations, such as the Filippov or
Utkin solutions (Van Beek,Pogromsky, Nijmeijer, & Rhooda, 2004),
and also to pathological effects, such as Zeno behaviors (Lygeros
et al., 2003). The presence of possible resets of the state values
after mode switches further complicates the trajectory, as in
this case the trajectory itself can become discontinuous. The
continuous flowand the instants atwhich the discrete events occur
can be further influenced by exogenous discrete and continuous
input signals. From a controller design perspective, when optimal
control is applied to continuous-time hybrid systems, the resulting
computational problem is hard to solve, since it usually involves
nonconvexproblems (see (Xu&Antsaklis, 2003) and the references
therein).
In the discrete-time setting not only most of the aforemen-

tioned subtleties in the characterization of trajectories disappears,
but also optimal control problems can be solved very efficiently
through mixed-integer programming (MIP) solvers (Bemporad &
Morari, 1999). In comparison with the continuous-time case, here
the simplification is mainly due to the fact that events (such as
mode switches) can only occur at sampling instants. However,
mode switches that occur in the intersampling, and hence are not
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recognized or delayed, may lead to nonnegligible modelling er-
rors (Di Cairano, 2008, Ch. 5) that we call mode-mismatch. In the
discrete-time case, modelling precision can be improved by re-
ducing the sampling period. However, this increases the compu-
tational load of the controller. In particular, in a model predictive
control (MPC) context (Maciejowski, 2002), the obvious disadvan-
tage is that, for a given time-horizon of prediction, a larger number
of control variables is involved in the optimization problem.
To avoid mode-mismatch errors one should change command

values exactly when the mode changes, or in other words adopt
an event-driven control approach. Event-driven approaches have
been originally used for control in the framework of discrete-
event systems, e.g., finite state machines and Petri nets. Receding
horizon control approaches have been successfully applied to
some classes of discrete-event systems, max-plus-linear discrete-
event systems (De Schutter & van den Boom, 2001), discrete-event
systemswith real-time constraints (Miao & Cassandras, 2007), and
scheduling systems (Cassandras & Mookherjee, 2003).
This paper introduces integral continuous-time hybrid automata

(icHA), a model paradigm for a special class of continuous-time
hybrid dynamical systems for which no a priori information
about the timing and order of the events is assumed. It will
be shown that the dynamics of an icHA can be expressed with
an event-driven formulation, as will be detailed in Section 2.
A similar formulation has been used in (Borrelli, Falcone, & del
Vecchio, 2007). In Section 3 we formulate different continuous-
time optimal control problems of icHA that can be solved
via mixed-integer programming techniques despite the event-
driven formulation. A similar approach was proposed in (Xu &
Antsaklis, 2002), although the system model and the optimization
approach are different: in (Xu & Antsaklis, 2002) mode switches
are directly controlled and the system dynamics have no other
exogenous input signals, that also induces a solution algorithm
based on linear programming and enumeration of feasible mode
sequences. Finally, the optimal control methods are used in
Section 4 to develop an event-driven closed-loop control approach
that exploits a model predictive control philosophy, for which
conditions for convergence are given.

1.1. Notation

Small letters denote variables or vectors (e.g., v, ξ ), superscripts
(e.g., vj) vector components. Subscripts are used for systemmodes
(e.g., Ai, bi, fi) and for time instants in a sequence of time instants
(ti). Bold symbols denote finite sequences of variables, e.g., a ,
{a(ti)}Ni=0. The sets R and Z indicate the set of real numbers and
integer numbers, respectively, Z0+, R0+, Z0+, R+ indicate the sets
of nonnegative integer, nonnegative real, positive integer, and
positive real numbers, respectively. We use Z[a,b] where a, b ∈ Z,
b ≥ a to indicate the set {x ∈ Z : a ≤ x ≤ b}.We indicate the origin
of a space byO, the interior of a setX by Int(X) and its closure by
Cl(X). The binary operator \ indicates the difference between sets.
Relational operators (such as ≤) over vectors are intended

componentwise. For matrices, Q ≥ 0 indicates positive
semidefiniteness, ‖z‖Q

∞
, maxi |(Qz)i|, ‖z‖

Q
1 ,

∑
i |(Qz)

i
|, and

‖z‖Q2 , z
TQz where Q > 0. The symbol I indicates the identity

matrix of appropriate dimensions, while we use the bold 0 and 1
to indicate matrices and vectors entirely composed of zeros and
ones, respectively. The symbol→ denotes logical implication (if )
and the symbol↔ logical equivalence (iff ).
Given a signal a(·) : R0+ → Awe indicate its continuous-time

trajectory by a(s), s ∈ R0+, and its event-driven trajectory by a(j),
where j ∈ Z0+, a(j) = a(tj) and tj is the time instant at which
the jth event occurs. When considering event-driven predictive
control, the predicted trajectory of a signal a(·) from state x(t) at
time t along event steps Z[r,s] are indicated by a(x(t)) = [ax(t)(r),
. . . , ax(t)(s)].
Fig. 1. Integral continuous-time hybrid automaton (icHA).

2. Integral continuous-time hybrid automaton

We consider a continuous-time version of the discrete hybrid
automaton (DHA) proposed in (Torrisi & Bemporad, 2004), denoted
as integral continuous(-time) hybrid automaton (icHA), where
discrete-time affine dynamics are replaced by integral continuous-
time dynamics. Similarly to the DHA, the icHA consists of the four
components reported in Fig. 1: the integral switched affine system
(iSAS), the event generator (EG), the mode selector (MS) and the
asynchronous finite state machine (aFSM). The iSAS represents a
collection of continuous-time integral dynamics for the continuous
states

ẋc(t) = Bi(t)uc(t)+ fi(t), (1)

where xc ∈ Rnc and uc ∈ Rmc are the continuous components of
the state and input vectors, respectively, and i ∈ I = {1, 2, . . . , s}
is the system mode. As will be detailed later, the main reason
for restricting the attention on integral dynamics instead of more
general linear dynamics is computational. Nonetheless, the class
of continuous-state dynamics (1) has been widely exploited for
modelling and verification of hybrid systems (Henzinger, 1996;
Henzinger, Ho, & Wong-Toi, 1997; Xu & Antsaklis, 2002), as it
is powerful enough to model many practical problems. In fact,
given a nonlinear (possibly discontinuous) dynamical model ẋc =
f (xc(t), uc(t)), model (1) can be interpreted as a piecewise zero-
order approximation of the state-transition function with respect
to the state vector xc and a first-order approximation with respect
to the input vector uc . Similarly to the piecewise affine (PWA)
approximation ẋc = Aixc + Biuc + fi, the icHA dynamics can be
made arbitrarily close to a given nonlinear dynamics by increasing
the number of modes.
The EG defines the endogenous binary inputs δe according to the

linear threshold conditions

[δiex(t) = 1] ↔
[
Exi

[
xc(t)
t

]
≤ F xi

]
, i ∈ Z[1,nxe], (2a)

[δieu(t) = 1] ↔
[
Eui uc(t) ≤ F

u
i

]
, i ∈ Z[1,nue ], (2b)

and we get δe , [δ1ex . . . δ
nxe
ex δ

1
eu . . . δ

nue
eu ]
T
∈ {0, 1}ne , ne , nxe + n

u
e ,

as the vector of endogenous binary input variables. The icHA may
be also excited by exogenous binary input signals ub ∈ {0, 1}mb
entering the mode selector and the asynchronous finite state
machine.

Definition 2.1. PC(mc ,mb) is the set of piecewise constant func-

tions u(t) ,
[
uc (t)
ub(t)

]
, u : R → Rmc × {0, 1}mb such that u(t) is

constant for all t ∈ [tk, tk+1), k ∈ Z0+, where t0 < t1 < · · · is a
sequence of time instants. �
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Discrete-time samples held constant between sampling instants
by a zero-order holder are a special case of piecewise constant
functions, corresponding to equally spaced time instants. General
piecewise constant functions can approximate arbitrarily well any
given piecewise continuous function, provided that the number of
intervals can go to infinity and the interval length can go to 0.

Assumption 2.1. In what follows it is assumed that u : R →
Rmc ×{0, 1}mb ∈ PC(mc ,mb),

1 i.e., the input trajectory is piecewise
constant along time. �

Definition 2.2. An event occurs whenever an endogenous input δe
or an exogenous input

[
uc
ub

]
changes value. Given the initial time

t0 ∈ R, the event instants are defined recursively as

tk , min
t>tk−1
{t : (uc(t), ub(t), δe(t))

6= (uc(tk−1), ub(tk−1), δe(tk−1))}, (3)

where clearly tj < tj+1 for all j ∈ Z0+. We assume that the
minimum in (3) always exists. �

The Boolean state ξb ∈ {0, 1}nb is defined as

ξb(t) , xb(tk) for tk−1 ≤ t < tk, (4)

xb(tk+1) = faFSM(xb(tk), ub(tk), δe(tk)), (5)

and faFSM : {0, 1}nb+mb+ne → {0, 1}nb is the Boolean function
defining the transitions of the asynchronous finite state machine.
The Boolean state ξb(t) remains constant, ξb(t) = xb(tk), during
the whole interval tk−1 ≤ t < tk. At the event instant tk, the
Boolean state switches to the new value faFSM(xb(tk), δe(tk), ub(tk)),
and remains at that value for tk ≤ t < tk+1. Whilewe are assuming
that the transitions of the aFSM are instantaneous, delays can be
easily modelled by introducing additional events and states. In (5)
discrete-state transitions can occur at any time instant, not only at
multiples of a given sampling period as for DHA.
The different operating modes of the system represented by

the variable i(t) are selected by the mode selector (MS) function
through the scalar product

i(t) = [1 2 . . . s] · fMS(ξb(t), ub(t), δe(t)), (6)

where fMS : {0, 1}nb+mb+ne → {0, 1}s is a Boolean function satisfy-
ing the mutual exclusivity relation 1T · fMS(ξb(t), ub(t), δe(t)) = 1,
for all (ξb(t), ub(t), δe(t)) ∈ {0, 1}nb+mb+ne . Note that when ub and
δe are constant, the Boolean state and the mode are also constant.

2.1. Event-driven representation of icHA

The icHAmodel (1)–(6) is next converted to a computationally-
oriented event-driven representation.
Let t = {tj}h−1j=0 be a finite sequence of ordered time instants

t0 < t1 < · · · < th−1. Let uc : R → Rmc be a piecewise
constant function with breakpoints at the instants in t and
u = {uc(tk)}h−1k=0 the corresponding sequence of levels. For
the affine dynamics ẋc(t) = Axc(t) + Bu(t) + f , the state
value at tj, j ∈ Z[0,h−1], is a nonlinear function of t and u.
However in the case of integral dynamics (A = 0), xc(tj) =
xc(t0) +

∑j−1
k=0 (B(tk+1 − tk)uc(tk)+ (tk+1 − tk)f (tk)) . Consider

now a system with switched integral dynamics (1), and let the set
of mode-switch instants {t : i(t − ε) 6= i(t + ε), ε → 0} ⊆ t.
Since in any time interval [tk, tk+1) themode is constant, we obtain

1 For the simplicity of notation the subscript (mc ,mb)will be dropped in the rest
of the paper when the values ofmc andmb are clear from the context.
that the system dynamics can be rewritten as the first-order linear
difference equations
xc(k+ 1) = xc(k)+ Bi(k)vc(k)+ fi(k)q(k) (7a)

t(k+ 1) = t(k)+ q(k) (7b)
where k is the event counter, xc(k) = xc(tk), t(k) = tk, i(k) =
i(tk), q(k) is the time interval between event instants tk and tk+1,
vc(k) = q(k)uc(k) is the integral over time period q(k) of the
input uc(k) = uc(tk). Note that in (7b) time t is treated as an
additional state variable. The controlled variables are the input
integral vc(k) and the input level duration q(k), from which the
actual input uc(k) = vc (k)

q(k) to be applied to the continuous-time
system is immediately recovered.
The event generator becomes

[δiex(k) = 1] ↔
[
Exi

[
xc(k)
t(k)

]
≤ F xi

]
, i ∈ Z[1,nxe] (8a)

[δieu(k) = 1] ↔
[
Eui vc(k) ≤ F

u
i q(k)

]
, i ∈ Z[1,nue ], (8b)

where δe(k) = δe(tk), and δe(t) = δe(tk), for all t ∈ [tk, tk+1)
by the definition of tk in (3). The dependence on time becomes
a dependence on a state variable, because of (7b), and (8b) is
obtained from (2b) by multiplying by q(k) both sides of the right
clause. The mode selector equation becomes

i(k) = [1 2 . . . s] · f̃MS(xb(k), ub(k), δe(k)), (9)
where i(t) = i(k), for all t ∈ [tk, tk+1), as a consequence of the
event definition, and f̃MS(xb(k), ub(k), δe(k)) = fMS(faFSM(xb(k),
ub(k), δe(k)), ub(k), δe(k)) because of (6) and of the definition of
ξb(t). Finally, Eq. (5) is already defined with respect to the event
instants.
Eq. (5), (7), (8), (9) define the behavior of the icHA in an event-

driven representation. However, to account for (3), the following
condition must be ensured:[
(δe(k), uc(k), ub(k)) = (δ̄e, ūc, ūb)

]
→[

(δe(t), uc(t), ub(t)) = (δ̄e, ūc, ūb),∀t ∈ [tk, tk+1)
]
. (10)

We consider two different cases: (i) the value of uc or ub changes,
so that an event is externally forced, for instance by a controller,
(ii) the value of δe changes, i.e., an endogenous event occurs.
Since we will focus on an event-driven control design, in which
exogenous events are generated on purpose by the controller, we
can assume that uc(t), ub(t) are constant between event instants
and simply restrict condition (10) to[
δe(k) = δ̄e

]
→

[
δe(t) = δ̄e, ∀t ∈ [tk, tk+1)

]
, (11)

i.e., the current mode is kept until the next endogenous event.
Moreover, as δieu variables in (2b) can change only when the input
changes, they can be dealt with as for externally forced events,
namely by appropriate selection of the control inputs. Thus, it is
indeed sufficient to enforce (11) for the variables in (2a).
Let the mapping cod(·) : {0, 1} n

x
e → Z0+ associate a

nonnegative integer number d to each allowed value of vector
δxe = [δ

1
ex . . . δ

nxe
ex ]
T defined in (2a). For example d may be the

integer whose binary encoding is δex . Define the matrix Ē
x(d) and

the vector F̄ x(d) by collecting the rows in the inequalities of the
EG (8) which are satisfied for ex such that cod(δex) = d. Define
Êx(d), F̂ x(d) by collecting as rows the inequalities of the EG (8),
which are not satisfied for δex such that cod(δex) = d. Hence (11) is
equivalently replaced by[
cod(δex(k)) = d

]
→[

Ēx(d)
[
x
t

]
≤ F̄ x(d), Êx(d)

[
x
t

]
> F̂ x(d)

]
, ∀t ∈ [tk, tk+1). (12)
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As an example, consider two thresholds [δ1ex = 1] ↔ [x ≤ 0],
[δ2ex = 1] ↔ [x ≤ 1]. The matrices associated to δ

x
e = [0 1]

T,
where cod(δxe) = 1, are Ē

x(1) = 1, F̄ x(1) = 1, collecting the second
threshold condition (satisfied), and Êx(1) = 1, F̂ x(1) = 0.

Proposition 2.1. Let cod(δ̃ex) = d, and let Ēx(d), Êx(d) and F̄ x(d),
F̂ x(d) be the associated matrices and vectors, respectively, obtained
by collecting the rows in (8) which are either satisfied (Ēx, F̄ x) or not
satisfied (Êx, F̂ x) when δex is such that cod(δex) = d. In the case
of integral dynamics, if uc(t) is constant for t ∈ [tk, tk+1), (11) is
guaranteed by the mixed-logical constraint[
cod(δxe(k)) = d

]
→

[[
Ēx(d)
−Êx(d)

] [
x(k+ 1)
t(k+ 1)

]
≤

[
F̄ x(d)
−F̂ x(d)

]
+ ε1

]
, (13)

for ε > 0, ε→ 0+.

Proof. Because of the integral dynamics, the state trajectory for t ∈
[tk, tk+1) is the line x(t) = x(k)+γ (t−t(k)), where γ = x(k+1)−x(k)

t(k+1)−t(k) .
Condition (12) and condition (13) define two polyhedra,P andPε ,
respectively. Since ε > 0, Pε ⊃ P and if ε → 0, Pε → P .
Condition (13) ensures that x(k + 1) ∈ Pε and (12) ensures that
x(k) ∈ P ⊂ Pε , hence for all t ∈ [tk, tk+1], x(t) ∈ Pε . Thus, by
linearity of the trajectory there exists %(ε) such that x(t) ∈ P , for
all t ∈ [tk, tk+1 − %(ε)]. Since for ε→ 0,Pε → P , then for ε→ 0
also %(ε)→ 0. �

The effect of adding ε in Eq. (13) is to expand the polyhedron
P . This is necessary for allowing δxe(k+ 1) 6= δ

x
e(k), otherwise the

system would be constrained to remain always in the same mode.
The value of %(ε) is the time the trajectory spends inPε \P . When
Pε → P , %(ε)→ 0.
Note that, within a givenmode i(k), x(k+1) is an affine function

of x(k), q(k), and v(k) ,
[
vc (k)
vb(k)

]
, where vb(k) = ub(k), so that (13)

can be reformulated as a set of mixed-integer inequalities on x(k),
q(k), v(k), δe(k) (Williams, 1993). Indeed, Eqs. (5), (7), (8), (9), (13)
represent a DHA that can be converted into the event-driven MLD
(eMLD) system

x(k+ 1) = Ax(k)+ B1w(k)+ B2δe(k)+ B3z(k)+ B5, (14a)
t(k+ 1) = t(k)+ q(k), (14b)
E2δe(k)+ E3z(k) ≤ E1w(k)+ E4x(k)+ E5 + E6t(k), (14c)

where w(k) ,
[
v(k)
q(k)

]
, for instance using the tool Hysdel (Torrisi &

Bemporad, 2004). Differently from the standard discrete-timeMLD
system (Bemporad & Morari, 1999), in the eMLD (14) k is an event
counter, while time t is an additional state variable.

Remark 2.1. Discontinuities of the continuous state trajectory in
the form of state resets xc(tk+1) = Φixc(tk) + µi can be included
as follows. To model resets one must add reset modes i ∈ {s +
1, . . . , sr}, modify (7a) into xc(k+ 1) = (Φixc(k)+µi)+ Biv(k)+
fiq(k), and (7b) into t(k + 1) = t(k) + Γiq(k), where in modes
i = {1, . . . , s}, Φi = I , µi = 0, and Γi = 1, while in reset modes
i = {s+ 1, . . . , sr}Bi = 0, fi = 0, and Γi = 0.

When a reset occurs Eq. (11) does not apply, as tk+1 = tk. In
this case, assuming that two consecutive resets cannot occur, the
continuous-time trajectory xc(t) may be discontinuous in tk, and
is defined as follows. Let j, be the mode immediately before the
reset mode i. Then, limt→t−k xc(t) = xc(k − 1) + Bjv(k − 1) +
fjq(k− 1), xc(tk) = Φi(xc(k− 1)+ Bjv(k− 1)+ fjq(k− 1))+ µi,
and limt→t+k xc(t) = xc(tk). In other words, we define the state
trajectory xc(t) as right continuous.
In accordance with the above definition of resets, in eMLD

models these are instantaneous, contrary to resets in discrete-
time MLD models that are constrained to last one sampling
interval (Torrisi & Bemporad, 2004). An equivalent event-driven
PWA system (ePWA) of the eMLD (14) can be obtained by using the
algorithm in (Bemporad, 2004). See (Di Cairano, 2008) for further
details.

2.2. Modelling capabilities

Even though the piecewise integral dynamics of the continuous
state of icHA has some limitations, the icHA cover several popular
model classes.
Linear hybrid automata (LHA), known to be useful for both

control (Wong-Toi, 1997) and verification purposes (Henzinger
et al., 1997), can be modelled by icHA, as intuitively shown by the
example in Section 3.3. A formal proof of the capabilities of icHA to
model linear hybrid automata can be obtained by resorting to an
equivalent piecewise affine representation of the icHA system (Di
Cairano, 2008) and by exploiting the results in (Di Cairano &
Bemporad, 2006) on the relations between linear hybrid automata
and piecewise affine systems. In (Bemporad, Di Cairano, & Júlvez,
2006) an example of formal verification of a LHA performed
through its equivalent icHA formulation was given.
Another class of systems that can be modelled as icHA is

the class of continuous Petri nets (CPN) (Silva & Recalde, 2002),
that relaxes classical Petri nets allowing continuous values for
transition firings, to alleviate combinatorial state explosion. The
dynamics of a timed continuous Petri net under finite server
semantics is piecewise integral, hence the class of continuous
Petri nets is contained in the class of icHA. The application to
continuous Petri net control of the techniques proposed here has
been presented in (Julvez, Bemporad, Recalde, & Silva, 2004).
Finally as mentioned in Section 2, piecewise integral dynamics

can approximate nonlinear dynamics arbitrarily well, possibly at
the price of increasing the number of systemmodes, as in the case
of piecewise affine systems.

3. Event-driven optimal control

Consider the event-driven optimal control problem for the
icHA (1)–(6)

min
x,t,q,v

J(x, t, q, v) (15a)

s.t. icHA dynamics (1)–(6) (15b)
g(x(k), t(k), q(k), v(k)) ≤ 0, k ∈ Z[0,N−1] (15c)
gN(x(N), t(N)) ≤ 0 (15d)
x(0) = x0, t(0) = t0, (15e)

where J(·) is a convex function of (x, t, q, v), t = {t(k)}Nk=0 are
the time instants at which events occur, x = {x(k)}Nk=0 are the
corresponding state values, q = {q(k)}N−1k=0 are the durations of
the time intervals between two consecutive events, q(k) = t(k +
1) − t(k), v = {v(k)}N−1k=0 are the input integrals computed on
the corresponding intervals {[t(k), t(k + 1))}N−1k=0 , x0 is a given
initial state, and t0 a given initial time. Constraints (15c) and (15d)
represent possible additional constraints in the optimal control
problem and N is the event-based optimal control horizon, i.e., the
number of events considered in the optimal control formulation.
By formulating the icHA dynamics (15b) as the equivalent

eMLD model (14), problem (15) can be solved by mixed-integer
programming (MIP) for different objective functions (15a) and
constraints (15c) and (15d) as detailed in Section 3.1. The cost
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function and the constraints determine the type of problem to be
solved. As described below, all such problems are formulated in a
way that results inmixed-integer linear or quadratic programming
(MILP, MIQP) problems, for which efficient and reliable solvers
exist.

3.1. Cost function

Similar to the discrete-time case, the cost function in (15a) can
be defined as

J(x, t, q, v) , F(x(N), t(N))+
N−1∑
k=0

L(x(k), t(k), q(k), v(k)). (16)

For instance, one can set L(x, t, v, q) , ‖x − x̂‖Q1p + ‖t − t̂‖
Q2
p +

‖v − v̂‖
R1
p + ‖q − q̂‖

R2
p , F(x, t) , ‖x − x̂‖

QN
p + ‖t − t̂‖

QT
p , p ∈

{1, 2,∞}, where ‘‘ ˆ ’’ denotes a given reference value for the
corresponding vector. From the general formulation (15) we can
derive specific forms of the cost function (15a) and the associated
constraints (15c) and (15d).
Itmay be required that the system state reaches a desired target

state x̂ after N events, x(N) = x̂, or, in a softened form, that it gets
very close to it by setting F (x(N), t(N)) = ρ ‖x(N)− x̂‖∞, where
ρ ∈ R+ is a large weight. In alternative, one can consider a convex
desired target set XN and impose the constraint x(N) ∈ XN . A
target time t̂ or set TN can be formulated similarly.
The minimum-time criterion looks for the sequence (x, t, q, v)

that minimizes the time needed to bring the system from x0 to the
final state x̂. This can be obtained by setting L(x(k), t(k), q(k), v(k))
= |q(k)| = q(k), F(x(N), t(N)) = 0 in (16).
The minimum-effort criterion looks for minimizing the in-

tensity of the command input u(t). If the `1-norm of the in-
put function is used, we obtain J(x, t, q, v) =

∫ tN
0 ‖u(t)‖dt =∑N−1

k=0

∫ t(k+1)
t(k) ‖u(t)‖1dt . Since u is constant in each period

[t(k), t(k + 1)), it is enough to set L(x(k), t(k), q(k), v(k)) =
‖v(k)‖1, F(x(N), t(N)) = 0 in (16).
The minimum-displacement criterion looks for the trajectory

that minimizes the largest deviation from a desired continuous
state trajectory x̂c(·), that we assume piecewise linear and
continuous (a special case is x̂c(·) ≡ x̂c):

J(x, t, q, v) = max
t∈[t(0),t(N)]

‖xc(t)− x̂c(t)‖∞. (17)

Proposition 3.1. Let xc(t), for all t ∈ [t0, tN ], be the trajectory of
continuous states of an icHA system with no resets, t0 < t1 < · · · <
tN be the event instants, assume that x̂c(t) is linear over each [ti, ti+1),
i ∈ Z[0,N−1] and continuous over [t0, tN ]. Thenmaxt∈[t0,tN ] ‖xc(t) −
x̂c(t)‖∞ = maxk=0,...,tN {‖xc(t(k))− x̂c(t(k))‖∞}.

Proof. In the absence of resets, state trajectories of icHA are con-
tinuous, so ‖xc(·) − x̂c(·)‖∞ is continuous, being the composi-
tion of continuous functions (‖ · ‖∞, xc(·), x̂c(·)), and therefore
the maximum over [t0, tN ] is well defined. Moreover, function
‖xc(·) − x̂c(·)‖∞ is a convex function of time t on [t(k), t(k +
1)], being the composition of a convex function (the infinity
norm) with linear functions (the state trajectory of the icHA and
x̂c between two consecutive switches), and thus it attains its
maximumeither at t(k) or at t(k+1). Hencemaxt∈[t(0),t(N)] ‖xc(t)−
x̂c(t)‖∞ = max0≤k≤N−1{maxt∈[t(k),t(k+1)] ‖xc(t) − x̂c(t)‖∞} =
max0≤k≤N−1{max{‖xc(t(k))− x̂c(t(k))‖∞, ‖xc(t(k+1))− x̂c(t(k+
1))‖∞}} = max0≤k≤N{‖xc(t(k))− x̂c(t(k))‖∞}. �

While (17) is not in the form (16), its equivalent form
max0≤k≤N{‖xc(t(k)) − x̂c(t(k))‖∞} still leads to a mixed-integer
linear optimal control problem.
3.2. Operating constraints

The constraints in (15c) and (15d) can involve quite general
mixed-integer linear constraints on states, event instants, and
inputs. By using convexity arguments and continuity of xc(·)
similar to the ones used in the proof of Proposition 3.1, state
constraints h ≤ Hx(t) ≤ h, t ∈ [t(0), t(N)] can simply be enforced
through constraints on the state at event instants only

h ≤ Hx(k) ≤ h, k ∈ Z[0,N]. (18)

Similarly, input bounds u ≤ uc(t) ≤ u, t ∈ [t(0), t(N)) can be
rewritten immediately as the linear constraints

uq(k) ≤ v(k) ≤ uq(k), k ∈ Z[0,N−1]. (19)

Different input bounds for different modes can be enforced by the
logical constraint [i(k) = ı̄] → [uı̄q(k) ≤ v(k) ≤ uı̄q(k)], where
uı̄ and uı̄ are upper and lower bounds of the input while in mode
ı̄. Note that, differently from the standard discrete-time optimal
control problem where constraint satisfaction is guaranteed only
pointwise in time, in the event-driven approach state constraints
are enforced continuously on time.
Additional operating constraints may be imposed on time

intervals between two consecutive events

q ≤ q(k) ≤ q, k ∈ Z[1,N−1]. (20)

A finite q imposes a maximum time for each control action, in
order to prevent the system from running in open loop for too long
until the next event. A minimum duration q ensures a minimum
time interval between two events (and thus between two mode
switches), therefore avoiding undesirable effects such as high
frequency chattering and control-induced Zeno behaviors (Lygeros
et al., 2003). In more detail, if constraint (20) is enforced, no
solution that chatters with period smaller than q is generated by
the control strategy. Constraint softening may be used to avoid
infeasibility when chattering cannot be avoided, thus resulting in
the largest possible chattering period. Furthermore, (20) ensures
that the time-length of the optimization problem is at least
Nq. Finally, the lower bound q can be used to account for
the computation time of the optimal control problem (15). The
minimum dwell time may be used there to guarantee that there
is enough time to update the control input before the next event
occurs.
Constraints on event instants tk ≤ t(k) ≤ tk, k ∈ Z[1,N]

can be enforced, since time is a state variable on the optimization
problem (15). These may be combined with state constraints to
enforce that at a time instant during a given interval, the state value
is within a given range.

3.3. Numerical example

Consider the well-known ‘‘train–gate’’ benchmark for hybrid
systems (Henzinger et al., 1997), commonly used for verification
purposes, slightly modified and proposed here as a control
problem.
The system is composed of a train and a gate. The control

objective is to let the train cross the gate as fast as possible in a safe
condition, i.e., the gatemust be closedwhen the train crosses it. The
well-known linear hybrid automaton describing the systemmodel
is shown in Fig. 2. The discrete state of the system is composed of
the discrete state of the train and of the gate, whose dynamics are
described by the automata in Fig. 2. The train can be in an arriving
(Ar), crossing (Cr), leaving (L), or far (F) situation, depending on its
position, the gate can be open (O), closing (Cl), closed (C) or idle (I).
The continuous states of the system are the train position x1 and

the gate opening percentage x2, where x2 = 0 means completely
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(a) Train Automaton. (b) Gate Automaton.

Fig. 2. Automata that describe the Train–Gate system.
Table 1
Numerical results of the time-discretization approach (e.d. = event-driven (5),
t.u.= time units).

N Ts (t.u.) Tcpu (s) Tviol(t.u.) T (sup)viol (t.u.)

5 20.00 0.29 3.82 40.00
6 16.66 0.86 21.83 33.33
10 10.00 10.93 9.82 20.00
15 6.66 640.21 6.55 13.33
e.d. – 0.26 0 0

closed while x2 = 1 means completely open. Instead of by the
differential inclusions (Henzinger et al., 1997) used for verification,
we define the dynamics by ẋ = u(t) + fi, where fi(t) =

[
f 1(t)
0

]
,

u(t) =
[
u1(t)
u2(t)

]
and uji ≤ u

j
≤ uji, j = 1, 2, and i is the system

mode. The systemmodes are the cartesian product of the states of
the train and the gate automata, hence 16 in total. The numerical
values can be found in (Di Cairano, 2008, Sec. 5.2.3).
Consider the following problem: from the initial state

[
x0c
x0b

]
with x0c =

[
−20
1

]
and x0b = (Ar, Cl), the train must safely cross

the gate inminimum time. For control purposes we havemodelled
the system as an icHA (1)–(6). The minimum time criterion
L(x(k), t(k), q(k), v(k)) = |q(k)| = q(k), F(x(N), t(N)) = 0 with

target state was x̂ =
[
40.3
1

(F , I)

]
which was applied with N = 5,

under the safety constraint imposing that the discrete state (Cr,O)
is never reached. The target state x̂ is reached in 93.8 time units,
with a trajectory that does not cross the unsafe region ({x ∈ R2 :
10 ≤ x1 ≤ 10, 10−2 ≤ x2 ≤ 1}). The CPU-time to compute the
optimal trajectory is 0.26 s.2
Table 1 reports the results of the event-driven control compared

to a discrete-time solution of the same problem. The time horizon
of the discrete-time approach is 100 time units. The minimum-
time criterion, which cannot be perfectly enforced in a discrete-
time approach, is replaced by minimizing the tracking error
between the current and target states. In Table 1,N is the number of
time steps, Ts is the sampling period, Tcpu is the computation time.
In Table 1, Tviol indicates the time period during which the current
discrete-time solution violates the safety constraint. The violations
occur in the intersampling period. T (sup)viol = 2 Ts is the upper bound
on Tviol, due to the fact that the safety constraints can be violated
up to one sampling period when entering the gate and up to one
sampling period when leaving from it. By decreasing Ts, also T

(sup)
viol

decreases, ensuring a better system safety. However, the number
of required control steps increases for a fixed time-horizon, and
hence the complexity of the optimization problem increases as
shown in Table 1.

2 All the simulations presented in this paper have been performed on a Pentium
IV-M 2.0 GHz with 1 GByte RAM running Cplex 9.0 and Matlab 6.5.
4. Event-driven model predictive control

The event-driven optimal control approach of Section 3 is
an open-loop one. In this section we introduce an event-driven
closed-loop strategy based on Model Predictive Control (MPC)
concepts (Maciejowski, 2002).
Given an icHA and its eMLD translation obtained as described in

Section 2.1, consider again the optimal control problem (15). The
event-driven Model Predictive Control (eMPC) strategy is defined
as follows:
1. Let N be the event horizon; at a generic time t set t0 = t ,
x0 = x(t) in (15).

2. Solve (15). Let v∗(x(t)) , [v∗x(t)(0), . . . , v
∗

x(t)(N − 1)] be
the sequence of optimal input integral values, q∗(x(t)) ,
[q∗x(t)(0), . . . , q

∗

x(t)(N−1)] be the sequence of input action dura-
tions, x∗(x(t)) , [x∗x(t)(1), . . . , x

∗

x(t)(N)] be the predicted state
values at event instants, and t∗(x(t)) , [t∗x(t)(1), . . . , t

∗

x(t)(N)]
be the corresponding time instants at which the events occur,
computed from initial state x(t) and initial time t .

3. Compute the input value uc(t) =
v∗x(t),c (0)

q∗x(t)(0)
, and apply u(t) =[

uc (t)
v∗x(t),b(0)

]
during the time interval [t, t + q∗x(t)(0)] to the icHA.

3

4. Set t0 = t + q∗x(t)(0), x0 = x(t + q
∗

x(t)(0)) in (15) and go to Step
2.

The actual state x(t + q∗x(t)(0)) at the end of each control action
maybedifferent from thepredicted one x∗x(t)(1)because of external
disturbances and modelling errors. In fact, also the time instant
at which the optimization problem is repeated may be different
from the scheduled instant t + q∗x(t)(0). By the closed-loop nature
of the eMPC approach, the current state (and time) are measured
or estimated again and a new updated optimal input sequence is
computed.

4.1. An example of eMPC

Consider a system having two continuous states x1 and x2, and
two state thresholds [δ1ex = 1] ↔ [x

1
≤ 0], [δ2ex = 1] ↔ [x

2
≤ 0],

so that the system has four modes. Each mode corresponds to an
orthant of the Cartesian plane, where i = 1 corresponds to the
positive orthant and the other orthants are numbered clockwise.
The system has two inputs −50 ≤ u1 ≤ 50 and −50 ≤ u2 ≤ 50,
and the vectors and matrices that define Eq. (1) for i = 1, . . . , 4
are f1 = f4 =

[
1
0

]
, f2 = f3 =

[
−1
0

]
, B1 =

[
0 0
0 1.4

]
, B2 =

[
0 0
0 1.5

]
,

B3 =
[
0 0
0 1.15

]
, B4 =

[
1 0
0 2.3

]
. Moreover, there are additional

constraints on the inputs: when in mode i = 1 it must hold that

3 Different strategies may be proposed here, for example applying uc(t) during
the interval [t, t + max{q∗x(t)(0), Ts}], where Ts is a given minimum time interval
(possibly covering more than one optimal event instants) to prevent out-of-time
computation problems due to a small duration q∗x(t)(0).
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Fig. 3. Event-driven MPC example, nominal (dashed) and disturbed (solid).
Disturbed open-loop event-driven optimal control (dash-dotted), same disturbance
profile.

u2 ≥ −2, [i = 2] → [u2 ≤ −0.5], [i = 3] → [u2 ≤ 2],
[i = 4] → [u1 ≤ 2] and [i = 4] → [−0.5 ≤ u2 ≤ 2].
The controller must steer the state of the system from x0 =[

0.1
2

]
to x̂ =

[
−1
3

]
while minimizing function (16) with norm

p = ∞, Q1 =
[
10 0
0 10

]
, Q2 =

[
0 0
0 0

]
, R1 =

[
10−3 10−3

]
,

R2 = 1, and 0.1 ≤ q ≤ 50. We have set q̂ = 0.1, v̂ = u∞q̂,
where u∞ =

[
−1
0

]
. The closed-loop system is perturbed by input-

additive disturbances, so that the continuous state dynamics is
ẋ(t) = Bi(t(k)) (u(t(k))+ ν(k))+ fi(t(k)), for all t ∈ [t(k), t(k+ 1)),
where ν(k), k ∈ Z0+, is a sequence of time-uncorrelated stochastic
vectors with independent components uniformly distributed
in [−0.1, 0.1].
Fig. 3 reports the continuous-time trajectories generated by

the eMPC controller with a prediction horizon of 4 events, and
reiterated for 8 consecutive steps. In the undisturbed case (dashed
line) the closed-loop eMPC strategy trajectory coincides with the
open-loop optimal one; four control actions, corresponding to four
mode switches, are required to bring the system to the target
state. In the presence of disturbances the eMPC (solid line) is
able to counteract them, and to still bring the system close to
x̂, even if a larger number of control actions with respect to the
undisturbed case is required. The trajectory obtained by the open-
loop optimal policy under the effect of the same disturbance
realization is plotted as a dash-dotted line, showing that the effects
of the disturbance are not negligible, due to the switching nature of
the system.

4.2. Conditions for convergence of closed-loop eMPC

In this section we prove closed-loop convergence properties of
eMPC by resorting to classical techniques employed in nonlinear
and hybrid MPC analysis (Alamir & Bornard, 1994; Bemporad &
Morari, 1999; Lazar, Heemels, Bemporad, &Weiland, 2007;Mayne,
Rawlings, Rao, & Scokaert, 2000) and specializing them to the
present continuous-time and event-driven context.
In the following analysis we consider the case of terminal

equality constraint XN = {x̂} and TN = {t̂} or TN = R0+. The
approach can be extended to the case of terminal polyhedral sets,
see (Di Cairano, 2008, Sec. 5.4.2).

Definition 4.1. A state value x̄ =
[
x̄c
x̄b

]
is an equilibrium for the

icHA in mode ı̄ if and only if there exists a steady-state input
value ū∞ =

[
ūc,∞
ūb,∞

]
and δ̄e,∞ such that: (i), Bı̄ ūc,∞ + fı̄ = 0;

(ii), δ̄e,∞ = fEG(x̄c, ūc,∞, t), for all t ≥ 0, where fEG is the event
generator (2); (iii), x̄b = faFSM(x̄b, ūb,∞, δ̄e,∞); (iv), ı̄ = [1 . . . s] ·
fMS(x̄b, ūb,∞, δ̄e,∞).

Definition 4.1 requires that the input ū∞maintains the continuous
state, the discrete state, and the mode constant. For instance the
target state

[
−1
3

]
in the example of Section 4.1 is an equilibrium

for mode i = 4 with steady-state input ū∞ =
[
−1
0

]
.

4.2.1. Terminal equality constraints
When the terminal constraints x(N) = x̂, t(N) = t̂

are included, the terminal cost F is removed from (16). Let
χ(k) ,

[
x(k)
t(k)

]
denote the full state of the eMLD system at a

generic time t(k). Let J∗(χ(k)) be the optimal cost of Problem
(15), X∗(χ(k)) = [χ∗χ(k)(1), . . . , χ

∗

χ(k)(N)] and w∗(χ(k)) =
[w∗χ(k)(0), . . . , w

∗

χ(k)(N − 1)] be
4 the optimal state and optimal

input trajectories, respectively, wherew∗χ(k)(i) =
[
v∗χ(k)(i)
q∗χ(k)(i)

]
. For the

sake of notation, denote by χ(k + 1) = G(χ(k), w(k)) the state
update function (14).

Theorem 4.1. Let XN = {x̂}, TN = {t̂}, and let q = 0. Let x̂ be an
equilibrium with corresponding steady-state input û, let q̂ = 0, v̂ =[
0
ûb

]
, and assume that (x̂, t̂, q̂, v̂) satisfies constraints (15c) and (15d).

Let L be a function such that L(x̂, t̂, q̂, v̂) = 0 and L(x, t, q, v) ≥
ψ
(∥∥∥x− x̂t − t̂

∥∥∥), where ψ : R0+ → R0+ is a nondecreasing function,
ψ(0) = 0, ψ(α) ∈ R+, for all α ∈ R+. If Problem (15) is feasible for
the initial state x0 = x(0) and t0 = 0, then it is recursively feasible,
i.e., it is feasible for all

[
x(k+ 1)
t(k+ 1)

]
= G(χ(k), w∗χ(k)(0)), k ∈ R+, and

moreover limt→t̂ x(t) = x̂.

Proof. We first prove feasibility. Assume Problem (15) admits a
solution at event step k = 0, χ(k) =

[
x(0)
0

]
. Let w∗(χ(k)) be the

corresponding optimal input sequence, and let χ(k + 1)
= χ∗χ(k)(1). Consider the input sequence w̃(χ(k + 1)) =[
w∗χ(k)(1), . . . , w

∗

χ(k)(N − 1),
[
0
ûb
0

]]
. Then, χχ(k+1)(i) = χχ(k)(i+

1), for i ∈ Z[0,N−1], and

χχ(k+1)(N) = G

(
χχ(k+1)(N − 1),

[ 0
ūb,∞
0

])

= G

(
χ∗χ(k)(N),

[ 0
ūb,∞
0

])
= χ∗χ(k)(N).

Thus the sequence w̃(χ(k+ 1)) satisfies the dynamical, operating,
and terminal constraints in (15), so Problem (15) is solvable at time
k + 1. By induction, solvability at k = 0 implies solvability at all
event steps k ∈ Z+.
We nowprove convergence. Because of optimality, J∗(χ(k+1))

≤ J(χ(k+ 1), w̃(χ(k+ 1))), where

J(χ(k), w̃(χ(k+ 1))) = J∗(χ(k))
−L(x(k), t(k), v∗χ(k)(0), q

∗

χ(k)(0)),
(21)

and hence J∗(χ(k+1)) ≤ J∗(χ(k)). Since J(χ(k)) is lower bounded
by 0 and is not increasing with k, there exists limk→∞ J(χ(k)) =
J∞, so that limk→∞ J(χ(k + 1)) − J(χ(k)) = 0, and
hence limk→∞ L(x(k), t(k), v(k), q(k)) = 0. The last implies

4 When using the full state χ we use the notation χ(k) for χ(t(k)), as stated in
Section 1.1.
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limk→∞ ψ(‖χ(k) − χ̂‖) = 0, where χ̂ =
[
x̂
t̂

]
. Assume by

contradiction ‖χ(k) − χ̂‖ 6→ 0. Then there exists ε ∈ R+ such
that for all k ∈ Z0+ there exists k ≥ k̄ such that ‖χ(k) − χ̂‖ ≥ ε.
Asψ is nondecreasing,ψ(‖χ(k)− χ̂‖) ≥ ψ(ε), which contradicts
limk→∞ ψ(‖χ(k) − χ̂‖) = 0. Therefore, limk→∞

∥∥∥x(k)− x̂t(k)− t̂

∥∥∥ = 0
and hence limk→∞ x(k) = x̂, limk→∞ t(k) = t̂ . By linearity of x(t)
between two consecutive events it also follows that limt→t̂ x(t)
= x̂. �

Note that functionψ is also called a function of classM in (Lazar
et al., 2007). The condition of ψ being of classM was sufficient in
the proof of Theorem 4.1 to ensure convergence of ‖χ(k) − χ̂‖ to
zero when ψ(‖χ(k) − χ̂‖) converges to zero, a property which
is directly assumed in (Alamir & Bornard, 1994). The assumption
about the existence of function ψ is satisfied when L is strictly
convex with respect to x and t .
The trajectory obtained by the approach of Theorem 4.1 is

defined for t ∈ [0, t̂]. For t ≥ t̂ the target state can be
maintainedby applying a steady-state input, if this exists according
to Definition 4.1. Despite the convergence of x is ensured in finite
time t̂ , itmay be asymptoticwith respect to the number k of events.
Next Theorem 4.2 considers the case inwhich the terminal time

t(N) is unconstrained (i.e., TN = R0+), L does not depend on t (for
instance, Q2 = 0 in the definition of L(x, t, v, q)), and in which
q > 0. The lower bound q > 0 ensures a minimum dwell time of
the system between two consecutive mode switches, which may
prevent for instance that q(k) gets too small for solving the next
optimization problem.

Theorem 4.2. Let XN = {x̂}, TN = R0+ and let q > 0. Let x̂ be
an equilibrium with corresponding steady-state input û, and assume
there exists q̂, q ≤ q̂ ≤ q, such that (x̂, t̂, q̂, v̂) satisfies constraints

(15c) and (15d) for v̂ =
[
q̂
ûb

]
and for all t̂ ≥ 0. Let L be independent

of t, be such that L(x̂, t, q̂, v̂) = 0, for all t ∈ R, and L(x, t, q, v) ≥
ψ(‖x − x̂‖), where ψ : R0+ → R0+ is a nondecreasing function,
ψ(0) = 0, ψ(α) ∈ R+, for all α ∈ R+. If Problem (15) is feasible
for the initial state for x0 = x(0) and t0 = 0, then it is recursively
feasible, i.e., it is feasible for all

[
x(k+ 1)
t(k+ 1)

]
= G(χ(k), w∗χ(k)(0)), k ≥ 0,

and limt→∞ x(t) = x̂.

The proof is similar to the proof of Theorem 4.1 and it can be
found in (Di Cairano, 2008, Sec.5.4.2).
In order to have that limk→∞ v(k) = v̂, limk→∞ q(k) = q̂, it is

enough to assume that L(x, t, q, v) ≥ ψ
(∥∥∥∥x− x̂v − v̂
q− q̂

∥∥∥∥).
Note that the eMPC controller designed in Section 4.1 satisfies

the hypotheses of Theorem 4.2.

5. Conclusions

We have introduced integral continuous-time hybrid au-
tomata (icHA), a special class of continuous-time hybrid dynam-
ical models that can be suitably controlled through numerically
viable optimization tools. The key idea for reformulating the
infinite-dimensional optimization problem into a tractable finite-
dimensional one is to use an event-driven control strategy. Differ-
ently from standard optimization-based discrete-time techniques,
the event-driven approach guarantees that the constraints are en-
forced continuously in time, while keeping the computation load
comparable. This paper only scratched the surface of themodelling
power of the approach, by emphasizing for instance the relations
that exist between icHA and linear hybrid automata. Finally, we
have shown how closed-loop control strategies for icHA can be de-
signed through receding horizon ideas, forwhichwehave provided
sufficient conditions for finite time and asymptotic convergence.
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