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Abstract

This paper considers the problem of deciding multi-period investments for maintenance and upgrade of electrical energy distribution networks.
After describing the network as a constrained hybrid dynamical system, optimal control theory is applied to optimize profit under a complex
incentive/penalty mechanism imposed by public authorities. The dynamics of the system and the cost function are translated into a mixed integer
optimization model, whose solution gives the optimal investment policy over the multi-period horizon. While for a reduced-size test problem the
pure mixed-integer approach provides the best optimal control policy, for real-life large-scale scenarios a heuristic solution is also introduced.
Finally, the uncertainty associated with the dynamical model of the network is taken care of by adopting ideas from stochastic programming.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

National regulations were recently applied in several coun-
tries for encouraging electrical energy distribution companies
to improve the continuity of energy supply. Such regulations
include incentives/penalties to energy distribution companies
that depend on a few quality indicators. The introduced in-
centives/penalty mechanisms usually reflect customers’ prefer-
ences and requirements, and their willingness to pay for quality.

Quality management has become a strategic issue for elec-
tricity suppliers. The aforementioned regulations not only
impact considerably the economic activities of the supplier,
but also provide guidelines to the company management for
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deciding the multi-annual investment plans for renovating en-
ergy distribution lines, in order to maximize the quality of en-
ergy supply perceived by customers while satisfying financial
and operational constraints. By taking into account national reg-
ulations, the state of the network, previous actions, and other
historical data, the managers of the company currently decide
the multi-annual investment plan for maintaining and upgrad-
ing the energy distribution lines according to a manual trial-
and-error procedure. This activity is time-consuming, does not
always bring to optimal choices that exploit the available re-
sources to maximize the resulting quality of energy supply,
and in any case always makes the management wonder if bet-
ter plans could have been made. The above disadvantages are
amplified by the fact that such decisions should be re-iterated
during the multi-period horizon in order to take into account
poorly forecasted or unexpected events.

In this paper we consider the Italian regulation system in-
troduced in 2004 (Authority for Electrical Energy & Gas). We
propose an automatic method for taking decisions about multi-
annual investments that is based on optimal control ideas.
After modeling the network as a simple (yet large-scale) hybrid
dynamical system with integrating dynamics and a piecewise
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affine output function, and after expressing the nonlinear in-
centive/penalty function by means of mixed-integer variables,
an optimal control problem is solved to optimize the profit of
investments. In order to cope with the actual large-scale sce-
nario of a regional network, a heuristic solution is introduced.
Finally, by taking into account the uncertainty associated with
the nonlinear function relating investments to benefits, we pro-
pose a model to optimize the profit of maintenance and upgrade
of a electrical distribution network under uncertainty.

2. Optimal control problem

The aim of this section is to set up an optimal control problem
to determine the optimal allocation of investments for mainte-
nance and upgrade of electrical energy distribution networks on
a multi-period (four years) time basis. In our context, a control
action is considered optimal if the profit of the electrical dis-
tribution company is maximized (indirectly, this also implies a
high quality of energy supply perceived by customers).

We treat the electrical distribution network as a (large-scale)
discrete-time dynamical system whose sampling time is one
year (decisions are taken on a yearly basis), whose states de-
fine the quality of energy supply in each individual district, and
whose input is the amount of money invested in that district at
a given year. The optimal investment decision depends on the
prediction over a certain number N of future years of the evo-
lution of the quality of the network. The prediction is repeated
every year, according to the so-called “receding-horizon” (or
“rolling-horizon”) principle, over a multi-annual horizon that
has been shifted forward by one year.

2.1. Dynamical system

An electrical distribution company must decide the amount
of money that must be invested in each district j ∈ D, where
D = {1, 2, . . . , D} is a finite set of districts, in order to main-
tain a certain quality of energy supply, which is measured by
the amount of minutes of power outage per customer per year
(customers’ minutes lost, CML), an indicator of the continuity
of supply service.

In order to improve the CML in their districts of compe-
tence, distribution companies invest money in maintenance and
upgrade of the energy distribution network. Districts are usu-
ally heterogeneous among them, have different sizes and levels
of quality, so that each district must have its own investment
project. Each project has a cost and provides an expected im-
provement of quality (i.e., a lower CML). The relation between
quality improvement and invested money is nonlinear, and is
modeled here as a piecewise affine function (see Fig. 1).

In this paper we consider two different kinds of investment
projects: local improvement interventions on a district, and big
network upgrade projects (such as the construction of a dis-
tribution substation) which may affect more than one district
and are defined by a fixed cost and a fixed gain. The latter are
yes/no interventions, and, if carried out, have a fixed cost and
produce a fixed improvement of quality.

fj (xij)
c

xij
c

lj
1 lj

2 lj
3 lj

4

dj
1 dj

2

dj
3

dj
4

Fig. 1. Quality of electricity supply improvement function.

To evaluate an investment policy along a multi-period time
basis, we use a hybrid dynamical model (Bemporad & Morari,
1999). Let each district be indexed by j ∈ D, each time period
by i ∈ Y, where Y = {0, 1, . . . , N}, N ∈ N, and let xc

ij be
the money invested in the local improvement of district j ∈ D
from the initial time period up to year i ∈ Y. For the investment
problem tackled in this paper, the time period goes from 2003
(i = 0) to 2007 (i = N = 4). This is the period of definition
of the Italian normative described in (Authority for Electrical
Energy & Gas).

As mentioned earlier, the investment problem also allows
yes/no upgrade investments affecting more than one district.
The lth of such investments, l ∈ I={1, . . . , I }, is defined by the
cost of the investment and the quality increase in each affected
district. For each possible upgrade l ∈ I, the binary state xb

il

indicates if the upgrade has been done by time period i ∈ Y.
The cost of investment l is denoted by C

up
l and the quality

increase in district j by �Ilj . Matrix �I ∈ RI×D contains the
quality increase factors for all upgrades and districts (�Ilj = 0
if upgrade investment l does not affect district j).

At each time period i ∈ Y, one must decide the continu-
ous inputs uc

ij , which is the money invested in each district

j ∈ D for maintenance, and the binary input ub
il , which de-

cides whether network upgrade l must be realized. Hence, the
equations that determine the dynamics of the system are

xc
i+1,j = xc

ij + uc
ij , ∀j ∈ D, (1a)

xb
i+1,l = xb

il ∨ ub
il , ∀l ∈ I, (1b)

where “∨” denotes the logical or. The CML of district j at time
period i is denoted by Cij and can be described as

Cij (x
c
ij ) = C0j − f (xc

ij ) −
∑
l∈I

xb
il�Ilj , (2)

where �Ilj is the quality increase in district j if upgrade l is
realized and fj : R �→ R is the piecewise affine function
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that relates quality increase to money invested in each district
j ∈ D,1 see Fig. 1.

The dynamics of each district j are only coupled by binary
upgrade decisions. A further coupling is due to constraints on
the capital that can be invested at each time period i, namely

∑
j∈D

uc
ij +

∑
l∈I

ub
ilC

up
l �Umax, ∀i ∈ Y, (4)

where Umax is the maximum amount of money that can be
invested each year i.

2.2. Cost function

Distribution agencies must select the allocation of invest-
ments depending on complex incentive–penalty mechanisms
imposed by national authorities for energy. In this paper we
consider the Italian normative described in (Authority for Elec-
trical Energy & Gas), which we summarize here below.

Each year and for each district the company is given an
incentive if the two-year moving average CML of that district
is under a given basic standard, or must pay a penalty if it
is higher. The objective is to maximize the overall profit, i.e.,
the difference between the incentive obtained and the invested
money or paid penalties during the time period 2004–2007.

The incentive–penalty mechanism is defined by the following
set of rules (see Bemporad, Muñoz de la Peña, & Piazzesi,
2005 for more details):

• Incentive–penalty evaluation: The incentive value for a given
district j and period i is a piecewise affine function of (i) the
two-year moving average of the CML of the district, and of
(ii) the basic standard.

• Dead band: For each district, a dead band is defined around
the basic standard level where neither incentives nor penalties
are due.

• Maximum and minimum incentive–penalty: Incentives and
penalties are saturated.

• Discount rate: We suppose a discount rate r =7% to evaluate
the weighted average cost of capital (WACC) with respect to
year 2004.

• Penalty cancelation for 2004–2005: The law provides a spe-
cial treatment for the penalties of years 2004 and 2005. If the
distribution company incurs a penalty in either year 2004 or
2005, the debt is not paid immediately. It is instead subdi-
vided into three installments to be paid in the following three
years. In addition, if at any time the CML goes under the
basic standard, then the remaining installments are canceled.

The above regulations define a complex nonlinear function
relating investments to profits. Such a function is composed by
a piecewise affine function and by a set of logical conditions,
which can be both handled by a suitable mixed-integer opti-
mization model.

1 The coefficients in (3) are obtained by processing historical data.

3. Optimization model

In this section we propose a mixed integer optimization
model which takes into account both the hybrid dynamics
(1)–(2) and piecewise affine/logical relations describing the ob-
jective function described in the previous section.

For solving optimal control problems for discrete-time
hybrid dynamical systems subject to linear and logical con-
straints, the mixed logical dynamical (MLD) formalism was
introduced in Bemporad and Morari (1999). The key idea of
the approach consists of embedding the logic part in the state
equations by transforming Boolean variables into 0–1 inte-
gers, and by expressing the relations as mixed-integer linear
inequalities (Bemporad & Morari, 1999; Torrisi & Bemporad,
2004; Williams, 1993).

The hybrid optimal control problem tackled in this paper can
be treated using similar techniques. Here the objective is to
maximize the total profit cumulated over a set of periods i ∈ Y
for a given set of districts j ∈ D. The decision variables are the
sums invested each year for improvements and for upgrades:
uc

ij is the money invested during period i in district j, ub
il is

a binary variable that indicates if upgrade project l is realized
during period i.

The optimum control problem providing the desired invest-
ment allocation can be recast as the following optimization
problem (see Bemporad et al., 2005, Section 3 for the complete
formulation):

max
u,z

cTu + f Tz

s.t. Au�b,

Wz�h + T u,

u ∈ Rnc × {0, 1}nb , z ∈ Rmc × {0, 1}mb , (5)

where matrices c, f, A, b, W, h, T depend on the problem pa-
rameters. The optimization variables u, z have been subdivided
into two categories: “actual” decision variables u = {uc

ij , u
b
il}

that constitute the investment policy over the prediction hori-
zon, and the auxiliary variables z that are introduced to evalu-
ate the dynamics and the cost function. Note that both u and z
vectors have binary and real components.

3.1. Pure MILP approach

Problem (5) can be solved by standard MILP solvers, such
as GLPK (public domain), Cplex (ILOG, Inc., 2004) (commer-
cial), or Xpress-MP (commercial), for which Matlab interfaces
are available at 〈http://www.dii.unisi.it/hybrid/tools.html〉.

Although the aforementioned MILP solvers are very effi-
cient, MILP is still an NP -hard problem, and its complexity
is in general exponential with the number of binary variables.
The size of Problem (5) grows linearly with the number N of
time periods and the number D of districts. In many cases of
practical relevance, the problem may be too large to be solved
to optimality. In order to handle such complex cases, the next
section provides a heuristic approach to get good solutions to
Problem (5) with limited computations.

http://www.dii.unisi.it/hybrid/tools.html
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3.2. Heuristic approach

One of the most widely used heuristics are greedy algo-
rithms. The idea is to start from a simple solution, change rele-
vant variables sequentially, each time selecting the variable that
achieves the greatest immediate improvement in the objective
function. Moreover, once the value of a variable is fixed it is
not changed further.

In the case at hand, the algorithm starts from the initial fea-
sible solution where no investment is done, i.e. uc

ij (0) = 0 and

ub
il(0) = 0 for all periods i ∈ Y, districts j ∈ D and upgrades

l ∈ I. The initial profit, J profit(0), is the predicted profit of this
policy. The algorithm keeps track of the money that has not
been invested (remaining budget) through variables Umax

i (k).
At iteration k of the greedy algorithm, the value of Umax

i (k)

is the money left for period i. The initial money constraint is
equal to the maximum budget, Umax

i (0) = Umax for all i ∈ Y.
At each iteration k of the greedy algorithm, an investment U

is added to the current solution and the cost of U is subtracted
from the remaining budget. The added investment U is chosen
according to an optimality index, which is the ratio between
the corresponding obtained profit and the cost of investment
U. The investment with the highest optimality index is chosen
among the local improvement projects of each district and the
different network upgrades. For each district j for which an in-
vestment has not been fixed yet, the obtained profit and the cor-
responding optimal investment is obtained solving (5) subject
to the following additional constraints:

uc
ih = uc

ih(k − 1), ∀i ∈ Y, ∀h 	= j ∈ D,

ub
il = ub

il(k − 1), ∀i ∈ Y, ∀l ∈ I,

uc
ij �Umax

i (k − 1), ∀i ∈ Y. (6)

This problem evaluates the profit J
profit
j (k) of the best invest-

ment that can be done in district j, with the remaining budget
after k − 1 iterations. The optimality index for a given invest-
ment option in district j is then given by

Ij (k) = J
profit
j (k) − J profit(k − 1)
∑

i∈Y1/(1 + r)i−1uc
ij

. (7)

We suppose a discount rate r = 7% to evaluate the WACC with
respect to year 2004.

Note that this optimization problem is easy to solve because
most of the decision variables (i.e. the inputs to the system) are
fixed. In particular, as the dynamics of each district are inde-
pendent, only the variables and constraints of that district have
to be taken into account to solve the corresponding problem.
At each iteration the investment project with the maximum op-
timality index is chosen and the current solution and budget is
updated as

I∗(k) = max
j∈D

Ij (k).

If Ij (k) = I∗(k) then

J profit(k) = J
profit
j (k),

Umax
i (k) = Umax

i (k − 1) − uc
ij , ∀i ∈ Y,

uc
ih(k) = uc

ih(k − 1), ∀i ∈ Y, ∀h 	= j ∈ D,

uc
ij (k) = uc

ij , ∀i ∈ Y,

ub
il(k) = ub

ih(k − 1), ∀i ∈ Y, ∀l ∈ I.

The algorithm iterates until the solution does not improve any
more, i.e., J profit(k) = J profit(k − 1). The feasible suboptimal
solution is given by {uc

ij (k), ub
lj (k)}.

The heuristic algorithm presented above deals only with sin-
gle optimization projects on each district. It can be easily mod-
ified to include big investments projects (the modification has
not been included here for lack of space).

4. Stochastic optimal control

A large number of problems in production planning and
scheduling, location, transportation, finance, and engineering
design require that decisions have to be made in the presence
of uncertainty. In the problem tackled in this paper uncertainty
affects the function between quality of supply and money in-
vested in improvement projects.

Stochastic programming (SP) is a special class of mathemat-
ical programming that involves optimization under uncertainty
(see Birge & Louveaux, 1997; Kall & Wallace, 1994; Ross,
1983). The first applications of SP date back to the 1950s and
nowadays it is becoming a mature theory that is successfully
applied in several domains (Sahinidis, 2004). In this section, a
two-stage stochastic integer programming formulation is pro-
posed for the investment problem described in the previous
sections.2

The increase of quality caused by an investment project is
very difficult to predict. For this reason the CML of each district
is affected by uncertainty, and therefore the hybrid dynamical
model (1)–(2) is uncertain. As a consequence, all the variables
(and so the constraints) defined to evaluate the profit, which
depend on the quality level of each district and period, are
affected by uncertainty.

Stochastic programming optimizes the mean value of the
cost function taking into account causality. This means that the
decision on how to invest the available money must be done
“before” knowing the real effect of the investment projects, i.e.,
before knowing the value of the random variables and so the
actual evolution of the CML of the districts.

Variable � = {�i , �l} collects all the random variables as-
sociated with uncertainty of the relation between improve-
ment/upgrade investments and CML. We resort to sampling
each of the independent continuous distributions �j,l . The num-
ber q of possible values of each uncertain variable determines
the complexity of the stochastic optimal control problem. In
this way, as each variable in independent, the uncertain variable

2 A multi-stage formulation would be more appropriate here, although
not hardly solvable by standard solvers.
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� may take values �1, . . . ,�Q with probabilities p1, . . . , pQ,
respectively, where Q = qD+I .

For each fixed value of the uncertainty �i , referred to as
scenario, all problem parameters f (�i ), T (�i ), W(�i ), h(�i )

become fixed. By enumerating all possible Q scenarios, a large-
scale MILP problem can be posed. To each scenario, a set of
“recourse” auxiliary variables zi are assigned, but the problem
optimizes only a single set of decision variables u. In this way,
the causality of the decision process is maintained. The (large-
scale) equivalent MILP problem is

max
u,zi

cTu +
Q∑

i=1

pif (�i )
Tzi

s.t. Au�b,

W(�i )zi �h(�i ) + T (�i )u, i = 1, . . . , Q,

u ∈ Rnc × {0, 1}nb , zi ∈ Rmc × {0, 1}mb . (8)

4.1. Solution strategies

The complexity of the two-stage stochastic problem (8) heav-
ily depends on the number Q of scenarios. In the optimization
model proposed in this paper the uncertainty affects investment
projects. If each project is supposed to be independent, and the
uncertainty is supposed to take q different values, the number of
scenarios of the optimization problem is Q = qD+I . Although
stochastic programming for linear and quadratic problems is
nowadays a mature field, stochastic MILP problems are still in
general hard to solve, we refer again to Sahinidis (2004) for a
complete survey of the state of the art.

Given that even the deterministic MILP approach (5) is too
complex to handle instances of the investment allocation prob-
lem of interest, we avoid solving (8) using stochastic MILP
solution techniques, but rather propose again a heuristic algo-
rithm. By decoupling each investment project using the heuris-
tic approach of Section 3.2, one can deal with each random pair
{�i , �l} independently. Each local improvement project can be
dealt without taking into account the realization of the random
variables associated with other districts, as such variables only
affect the corresponding CML, and hence evaluating the in-
vestment project of district j only requires the enumeration of
q scenarios, corresponding to the possible realizations of �j .
Districts affected by upgrade projects must take into account
also the uncertainty associated with upgrade projects, so the
number of scenarios may be larger than q.

Having reduced the number of scenarios in each smaller sub-
problem associated with a single district, one can use an MILP
formulation to solve the stochastic equivalent of the optimiza-
tion problems described in Section 3.2. In this way, it is possi-
ble to obtain a feasible suboptimal investment policy that takes
into account the uncertain nature of each investment project.

5. A case study

We apply the optimal control approach developed in the
previous sections for solving a real-life investment allocation

Table 1
Number of continuous variables, binary variables and constraints for P9, P18
and P36

nc + mc nb + mb Constraints

P9 603 234 1278
P18 1206 468 2556
P36 2412 936 5112

Table 2
Optimization results for P9, P18, P36 and for different solution strategies

Jdet E[Jstc] Time (s) Gap (%)

P9
MILP 1829 1534 1.7 0
Greedy 1807 1363 2.3 –
SP 1649 1603 72.17 –

P18
MILP 3445 2343 200 1.2
MILP 3983 2680 2000 0.2
Greedy 3795 2530 7.2 –
SP 3450 3332 125.3 –

P36
MILP 13079 12185 1000 2
Greedy 13021 12285 18.6 –
SP 12861 12306 563.3 –

Jdet is the profit obtained for the deterministic problem, E[Jstc] is the expected
profit for the stochastic formulation, “time” is the time for computing the
solution, “gap” is the optimality gap of the MILP solution.

problem. We consider three different problems3 : P9 (9 dis-
tricts), P18 (18 districts), P36 (36 districts). As a reference,
the sizes of the corresponding MILP problems is provided in
Table 1. The relaxed LP bounds of this problem is several or-
ders of magnitude greater than the optimal value. For P9, the
relaxed LP bound is 2 × 107.

In the three cases deviations of up to 20% of estimated
CML predictions in all districts are considered as explained
in Section 4. We suppose a 20% error margin in the pre-
dictions: for each district j and upgrade project l we define
a pair of independent continuous random variables �i , �l ∈
[0.8, 1.2]. These random variables model the possible error
�Cij =�j f (xc

ij ), �Ilj (�l )=�l�Ilj in the forecasted quality in-
crease of each project. The uncertain variables take five possible
values ({0.8, 0.9, 1, 1.1, 1.2}) with equal probability (p = 0.2).
It is also taken into account that there is a probability p = 0.2
that some of the investments fail during the first two years for
unexpected reasons.

Table 2 shows the profit and computation time of the differ-
ent solutions strategies developed in the previous sections for
both the deterministic and the stochastic case.4 For the deter-
ministic problem, the optimal solution has been obtained only

3 Numerical data were generated by perturbing actual confidential data
provided by the Italian electrical company ENEL and are available on request
from the authors.

4 The results were obtained in MATLAB 6.3 using CPLEX 9.0 on a
AMD AthlonTMXP 2800+ with 512 MB of RAM.
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for P9. In this case, the MILP solver of CPLEX obtains the op-
timal investment policy even faster than the greedy algorithm
of Section 3.2. For P18 the computer runs out of memory after
2300 s while solving the MILP problem (5) to optimality. The
solutions obtained by CPLEX after 200 and 2000 s are shown.
For P36, the computer runs out of memory after 1100 s. The
reported solution is the one obtained after 1000 s of CPU time.
The heuristic algorithm is instead very fast and converges in
less that 20 s for P36. Although suboptimal, the obtained solu-
tion is considered a valid decision by the company. The opti-
mization problem associated with the stochastic formulation is
in all cases too large to be solved by one large MILP. A sub-
optimal solution is obtained by using the greedy approach of
Sections 3.2, 4.1.

6. Conclusions

In this paper we have proposed a novel application of op-
timal control of hybrid dynamical systems for solving a man-
agement problem in allocation of investments for maintenance
of the electrical distribution network in a territory composed
by several districts. Because of nontrivial national regulations
and of complex relations between invested money and result-
ing quality of supply, allocating investments for both local im-
provements and major upgrades is a complex problem, usually
solved heuristically after a series of tedious iterations and with-
out any guarantee of having taken the best decision. We have
shown that an optimal control setup and optimization tools pro-
vide a systematic way of making the best (or, at least, a good)
investment allocation, even when model uncertainty is taken
into account.
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