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a b s t r a c t

With recent advances in cloud computing, resources with customizable computational power and
memory can be exploited to store and analyze data collected from large sets of devices. Although one
can exploit the connection to the cloud to perform all the desired tasks on the cloud itself, in many
applications it is also desirable to retrieve and process information locally. In this paper, we present
a collection of cloud-aided consensus-based Recursive Least-Squares (RLS) estimators. The approaches
are tailored to handle linear and nonlinear consensus constraints and limitations on parameter ranges.
All the methods are designed so that raw measurements collected at the device level are processed
by the device itself, requiring minimal changes to (possibly pre-existing) RLS estimators. The local
estimates are then recursively refined and fused on the cloud to reach consensus among the devices.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The increasing connectivity of consumer devices allows both
sers and manufacturers to access and store data that can be
sed for various purposes, such as estimation, diagnostics and
rognostics. Within this pervasively connected framework, de-
ices can be seen as nodes of a network, that might cover a wide
eographic area. This has stimulated research on distributed solu-
ions for a variety of problems, such as fault detection (Boem, Fer-
ari, Keliris, Parisini, & Polycarpou, 2017), classification (Forero,
ano, & Giannakis, 2010), state (Olfati-Saber, 2007) and param-
ter (Mateos, Schizas, & Giannakis, 2009) estimation. All these
pproaches rely on communications between neighbor nodes
nly, not to involve complex transmissions. However, this implies
hat different groups of neighbors must be connected to attain
onsensus over the whole network.
Distributed parameter estimation has been extensively stud-

ed for Wireless Sensors Networks (WSNs), where the low com-
utational power of the nodes demands for simple operations
nd transmissions. Existing approaches can be classified as: incre-
ental methods (Lopes & Sayed, 2007; Ram, Nedić, & Veeravalli,
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recommended for publication in revised form by Associate Editor Luca Schenato
under the direction of Editor Christos G. Cassandras.
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2007; Sayed & Lopes, 2006); diffusion approaches (Arablouei,
Doǧaņay, Werner, & Huang, 2014; Cattivelli, Lopes, & Sayed, 2008;
Cattivelli & Sayed, 2010; Nassif, Vlaski, & Sayed, 2019); consen-
sus+innovations techniques (Kar & Moura, 2013; Sahu, Jakovetić,
& Kar, 2018; Sahu, Kar, Moura, & Poor, 2016) and consensus-
based distributed strategies, among which the approaches pro-
posed in Mateos et al. (2009) and Schizas, Mateos, and Giannakis
(2007, 2009) rely on the Alternating Direction Method of Mul-
tipliers (ADMM) (Boyd, Parikh, Chu, Peleato, & Eckstein, 2011).
The main limitation of incremental methods lies in the need for
a cycle in the network. Instead, the other approaches do not
constrain the network topology, as they only require it to be con-
nected. Nonetheless, most distributed techniques cannot handle
constraints on the unknowns or scenarios in which the nodes
have to reach consensus over a subset of the unknowns. These
restrictions are overcome by the diffusion approach in Nassif
et al. (2019) and the strategy in Sahu et al. (2018), respectively.
Consensus+innovations approaches are further extended in Sahu
et al. (2016) to handle the general framework in which the
nodes observe a noisy nonlinear combination of the unknown
parameters.

Even though distributed approaches have shown to perform
well in different scenarios, they are generally not suited for appli-
cations in which the communication between devices is limited
or impossible, e.g., they cannot share information among each
other for privacy reasons. On the other hand, with cloud tech-
nologies (Mell & Grance, 2011) becoming more widespread, many
consumer devices have now on-demand access to repositories
of shared information and common resources, with customiz-
able computational power and memory, that can be accessed
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Fig. 1. Cloud-connected vehicles (Breschi, Kolmanovsky, & Bemporad, 2018).

nd released with minimum effort. This motivates research into
loud-aided solutions. Indeed, cloud-based strategies have al-
eady been considered for automotive applications in Li et al.
2017, 2016) and Ozatay et al. (2014).

In a cloud aided setting, estimation can be carried out on
oard of each device, where data acquired locally are initially
rocessed, and on the cloud, where the local estimates received
rom the nodes are refined to reach consensus on parameters
ommon to all devices. As a motivating case study, consider a
onnected fleet of vehicles as in Fig. 1 and assume that a set of
nknown parameters has to be estimated for the prognostics of
utomotive components such as fuel pumps (Taheri, Gusikhin, &
olmanovsky, 2016) or brake pads (Howell et al., 2010). Under
he assumptions that wear and fuel consumption models are
nown a priori and that the component wear-rate as a function of
he workload1 is common to similar devices, it is possible to use
loud-aided solutions to reach consensus on the wear-rates on
he cloud, so that time (or mileage) to deplete remaining com-
onent life can be estimated and condition-based maintenance
ctions can be optimally scheduled.
Since we are interested in estimating the unknown parameters

oth locally and on the cloud, we present cloud-aided solutions
or constrained collaborative least-squares estimation. Similarly
o what is done in our conference paper (Breschi et al., 2018), we
ast a separable optimization problem, that is solved via a dedi-
ated instance of the Alternating Direction Method of Multipliers
ADMM). Nonetheless, differently from Breschi et al. (2018), we
onsider a broader range of scenarios, by devising solutions to
ddress partial linear and nonlinear consensus constraints, and
e provide theoretical guarantees for the case of linear consen-
us. Performance of all approaches is assessed with at least one
umerical example, while a formal proof of convergence for the
onlinear scenario is left for future research. All these methods
re tailored to retrieve both parameters common to all the nodes
global) and local parameters from data, while most approaches
an only estimate common parameters. As in most existing so-
utions, we assume ideal transmissions between the devices and
he cloud, namely we neither account for disturbances on the
ommunication channels nor for losses of information.
The paper is organized as follows. The estimation problem is

ormalized in Section 2. The methods for linear and nonlinear
ollaborative estimation are then described in Sections 3–4. All

1 Cumulative fuel flow or energy dissipated in the brakes
the sections report the results of at least one simulation example,
to show the performance of the methods. Concluding remarks
and directions for future research are summarized in Section 5.

Notation. Let N, R+ and Rn be the sets of natural numbers, real
positive numbers (excluding zero) and real vectors of dimension
n, respectively. Given a vector a ∈ Rn, ai indicates its ith element,
∥a∥2 is its Euclidean norm. The cardinality of a set A is indicated
as |A|, while PA(a) denotes Euclidean projection of the vector
a onto A. Let A ∈ Rn×m be an n × m dimensional matrix, then
A′ denotes its transpose. The identity matrix of dimension n is
indicated as In and the zero vector of dimension n is denoted as
0n. Finally, N (µ, σ 2) indicates a Gaussian distribution with mean
µ and standard deviation σ .

2. Problem statement

Consider N devices (also referred to as nodes or agents) de-
scribed by the same model, as it is reasonable to assume when
considering mass produced devices. Suppose that all agents are
connected to the cloud, with which they can exchange informa-
tion. Furthermore, let the output yn(t) ∈ Rny of the nth node at
time t be given by

yn(t) = Xn(t)′θon + en(t), n = 1, . . . ,N, (1)

where θon ∈ Rnθ is an unknown parameter vector to be estimated
from data, Xn(t) ∈ Rnθ×ny is the regressor (e.g., a collection of past
inputs and outputs of the nth system, if an autoregressive model
is considered) and en(t) ∈ Rny is a zero-mean additive noise,
independent of Xn(t). We assume that the unknown parameters
θon are constant/slowly varying and that they belong to known
convex sets, i.e., θon ∈ Cn, with Cn ⊆ Rnθ for n = 1, . . . ,N . As the
N devices share the same model, we further suppose that there
exists a set of unknown parameters θ g,o ∈ Rng , with ng ≤ nθ , that
is common to all agents.

Our goal is to estimate both the local parameters {θon }
N
n=1 and

the global parameter vector θ g,o by exploiting the similarities
between agents, the measurements available locally and the con-
nection to the cloud. This estimation problem can be cast as
follows:

minimize
θ1,...,θN ,θg

N∑
n=1

fn(θn) (2a)

s.t. F (θn) = θ g , n = 1, . . . ,N (2b)

θn ∈ Cn, n = 1, . . . ,N (2c)

where F : F → Rng is a known nonlinear mapping describing the
relationship between the local and global parameters, which is
assumed to be twice differentiable within its domain F . The local
fitting cost fn : Rnθ → R is chosen as the least-squares function

fn(θn) =
1
2

t∑
τ=1

yn(τ ) − Xn(τ )′θn
2
2 , n = 1, . . . ,N. (3)

Since we exploit the ADMM formalism (Boyd et al., 2011), prob-
lem (2) is equivalently recast as follows:

minimize
θ1,...,θN

z1,...,zN ,θ
g

N∑
n=1

[fn(θn) + gn(zn)] (4a)

.t. F (θn) = θ g , n = 1, . . . ,N, (4b)

θn = zn, n = 1, . . . ,N, (4c)

where zn ∈ Cn is an auxiliary variable introduced to remove the
parameter range constraint in (2) and g is the indicator function
n
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Fig. 2. Node-to-Cloud-to-Node transmissions at time t .

of Cn, i.e.,

gn(zn) =

{
0 if zn ∈ Cn
+∞ otherwise,

(5)

with n = 1, . . . ,N . Even though no constraint is explicitly
imposed on the value of θ g in (4), a proper choice of {Cn}Nn=1
llows one to indirectly enforce the desired range constraints on
he global parameters.

. Linear consensus constraints

Let the consensus constraint in (4) be linear, i.e.,

(θn) = Pθn, (6)

ith P ∈ Rng×nθ being a known matrix, that characterizes the
elationship between the local and the global parameters. By
ppropriately defining the matrix P , problem (4) can be used to
ackle different scenarios of practical interest, e.g., for P = Inθ all
nknowns are forced to take the same value.
As in our conference paper (Breschi et al., 2018), we solve

roblem (4), (6) via a recursive ADMM-based strategy. Specifi-
ally, at each time instant t , we solve the considered constrained
optimization problem via a new instance of ADMM, while ex-
ploiting local estimates obtained at previous time steps with RLS.
Differently from Breschi et al. (2018), we rely on the Node-to-
Cloud-to-Node (N2C2N) communication scheme summarized in
Fig. 2, thereby broadcasting the global estimates from the cloud
to the nodes.

Since ADMM is directly implementable to solve the prob-
lem in (4) with the linear constraint (6), we can introduce the
corresponding augmented Lagrangian:

L =

N∑
n=1

Ln(θn, zn, δn,1, δn,2, θ g ), (7a)

n = fn(θn) + gn(zn) + δ′

n,1εn,1+

+ δ′

n,2εn,2 +
ρ1

2
∥εn,1∥

2
2 +

ρ2

2
∥εn,2∥

2
2, (7b)

with δn,1, δn,2 being the Lagrange multipliers associated with the
constraints of the problem, ρ1, ρ2 ∈ R+ being tunable parameters
and

εn,1 = θn − zn, εn,2 = Pθn − θ g . (8)

The ADMM steps to solve problem (4), (6) are the following:

θ̂ k+1
n (t) = argmin

{
Ln

(
θn, zkn, δ

k
n,1, δ

k
n,2, θ̂

g,k(t)
)}
, (9a)
θn
t

zk+1
n = PCn

(
θ̂ k+1
n (t) +

1
ρ1
δkn,1

)
, (9b)

θ̂ g,k+1(t) =
1
N

N∑
n=1

(
P θ̂ k+1

n (t) +
1
ρ2
δkn,2

)
, (9c)

δk+1
n,1 = δkn,1 + ρ1(θ̂ k+1

n (t) − zk+1
n ), (9d)

δk+1
n,2 = δkn,2 + ρ2(P θ̂ k+1

n (t) − θ̂ g,k+1(t)), (9e)

where k ∈ N indicates the ADMM iteration. By examining the
updates in (9b)–(9e), it is straightforward to observe that {zn}Nn=1,
θ̂ g (t), and {δn,1, δn,2}

N
n=1 can be updated iteratively at each time

step t and ADMM iteration k. Moreover, thanks to the structure of
the loss function fn in (3), we can find the closed-form solution for
problem (9a), so that the local estimate at time t can be computed
as

θ̂ k+1
n (t) = φn(t)

{
Yn(t) + ξ kn

}
, (10)

with

ξ kn = ρ1zkn − δkn,1 + P ′(ρ2θ̂ g,k(t) − δkn,2), (11a)

Yn(t) =

t∑
τ=1

Xn(τ )yn(τ ) = Xn(t)yn(t) + Yn(t − 1), (11b)

Xn(t) =

t∑
τ=1

Xn(τ )Xn(τ )′ = Xn(t)Xn(t)′ + Xn(t − 1), (11c)

φn(t) =
(
Xn(t) + ρ1Inθ + ρ2P ′P

)−1
. (11d)

The expression in (10) depends on both local information and
quantities that are updated at each ADMM iteration k. To dis-
tinguish between these two terms, let θ̂ rlsn (t) and θ̂ admm,k+1

n (t) be
given by

θ̂ rlsn (t) = φn(t)Yn(t), (12)

θ̂ admm,k+1
n (t) = φn(t)ξ kn , (13)

respectively, where only θ̂ admm,k+1
n (t) changes at each ADMM iter-

ation k, while only θ̂ rlsn (t) relies explicitly on local measurements.
By defining the partial estimate θ̂ rlsn (t − 1) as

θ̂ rlsn (t − 1) = φn(t − 1)Yn(t − 1), (14)

with

φn(t − 1) = (Xn(t − 1) + ρ1Inθ + ρ2P ′P)−1,

straightforward manipulations lead to the following recursive
formula:

θ̂ rlsn (t) = θ̂ rlsn (t − 1) + Kn(t)ϵn(t|t − 1), (15)

where

ϵn(t|t − 1) = yn(t) − Xn(t)′θ̂ rlsn (t − 1), (16)

and the gain Kn(t) is also recursively updated as

Rn(t) = Inθ×ny + Xn(t)′φn(t − 1)Xn(t), (17a)

Kn(t) = φn(t − 1)Xn(t)(Rn(t))−1, (17b)

φn(t) = (Inθ − Kn(t)Xn(t)′)φn(t − 1). (17c)

he iterative updates in (15)–(17) correspond to the ones of
tandard Recursive Least-Squares (RLS) (Ljung, 1999). It is thus
traightforward to use the proposed approach, while relying on
LS estimators that could be available on board of each device
lready. Nonetheless, differently from standard RLS, the structure
f matrix φn(t) in (11d) entails the presence of a regularization

erm in the minimized cost function, which is in turn shaped
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θ

C

by the constraints of the problem. Note that these constraints
are not explicitly enforced when computing θ̂ rlsn (t). Since the
formulas in (15)–(17) rely on the stream of local measurements
only, it is reasonable to update θ̂ rlsn (t) on board of the individual
devices rather than on the cloud. However, θ̂ rlsn (t) does not benefit
from the estimate θ̂ g (t − 1) broadcast back from the cloud. To
exploit this additional information, we introduce the corrected
local estimate

θ̂ ln(t) = θ̂ rlsn (t) + P ′(θ̂ g (t − 1) − P θ̂ rlsn (t − 1)). (18)

This estimate depends on information available at the node level
and, thus, it can be computed by each device along with θ̂ rlsn (t).
At the same time, to avoid two-way transmissions between the
nodes and the cloud at each ADMM iteration, the steps (9b)–(9e)
are performed on the cloud, along with the computation of the
refined estimate. The operations to be carried out at each time
step t are outlined in Algorithm 1.

Remark 1. Algorithm 1 requires the initialization of the auxiliary
variables and the global estimate. These initial values can be se-
lected based on the local estimates {θ̂ rlsn (t)}Nn=1. Indeed, at each in-
stant t , z0n can be chosen as the projection of θ̂ rlsn (t) onto Cn, while
θ̂ g,0(t) can be initialized as the sample mean of {P θ̂ rlsn (t)}Nn=1. ■

Remark 2. Considering that a perfect synchronization between
operations performed on the cloud and on board of all the devices
is unachievable in practice, the outcome of Algorithm 1 could be
influenced by delays due to this asynchronism. Nonetheless, if the
actual parameters are constant or slowly varying, we expect that
even asynchronous communications lead to sufficiently accurate
estimates after some steps. ■

3.1. Convergence analysis

As the approach summarized in Algorithm 1 is a particular
instance of ADMM, we initially study the convergence rate and
the asymptotic properties of Algorithm 1 at each time step t . In
this case, we drop the dependence of the estimates on time to
simplify the notation. Since the approach can also be seen as an
extension of RLS tailored to exploit a cloud-aided framework, a
bound on the local estimation error is derived and the consistency
of local estimates is proven.

3.1.1. On the properties of Algorithm 1 at time t
Let Lo be the unaugmented Lagrangian associated to prob-

lem (4) with the constraints in (6), that depends on the measure-
ments collected up to time t and is given by

Lo
=

N∑
n=1

Lo
n(θn, zn, δn,1, δn,2, θ

g ),

Lo
n = fn(θn) + gn(zn) + (δn,1)′εn,1 + (δn,2)′εn,2.

(19)

Assume that the following assumptions hold at each time
instant t:

Assumption 1. There exists a saddle point for the unaugmented(
⋆ ⋆ ⋆ ⋆ n g⋆

)

Lagrangian in (19), i.e., there exists {θn , zn, δn,1, δn,2}n=1, θ
Algorithm 1 ADMM-RLS for partial consensus
Local inputs: Regressor/output pair {Xn(t), yn(t)}; past estimates
ˆ rls
n (t−1), φn(t−1), θ̂ g (t − 1); ρ1, ρ2 ∈ R+.
loud inputs: Initial values θ̂ g,0(t), {δ0n,i}

2
i=1 and z0n , with n =

1, . . . ,N; ρ1, ρ2 ∈ R+.

Node-level computations

1. each node n ∈ {1, . . . ,N} does

1.1. update φn(t) as in (17c);
1.2. update θ̂ rlsn (t) as in (15);
1.3. compute θ̂ ln(t) as in (18);
1.4. transmit θ̂ rlsn (t) and φn(t) to the cloud;

Cloud-level computations

1. iterate for k = 1, . . .

1.1. for n = 1, . . . ,N

1.1.1. compute θ̂ admm,k+1
n (t) as in (13);

1.1.2. update θ̂ k+1
n (t) with (10);

1.1.3. compute zk+1
n as in (9b);

1.2. update θ̂ g,k+1(t) as in (9c);
1.3. for n = 1, . . . ,N

1.3.1. compute δk+1
n,1 as in (9d);

1.3.2. compute δk+1
n,2 as in (9e);

2. until the chosen stopping criterion is satisfied;
3. transmit θ̂ g (t) to the nodes;

Local outputs: φn(t), local estimates θ̂ rlsn (t) and θ̂ ln(t).
Cloud outputs: local estimates {θ̂n(t)}Nn=1; global estimate θ̂ g (t).

such that:

Lo (
{θ ⋆n , z

⋆
n, δn,1, δn,2}

N
1 , θ

g⋆)
≤ Lo (

{θ ⋆n , z
⋆
n, δ

⋆
n,1, δ

⋆
n,2}

N
1 , θ

g⋆)
Lo (

{θ ⋆n , z
⋆
n, δ

⋆
n,1, δ

⋆
n,2}

N
1 , θ

g⋆)
≤ Lo (

{θn, zn, δ⋆n,1, δ
⋆
n,2}

N
1 , θ

g)
for all {δn,1, δn,2, θn, zn}Nn=1 and for all θ g . □

Assumption 2. Given finite initial values θ g,0 and {δ0n,1, δ
0
n,2,

z0n }
N
n=1, the weighted sum

V 0
= ρ2∥θ̂

g,0
− θ g⋆∥2

2 +
1
N

N∑
n=1

V 0
n , (20a)

V 0
n = ρ1∥z0n − z⋆n∥

2
2 +

2∑
i=1

1
ρi

∥δ0n,i − δ⋆n,i∥
2
2, (20b)

is finite. □

Remark 3. Since z0n , θ̂
g,0 and {δ0n,i}

2
i=1 have to be chosen at

every time instant, when a new instance of Algorithm 1 is carried
out, Assumption 2 entails that the distance between the chosen
initial conditions and the optimum is finite. This is likely to be
verified for reasonably chosen initial conditions. As an example,
if the initialization proposed in Remark 1 is used and the local
estimates retrieved via RLS are converging to the true value, this
assumption holds. ■
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Inspired by Wei and Ozdaglar (2012), we derive a set of key

inequalities that are verified at each ADMM iteration, established
by the following lemmas.

Lemma 1. Let {θ̂ kn , z
k
n, δ

k
n,1, δ

k
n,2}

N
n=1 and θ̂ g,k be generated by

Algorithm 1, and introduce the differences

rk+1
n,z = zk+1

n − zkn, n = 1, . . . ,N, (21a)

rk+1
g = θ̂ g,k+1

− θ̂ g,k. (21b)

Then, the following holds for all k ∈ N and all {θn, zn}Nn=1 and θ g :

n(θ̂ k+1
n ) + (δk+1

n,1 + ρ1rk+1
n,z )′θ̂ k+1

n +

+ (δk+1
n,2 + ρ2rk+1

g )′P θ̂ k+1
n ≤ fn(θn)+

+ (δk+1
n,1 + ρ1rk+1

n,z )′θn + (δk+1
n,2 + ρ2rk+1

g )′Pθn, (22a)

n(zk+1
n ) − (δk+1

n,1 )′zk+1
n ≤ gn(zn) − (δk+1

n,1 )′zn, (22b)[
N∑

n=1

(δk+1
n,2 )′

]
θ̂ g,k+1

≥

[
N∑

n=1

(δk+1
n,2 )′

]
θ g . (22c)

roof. Since θ̂ k+1
n given by (9a) is the minimizer of Ln(θn, zkn, δ

k
n,1,

k
n,2, θ̂

g,k), it holds that

0 ∈ ∂ fn(θ̂ k+1
n ) + δkn,1 + P ′δkn,2 + ρ1(θ̂ k+1

n − zkn)+

+ ρ2P ′(P θ̂ k+1
n − θ̂ g,k).

y definition of subgradient, it is further verified that

n(θn) ≥ fn(θ̂ k+1
n ) + (∂ fn(θ̂ k+1

n ))′(θn − θ̂ k+1
n ),

or all θn. The proof of (22a) follows from algebraic manipulations
f the previous inequalities, which involve the updates in (9d)–
9e). By exploiting a similar reasoning, it is straightforward to
rove the relation in (22b). The inequality in (22c) can instead
e derived from the optimality of θ̂ g,k+1. Then, by exploiting the
pdate of the Lagrange multiplier in (9e), it can easily be seen
hat θ̂ g,k+1 is also defined as

ˆ g,k+1
= argmin

θg
−

[
N∑

n=1

(δk+1
n,2 )′

]
θ g ,

nd the relation in (22c) easily follows. □

emma 2. Let {θ̂ kn , z
k
n, δ

k
n,1, δ

k
n,2}

N
n=1 and θ̂ g,k be generated by

lgorithm 1, and pk and p be respectively defined as

k
=

N∑
n=1

[
fn(θ̂ kn ) + gn(zkn)

]
, (23a)

=

N∑
n=1

[fn(θn) + gn(zn)] . (23b)

hen, for all {θn, zn}Nn=1, it holds that

+ pk+1
+

N∑
n=1

(θn − θ̂ k+1
n )′

[
δk+1
n,1 + P ′δk+1

n,2 +

+ρ1rk+1
n,z + ρ2rk+1

g

]
−

N∑
n=1

(zn − zk+1
n )′δk+1

n,1 ≥ 0, (24)

ith {rk+1
n,z }

N
n=1 and rk+1

g defined as in (21a) and (21b), respectively.

roof. The proof follows from straightforward manipulations of
he relations (22a)–(22b). □
We can now prove that the convergence rate for Algorithm 1
t each time instant t is O( 1k ).

Proposition 1. Let {θ̂ kn , z
k
n, δ

k
n,1, δ

k
n,2}

N
n=1 and θ̂ g,k be generated by

Algorithm 1, and {θ̄ kn , z̄
k
n}

N
n=1 and θ̄ g,k be their ergodic averages up

to the kth iteration, i.e.,

θ̄ kn =
1
k

k−1∑
s=0

θ̂ s+1
n , z̄kn =

1
k

k−1∑
s=0

zs+1
n , n = 1, . . . ,N,

θ̄ g,k =
1
k

k−1∑
s=0

θ̂ g,s+1.

(25)

Under Assumptions 1–2, it holds that

0 ≤ do ≤
1
k

(
N
2
V 0
)
, (26)

with V 0 defined as in (20a) and do given by

do = Lo (
{θ̄ kn , z̄

k
n, δ

⋆
n,1, δ

⋆
n,2}

N
n=1, θ̄

g,k)
+

− Lo (
{θ ⋆n , z

⋆
n, δ

⋆
n,1, δ

⋆
n,2}

N
1 , θ

g⋆) .
Proof. The left-hand-side of the relation in (26) directly results
from the definition of saddle point. The rest of the proof can be
found in Appendix A. □

By following the reasoning in Boyd et al. (2011), we can further
state the following asymptotic result:

Proposition 2. If Assumptions 1–2 hold, then

(i) {θ̂ kn , z
k
n, δ

k
n,1, δ

k
n,2}

N
n=1 and θ̂

g,k obtained by iterating the ADMM-
RLS steps in (9a)–(9e) are bounded;

(ii) residuals and objective convergence are attained, i.e.,

rkn,1 = θ̂ kn − zkn −→
k→∞

0, rkn,2 = P θ̂ kn − θ̂ g,k −→
k→∞

0,

pk −→
k→∞

N∑
n=1

[
fn(θ ⋆n ) + gn(z⋆n)

]
= p⋆,

with pk defined as in (23a). ■

Proof. The proof can be found in Appendix B. □

3.1.2. On the properties of the local estimates
We now study the properties of the local estimates θ̂ kn (t) only,

by focusing on the characterization of the difference between
θ̂ kn (t) and the actual value of the local parameters θon . To this end,
we exploit the relations in (12)–(13), according to which

θ̂ k+1
n (t) = θ̂ rlsn (t) + θ̂ admm,k+1

n (t). (27)

Due to its independence from the ADMM iterations, we initially
consider θ̂ rlsn (t) only, for which the following result holds.

Lemma 3. Let V rls
n (t) be the Lyapunov-like function

V rls
n (t) = (θ̃ rlsn )′Qn(t)θ̃ rlsn , (28)

with θ̃ rlsn (t) = θ̂ rlsn (t)− θon and Qn(t) = (φn(t))−1 positive definite by
definition. The following inequality holds:

V rls
n (t) ≤ V rls

n (0) +

t∑
τ=1

(en(τ ))′en(τ ), (29)

where en(τ ) is the additive white noise affecting the measurement
at time τ .
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Proof. The proof follows from the result in Bittanti, Bolzern, and
Campi (1990). Differently from Bittanti et al. (1990), we obtain
the additional term

∑t
τ=1(en(τ ))

′en(τ ), that straightforwardly re-
sults from the introduction of noise in the definition of the output
according to (1). □

Based on Lemma 3, we can now define a bound for the local
estimates, that holds at each time instant t for a finite number of
ADMM iterations k.

Proposition 3. Let θ̄ kn (t), z̄
k
n(t) and θ̄

g.k(t) be the ergodic averages
in (25), obtained with k iterations of the new instance of Algorithm
1 carried out at time t. Denote with

δ̄kn,1 =
1
k

k∑
s=0

δs+1
n,1 (t), δ̄kn,2 =

1
k

k∑
s=0

δs+1
n,2 (t),

the averages of the Lagrange multipliers. Then, the following inequal-
ity holds:

∥ θ̄ kn (t) − θ ⋆n ∥
2
2≤

1
ν(t)

{
α∥θ̃ rlsn (0)∥2

2 +

t∑
τ=1

(en(τ ))′en(τ )+

+

[
ηn(t) + ϕk

n(θ̂
rls
n (t), t)

]2
+ β(t)(ϕk

n(θ
o
n , t))

2
}
, (30)

where α and β(t) are equal to the maximum eigenvalues of Qn(0)
and φn(t), respectively, ν(t) is the smallest eigenvalue of Qn(t), and

ηn(t) =
Qφn(t)Qn(0)θ̃ rlsn (0)

2
2 +

+

Qφn(t)

(
t−1∑
τ=1

Qn(τ )en(τ )

)
2

2

+ ∥QKn(t)en(t)∥2
2 ,

ϕk
n(θ, t) =

= ψk
n (t) + ρ1

θ −
δ̄kn,1(t)
ρ1


2

2

+ ρ2

P ′

(
Pθ −

δ̄kn,2(t)
ρ2

)
2

2

+
ω0,k

n (t)
k

,

with Kn(t) defined as in (17b), θ̃ rlsn (τ ) and Qn(τ ) introduced in
Lemma 3, for τ = 0, . . . , t, and

Q = (1 − ρ1)Inθ − ρ2P ′P, (31a)

ψk
n (t) = ρ1

z̄kn(t) − θon

2
2 + ρ2

P ′
(
θ̄ g,k(t) − Pθon

)2
2 , (31b)

ω0,k
n (t) = ρ1

z0n (t) − zkn(t)
2
2 + ρ2

P ′

(
θ̂ g,0(t) − θ̂ g,k(t)

)2
2
+

+
δkn,1(t) − δ0n,1(t)

2
2 +

P ′
(
δkn,2(t) − δ0n,2(t)

)2
2 . (31c)

Proof. The proof can be found in Appendix C. □

Remark 4. The upper-bound in (30) depends on the initial
conditions θ̂ rlsn (0) and φn(0) and the noise acting on the measure-
ments. In addition, it depends on the performance of the ADMM
over k runs, as it relies on the difference between the averages
of the auxiliary and the global variable and their actual values
(see (31b)). The upper-bound is also shaped by the deviations
of the auxiliary variables, the global unknowns and the Lagrange
multipliers over the k ADMM iterations performed at each time
instant t (see (31c)). The influence of this last term is inversely
proportional to the number of iterations. ■

From Proposition 2, at each time step and each ADMM it-
eration the estimates {θ̂ kn , z

k
n, δ

k
n,1, δ

k
n,2}

N
n=1 and θ̂ g,k are bounded.

Given this result, we can also characterize the asymptotic prop-
erties of the local estimates θ̂ kn . To this end, we introduce the
following assumption.

Assumption 3. The regressor Xn and the noise en satisfy the
following statistical properties:
 i
(i) 1
t Xn(t) −→

t→∞
E[Xn(τ )Xn(τ )′] = Rn ̸= 0,

(ii)
∑t

τ=1 Xn(τ )en(τ ) −→
t→∞

E[Xn(τ )en(τ )] = 0,

ith Xn(t) defined as in (11c) and E[·] denoting the expectation.

For an infinite estimation horizon, we can now prove the
ollowing consistency result:

roposition 4. Suppose Assumptions 1–3 hold and that the actual
behavior of the each agent is described by (1). Then, θ̂ kn (t) is unbiased
for t → ∞. ■

Proof. According to Eq. (10), θ̂ kn (t) is given by the combina-
tion of two terms. Consider θ̂ admm,k+1

n (t), which is defined as
in (13). Because of Assumption 3 and the boundedness of the
auxiliary variables, global parameters and Lagrange multipliers
(see Proposition 2), it follows that

θ̂ admm,k+1
n (t) =(
1
t

t∑
τ=1

Xn(τ )(Xn(τ ))′ +
ρ1

t
I +

ρ2

t
PP ′

)−1
ξ kn

t
−→
t→∞

0,

or finite parameters ρ1, ρ2. We stress that this limit holds even if
DMM does not converge to the optimal value. Consider now the
artial estimate θ̂ rlsn (t) that is computed as in (15) with Kn(t) =

φn(t)Xn(t). According to B. and J. (1999), this update is equal to
the solution of the following optimization problem

min
θ rlsn

1
2t

{
t∑

τ=1

∥yn(τ ) − Xn(τ )′θ rlsn ∥
2
2 +∆n(0)

}
. (32)

here∆n(0) = (θ rlsn −θ̂ rlsn (0))φn(0)−1(θ rlsn −θ̂ rlsn (0))′. The expression
in (15) is thus equivalent to

θ̂ rlsn (t) =
(
φn(0)−1

+ Xn(t)
)−1

[
φn(0)−1θ̂ rlsn (0) + Yn(t)

]
,

ith Yn(t) given by (11b). If the initial parameters θ̂ rlsn (0) and
n(0) are finite, the contribution of the initial condition vanishes
or t → ∞ and it is also verified that

ˆ rls
n (t) −→

t→∞
R−1
n

[
1
t

t∑
τ=1

Xn(τ )yn(τ )

]
. (33)

y replacing yn(t) with Eq. (1) and accounting again for
ssumption 3, consistency easily follows. □

.2. Example 1: full consensus

Consider a simple estimation scenario in which N = 5 agents
onnected to the cloud are available to estimate the parameter
ector θ ∈ R5, with θ = [ 20 5 10 15 8 ]′. Each agent observes a noisy
ombination of the unknowns, namely

n(t) = H ′

nθ + en(t),

ith Hn ∈ R5 randomly generated according to the uniform
istribution and en ∼ N (0, 25). The effect of noise on the
easurements is assessed via the Signal-to-Noise Ratio (SNR), i.e.,

NRn = 10 log
∑T

t=1 (yn(t) − en(t))2∑T
t=1 en(t)2

dB, n = 1, . . . ,N, (34)

hich is around 15 dB for all agents. The unknowns are esti-
ated over a horizon T = 1000 without imposing any range
onstraint. The parameters used in Algorithm 1 are indicated
n Table 1 and the remaining initial values are set according to
emark 1. Note that P = I5, since the whole parameter vector
s assumed to be shared by all agents. At the cloud level, the
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Fig. 3. Example 1: norm of the global estimation error. ADMM-RLS (black) and
CLMS (Cattivelli & Sayed, 2010) (dashed blue).

Fig. 4. Example 1: average norm of the local estimation error. ADMM-
LS (black), DLMS (Cattivelli & Sayed, 2010) (dashed blue) and consen-

sus+innovations (Kar & Moura, 2013) (dotted–dashed red).

Table 1
Example 1: ADMM-RLS parameters.

θ̂ rlsn (0) φn(0) ρ2 δ0n,1 δ0n,2

05 0.1I5 1 10−3I5 10−3I5

Table 2
Example 2: ADMM-RLS parameters.
φn(0) ρ1 ρ2 δ0n,1 δ0n,2

0.1I3 1 0.1 10−3I3 10−3I2

performance of ADMM-RLS is assessed via the global estimation
error, whose Euclidean norm over time is reported in Fig. 3.
Our results are compared with the ones of the centralized least-
mean squares (CLMS) (Cattivelli & Sayed, 2010). Fig. 3 clearly
shows that ADMM-RLS outperforms CLMS in terms of accuracy.
Let us further assume that all agents are also connected to each
others. The performance attained at the node level with ADMM-
RLS is thus compared with the one achieved with two distributed
approaches, namely diffusion least-mean squares (DLMS) (Cat-
tivelli & Sayed, 2010) and the consensus+innovations estimator
introduced in Kar and Moura (2013),2 by looking at average
Euclidean norm of the local estimation error shown in Fig. 4.
It can be observed that our approach performs better than the
considered distributed estimation methods. For the comparison
to be fair, the local estimation error is computed with respect
to the corrected local estimate defined in (18), while, when
using the consensus+innovations approach, the noise covariance
s estimated as explained in Sahu et al. (2018).

.3. Example 2: Partial consensus

Consider now N = 100 dynamical systems described by the
uto-Regressive model with eXogenous inputs (ARX)

n(t) = θ
g
1 yn(t − 1) + θn,2yn(t − 2) + θ

g
2 un(t − 1) + en(t).

2 In running CLMS, DLMS and the consensus+innovations approach we start
rom the same initial conditions indicated in Table 1.
Table 3
Example 2: average RMSEs on the local estimates.
Mean(RMSEθ̂ rlsn

) Mean(RMSEθ̂ ln ) Mean(RMSEθ̂n )

2.3 · 10−1 0.9 · 10−1 1.0 · 10−1

The parameter vector θ g = [ 0.2 0.8 ]′ is common to all the agents,
while {θn,2}

N
n=1 are purely local parameters sampled from the dis-

tribution N (0.4, 0.052). The exogenous inputs un are generated as
sequences of i.i.d. elements uniformly distributed in the interval
[2, 3], while en ∼ N (0, Rn) are white noise sequences with
random covariance. We consider Rn ∈ [1, 16], for n = 1, . . . ,N ,
so that SNRn ∈ [6.4, 16.1] dB. A similar example is considered
in our conference paper (Breschi et al., 2018). ADMM-RLS is used
to iteratively estimate both local and global parameters over a
horizon T = 5000 from input/output samples, under the assump-
tions that the values of the local parameters are known with an
uncertainty of ±0.1 and that the following priors are available on
the global unknowns:

0.19 < θ
g
1 < 0.21, 0.79 < θ

g
2 < 0.81. (35)

Algorithm 1 is run with the parameters in Table 2 and the initial
local estimates θ̂ rlsn (0) randomly chosen in the interval [−10, 10].
The initial values for the global estimates and the auxiliary vari-
ables are selected as explained in Remark 1. The global estimates
retrieved on the cloud are reported in Fig. 5, showing that the
global unknowns are accurately estimated and that they overall
satisfy the range constraints, even though they are not directly
enforced on the global estimates. The accuracy of the local esti-
mates is assessed via the Root Mean Square Error (RMSE), defined
as

RMSEθ̂ ,i =

√∑T
t=1

(
θi − θ̂i(t)

)2
T

, (36)

here θi and θ̂i indicate the ith components of a generic param-
ter vector θ and its estimate, respectively. Table 3 reports the
verage RMSEs on the local estimates. At the node level, it is clear
hat θ̂ ln is more accurate than θ̂ rlsn , highlighting the benefit of using
he proposed communication scheme. At the same time, θ̂ rlsn is
ess accurate than the one refined on the cloud, since θ̂n relies on
nformation gathered from all the agents. On the contrary, θ̂ ln is
slightly more accurate than θ̂n. This result is somehow expected,
since θ̂ ln exploits the global estimate computed on the cloud.

3.3.1. Example 2: Sensitivity analysis
The chosen penalty parameters ρ1 and ρ2 directly impact the

performance of ADMM. Therefore, we perform a posterior sensi-
tivity analysis, by alternatively changing the value of one of the
tuning parameters, while fixing the other to its value in Table 2.
We evaluate the influence of these tuning parameters on the
satisfaction of the constraints via two performance indexes. On
one hand, we consider the average percentage of parameter range
constraint violations N̄b, which is computed by considering only
cases when the estimate exceeds the range by more than ±10−4.
n the other hand, the quality of the global estimate is assessed
he Euclidean of RMSEθ̂g . Figs. 6–7 show how these performance
indexes for different choices of ρ1 and ρ2, respectively. Since ρ1
directly influences the enforcement of the range constraints, it
is clear that the higher its value is, the lower is the percentage
of constraint violations. Instead, ρ2 positively affects violation
constraints for choices of ρ2 ∈ [10−1, 10]. On the other hand, the
value of ∥RMSEθ̂g ∥2 tends to decreases for ρ1 ∈ [10−3, 5], while
the accuracy of the global estimate visibly deteriorate for ρ2 > 5.
These results indicate the need for a good trade-off between the
weights associated to the different constraints, while particular

care has to be taken in selecting ρ2.
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Fig. 5. Example 2: true vs estimated global parameters. True (black), ADMM-RLS (blue) and bounds (red, see (35)). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Example 2: average percentage of range constraints violations N̄b [%] vs ρ1 and ρ2 .
Fig. 7. Example 2: 2-norm of the RMSE, ∥RMSEg
∥2 , vs ρ1 and ρ2 .
z

4. Nonlinear consensus constraints

Suppose now that the known relationship between the global
and local parameters is nonlinear, as in problem (2). For this
more involved case, we still aim at devising a recursive method to
estimate the unknown parameters, while exploiting the commu-
nication scheme in Fig. 2. Similarly to the linear case in Section 3,
at each time instant we exploit ADMM. Even though ADMM can
be directly applied to the problem, due to the nonlinear con-
sensus constraint the resulting scheme requires the solution of a
nonlinear problem to update the local estimate at each time step
and ADMM iteration. This might be impractical, especially when
the nonlinear problem has to be solved locally. A possible solution
to simplify the iterations is to adopt an approximate ADMM
scheme, e.g., the approach proposed in Benning, Knoll, Schönlieb,
and Valkonen (2015). When applied to our problem, the approach
in Benning et al. (2015) relies on the substitution of F (θn) with
its Taylor expansion around θ̂ kn . Although this choice allows us to
simplify the operations performed locally, the resulting scheme
still has some undesirable features. In particular, it entails that
all the estimates have to be updated at each ADMM iteration, re-
quiring a prohibitive number of back and forth communications.
To handle this additional problem, we exploit the constraint in
(4c), and we modify the consensus condition as

g
F (zn) = θ , ∀n ∈ {1, . . . ,N}. (37)
This leads to the following ADMM-based scheme:

θ̂ k+1
n (t) = argmin

θn

{
fn(θn) + δk

′

n,1(θn − zkn) +
ρ1

2
∥θn − zkn∥

2
2

}
,

(38a)
k+1
n = argmin

zn

{
gn(zn) + δk

′

n,1ε
k+1
n,1 +

ρ1

2
∥εk+1

n,1 ∥
2
2+

+δk
′

n,2ε
k
n,2 +

ρ2

2
∥εkn,2∥

2
2

}
, (38b)

θ̂ g,k+1(t) =
1
N

N∑
n=1

[
F (zk+1

n ) +
1
ρ2
δkn,2

]
, (38c)

δk+1
n,1 = δkn,1 + ρ1(θ̂ k+1

n (t) − zk+1
n ), (38d)

δk+1
n,2 = δkn,2 + ρ2(F (θ̂ k+1

n (t)) − θ̂ g,k+1(t)), (38e)

with εk+1
n,1 = θ̂ k+1

n (t) − zn and εkn,2 = F (zn) − θ̂ g,k. The closed form
solution for (38a) is given by (10), i.e.,

θ̂ k+1
n (t) = φn(t)

{
Yn(t) + ξ kn

}
,

with ξ kn = ρ1zkn − δkn,1, φn(t) =
(
Xn(t) + ρ1Inθ

)−1 and Yn(t) and
Xn(t) defined as in (11b) and (11c), respectively. As in Section 3,
we can introduce the partial estimates θ̂ rlsn (t) and θ̂ admm,k

n (t), given
by (12) and (13), respectively. Therefore, it is easy to prove that
θ̂ rls can be iteratively updated as in (15)–(17). The manipulation
n
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of the consensus constraint thus leads to simple iterative updates
for the local estimates, which are independent of the nonlinear
function F . As in the linear case, the local estimate θ̂ rlsn (t) is still
independent of estimate broadcast from the cloud to the nodes.
Therefore, also in this setting we introduce the corrected local
estimate θ̂ ln(t), given by

θ̂ ln(t) = θ̂ rlsn (t) + G(θ̂ g (t − 1) − F (θ̂ rlsn (t − 1)), θ̂ rlsn (t − 1)). (39)

The function G : Rnθ × Rng → Rnθ returns a vector of the same
dimension as θ̂ rlsn , with entries equal to 0 in correspondence of
purely local parameters, while the other components are properly
shaped by the difference between the global estimate and purely
local approximations of the global parameters.

Consider now the update of the auxiliary variable in (38b),
which depends on F . Instead of solving the nonlinear optimiza-
tion problem in (38b), we linearize F (zn) around zkn , i.e.,

F (zn) ≈ F (zkn) + Ak+1
n (zn − zkn), (40)

with

Ak+1
n =

∂F (zn)
∂zn

⏐⏐⏐⏐
zn=zkn

. (41)

The resulting function to be minimized is

L̂n = gn(zn) + δk
′

n,1(θ̂
k+1
n (t) − zn) +

ρ1

2
∥θ̂ k+1

n (t) − zn∥2
2+

+ δk
′

n,2(A
k+1
n zn − ck+1

n ) +
ρ2

2
∥Ak+1

n zn − ck+1
n ∥

2
2,

with ck+1
n = Ak+1

n zkn + θ̂ g,k(t)−F (zkn). It is straightforward to prove
that the auxiliary variables can be updated as follows

zk+1
n = PCn

(
Z−1
1 Z2

)
,

Z1 = ρ1Inθ + ρ2Ak+1′

n Ak+1
n ,

Z2 = δkn,1 + ρ1θ̂
k+1
n (t) + Ak+1′

n

(
ρ2ck+1

n − δkn,2
)
.

(42)

An outline of an iteration of the approximated ADMM scheme is
provided in Algorithm 2. Note that no inner loop is introduced for
the solution of a nonlinear optimization problem.

Remark 5. By adding preconditioning within our ADMM-based
approach, the proposed method corresponds to the one in Ben-
ning et al. (2015). Therefore, we expect that the properties of
Algorithm 2 can be characterized with the same reasoning as
in Valkonen (2014). We stress that the proofs in Valkonen (2014)
rely on some technical assumptions, which are satisfied in our
setting. Indeed, F is assumed to be twice differentiable in its
omain and the cost function is convex, proper and lower semi-
ontinuous. We remark that a new instance of Algorithm 2 is
nitialized and carried out at each time instant t , so that the
rguments in Valkonen (2014) allow us to characterize the perfor-
ance of the approach at a given time instant only. To delineate

he behavior of Algorithm 2 over time, an upper-bound on the
ocal error can be derived. This bound is expected to resemble
he one in (30), since local estimates are decomposed in a similar
ay. Nonetheless, the bound is likely to be shaped by the differ-
nt nature of the consensus constraint and, in particular, by the
rror performed in locally linearizing the constraint. ■

.1. Example 3: estimation over a fleet of vehicles

An accurate estimate of the mass, road grade and drag co-
fficient of a vehicle is of paramount importance in many ve-
icle control applications (Vahidi & Eskandarian, 2003). There-
ore, methods for effective estimation of these unknowns have
Algorithm 2 ADMM-RLS for nonlinear consensus
Local inputs: Regressor/output pairs {Xn(t), yn(t)}, past estimates
θ̂ rlsn (t − 1), φn(t − 1), θ̂ g (t − 1); ρ1, ρ2 ∈ R+.
Cloud inputs: Initial values θ̂ g,0(t), {δ0n,i}

2
i=1 and z0n , n = 1, . . . ,N;

ρ1, ρ2 ∈ R+.

Node-level computations

1. each node n ∈ {1, . . . ,N} does

1.1. update φn(t) as in (17c);
1.2. update θ̂ rlsn (t) as in (15);
1.3. compute θ̂ ln(t) as in (39);
1.4. transmit θ̂ rlsn (t) and φn(t) to the cloud;

Cloud-level computations

1. iterate for k = 1, . . .

1.1. for n = 1, . . . ,N

1.1.1. compute θ̂ admm,k+1
n (t) as in (13);

1.1.2. update θ̂ k+1
n (t) with (10);

1.1.3. compute Ak+1
n as in (41);

1.1.4. compute zk+1
n as in (42);

1.2. update θ̂ g,k+1(t) as in (38c);
1.3. for n = 1, . . . ,N

1.3.1. compute δk+1
n,1 as in (38d);

1.3.2. compute δk+1
n,2 as in (38e);

2. until the chosen stopping criterion is satisfied;
3. transmit θ̂ g (t) to the nodes;

Local outputs: φn(t), local estimates θ̂ rlsn (t) and θ̂ ln(t).
loud outputs: local estimates {θ̂n(t)}Nn=1; global estimate θ̂ g (t).

been extensively studied within the control community (Kidambi,
Harne, Fujii, Pietron, & Wang, 2014; Vahidi, Stefanopoulou, &
Peng, 2005). Nonetheless, estimation is generally carried out by
using information collected from one vehicle only, without ex-
ploiting the similarities between vehicles. In this example we do
exploit this additional information, by considering the problem of
mass, road grade and drag coefficient estimation over a fleet of
N vehicles. In our simulations, we assume that the velocities of
the N vehicles are measured locally and that at least an estimate
of the longitudinal force acting on each vehicle is available. The
considered unknowns can thus be estimated by relying on the
model of the vehicle longitudinal dynamics (Rajamani, 2012). Ac-
cordingly, by considering the ideal setting in which the unknowns
are constant over the estimation horizon and the wind velocity is
negligible, the regressor/output relationship for the nth vehicle is
described by the following ARX model:

yn(t) = Xn(t)′θ (t) + en(t),

with output yn(t) = vx,n(t) − vx,n(t − 1) + Tsfg , where vx,n [m/s]
is the vehicle velocity and Ts = 0.1 s is the sampling time. The
parameter vector θn ∈ R3 is given by

θn =

[
1
mn

Cd
mn

sin (βn)
]′

,

with mn [kg], Cd and βn [rad] being the mass, drag coefficient and
road grade for the nth vehicle, respectively. The regressor X (t) is
n
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Table 4
Example 3: Parameters of the nth vehicle.

Sym Meaning and UoM Value

mn Mass [kg] µn ∼N (1500, 104)
βn Road grade [rad] βn ∼N (0, 8 · 10−5)
Cd Drag coefficient 0.4
ϱ Air density [kg/m3] 1.18
Af Frontal area [m2] 3
f Rolling resistant coefficient 0.015
g Gravitational acceleration [m/s2] 9.81

Table 5
Example 3: ADMM-RLS parameters.

θ̂ rlsn (0) φn(0) ρ1 ρ2 δ0n,1 δ0n,2[
10−2
0
0

] [
10−4 0 0
0 10−5 0
0 0 10−2

]
10−2 10−3 10−3I5 10−3I5

equal to

Xn(t) = Ts
[
Fx,n(t − 1) −0.5ϱAf vx,n(t − 1)2 −g

]′
,

here Fx,n [N] is the longitudinal force acting on the nth vehicle.
he remaining parameters are reported in Table 4. The addi-
ive sequence en(t) is introduced to account for possible model
ismatch and for the noise acting on the measurements.3 In
ractice, it is reasonable to assume masses and road grades to
e different for each vehicle, so that they can be treated as purely
ocal parameters. At the same time, given the similarities between
he N vehicles in the fleet, the drag coefficient can be reasonably
ssumed to be equal for all vehicles, thus representing a global
arameter. The nonlinear consensus constraint is enforced by
mposing the following nonlinear relationship between the local
arameters:

(θn) = (θn,1)−1θn,2, (43)

while the function G in (39) returns the three dimensional vector
0 θ̂ rlsn,1(t−1)θ̂g (t−1)−θ̂ rlsn,2(t−1) 0

]′. According to the physical meaning
f the estimated parameters and to guarantee that Ak+1

n in (42)
is well defined, the local parameters are constrained in the sets
Cn ⊂ R+

× R+
× R, for n = 1, . . . ,N . We acquire measurements

from a minimum of Nmin = 1 to a maximum of Nmax = 20
vehicles, so that the performance of the proposed method can
be assessed for fleets of different sizes. The available velocity
profiles resemble the ones reported in Fig. 8, indicating that there
can be zero-velocity intervals, especially at the beginning of the
estimation horizon. Algorithm 2 is used to estimate the unknowns
over T = 670 s, with the parameters reported in Table 5. The
auxiliary variables and global estimates initialized following the
same reasoning in Remark 1. Fig. 9 shows the Root Mean Square
Error (RMSE) (36) for the global estimate. This result indicates
that accuracy generally improves when N increases. However,
the evolution of the RMSE over N is non-monotone due to the
presence of critical agents, i.e., vehicles with considerable zero-
velocity periods. Additional insights are given by the absolute
estimation errors on the global parameter, reported in Fig. 10.
It is clear that the estimate obtained with a fleet of N = 20
vehicle is more accurate than the ones obtained for N = 1, 2,
with a visible improvement in the quality of the estimated drag
coefficient when at least 2 vehicles are connected to the cloud.

3 In simulating the longitudinal behavior of each vehicle, we have corrupted
hat the system through a process noise w ∼ N (0, 0.01), while the mea-
surements are altered by a Gaussian zero-mean white process with standard
deviation 0.01.
Fig. 8. Example 3: sample velocity profiles. Black: y1 , blue: y2 . (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 9. Example 3: RMSEĈd
vs dimension of the fleet N .

Fig. 10. Example 3: absolute estimation error |Ĉd − Cd|. Blue: N = 1, red: N = 2,
magenta: N = 20. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 6
Example 3: average RMSEs on the mass and the road grade.
Mean(RMSEm̂n ) [kg] Mean(RMSEβ̂n ) [rad]

446.9 7.6 · 10−3

Note that, for N = 1, we use standard RLS (Ljung, 1999), with-
out imposing range constraints on the parameters. The average
RMSEs on the mass and road grade are reported in Table 6, so
to assess the performance of the approach at the node level. It is
worth pointing out that the initial error on the value of the mass
is around 1400 [kg].

5. Conclusion

We presented two ADMM-based methods for recursive con-
strained collaborative estimation. These approaches allow us to
handle linear and nonlinear consensus constraints, with only a set
of (simple) computations executed locally. More complex tasks
are instead performed by a centralized resource on the cloud. Fu-
ture investigations will be devoted to a theoretical analysis of the
method proposed for the nonlinear case. On the methodological
side, future research will address developing solutions to consider
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more general consensus constraint. Due to the demonstrated sen-
sitivity of the method to the tuning parameters in the augmented
Lagrangian, auto-tuning strategies will also be investigated.

Appendix A. Proof of Proposition 1

Since the result of Lemma 2 holds for all {θn, zn}Nn=1, θ
g and for

all ADMM iterations k, it follows that

p⋆ − ps+1
+ ρ2

[
N∑

n=1

(ds+1
θn

)′
]
P ′r s+1

g −

N∑
n=1

(ds+1
zn )′δs+1

n,1 +

+

N∑
n=1

(ds+1
θn

)′
(
δs+1
n,1 + P ′δs+1

n,2 + ρ1r s+1
n,z

)
≥ 0, (A.1)

where

ds+1
θn

= θ̂ ⋆n − θ̂ s+1
n , ds+1

zn = z⋆n − zs+1
n , n = 1, . . . ,N, (A.2)

and r s+1
n,z and r s+1

g are defined as in (21a) and (21b), respectively.

By adding and subtracting (θ g⋆)′
[∑N

n=1 δ
s+1
n,2

]
to (A.1) and by ex-

ploiting the relation in (22c) and the primal feasibility conditions,
simple algebraic manipulations allow us to prove that

p⋆ − ps+1
+

N∑
n=1

(ds+1
θn

)′
[
ρ1r s+1

n,z + ρ2P ′r s+1
g

]
+

−

N∑
n=1

[
(θ̂ s+1

n − zs+1
n )′δs+1

n,1 + (P θ̂ s+1
n − θ̂ g,s)′δs+1

n,2

]
≥ 0. (A.3)

y further adding and subtracting
N

n=1

[
(θ̂ s+1

n − zs+1
n )′δ⋆n,1 + (P θ̂ s+1

n − θ̂ g,s)′δ⋆n,2
]
, (A.4)

o (A.3), and by relying on the updates of the Lagrange multipliers
n (9d)–(9e) and on the primal feasibility condition, a similar
easoning to the one exploited in Wei and Ozdaglar (2012) allows
s to further show that

⋆
− ps+1

+

N∑
n=1

[ρ1
2

∥dszn∥
2
2 +

ρ2

2
∥dsθg ∥

2
2

]
+

−

N∑
n=1

[
(δ⋆n,1)

′(θ̂ s+1
n − zs+1

n ) + (δ⋆n,2)
′(P θ̂ s+1

n − θ̂ g,s+1)
]
+

+

N∑
n=1

2∑
i=1

[
1
2ρi

∥dsδn,i∥
2
2

]
≥

N∑
n=1

[ρ1
2

∥ds+1
zn ∥

2
2 +

ρ2

2
∥ds+1

θg ∥
2
2

]
+

+

N∑
n=1

[
2∑

i=1

[
1
2ρi

∥ds+1
δn,i

∥
2
2

]
+
ρ1

2
∥θ̂ s+1

n − zsn∥
2
2+

+
ρ2

2
∥Pθ s+1

n − θ̂ g,s∥2
2

]
, (A.5)

ith ds+1
zn defined as in (A.2) and

s
δn,i

= δsn,i − δ⋆n,i, i = 1, 2, (A.6)
s
θg = θ̂ g,s − θ g⋆. (A.7)

ince (A.5) holds for all s = 0, 1, . . . , k − 1, by summing over s
nd performing telescopic cancellations we obtain that

p⋆ −

k−1∑
s=0

ps+1
+

−

N∑[
(δ⋆n,1)

′

(
k−1∑

θ̂ s+1
n − zs+1

n

)
+ (δ⋆n,2)

′

(
k−1∑

P θ̂ s+1
n − θ̂ g,s+1

)]
+

n=1 s=0 s=0
+

N∑
n=1

[
2∑

i=1

(
1
2ρi

∥δ0n,i − δ⋆n,i∥
2
2

)
+
ρ1

2
∥z⋆n − z0n∥

2
2+

+
ρ2

2
∥θ g⋆ − θ̂ g,0∥2

2

]
≥

N∑
n=1

[
2∑

i=1

(
1
2ρi

∥dkδn,1∥
2
2

)
+

+
ρ1

2
∥dkzn∥

2
2 +

ρ2

2
∥dkθg ∥

2
2 +

k−1∑
s=0

ρ1

2
∥θ s+1

n − zsn∥
2
2+

+

k−1∑
s=0

ρ2

2
∥Pθ s+1

n − θ̂ g,s∥2
2

]
. (A.8)

The right-hand-side of the inequality in (26) easily follows from
the definitions of the ergodic averages, the positivity of the right-
hand-side of (A.8), the convexity of the cost function and primal
feasibility.

Appendix B. Proof of Proposition 2

Similarly to Boyd et al. (2011), residuals and objective con-
vergence is proven by showing that the weighted sum V k, given
y

V k
= ρ2∥θ̂

g,k
− θ g⋆∥2

2 +
1
N

N∑
n=1

V k
n ,

V k
n =

1
ρ1

∥δkn,1 − δ⋆n,1∥
2
2 + ρ1∥zkn − z⋆n∥

2
2 +

1
ρ2

∥δkn,2 − δ⋆n,2∥
2
2,

s a Lyapunov function for ADMM-RLS. This will be proven by
howing that the following key inequalities hold:

k+1
≤ V k

−
1
N

N∑
n=1

[
ρ1∥rk+1

n,1 ∥
2
2 + ρ2∥rk+1

n,2 ∥
2
2+

+ρ1∥rk+1
n,z ∥

2
2 + ρ2∥rk+1

g ∥
2
2

]
, (B.1)

pk+1
− p⋆ ≤ −

N∑
n=1

[
(δk+1

n,1 )′rk+1
n,1 + (δk+1

n,2 )′rk+1
n,2 +

+ρ1(rk+1
n,z )′ζ k+1

n,1 + ρ2(rk+1
g )′ζ k+1

n,2

]
, (B.2)

p⋆ − pk+1
≤

N∑
n=1

[
(δ⋆n,1)

′rk+1
n,1 + (δ⋆n,2)

′rk+1
n,2

]
, (B.3)

with rk+1
n,z and rk+1

g defined as in (21a) and (21b), respectively, and

ζ k+1
n,1 = rk+1

n,1 + zk+1
n − z⋆n, ζ k+1

n,2 = rk+1
n,2 + θ̂ g,k+1

− θ g⋆.

Notice that objective convergence easily follows from (B.2)–(B.3).
Instead, the inequality in (B.1) implies that V k decreases at each
iteration. Consequently, it holds that V k

≤ V 0. Since V 0 finite
under Assumption 2, the variables θ g,k, {zkn, δ

k
n,1, δ

k
n,2}

N
n=1 have

thus to be bounded. Based on (B.1) it can further be shown that
∞∑
k=0

{
ρ2∥rk+1

g ∥
2
2 +

1
N

N∑
n=1

[
ρ1(∥rk+1

n,1 ∥
2
2 + ∥rk+1

n,z ∥
2
2)+

+ρ2∥rk+1
n,2 ∥

2
2

] }
≤ V 0,

which implies residuals converge and that

rk+1
n,z = zk+1

n − zkn −→
k→∞

0, n = 1, . . . ,N,

rk+1
g = θ̂ g,k+1

− θ̂ g,k −→
k→∞

0.

Note that, residual convergence and the boundedness of zkn and
θ g,k further result in the boundedness of the local estimates θ kn .
Since the relation in (B.2) can be proven through straightforward
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manipulations of the result of Lemma 2, in the following we focus
on the proofs of (B.1) and (B.3).

B.1. Proof of inequality (B.3)

Under Assumption 1, it holds that
o({θ ⋆n ,z

⋆
n}

N
n=1, θ

g⋆, {δ⋆n,1, δ
⋆
n,2}

N
n=1) ≤

Lo({θ̂ k+1
n , zk+1

n }
N
n=1, θ̂

g,k+1, {δ⋆n,1, δ
⋆
n,2}

N
n=1).

Because of the primal feasibility of the saddle point, it further
holds that

θ ⋆n = z⋆n, Pθ ⋆n = θ g⋆ ∀n ∈ {1, . . . ,N}.

y exploiting these relations and replacing Lo with its definition,
the proof of inequality (B.3) easily follows.

B.2. Proof of inequality (B.1)

Inequality (B.1) is proven via algebraic manipulations of the
elationships in (B.2) and (B.3). By combining these inequalities
nd exploiting the updates in (9d)–(9e), it can be shown that the
ollowing inequality holds
N∑

n=1

[
1
ρ1

(dkδn,1 )
′(δk+1

n,1 − δkn,1) +
1

2ρ1
∥δk+1

n,1 − δkn,1∥
2
2+

+
1
ρ2

(dk+1
δn,2

)′(δk+1
n,2 − δkn,2) +

1
2ρ2

∥δk+1
n,2 − δkn,2∥

2
2+

+
ρ1

2
∥rk+1

n,1 ∥
2
2 +

ρ2

2
∥rk+1

n,2 ∥
2
2 + ρ1(rk+1

n,z )′(rk+1
n,1 + dk+1

zn )+

+ρ2(rk+1
g )′(rk+1

n,2 + dk+1
θg )

]
≤ 0, (B.4)

with dk+1
zn , {dk+1

δn,i
}
2
i=1 and dk+1

θg defined as in (A.2) and (A.6)–(A.7),
respectively. Moreover, simple algebraic manipulations lead to
the following equalities:

(dk+1
δn,i

)′(δk+1
n,i − δkn,i) + ∥δk+1

n,i − δkn,i∥
2
2 =

1
2

[
∥dk+1

δn,i
∥
2
2 − ∥dkδn,i∥

2
2

]
,

1
2
∥rk+1

n,1 ∥
2
2 + (rk+1

n,z )′(rk+1
n,1 + dk+1

zn ) =

=
1
2

[
∥rk+1

n,1 + rk+1
n,z ∥

2
2 + ∥dk+1

zn ∥
2
2 − ∥dkzn∥

2
2

]
,

1
2
∥rk+1

n,2 ∥
2
2 + (rk+1

g )′(rk+1
n,2 + dk+1

θg ) =

=
1
2

[
∥rk+1

n,2 + rk+1
g ∥

2
2 + ∥dk+1

θg ∥
2
2 − ∥dkθg ∥

2
2

]
,

hich hold for all n ∈ {1, . . . ,N}. Consequently, by using the
efinition of V k, (B.4) can be equivalently recast as:

k+1
− V k

≤ −

N∑
n=1

[ρ1
N

∥rk+1
n,1 + rk+1

n,z ∥
2
2 +

ρ2

N
∥rk+1

n,2 + rk+1
g ∥

2
2

]
.

o prove inequality (B.1), it is thus left to be shown that

rk+1
n,1 + rk+1

n,z ∥
2
2 ≥ ∥rk+1

n,1 ∥
2
2 + ∥rk+1

n,z ∥
2
2,

olds for n = 1, . . . ,N , and that
N

n=1

∥rk+1
n,2 + rk+1

g ∥
2
2 ≥

N∑
n=1

[
∥rk+1

n,2 ∥
2
2 + ∥rk+1

g ∥
2
2

]
,

hat can easily be verified through simple manipulations, by
dopting the same reasoning as in Boyd et al. (2011), thus con-
luding the proof. □
ppendix C. Proof of Proposition 3

Let Vn(k, t) be the Lyapunov-like function

n(k, t) = (θ̄ kn (t) − θon )
′Qn(t)(θ̄ kn (t) − θon ), (C.1)

ith Qn(t) = (φn(t))−1. According to the definition of ergodic
verage θ̄ kn (t) in (25) and the decomposition of θ̂ s+1

n (t) into the
um of θ̂ rlsn (t) and θ̂ admm,s+1

n (t), for s = 0, 1, . . . , k − 1, it can be
asily shown that the following holds:

¯ k
n (t) = θ̂ rlsn (t) +

1
k

k−1∑
s=0

θ̂ admm,s+1
n (t).

By replacing θ̄ kn (t) in (C.1) with the previous definition and ac-
counting for the equality in (13) and θ̃ rlsn (t) = θ̂ rlsn (t) − θon , by
properly completing the squares it can be shown that

Vn(k, t) = V rls
n (t) +

θ̃ rlsn +
1
k

k−1∑
s=0

ξ sn(t)


2

2

+
1
k2

(
k−1∑
s=0

ξ sn(t)

)′

φn(t)

(
k−1∑
s=0

ξ sn(t)

)
− (θ̃ rlsn (t))′(θ̃ rlsn (t))

−
1
k2

(
k−1∑
s=0

ξ sn(t)

)′ ( k−1∑
s=0

ξ sn(t)

)
.

ince the two last terms are quadratic forms and are non-
egative, it follows that

n(k, t) ≤V rls
n (t) +

θ̃ rlsn +
1
k

k−1∑
s=0

ξ sn(t)


2

2

+

+
1
k2

(
k−1∑
s=0

ξ sn(t)

)′

φn(t)

(
k−1∑
s=0

ξ sn(t)

)
.

ccording to Lemma 3 and from the properties of quadratic
orms, it can be shown that

n(k, t) ≤ α
θ̃ rlsn (0)

2
2 +

t∑
τ=1

(en(τ ))′en(τ )+

+

θ̃ rlsn +
1
k

k−1∑
s=0

ξ sn(t)


2

2

+
1
k2

(
k−1∑
s=0

ξ sn(t)

)′

φn(t)

(
k−1∑
s=0

ξ sn(t)

)
,

where α is the highest eigenvalue of Qn(0) = (φn(0))−1. Con-
sider now the fourth term in the inequality. By exploiting the
properties of quadratic forms it holds that

1
k2

(
k−1∑
s=0

ξ sn(t)

)′

φn(t)

(
k−1∑
s=0

ξ sn(t)

)
≤ β(t)

1k
k−1∑
s=0

ξ sn(t)


2

2

,

with β(t) being the largest eigenvalue of φn(t). By adding and
subtracting ρ1θon + ρ2P ′Pθon and

ρ1

k

(
zkn(t) −

δkn,1(t)
ρ1

)
+
ρ2

k
P ′

(
θ̂ g,k(t) −

δkn,2(t)
ρ2

)
within the squared 2-norm and, it follows that

1
k2

(
k−1∑

ξ sn(t)

)′

φn(t)

(
k−1∑

ξ sn(t)

)
≤ β(t)(ϕk

n(θ
o
n , t))

2, (C.2)

s=0 s=0
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with ϕk
n(θ

o
n , t) defined as in (31b). Moreover, by adding and sub-

tracting

ρ1

k

(
zkn(t) −

δkn,1(t)
ρ1

)
+
ρ2

k
P ′

(
θ̂ g,k(t) −

δkn,2(t)
ρ2

)
+

+ ρ1(θ̂ rlsn (t) − θon ) + ρ2P ′(P θ̂ rlsn (t) − θ g,o),

within the norm in the third term, straightforward manipulation
leads to

θ̃ rlsn (t) +
1
k

k−1∑
s=0

ξ sn(t) = Qθ̃ rlsn (t) + ϕk
n(θ̂

rls
n (t), t), (C.3)

with Q and ϕk
n(θ̂

rls
n (t), t) defined as in Eqs. (31a) and (31c), re-

spectively. The RLS updates in (15)–(17) can then be iteratively
exploited to decompose θ̃ rlsn (t) as

θ̃ rlsn (t) = φn(t)

[
Qn(0)θ̃ rlsn (0) +

t−1∑
τ=1

Qn(τ )en(τ )

]
+

+ Kn(t)en(t). (C.4)

By substituting (C.4) into (C.3), and then exploiting the triangular
inequality, it can be shown that the following holds:

Vn(k, t) ≤ α
θ̃ rlsn (0)

2
2 +

t∑
τ=1

(en(τ ))′en(τ )+

+

[
ηn(t) + ϕk

n(θ̂
rls
n (t), t)

]2
+ β(t)(ϕk

n(θ
o
n , t))

2.

For the properties of quadratic forms, it further holds that Vn(k, t)
≥ ν(t)

θ̄ kn (t) − θon

2
2, where ν(t) > 0 is the highest eigenvalue of

Qn(t). By exploiting this last relationship, the inequality in (30)
easily follows. □
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