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a b s t r a c t

Designing controllers directly from data often requires choosing a reference closed-loop model, whose
behavior should be reproduced as tightly as possible by the actual closed-loop system via the selected
controller structure (e.g., PID). Within a linear setting, we present a derivative-based approach to jointly
select the reference model and controller parameters directly from data. The proposed strategy allows
one to maximize closed-loop performance while enforcing user-defined constraints, and it is designed
to handle non-minimum phase dynamics. The effectiveness of the proposed approach is shown through
three numerical case studies.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In recent years, Data-Driven Control (DDC) has rapidly become
popular model-free control design method. Compared to classi-
al data-enabled strategies (Schoukens & Ljung, 2019), direct DDC
oes not require a model identification phase prior to control
esign, thus bypassing a stage that is often time-consuming and
ainly targeted to achieve the best simulation/prediction accu-

acy, rather than closed-loop performance. Several approaches
xist to directly design controllers from data, ranging from recent
dvances in data enabled predictive control (see, e.g., Berberich,
öhler, Müller, and Allgöwer (2021)), to more consolidated strate-
ies, such as Virtual Reference Feedback Tuning (VRFT)
Campi, Lecchini, & Savaresi, 2002) and Iterative Feedback Tuning
IFT) (Hjalmarsson, Gevers, Gunnarsson, & Lequin, 1998) . The
ain tuning knob of these last class of procedures is the reference
odel that dictates the desired closed-loop response of the sys-

em. A key question is therefore how to choose such a reference
odel, keeping into account not only the desired closed-loop
erformance, but also that the latter should be achieved by a
iven controller structure. Recently, techniques have been pro-
osed to automatize the choice of the reference model, while
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concurrently designing a controller from data, that can be roughly
distinguished into one-stage and two-stage strategies. In Selvi,
Piga, Battistelli, and Bemporad (2021), Selvi, Piga, and Bem-
porad (2018), the reference model is tuned by optimizing a
performance-oriented cost via Particle Swarm Optimization (PSO)
(Rahmat-Samii, Gies, & Robinson, 2003), while the VRFT method
is concurrently exploited to design the controller corresponding
to each explored reference model. Instead, a combination of
Bayesian Optimization (BO) (Brochu, Cora, & De Freitas, 2010)
and the VRFT approach is used in Breschi and Formentin (2021)
to optimize closed-loop performance by input/output data only.
This method has been recently extended to the Linear Parameter
Varying (LPV) setting in van Meer, Breschi, Oomen, and Formentin
(2021), by replacing the VRFT method with the data-driven strat-
egy introduced in Formentin, Piga, Tóth, and Savaresi (2016). By
leaving the zeros of the reference model free to accommodate the
presence of unstable zeros in the plant, the two-stage strategies
proposed in Campestrini, Eckhard, Gevers, and Bazanella (2011),
Lecchini and Gevers (2002) are instead explicitly tailored to han-
dle non-minimum phase systems. In the first stage, unstable zeros
are indirectly detected, then the reference model is corrected
accordingly to ultimately allow for the design of the controller
by either the VRFT approach or IFT. Note that, these approaches
rely on the assumption that the poles of the reference model
are fixed. An alternative method has been proposed in Cerone,
Abuabiah, and Regruto (2020), which relies on the formulation
of a fictitious, H∞ direct control problem to tune the reference
model for both minimum-phase and nonminimum-phase plants.
For the multi-input multi-output setting, Gonçalves da Silva,
Bazanella, and Campestrini (2019) introduce a method for the

selection of the reference model, which allows for more freedom
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n the choice of the controller and reference model poles. Within a
ifferent setting, namely the Loewner framework, approaches for
he automatic selection of reference models have been presented
n Kergus, Olivi, Poussot-Vassal, and Demourant (2019a, 2019b).
imilar problems could be found also in adaptive control, see,
.g., Lee, Anderson, Mareels, and Kosut (1995).
This paper presents an alternative, deterministic, gradient-

ased strategy to jointly select a reference model and a linear
ontroller from data that: (i) can deal with non-minimum phase
plants, without requiring any prior information or choice of the
reference model parameters, (ii) accounts for both the desired
closed-loop performance and the capability of the linear con-
troller to achieve it, and (iii) is able to handle constraints that
shape the desired closed-loop behavior.

The paper is organized as follows. We formally introduce the
setting in Section 2 , while Sections 3–4 present possible design
choices to shape the cost and the constraints characterizing the
tuning problem. The proposed strategy is presented in Section 5,
while its performance on three benchmark simulation examples
is discussed in Section 7. The paper is ended by some concluding
remarks.

2. Problem statement

Consider a single-input single-output (SISO), linear time invari-
ant (LTI) discrete-time dynamical system P , whose behavior is
governed by a set of unknown linear difference equations. Let
uk ∈ R be the input , possibly corrupted by an additive zero-
mean white noise, fed to the plant at time k∈N and yk ∈R be the
orresponding noisy output, namely

k = yok + vk, (1)

where vk ∈ R is a zero-mean additive white noise.
Assume a dataset DN = {uk, yk}Nk=1 of input/output samples

as been collected. We want to design a controller for P to attain
a target stable closed-loop behavior described by the following
LTI reference model

MθM : ỹk =
naM∑
i=1

aMi ỹk−i +

nbM∑
j=1

bMj rk−j, (2a)

where ỹk is the desired response to a user-defined reference rk,
for k ∈ N. The reference model is thus characterized by the
parameter vector

θM =

[
aM1 aM2 · · · aMnaM bM1 · · · bMnbM

]′

∈ RnM , (2b)

of fixed dimension nM = naM + nbM . To attain such a target be-
havior MθM , we exploit the fixed-order, dynamic, error-feedback
controller CθC :

CθC : uk =

naC∑
i=1

aCi uk−i +

nbC∑
j=0

bCj ek−j, (3a)

where ek = rk − yk is the tracking error, with ek ∈ R, and

θC =

[
aC1 · · · aCnaC bC0 bC1 · · · bnbC

]′

∈ RnC , (3b)

is the vector of parameters characterizing CθC , naC , nbC are fixed a
priori and nC = naC + nbC + 1.

Many techniques exist to synthesize CθC given the reference
model MθM . Choosing MθM , however, is usually far from trivial,
especially when little to no prior knowledge on P is available.
More importantly, whether MθM can be attained when closing
the loop on P with CθC is typically unpredictable. To address this
issue, we propose to tune M and C simultaneously, treating
θM θC s

2

both θC and θM as degrees of freedom. The goal is to find a trade-
off between two competing objectives: (i) MθM must reflect a
satisfactory closed-loop tracking response to an extensive range
of set-points, and (ii) CθC must be able to make the closed-loop
system behave like θM . We also seek to satisfy a set of constraints
on the desired response to user-defined references.

We formalize the above objectives and constraints in the
following optimization problem

min
θM ,θC

ℓfit (θC , θM ) + γ ℓperf (θM )

s.t. g(θM ) ≤ 0η,
(4)

where ℓperf : RnM → R and ℓfit : RnC → R penalize, respectively,
the performance of the reference model and the capability of
the associated data-driven controller CθC to realize the target
behavior, γ > 0 is a tunable relative importance weight, and
g : RnM → Rη , η ≥ 0, is exploited to enforce user-defined
closed-loop response specifications.

3. Characterization of the reference model

To formulate ℓperf (θM ), we quantify the closed-loop tracking
performance over a simulation window of ν ∈N steps, with ν ≥ 1.
Let

R̄ν =
[
r̄0 r̄1 · · · r̄ν

]′
∈ Rν, (5a)

Ỹν(θM ) =
[
ỹ0(θM ) ỹ1(θM ) · · · ỹν(θM )

]′
∈ Rν. (5b)

tack some prefixed reference values1, and the corresponding
esired outputs according to (2a) respectively. We set

perf (θM ) =
1
2ν

∥Ỹν(θM ) − R̄ν∥
2
2. (6)

Clearly ℓperf (θM ) is heavily influenced by the chosen reference
sequence R̄ν , which should be sufficiently varied to provide an
extensive overview of the reference-model performance. Possible
choices in this direction are pseudo-random binary Refs. Selvi
et al. (2018) and sine-sweep set points. Based on the set points of
interest, the constraint in (4) is shaped by the desired closed-loop
behavior. As an example, the desired response to unit steps can
be constrained by setting η = ν and imposing g(θM ) in (4) to
satisfy the following:

gi(θM )=
{
ỹi(θM )−

(
1+S

)
, if i∈{0,1, . . . , κs},

|ỹi(θM )−1|−δ, if i∈{κs+1, . . . , ν},
(7)

where S ∈ [0, 1] is the upper bound on admissible overshoots
and δ the maximum acceptable tracking error after κs settling
amples, with κs = ts/Ts, where ts [s] is the chosen settling time
nd Ts [s] is the sampling time of the system. Defining g(θM )
s in (7) bounds the steady-state tracking error, while imposing
he settling time of the desired closed-loop step response. At the
ame time, it (implicitly) enforces a constraint on the DC gain of
he reference model and discourages closed-loop instability. In
ddition, we may want to explicitly match a desired closed-loop
C gain G∞, e.g., G∞ = 1, which is easily accomplished by adding
n (4) the linear equality constraint

∞

(
1 −

naM∑
i=1

aMi

)
=

nbM∑
j=1

bMj . (8)

1 We stress that r̄ might not be the reference r that the user aims at tracking,
ince it is exploited for learning purposes only.
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Fig. 1. Model-matching scheme, with the mismatch between the desired and
ttained closed-loop behavior εk(θM ) = yk − ỹk(θM ).

. Assessing the model-matching quality

It is well-known that poor performance (up to closed-loop
nstability) are likely to result from the choice of excessively
emanding reference models (Nijmeijer & Savaresi, 1998). At the
ame time, tuning the reference model should not require closed-
oop experiments, not to hamper the safety of P . We therefore
eed to define ℓfit (θC , θM ) in (4) to penalize the mismatch be-
ween the desired and attained closed-loop behavior, without
ctually closing the loop during the tuning phase.
To this end, we rely on the matching scheme in Fig. 1, accord-

ng to which the larger the error εk(θM ) = yk − ỹk(θM ) is , the
ess the desired behavior is attained in closed-loop. In order to
se the available data DN to judge model matching, we select the
ictitious reference R⋆

N (θM ) = {r⋆
k (θM )}Nk=1 as a function of θM by

olving the smooth problem
⋆
N (θM ) = argmin

RN

ℓM (RN (θM ))

s.t. ỹk(θM )=XkθM , k=nM+1, . . . ,N,
(9)

where Xk =
[
yk−1 · · · yk−naM

rk−1 · · · rk−nbM

]
, the loss is

ℓM (RN (θM ))=
1
2

N∑
k=nM+1

[
∥yk− ỹk(θM )∥2

2+
ρR

2
∥∆rk∥2

2

]
, (10)

here ∆rk = rk − rk−1, and ρR > 0 is a tunable regularization
arameter, penalizing changes in the virtual reference. Since the
atching performance depends on the designed controller, the

ictitious (or virtual) reference sequence R⋆
N (θM ) is then used to

esign (3a). Moreover, as problem (9) depends on the measured
utputs in DN , the controller has to be designed so that the inputs
ed to P fit the sequence {uk}

N
k=1 in DN . To attain a tight match

etween the achieved and desired behaviors, we thus choose the
ontroller by solving
⋆
c (R

⋆
N (θM )) = argminθC

ℓfit (θc, θM )
s.t. ûk(θC )=Xk(R⋆

N (θM ))θC , k∈Ic
N ,

(11a)

here Ic
N = {nc+1, . . . ,N}, the cost function is

fit (θc, θM )=
1
2

N∑
k=nC+1

[
∥uk−ûk(θC )∥2

2+
ρ

2
∥θC∥

2
2

]
, (11b)

here ρ > 0 is a tunable regularization parameter, and

k(R⋆
N (θM ))=

[
uk−1 · · · uk−naC

e⋆
k(θM ) · · · e⋆

k−nbC
(θM )

]
,

is the (fictitious) controller regressor constructed based on the
outcome of (9) , with e⋆

k(θM ) = r⋆
k (θM ) − yk being the ficti-

ious tracking error at k. Note that, R⋆
N (θM ) corresponds to the

et-point obtained by directly inverting the reference model as
n Formentin et al. (2016), whenever ρR = 0 and this inverse
xists and it is well defined.

emark 1 (Constraining the Structure of the Controller). The prob-
lem in (4) can be easily extended to include additional constraints
3

Algorithm 1 Sensitivity-based tuning procedure

Input: dataset DN ; initial candidate reference model θ
(0)
M ,

ictitious set point (Rv
N )

(0) and controller θ
(0)
C .

1. for i = 0, 1, . . . do

1.1 compute R⋆
N (θ

(i)
M ) as in (9);

1.2 compute ∂θMR⋆
N (θ

(i)
M ) as in Section 5.1;

1.3 find θ ⋆
C (R

⋆
N (θ

(i)
M )) by solving (11);

1.4 compute ℓfit (θ ⋆
C (R

⋆
N (θ

(i)
M ), θ (i)

M );
1.5 compute ∂θM ℓfit (θ ⋆

C (R
⋆
N (θ

(i)
M ))) as in Section 5.1;

1.6 compute ∂θM ℓperf (θ
(i)
M ) and ∂θM g(θ (i)

M );
1.7 find a new candidate θ

(i+1)
M through any gradient-

based approach;

2. until termination;

Output: reference model θ ⋆
M , associated fictitious set point R⋆

N
and controller θ ⋆

C .

on the controller structure. As in standard VRFT, all the poles of
CθC can be constrained by setting

[θC ]i = [θ̄C ]i, i = 1, . . . , naC ,

where θ̄C ∈ RnaC is a vector stacking the fixed coefficients of the
controller. In addition, an integrator can be incorporated into the
controller by modifying its dynamics as:

uk − uk−1  
∆uk

=

naC −1∑
i=1

aCi ∆uk−i +

nbC∑
j=0

bCj ek−j, (12)

with nC =naC +nbC . The loss ℓfit (θC , θM ) should thus be recast as:

ℓfit (θc, θM )=
1
2

N∑
k=nC+1

[
∥∆uk−∆̂uk(θC )∥2

2+
ρ

2
∥θC∥

2
2

]
, (13)

with

∆̂uk(θC ) = Xk(R⋆
N (θM ))θC , (14)

and Xk(R⋆
N (θM )) being the following vector:[

∆uk−1 · · · ∆uk−naC −1 e⋆
k(θM ) · · · e⋆

k−nbC
(θM )

]
.

Alternatively, by considering (3), one can impose the following
equality in the back-shift operator q−1:

(1 − q−1)

⎛⎝1 −

naC −1∑
i=1

aCi q
−i

⎞⎠ = 1 −

naC∑
i=1

[θC ]iq−i,

by enforcing

1 −

naC∑
i=1

[θC ]i = 0. (15)

5. Sensitivity-based reference model tuning

Due to the constraints in (9), (11), the solution of problem (4)
under the losses ℓperf (θM ) in (6) and ℓfit (θc,R⋆

N (θM )) in (11) en-
tails tackling a multilevel optimization problem. Specifically, one
needs to consider three hierarchically nested optimization lay-
ers: (i) the inner one, devoted to the inversion of the reference
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odel and, thus, the computation of the virtual reference se-
uence R⋆

N according to (9), (ii) the central layer, dedicated to
he controller tuning phase via the solution of (11), and lastly (iii)
he third layer, which is devoted to reference model tuning. In
his work, we propose to handle this three layered problem via
erivative based-approaches, by heavily relying on the sensitivity
heorem (Luenberger & Ye, 2016). Hence, the denomination of the
pproach as ‘‘sensitivity-based’’.
Starting from an initial candidate θ

(0)
M , the proposed sensitivity-

ased strategy is summarized in Algorithm 1. At the ith iteration,
e find the fictitious reference by solving (9) for the current
andidate θM = θ

(i)
M (Step 1.1). We then compute the associated

ensitivity

θMR⋆
N (θ

(i)
M ) =

∂R⋆
N (θM )
∂θM

⏐⏐⏐⏐
θM=θ

(i)
M

nd design the controller θ ⋆
c (R

⋆
N (θ

(i)
M )) associated to θ

(i)
M as in (11)

(Steps 1.2–1.3). Based on the designed controller, we compute
ℓfit (θ ⋆

C (R
⋆
N (θ

(i)
M )), θ (i)

M ) (see Step 1.4) and, then, at Step 1.5, we rely
on the sensitivity theorem (Luenberger & Ye, 2016, Chapter 11.7)
and on the previously computed sensitivity to retrieve

∂θM ℓfit (θ ⋆
C (R

⋆
N (θ

(i)
M ))) =

∂ℓfit (θc, θM )
∂θM

⏐⏐⏐⏐ θC=θ⋆
C (R⋆

N (θ (i)M ))

θM=θ
(i)
M

. (16)

e then compute ℓperf (θ
(i)
M ) and its derivative

∂θM ℓperf (θ
(i)
M ) =

∂ℓperf (θM )
∂θM

⏐⏐⏐⏐
θM=θ

(i)
M

,

long with g(θ (i)
M ) and

θM g(θ (i)
M ) =

∂g(θM )
∂θM

⏐⏐⏐⏐
θM=θ

(i)
M

,

t Step 1.6. Once the cost function, the constraints and their
erivatives are constructed as previously outlined, the next can-
idate model θ

(i+1)
M can be obtained via any gradient-based opti-

ization strategy (see Step 1.7).
We point out that the necessary conditions to apply the sen-

itivity theorem in computing (16) are rather mild, as the former
equires the satisfaction of second-order optimality conditions in
he neighborhood of θ ⋆

C (R
⋆
N (θ

(i)
M )) only. Moreover, as assembling

the cost and computing its derivative require the solution of
two successive and tightly related optimization problems (one to
find the fictitious reference and the other one to find the asso-
ciated controller), we remark that the use of a solver supporting
warm-starting is advised.

Remark 2 (On the Quality Of θC ). For a fixed reference model, the
design problem in (11) knowingly results in a biased controller
(see Lecchini, Campi, and Savaresi (2001)). To overcome this
problem, we could resort to an instrumental variable scheme, as
conventionally done in model-reference direct control design (see
e.g., Lecchini et al. (2001)). This can be done by setting ρ = 0
in (11), introducing the instrument and filtering the inputs and
virtual tracking errors as discussed in Formentin, Campi, Carè,
and Savaresi (2019), since the problem solved in (11) coincides
with the one tackled with the VRFT approach. At the same time,
following this procedure to replace the cost in (11) increases the
complexity of the sensitivity-based procedure, as the instruments
depend on the chosen reference model and, thus, they have to
be updated at each iteration of Algorithm 1. Not to increase the
complexity of the sensitivity-based procedure, while designing an
unbiased controller, θC can be refined once θM has been fixed, by
employing an instrumental variable scheme.
4

5.1. Derivatives computation

Suppose that the fictitious reference R⋆
N (θ

(i)
M ) is retrieved by

solving (9) via an algorithm based on fixed-point iterations, such
as gradient descent, until convergence. Let z(RN (θM )) be a given
unction of RN (θM ), that characterizes the chosen fixed-point
teration. Then, the following holds:

∂R⋆
N (θM )
∂θM

=

(
I−

∂z(RN (θM ))
∂RN (θM )

⏐⏐⏐⏐
RN=R⋆

N

)−1
∂z(R⋆

N (θM ))
∂θM

, (17)

s a consequence of the results presented in Jeon, Lee, and Choi
2020), with I being an identity matrix of appropriate dimensions.

Example 1. Assume problem (9) is solved by gradient descent,
hence z(RN (θM )) is given by:

z(RN (θM )) = RN (θM ) − α∇RN (θM )ℓM (RN (θM )),

where α is the step size of the gradient descent updates, and
∇RN (θM )ℓM (RN (θM )) is the gradient of ℓM (RN (θM )) with respect to

N (θM ). According to (17), it follows that

∂R⋆
N (θM )
∂θM

=−
(
HθM

)−1
∇RN ,θM ℓM (R⋆

N (θM )),

where HθM = ∇
2
RN (θM )ℓM (R⋆

N (θM )) is the Hessian of the cost in
(9) when considering the fictitious reference R⋆

N (θM ), computed
at the fixed point, and

∇RN ,θM ℓM (R⋆
N (θM )) =

∂2ℓM (RN (θM ))
∂RN (θM )∂θM

⏐⏐⏐⏐
RN=R⋆

N

.

To compute the sensitivity in (16) we can instead rely on the
ollowing decomposition:

∂ℓfit (θC , θM )
∂θM

=
∂ℓfit (θC , θM )
∂R⋆

N (θM )
∂R⋆

N (θM )
∂θM

, (18)

hich stems from the dependence of the design loss in (11) on
⋆
N (θM ). While the second partial derivative on the right-hand-
ide of (18) can be readily obtained from (17), we have still to
etrieve ∂ℓfit (θC ,θM )

∂R⋆
N (θM ) . As previously mentioned, the latter can be

computed by relying on the sensitivity theorem (Luenberger &
Ye, 2016, Chapter 11.7).

5.2. Dealing with non-minimum phase systems

When the plant P is non-minimum phase, additional care
must be taken in tuning the reference model. Indeed, the con-
troller in (3a) should not cancel out the unstable (and unknown)
zeros of P , as they must be shared by the plant and the reference
model. If additional insights on P or non-minimum phase behav-
iors can be detected from the available data DN , constraints can
be readily incorporated within the general tuning problem (4),
so as to enforce the presence of unstable zeros in the reference
model. Otherwise, we can introduce additional constraints in (4)
to avoid critical cancellations between the controller and the
unknown plant. In turn, this operation is expected to implicitly
enforce matching between the plant and reference model zeros.

Consider the following polynomial in the back-shift operator
q−1:

D(q−1, θC ) = 1 −

naC∑
i=1

[θC ]iq−i, (19a)

that characterizes the denominator of the controller to be de-
signed according to (3a). Let us now decompose it into a product
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o
f monomials and binomials in q−1 as follows:

D(q−1, θC )=
µ∏

m=1

(1+ τmq−1)
β∏

h=1

(1+ ϕhq−1
+ φhq−2), (19b)

where τm ∈ R, for all m = 1, . . . , µ and ϕh, φh ∈ R, for
h = 1, . . . , β , with µ + 2β = naC . Thanks to the simplicity of
the reformulation in (19b), we can apply the Jury criterion (Ogata,
1994) to enforce the stability of the controller through the linear
inequality constraints

|τm| < 1, m = 1, . . . , µ, (20a)

1 + ϕh + φh > 0, h = 1, . . . , β, (20b)

1 − ϕh + φh > 0, h = 1, . . . , β, (20c)

|φh| < 1, h = 1, . . . , β. (20d)

While the decomposition in (19b) simplifies the enforcement
of controller stability, it introduces a set of nonlinearities with
respect to the controller parameters. A solution to preserve the
linearity in the controller structure, while enforcing stability , is
to add the nonlinear equality constraint

µ∏
m=1

(1+τmq−1)
β∏

h=1

(1+ϕhq−1
+φhq−2)=1−

naC∑
i=1

[θC ]iq−i, (21)

that imposes the correspondence between the two decomposi-
tions of D(q−1, θC ), respectively given by (19a) and (19b). Overall,
to enforce the controller stability we thus have to impose the
2µ + 4β linear inequalities in (19) and the nonlinear equality in
(21). Note that the nonlinear constraint in (21) can be handled
efficiently by selecting a feasible initial guess of the auxiliary
parameters in (19b).

Remark 3. When some poles of the controller are fixed before-
hand, the constraints in (20) can be imposed on the subset of free
poles, by decomposing only the polynomial depending on them.
Note that, with the parameterization with integral action in (12),
one can decompose the entire denominator of the controller. In-
deed, the pole on the unit circle is “hidden” by resorting to input
variations, and it will only be made explicit once the controller
will have to be deployed.

6. Practical hints for numerical complexity reduction

In this section, we provide a set of practical hints to reduce
the computational complexity of the tuning procedure and to
enhance its effectiveness.

6.1. Window-based computation of the fictitious reference

Throughout the tuning procedure, several instances of the op-
timization problem in (9) must be solved. This operation might be
computationally intense, especially when the fictitious reference
must be retrieved over a large horizon N at once. To reduce
computations, we can work sequentially on short windows of
length w ∈ N, with w ≪ N , by defining the window-based
predictor

Ỹk,w(θM )=Fw(θM )Rk,w(θM )+Gw(θM )xMk (θM ), (22)

where

Rk,w(θM ) =
[
rk(θM ) rk+1(θM ) · · · rk+w(θM )

]′
,

Ỹk,w(θM ) =
[
ỹk(θM ) ỹk+1(θM ) · · · ỹk+w(θM )

]′
,

where Fw : RnM→ Rw×w and Gw : RnM→ Rw×naM can be straight-
forwardly obtained from the observable canonical realization of
5

(2a), and k > 0 is a counter of past windows. The initial state
xMk : RnM → RnaM is instead equal to the last state obtained over
the previous window. By exploiting this predictor, the fictitious
reference can be retrieved by solving

min
{rvκ }

k+w
κ=k

1
2
∥Yk,w − Ỹk,w(θM )∥2

2+

k+w∑
κ=k

ρR

2
∥rκ −rκ−1∥

2
2

s.t. Ỹk,w(θM )=Fw(θM )Rk,w(θM )+Gw(θM )xMk (θM ),

in a receding horizon fashion, with

Yk,w =
[
yk yk+1 · · · yk+w

]′
.

To avoid spurious results due to the limited width w, it is advis-
able to overlap consecutive windows. The amount of overlapping
is dictated by an additional parameter ω ≪ w.

6.2. Enhanced tuning by truncated propagation through time

When used to assess the performance of the actual closed-loop
behavior, the cost and constraints in (11) might lead to a con-
troller that, albeit matching the desired behavior over short hori-
zons, does not provide satisfactory performance in the long run.
A possible strategy to keep the complexity of the tuning scheme
low, while inheriting some desirable features of simulation-based
strategies, is to propagate input predictions for a limited number
ξ of steps, with ξ ≪ N . In the literature, such an idea usually
goes by the name of truncated back-propagation through time
(BPTT) (Werbos et al., 1990). To adopt such a solution, one needs
to change the constraint in the control design problem (11) and
have it replaced by

ûk=

{
Xk(θM )θC , if mod(k, ξ )=0,
X̂k(θM )θC , otherwise,

(23)

Xk(θM ) =

[
uk−1 · · · uk−naC

e⋆
k(θM ) · · · e⋆

k−nbC
(θM )

]
,

X̂k(θM ) =

[
ûk−1 · · · ûk−naC

e⋆
k(θM ) · · · e⋆

k−nbC
(θM )

]
,

wheremod(k, ξ ) = k−ξ⌊
k
ξ
⌋ and the dependence of ûk on θC is not

explicitly shown, to simplify the notation. Note that, the number
of steps ξ becomes an additional tuning parameter to be selected,
which should be chosen to compromise between the complexity
of the design problem and the potential degradation in the final
closed-loop performance.

7. Numerical examples

We assess the performance of the proposed model reference
tuning strategy in three numerical examples involving a mini-
mum phase system, a non-minimum phase system, and the two-
cart system considered in Carè, Torricelli, Campi, and Savaresi
(2019). The sensitivity-based approach discussed in Section 5
has been implemented by using Casadi (Andersson, Gillis, Horn,
Rawlings, & Diehl, 2019), IPOPT (Biegler & Zavala, 2009), and the
MATLAB Optimization Toolbox (The MathWorks, Inc., 2020). To
avoid the selection of unstable reference models, the cost ℓperf
has been augmented with the indicator function IM (θM ) of the
set of stable reference models2.

2 This function returns ∞ when unstable reference models are considered.
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Table 1
High-order benchmarks: hyper-parameters of the procedure.
naM , nbM naC , nbC γ ρR ρ w ω ξ

4 3 0.1 10−4 10−4 200 30 50

7.1. Minimum-phase plant

Consider the system characterized by the transfer function

1(q) =
q3 − 0.01534q2 − 0.1239q + 0.005819

q4 + 1.452q3 + 0.515q2 − 0.04788q − 0.02777
,

hich has all stable poles and zeros. We want to tune a 4th order
eference model, such that its step response has an overshoot S̄%
f at most 7% and the tracking error is upper-bounded by δ =

.01 after at most 12 samples. Concurrently, we want to design
3rd order controller featuring an integrator, that induces such
closed-loop behavior. As such, (11) is reformulated according

o Remark 1 and, in particular, using the parameterization in
12). The parameters used to compute the reference model are
eported in Table 1. A set of 1000 data points is collected by
xciting the plant with a random white signal, drawn from a
niform distribution U(0, 1), and superimposing the output with
Gaussian white noise with zero mean and standard deviation
= 0.3,3 . In tuning the reference model, we further impose a

nitary DC gain for the desired closed-loop system, i.e., G∞ = 1
see (8)). As shown in Fig. 2 by initializing θM with a zero-mean
aussian distributed random vector with standard deviation 0.05
atisfying (8), the overall loss
(i)

=ℓfit

(
θ
(i)
C , θ

(i)
M

)
+ γ ℓperf

(
θ
(i)
M

)
, (24)

ssumes an almost stationary value after about i = 40 iterations.
The stopping criteria leading to the termination4 of Algorithm
1 are instead met after 140 iterations. It is worth pointing out
that the final outcome of Algorithm 1 depends on the selected
initial condition, whose choice is particularly critical when no
constraints other than (8) are imposed on θM . A possible solu-
ion to overcome this problem would be to test several initial
onditions and pick the one that results in the best performance
e.g., the least cost), which we aim at investigating in the future.

The resulting reference model and the controller are

1(q) =
0.662q3 − 0.3314q2 − 0.2641q + 0.5245

q4 − 0.8564q3 − 0.1826q2 + 0.902q − 0.2721
,

C1(q) =
0.6051q3 + 0.8248q2 + 0.274q

q3 − 1.074q2 + 0.01669q + 0.05775
,

where C1(q) is obtained by using an instrumental variable
scheme,5 after the iteration of Algorithm 1 according to Remark 2.
As reported in Fig. 3, the step response of the chosen reference
model satisfies all the specifications. Meanwhile, the attained
closed-loop output resembles the desired behavior, thus also
satisfying the constraints imposed on the desired closed-loop
behavior.

7.2. Nonminimum-phase plant

Consider the plant described by the transfer function

P2(q) =
q3 − 0.801q2 − 2.398q

q4+0.1184q3−0.1259q2−0.01075q+0.0007783
,

3 This corresponds to a Signal-to-Noise Ratio on the output of approximately
0.6 dB.
4 The termination criteria are the conventional ones of fmincon in The
athWorks, Inc. (2020), with both function and step tolerances fixed at 10−6 .
5 The instrument corresponds to the regressor Xk constructed with a new
ataset, by exploiting the chosen reference model.
6

Fig. 2. Fourth-order minimum-phase plant: cost function J (i) in (24) vs iterations
of Algorithm 1 during learning.

Fig. 3. Fourth-order minimum-phase plant: noiseless closed-loop step response
(black) vs desired output (dashed red). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

that has two zeros outside the unit circle, namely q1 = −1.199
and q2 = 2. We aim at designing a 3rd-order controller featuring
an integrator and a 4th order reference model, the latter char-
acterized by a step response with maximum overshoot S̄% = 7%
nd maximum tracking error of δ = 0.01 for κs ≤ 12 samples,
hile using the parameters reported in Table 1. The dataset used

or learning comprises 1000 samples, collected by feeding the
lant with a random input in U(0, 1), with the outputs corrupted
y noise with zero mean standard deviation σ = 0.125,6. As
efore, the linear constraint G∞ = 1 is imposed to enforce
erfect tracking of step-like set points by the reference model.
ccordingly, an integrator is enforced into the controller, leading
s to modify the controller parameterization loss in (11) as in
emark 1 (see (12) and (13)). As shown in Fig. 4 Algorithm 1
erminates after about 104 iterations, (i.e., after about 50 seconds)
hile the the overall loss (24) becomes stationary after about 50

terations.
The behavior of the automatically selected reference model

nd the attained output are compared in Fig. 5. Clearly, the
hosen reference model allows us to design a stabilizing con-
roller, preventing zero-pole cancellation between the plant and
he controller. Indeed, the selected reference model turns out to
e:

2(q) =
−0.08465q3 − 0.08806q2 + 0.3471q + 0.396
q4 + 0.3343q3 − 0.8347q2 − 0.2146q + 0.2854

,

which features a zero in q′

1 ≈ −1.19 and to other ones in q′

2 ≈

.06 and q′

3 ≈ −1.90. Therefore, the proposed strategy allows us

6 This corresponds to a Signal-to-Noise Ratio of 26.4 dB.
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Fig. 4. Fourth-order nonminimum-phase plant: cost function J (i) in (24) vs
terations of Algorithm 1 during learning.

Fig. 5. Fourth-order nonminimum-phase plant: actual noiseless closed-loop step
response (black) vs desired output (dashed red). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 6. Schematic representation of the two-cart system (Carè et al., 2019).

Table 2
Parameters of the two-cart system (Carè et al., 2019).
m1 [kg] m2 [kg] c1 [N/m2] c2 [N/m2] k1 [N/m] k2 [N/m]

1 0.5 0.2 0.5 1 0.5

to enforce the unstable zeros of P2 into the reference model, with
he controller refined with instrumental variables being

2(q) =
−0.088q3 − 0.1348q2 + 0.05459q

q3 − 0.02828q2 − 0.7526q − 0.2191
.

We stress that no prior information on the unstable zeros has been
exploited.

7.3. Two-cart system

We consider the two-cart system depicted in Fig. 6, whose
parameters are reported in Table 2 and are regarded as totally
7

Table 3
Two-carts example: hyper-parameters of the tuning procedure.
naM nbM naC nbC γ ρR ρ w ω ξ

1 1 2 2 0.1 10 0.1 50 20 200

unknown for control design. A normally distributed input force uk
[N] is applied to the carts to collect noisy measures of the position
yk [m] of the second cart m2 at a sampling rate of fs = 10 [s−1].

e gather a dataset of length T = 5000. The measured output is
orrupted by an additive, zero-mean white noise vk with standard
eviation equal to 0.16 as in Carè et al. (2019). This dataset is used
o tune a first-order reference model, namely

(q) =
1 − θM

q − θM
, (25)

y imposing that

.6 ≊ e−
4.6Ts
ts− ≤ θM ≤ e−

4.6Ts
ts+ ≊ 0.98, (26)

o enforce a closed-loop settling time within [1, 25] [s] in the
step response. The proposed tuning algorithm is run by set-
ting its hyper-parameters as in Table 3, with ν = 4960 in
6) and input/output data filtered by using the same low-pass
ilter exploited in Carè et al. (2019) to enforce matching at fre-
uencies lower than 2 [rad/s]. Moreover, we initially consider
(0)
M =

[
0.79 0.21

] ′
, and we stop searching for the reference

odel after 100 iterations have been performed, or when the
ost decreases less than 10−6 within two successive iterations.
According to what is done in Carè et al. (2019), we aim at match-
ing the behavior dictated by the auto-tuned reference model via
a discrete-time PID controller CθC , namely

C(θC , q)=[θC ]1+[θC ]2
Ts
2

1 + q−1

1 − q−1 +[θC ]3
2
Ts

1 − q−1

3 − q−1 , (27)

here [θC ]1, [θC ]2 and [θC ]3 are the proportional, integral and
erivative gains of the controller, respectively. After the selection
f the reference model through Algorithm 1, the controller is
ubsequently refined via the VRFT toolbox (Carè et al., 2019).
The noiseless desired response obtained by considering the

ame square wave reference used in Carè et al. (2019) is com-
ared to the attained closed-loop one in Fig. 7 over a validation
est of length 250 [s]. Clearly, the desired behavior is overall
atched, with a short transient in which the actual closed-loop

esponse oscillates. As it can be noticed in Fig. 8, also fixing the
eference model a priori as in Carè et al. (2019) leads to some
scillations at set-point changes, along with a significant deterio-
ation of tracking performance due to the longer settling time.
his result highlights that the proposed auto-tuning procedure
llows one to design data-driven controllers resulting in im-
roved closed-loop tracking performance. The difference between
he closed-loops obtained by fixing or auto-tuning the reference
odel can be further observed by the comparison of their mag-
itude Bode plots in Fig. 9. Clearly both strategies lead to a
eduction in the magnitude peak characterizing the open-loop
ystem (see Fig. 9), with the auto-tuning procedure guarantee-
ng a broader bandwidth. The CPU time required to assess the
ost, constraints and derivatives takes 30 s, approximately, while
lgorithm 1 converges in 15 iterations (as shown in Fig. 10).

.3.1. Comparative analysis
By exploiting the same parameters in Table 3, we compare the

esults obtained via our derivative-based approach and the ones
ttained by exploiting two global optimization methods to solve
roblem (4), namely Particle Swarm Optimization (The Math-
orks, Inc., 2020) (PSO) and GLIS (Bemporad, 2020). Specifically,
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Fig. 7. Two-carts example: desired (blue) vs attained (red) response with the
uto-tuned reference model. (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

Fig. 8. Two-carts example: attained response with the auto-tuned (red) and
he fixed (Carè et al., 2019) (blue) reference model. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

Fig. 9. Two-cart example: Magnitude Bode plots.
F

8

Fig. 10. Two-cart example: cost function J (i) in (24) vs iterations of Algorithm
1 during learning..

the PSO algorithm is run up to a maximum of 100 iterations,
while the GLIS routine has been carried out by imposing a max-
imum of 100 function evaluations and by using Gaussian radial
basis functions to build the surrogate cost. All the approaches lead
to the selection of the same reference model, while requiring 15,
about 300, and 100 function evaluations, respectively. This result
highlights that the proposed method can be competitive with re-
spect to derivative-free optimization methods when auto-tuning
a reference model based on the same objective and constraints,
while requiring a lower number of function evaluations.

To provide additional insights on the proposed sensitivity-
based method, we compare the performance attained with auto-
tuned reference models obtained by either applying our approach
or the performance-oriented ones introduced in Selvi et al. (2018)
and Breschi and Formentin (2021). Note that, the PSO-based
method proposed in Selvi et al. (2018) requires the definition
of a set-point r̃ to weight the desired closed-loop performance
within the training phase, which is instead not required by the BO
approach presented in Breschi and Formentin (2021). To assess
the tracking performance we use the following indicators

RMSEy =

√ 1
Tv

Tv∑
k=1

(yk − rk)2, [m] (28a)

RMSEd =

√ 1
Tv

Tv∑
k=1

(yk − ỹk)2, [m] (28b)

hat are evaluated in closed-loop by considering the reference
ignal in Fig. 7–8, so that Tv = 2500. Table 4 reports the values
f these indexes for the different approaches7.
Clearly, the reference model tuned with the proposed strat-

gy leads to better performance both in terms of target signal
nd behavior tracking with respect to the one proposed in Selvi
t al. (2018). At the same time, it leads to the choice of a de-
ired response as attainable as the one retrieved with the ap-
roach presented in Breschi and Formentin (2021), as proven
y the values of the RMSEd index and as expected given the
hosen objective function. The results in Table 4 thus prove
hat the proposed approach can be competitive with respect to
lternative strategies in terms of tracking, while resulting in a
rudent choice of the reference model. This last feature might

7 When running the methods described in Selvi et al. (2018) and Breschi and
ormentin (2021), W = W = 1 and W = 10.
y ∆u u
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Table 4
Two-cart example: sensitivity-based vs methods in Breschi and Formentin (2021)
and Selvi et al. (2018).

Sensitivity-
based

BO-based (Breschi &
Formentin, 2021)

PSO-based (Selvi
et al., 2018)

θM 0.6831 0.6004 0.8254

θC

[
0.2300
0.3000
0.5918

] [
0.2450
0.4000
0.7432

] [
0.1690
0.1400
0.3257

]
RMSEy [m] 0.070 0.065 0.084

RMSEd [m] 0.038 0.037 0.060

Table 5
Principal hyper-parameters of the sensitivity-based method.
Parameter name Brief description

γ Relative importance weight in (4)
ρR Regularization weight in (10)
ρ Regularization weight in (11b)
w Length of the window in (22)
ω Overlapping between windows in (22)
ξ Steps of BPTT in (23)

entail that the proposed method tends to avoid excessively de-
manding reference models , which is desirable not to jeopardize
the control design phase. Note that, when tuning a continuous-
time PID with the Ziegler–Nichols method, we achieve RMSEy =

.197. Therefore, this classical approach is outperformed by all
he data-driven approaches with auto-tuning considered in this
omparative analysis.

.3.2. Sensitivity analysis
The proposed approach requires the user to select a set of

yper-parameters, summarized in Table 5. We explore the sen-
itivity of the resulting closed-loop performance with respect
o some of them, by alternatively fixing all their values as in
able 3 but one. The attained closed-loop performance is assessed
ased on the indicators in (28). Fig. 11(a)–11(b) show that the
esulting closed-loop performance heavily depends on the choice
f the regularization parameters characterizing the costs in (10)
nd (11b). In particular, an excessive weight on the variations
9

of the virtual reference deteriorates tracking performance. The
same consideration holds for the regularization parameters ρ. At
the same time, ρR should not be excessively small. It is worth
to point out that, even if the macro-effect shown in Fig. 11(a)–
11(b) are likely to be generalizable to other applications, one
should tune ρR and ρ every time a new application is considered,
e.g., by customizing the open-loop calibration approach proposed
in Breschi and Formentin (2020a, Section 6). Concerning the
weight γ , Fig. 11(c) clearly indicates that a rather broad range of
values of this parameter allows us to retrieve the same reference
model. Nonetheless, prioritizing the performance of the reference
model over fitting in the design of the data-driven controller (i.e.,
choosing a high γ ), leads to a degradation of tracking perfor-
mance. Given the role played by γ , it is worth pointing out that
its value is likely to be application-dependent and, thus, results
might be more sensitive to its choice when other systems and
closed-loop requirements are considered. The results reported in
Fig. 11(d) instead show that performance is generally insensi-
tive to ξ , in turn indicating that the inputs reconstructed with
the controller match quite tightly the actual ones. Note that, in
general, the performance might be more sensitive to the choice
of ξ , especially when ξ is high. One could thus progressively
increase its value, until the matching between the data and the
input reconstructed with the learned controller becomes “inaccu-
rate” (according to a user-defined metric, e.g., the one considered
in Breschi and Formentin (2020a, Section 6)).

8. Conclusions

In this paper, we have proposed a derivative-based method for
feedback control design from input/output data without the need
of identifying a model of the process. The approach is flexible,
in that it allows imposing constraints on the shape of the de-
sired closed-loop response, and can handle non-minimum phase
plants. The presented simulation results have illustrated the ef-
fectiveness of the approach in a variety of scenarios, especially as
compared to state of the art methods.

Future research will be devoted to extend the approach to
multi-input/multi-output systems and to provide formal stability
and convergence guarantees. We will also seek to endow the
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ethod with structure selection capabilities and to pair it with
reference-based global approaches, e.g., see Zhu, Piga, and Be-
porad (2022), to auto-tune the hyper-parameters and further

efine and customize the reference model and the controller.
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