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a b s t r a c t

We propose a methodology for the identification of nonlinear state–space models from input/output
data using machine-learning techniques based on autoencoders and neural networks. Our framework
simultaneously identifies the nonlinear output and state-update maps of the model. After formulating
the approach and providing guidelines for tuning the related hyper-parameters (including the model
order), we show its capability in fitting nonlinear models on different nonlinear system identification
benchmarks. Performance is assessed in terms of open-loop prediction on test data and of controlling
the system via nonlinear model predictive control (MPC) based on the identified nonlinear state–space
model.
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1. Introduction

Nonlinear system identification has gained increasing popu-
arity in recent years (Pillonetto, Dinuzzo, Chen, Nicolao, & Ljung,
014; Schoukens & Ljung, 2019), also due to massive advances
n machine-learning methods for nonlinear function regression.
uch methods have been employed with high success for extend-
ng classical linear techniques to nonlinear systems, such as for
he estimation of neural autoregressive models with exogenous
nputs (NARX) (Schoukens & Ljung, 2019) and of reproducing
ernel Hilbert space (RKHS) models (Pillonetto et al., 2014), as
ell as for piecewise-affine regression (Breschi, Piga, & Bempo-
ad, 2016), and for developing novel approaches based on long
hort-term memory (LSTM) neural networks (Wang, 2017).
Most of the aforementioned techniques, however, identify

onlinear models in input/output form, without an explicit
efinition of a (minimal) Markovian state. On the other hand,
tate–space models are the basis for most modern control design
echniques, such as nonlinear control, model predictive control
MPC), as well as for noise filtering and smoothing, such as
xtended Kalman filtering (EKF).

✩ This paper was partially supported by the Italian Ministry of University and
Research under the PRIN’17 project ‘‘Data-driven learning of constrained control
systems’’ , contract no. 2017J89ARP. The material in this paper was partially
presented at the 57th IEEE Conference on Decision and Control, December 17–19,
2018, Miami Beach, Florida, USA. This paper was recommended for publication
in revised form by Associate Editor Gianluigi Pillonetto under the direction of
Editor Torsten Söderström.
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1.1. Machine-learning methods for the identification of state–space
models

The idea of applying machine-learning approaches to identify
state–space representations of a dynamical system from input/
output data has been widely explored in the literature. For exam-
ple, we mention here the classical dynamic mode decomposition
(DMD) and refer the reader to the review in Lu and Zavala
(2020). Learning a state–space model typically requires a nonlin-
ear transformation of a vector of past input/output samples to a
state vector. One drawback of many machine-learning methods
performing such a dimensionality reduction is that the resulting
state–space model (a.k.a. ‘‘latent representation’’) may result in
non-regular and stiff mappings, therefore creating issues when
the model is used to design a controller and/or an observer,
for instance when the linearization of the model is used. Al-
though exceptions exist (Simpson, Dervilis, & Chatzi, 2020), most
of the proposed solutions address this issue by relying on vari-
ations of two families of approaches (Wehmeyer & Noé, 2018):
(i) imposing a ‘‘regular geometry’’ on the learned latent space;
(ii) envision learning schemes in which the capability of the latent
epresentation to predict future output values is directly taken
nto account during the learning phase.

Among the first family, many works are inspired by the well
nown variational autoencoders (Kingma & Welling, 2019). Here,
he latent representation is learned so that the distribution of
he resulting states is a prescribed one, usually a Gaussian one.
ifferent types of VAE have been widely used both for system
dentification (Gedon, Wahlström, Schön, & Ljung, 2020; Kan-
ukuri, Achterhold, Möller, & Stückler, 2020; Karl, Soelch, Bayer,
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Van der Smagt, 2016; Krishnan, Shalit, & Sontag, 2015; Watter,
pringenberg, Boedecker, & Riedmiller, 2015) and in reinforce-
ent learning (Okada & Taniguchi, 2020; van Hoof, Chen, Karl,
an der Smagt, & Peters, 2016).
The contributions related to the second family of approaches

re often extensions of the DMD idea. We mention here papers
ased on the Koopman formalism (Li, Dietrich, Bollt, & Kevrekidis,
017; Ping, Yin, Li, Liu, & Yang, 2020; Xiao, Zhang, Xu, Liu, &
iu, 2020) and the contributions (Lusch, Kutz, & Brunton, 2018;
akeishi, Kawahara, & Yairi, 2017), which use autoencoders in
onjunction with the Koopman operator for learning represen-
ations of autonomous systems. Closely related to the DMD idea
s also the so-called ‘‘SINDy’’ framework (Champion, Lusch, Kutz,
Brunton, 2019). In these frameworks, the original input/output

ignals are lifted to a possibly higher-dimensional space, in which
he dynamic evolution of the system can be modeled in linear
ime-invariant (LTI) form or, more rarely, in bilinear form. A
haracteristic of the approach is that the resulting state–space
imension can be larger than that of the original vector of past
nput/output samples.

Some techniques combine methods from both families. For
nstance, in Fraccaro, Kamronn, Paquet, and Winther (2017) and
angapuram et al. (2018) recurrent neural networks are trained
o predict the evolution of the state-update maps that govern a
ime-varying time series, while in Chung et al. (2015) a variational
ecurrent neural network architecture is envisioned.

.2. Contribution

In this paper we propose a methodology that uses artificial
eural networks (ANNs), and in particular autoencoders (AEs)
Hinton & Salakhutdinov, 2006), to learn a nonlinear model in
tate–space from a given input/output dataset. The main idea
s the following: we train an AE that reproduces a collection
f output signals from a collection of input and output signals
nd take the central layer of the AE as the state vector. Such a
imensionality reduction problem is solved jointly with problem
f learning the nonlinear state-update function (parameterized by
deep neural network) that maps the values of such a state into

ts next values.
Contrary to the contributions (Li et al., 2017; Lusch et al., 2018;

tto & Rowley, 2019), we do not require the dynamics to be linear
n the learned latent space. On the other hand, to ease the design
f controllers and state observers, we also consider a quasi linear
arameter-varying (LPV) formulation of the model, in which each
f the coefficients of the state-update matrices is the output of an
NN.
In contrast with the works (Chung et al., 2015; Karl et al.,

016; Krishnan et al., 2015; Watter et al., 2015), we do not
ely on variational inference arguments, as we do not impose
pecific structures on the learned latent space. Our approach
rings two advantages: (i) it avoids making an assumption about
he distribution to impose; (ii) as we will show in Section 4.3, it
enables the use of classical shrinkage operators to tune some of
the hyper-parameters of the method, that would be instead hard
to adopt within the variational framework.

To improve both the accuracy of the resulting models and the
numerical stability of the approach, in this paper we also use a
fitting criterion based on multi-step predictions. The main hyper-
parameter of the approach is the order of the state–space model,
that must be chosen (as typically in system identification meth-
ods) to obtain a tradeoff between model accuracy in reproducing
test data and model complexity. We provide a heuristic approach
based on group sparsification methods to help tuning the number
of states to include in the nonlinear model and the number of past
input and outputs the autoencoder consumes.
2

Preliminary ideas and results related to the contents of this
paper were presented in Masti and Bemporad (2018), where we
proposed AEs to extract a compressed representation of I/O data
to be used as state representation for a classical one-step-ahead
Prediction Error Method (PEM) approach. The method we present
in this paper is also related to the approaches presented in some
very recent contributions (Beintema, Toth, & Schoukens, 2020,
2020; Drgona, Tuor, Chandan, & Vrabie, 2020), which also develop
ideas related to the preliminary work presented in Masti and
Bemporad (2018).

The paper is organized as follows. In Section 2 we formu-
late the nonlinear identification problem we want to solve and
present a solution method based on autoencoders in Section 3.
After detailing the learning algorithm in Section 4 and discussing
the use of the identified model for state estimation and control
in Section 5, we report results in Section 6 based on several
nonlinear benchmark problems. Finally, we draw conclusions in
Section 7.

The Python code to reproduce the results described in the
paper is available at http://dysco.imtlucca.it/masti/autoencoders.

2. Nonlinear identification problem

We are given a training dataset of input/output samples Z =

{u0, y0, . . . , uN , yN} collected from a dynamical system, where
uk ∈ Rnu is the vector of exogenous inputs and yk ∈ Rny the
vector of measured outputs. Our goal is to identify a dynamical
model of the system in the following state–space form{

xk+1 = f (xk, uk)
ŷk = g(xk)

(1)

with x ∈ Rnx , that, starting from an appropriate condition xk0
and excited by the same inputs uk0 , . . . , uN−1, produces an output
signal ŷk that is as close as possible to the one yk recorded on the
system. Although we assume that the collected input and output
signals may be affected by measurement noise, we do not make
any particular assumption about the properties of such noise.

Given a number of past outputs na ≥ 1, of past inputs nb ≥ 1,
nd a desired state dimension nx ≥ 1, the problem can be recast
o the problem of finding a triplet of maps e, f , g , e : RnI → Rnx ,
I ≜ nany + nbnu, f : Rnx × Rnu → Rnx , g : Rnx → Rny that solves
he following optimization problem:

in
e,f ,g

L(e, f , g, Z) (2a)

here

L(e, f , g, Z) =

N∑
k=k0

L(ŷk, yk)

s.t. xk+1 = f (xk, uk)
ŷk = g(xk), k = k0, . . . ,N
xk0 = e(Ik0−1)

(2b)

In (2), L : Rny × Rny → [0, +∞) is a suitable loss function
that penalizes the discrepancy between the predicted and the
measured output, and Ik is the following information vector

Ik = [y′

k . . . y′

k−na+1 u′

k . . . u′

k−nb+1]
′ (3)

where k0 ≜ max{na, nb}. In (2), e is the dimensionality-reduction
apping from the vector Ik of past inputs and outputs to the
tate vector xk, whose role will be further explained in the next
ections.
In general problem (2) has infinitely many solutions. For ex-

mple, if the data were generated by a linear system of order n,
or any dimension nx ≥ n all the infinitely many (possibly non-
inimal) state–space realizations leading to the same transfer

http://dysco.imtlucca.it/masti/autoencoders
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unction would be equally optimal. The problem of recognizing
he smallest state-dimension nx that provides an acceptable mis-
atch between the predictions ŷk and the measured outputs yk

s of main interest and has been widely explored in the litera-
ure (Baram, 1984; Williams & Lawrence, 2007). A similar prob-
em of data compression is also widely studied in the machine
earning literature in the context of feature extraction (Guyon &
lisseeff, 2006). There, the goal is to reduce the dimension of the
nput space by identifying a nonlinear function that projects the
riginal (large) input space into a (smaller dimensional) feature
pace, without losing significant information content.
In the following, we solve problem (2) by parameterizing the

aps e, f , g as ANNs, due to their universal approximation prop-
rties (Barron, 1993) and efficient numerical packages available
or training them.

. State selection via autoencoders

The idea behind an autoencoder is to train an ANN to re-
roduce the identity mapping from a certain information vector
k ∈ RnI to Ik itself, under the topological constraint that one of its
idden layers contains nx < nI neurons. Such a constraint forces
he network to learn a description of Ik that lives in the lower-
imensional space Rnx without losing information. The smaller
he fitting error between Ik and the reconstructed Ik, the less
nformation is lost when passing through the network across
he hidden ‘‘bottleneck’’ layer. As a result, when excited by an
nput value Ik, the corresponding value xk ∈ Rnx , taken by the
eurons of the bottleneck layer represents the desired lower-
imensional vector concentrating the information contained in Ik.
his approach has been shown to be successful in a large variety
f applications. For completely linear networks, it has been shown
n Baldi and Hornik (1989) that it has a strong relation with the
tandard principal component analysis (PCA) technique.

.1. Partial predictive autoencoders

Given the dataset Z of input/output samples, applying a stan-
ard autoencoder to compress the information vector Ik defined
y (3) into a reduced-order vector xk ∈ Rnx would not be optimal
o learn a state representation for two reasons: (i) it would treat
he samples Ik as independent, missing the fact that consecu-
ive samples Ik share common (time-shifted) components, and
herefore fail in capturing the capability of predicting the next
utput yk+1, and (ii) it would be redundant, as we are not really
nterested in reproducing the input signals uk−i+1, i = 1, . . . , nb,
hat are components of Ik. Therefore, we introduce here a partial
redictive autoencoder (PPE) that maps Ik−1 (i.e., the information
vailable up to time k − 1) into the following vector of outputs

k = [y′

k . . . y′

k−m]
′ (4)

ith 0 ≤ m ≤ na. By fitting an ANN with a hidden layer of size nx,
x ≤ nany + nbnu, that tries to predict Ok given Ik−1, we obtain an
ntermediate compressed representation xk ∈ Rnx . Such a vector
k can be treated as a model state, as it captures the information
equired to predict yk from Ik−1, and even filter yk−1 (if m ≥ 1)
nd smooth past outputs (if m > 1).
We note here that we could make xk depend on yk too, but we

o not consider such a case in this work.
The PPE amounts to the cascade of two different ANNs: (i) an

ncoding function e : RnI → Rnx representing the transformation
rom Ik−1 (past inputs and outputs) to xk (state vector), (ii) a
ecoding mapping d : Rnx → Rmny from xk to Ok, whose first
y components constitute the desired output function g : Rnx →
ny
 .

3

Fig. 1. Schematic representation of the computational graph of the proposed
nonlinear model structure.

4. Model learning

Having defined a structure to map Ik−1 into xk, we also need
a structure to fit a function f : Rnx × Rnu → Rnx mapping xk
and uk into the next state xk+1. A first approach would be to
fit the PPE described above to get functions e and d, compute
the set of states xk = e(Ik−1), k = max(na, nb) + 1, . . . ,N , and
then fit a model f mapping (xk, uk) to xk+1. We propose instead a
better method that learns e, d, and f simultaneously. We define a
multi-objective learning problem whose solution is a set of sub-
networks implementing the state-update and output functions
of the desired state–space model. The corresponding structure is
schematically depicted in Fig. 1, in which we use two PPEs that
share exactly the same weights (to be determined), one fed by
Ik−1 and the other by Ik. The goal is to reproduce, respectively,
Ok and Ok+1. In this way, the generated state xk in the first AE
and xk+1 in the second AE will be coherent. A third ANN must
be trained to map uk and xk into the shifted state xk+1, therefore
getting the state-update mapping f .

The overall training problem described above is formulated as
the following optimization problem

min
e,f ,d

N−1∑
k=k0

α

(
L1(Ôk,Ok) + L1(Ôk+1,Ok+1)

)
+ βL2(x⋆

k+1, xk+1) + γ L3(Ok+1,O⋆
k+1)

s.t. xk = e(Ik−1), k = k0, . . . ,N
x⋆
k+1 = f (xk, uk), k = k0, . . . ,N − 1

Ôk = d(xk), k = k0, . . . ,N
O⋆
k = d(x⋆

k), k = k0 + 1, . . . ,N

(5)

where Li are loss functions, α, β, γ ≥ 0 are scalar weights, Ok
is defined by (4), and Ik by (3), and d : Rnx → R(m+1)ny is the
decoder part of the PPE. Note that the output function g in (1)–
(2) is retrieved from d by taking the components corresponding
to yk.

In (5), the loss function L1 extends the original loss L in (2b), for
instance L1(Ôk,Ok) =

∑k
j=k−m L(ŷj, yj). The loss L2 can be seen as

a relaxation of the state update equation xk+1 = f (xk, uk) in (2b).
The loss L3 attempts avoiding that the error introduced by the
bridge function f gets amplified by the nonlinear decoder d and
results in a large deviation, on between the predicted outputs
O⋆ and the measured outputs O . While clearly (5) may not
k+1 k+1
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olve the original problem (2) exactly, it attempts to provide a
ood sub-optimal solution to it.
Minimizing L3 and L2 in (5) is the objective with the most pri-

ority, as it captures the one-step ahead properties of the model.
The ‘‘vertical’’ objective related to L1 is instead only ancillary and
erves to guide the process of learning the correct bridge/decoder
air. This suggests that a good approach for better solving the
osed learning problem (2) is to start the training procedure with
mall values of β , γ and a high value of α, and then use the
olution as the initial guess of another instance of (5) with a
maller value of α, possibly reiterating the procedure multiple
imes for decreasing values of α.

In the rest of the paper we will consider that L1−3 are LMAE loss
unctions.1

Besides deciding the topology and activation functions of the
NNs employed in the two identical PPEs, and the learning algo-
ithms employed in optimizing their weights and bias terms given
he available training dataset, several tuning hyper-parameters
re involved in the proposed nonlinear system identification
ethod described above. These are summarized in Table 1.

.1. Multiple-step ahead fitting procedure

Penalizing the one-step ahead prediction errors in (5) does not
uarantee that the identified model will provide good open-loop
redictions. An approach to solve this issue would be to resort to
backpropagation through time (BPTT) learning scheme (Wer-
os et al., 1990), in which the initial estimated condition x0 is

propagated through each step k of the whole dataset. The main
issue of BPTT is that it involves optimizing cost functions that are
both computationally expensive to evaluate and to differentiate,
and are highly nonlinear, which makes the learning problem dif-
ficult to solve (Forgione & Piga, 2020; Hochreiter & Schmidhuber,
1997). A good compromise is to resort on the so-called truncated
BPTT (Forgione & Piga, 2021; Puskorius & Feldkamp, 1994), where
the propagation of the estimate x̂k is carried only for a limited
number of steps F ≪ N . In our identification scheme, the idea
of truncated BPTT translates into the following multi-step ahead
modification of (5):

min
e,f ,d

N−F∑
k=k0

⎛⎝ F∑
f=0

αL1(Ôk+f ,Ok+f )

+

F∑
f=1

f−1∑
r=0

βL2(x̂k+r
k+f , xk+f ) + γ L3(Ok+f , Ôk+r

k+f )

⎞⎠
s.t. x̂k+r

k+f+1 = f (x̂k+r
k+f , uk+f ), k = k0, . . . ,N − 1

f = r + 1, . . . , F , r = 1, . . . , f − 1

x̂k+r
k+r+1 = f (xk+r , uk+r ), k = k0, . . . ,N − 1

r = 1, . . . , f − 1
xk+r = e(Ik+r−1), k = k0, . . . ,N

Ôk = d(xk), k = k0, . . . ,N

Ôk+r
k+f = d(x̂k+r

k+f ), k = k0 + 1, . . . ,N

(6)

where in (6) we consider the multi-step ahead predictions x̂k+r
k+f

of the state vector at step k + f based on iterating the model in
open-loop for f − r steps from the initial state xk+r = e(Ik+r−1).
Note that, compared to a standard truncated BPTT, here we also
evaluate explicitly the quality of the predictions generated from
any step to any other step within the interval [k, k+ F ], i.e., from

1 For a given dataset {Qk}
NQ
k=1 , Qk ∈ RnQ , and its estimate {Q̂k}

NQ
k=1 ,

L (Q , Q̂ ) =
1

∥Q − Q̂ ∥ .
MAE k k NQ nQ k k 1

4

any xk+r to any xk+f , f > r . At first sight the use of the index r
may seem redundant (for example the index k1+k2 is covered by
k = k1, r = k2 and by k = k1 + k2, r = 0). However, introducing
such a redundancy is useful when stochastic gradient descent
(SGD) is adopted to solve (6), as most commonly used in deep
learning (Goodfellow, Bengio, & Courville, 2016). In fact, in SGD a
set of random, possibly non-consecutive, values of the index k are
selected at each optimization step to form the mini-batch. Hence,
the time-windows between k and k + F may not overlap in the
ini-batch.
Note that the proposed truncated BPTT approach includes the

ne-step ahead approach for F = 1.

.2. Network topology

In principle, each sub-network e, f , and d could be designed
ith different topologies and activation functions, thus allowing
he user to incorporate possible prior knowledge of the process to
dentify. In this work we restrict our analysis to two alternative
rchitectures: (i) a fully connected feed-forward (FF) topology for
ll the sub-networks e, f , and d; (ii) a quasi-LPV parameterization
f the maps f and d while maintaining a general FF topology for
he encoder e. The latter option allows us to learn models in the
ollowing quasi-LPV form

xk+1 = A(xk, uk)[x′

k 1]′ + B(xk, uk)uk

yk = C(xk, uk)[x′

k 1]′
(7)

whose usefulness will be detailed in Section 5.2. Each coefficient
of A, B and C in (7) is in turn defined as the output of a FF network.

4.3. Feature selection and model reduction

The most important hyper-parameters of our approach for
achieving a good fit are na, nb and nx. As it is common in most
identification techniques, tuning such parameters often requires
physical insight and/or extensive trial and error. Here we propose
a simple heuristics to facilitate the selection process.

It is known that the inclusion of ℓ1-penalties in an opti-
mization problem (a.k.a. the shrinkage operator) induces sparse
solutions (Tibshirani, 1996). Consider the general FF topology
(i). An approach to attempt reducing the number nx of states
of the model is to introduce the following variation of the so-
called group LASSO operator (Scardapane, Comminiello, Hussain,
& Uncini, 2017)

Lnx (ω) = χ1

nx∑
i=1

i2∥ω[i]∥1 (8)

where χ1 > 0, χ1 ∈ R, ω is the vector of weights of the
initial layer of the maps f and d, and ω[i] is the subvector of
ω corresponding to the state component xk,i. After solving (5)
with the additional penalty (8), all xk,i such that ω[i] is negligible
are considered as redundant, and nx is decreased accordingly. A
similar argument can be used in case the quasi-LPV topology (7)
is used, by inspecting whether A, B, C depend on xk,i and whether
the i-th column of A and C is negligible.

Regarding the encoder e, we penalize more the weights in
the first layer of e associated with the components of Ik =

y′

k . . . y′

k−na+1 u′

k . . . u′

k−nb+1]’ corresponding to less recent
nput/output values. To this end, let θ be the vector of weights
orresponding to the first layer of e, and let θ[ℓ] the subvector of
corresponding to weights associated with either uk−ℓ or yk−ℓ,
= 0, . . . , T , T = max{na, nb} − 1. Consider the following group
ASSO penalty function

e(θ ) =

T∑
χ2(ℓ + 1)2∥θ[ℓ]∥1 (9)
ℓ=0



D. Masti and A. Bemporad Automatica 129 (2021) 109666

p

T
s

ℓ

5

5

t
t
f

Table 1
Hyper-parameters of the proposed learning method.
Parameter Symbol Meaning

Past I/O window width na , nb Size of the information vector Ik employed to construct the state xk+1
Autoencoding window m Time length of the output vector Ok
State dimension nx Number of neurons in the ‘‘bottleneck’’ layer of the PPE
Multistep prediction horizon F Length of the prediction horizon used in truncated BPTT
Relative weights α, β , γ Relative weights scalarizing the multi-objective fitting criterion in (5)
where χ2 > 0, χ2 ∈ R, is a new hyper-parameter to choose. A
ossible way of choosing χ2 is to solve (5) with the additional

penalty (9) for different values of χ2 and choose the value that
best trades off between quality of fit and small values of na, nb.
hen, after fixing the best values of na, nb found, problem (5) is
olved again without adding (9).
As we will describe in Section 6, we will also include small

2-regularization terms in the objective function to minimize.

. Nonlinear state estimation and control

.1. Filtering and state reconstruction

The encoding part e of the PPE network provides xk as a static
function of the past na outputs and nb inputs, collected in vector
Ik−1. To avoid storing Ik−1 and to filter noise out, we consider here
standard recursive filtering and state-reconstruction technique to
recover xk iteratively from input and output measurements.

A standard approach to estimate xk is to use model-based
state-estimation techniques such as extended Kalman filters
(EKF). However, this would require additional tuning effort and
would restrict the choice of the activation functions used in f , g
to be differentiable for linearization.

An alternative method is to extend the overall learning objec-
tive (5) to also train a ‘‘neural observer’’. Similar to the bridge
function f introduced to forward the state xk and new input uk to
he next state x∗

k+1, we can introduce a similar structure to build,
ogether with e, d, f , an additional map s : Rnx ×Rnu ×Rny → Rnx

rom the current state estimate x̂k, input uk, and new measured
output yk to the updated state estimate x̂k+1. This can be achieved
by adding

β4L4(x̂k+1, xk+1) + γ5L5(Ô⋆
k+1,Ok+1) (10a)

in the loss function in (5), where

x̂k+1 = s(xk, uk, yk)

Ô⋆
k = d(x̂k), k = 0, . . . ,N − 1

(10b)

L4, L5 are appropriate loss functions, and β4, γ5 ≥ 0.
A clear benefit of the approach in (10) is that no separate

tuning process is required after training the process model f , g , in
that the observer s is trained directly on the dataset. On the other
hand, having coupled the fit of the model with the synthesis of
the observer leaves no freedom to re-tune the observer without
fitting again both of them. For a detailed comparison between
the two approaches we refer the interested reader to Masti and
Bemporad (2018).

5.2. Nonlinear model predictive control

Having identified a model in the state–space form (1) or (7),
we can employ any state-feedback controller synthesis technique
to control the system generating the data. Among such tech-
niques, model predictive control (MPC) is probably the most
flexible (Bemporad, 2006; Mayne, 2014) for dealing with multi-
variable systems under constraints on process variables. To deal
with nonlinear systems, one of the most commonly used MPC
5

Algorithm 1. LTV-MPC algorithm based on model (7)
Input: Prediction horizon np, control horizon nm, weight matrices
Wy ∈ Rny×ny , Wu ∈ Rnu×nu , W∆u ∈ Rnu×nu ; output and input
reference signals rt ∈ Rny , ur

t ∈ Rnu , t = 0, 1, . . .; current state
estimate xt .

1. compute the sequence of predicted states {x̄t+1, . . . , x̄t+np}

given the current guess of the input sequence
{ūt · · · ūt+np−1}, with ūt+k = ūt+nm−1 for all k ≥ nm − 1;

2. compute
Ak = A(x̄t+k, ūt+k), Bk = B(x̄t+k, ūt+k)
Ck = C(x̄t+k, ūt+k)

3. solve the quadratic programming problem

arg min
ut ,...,ut+nm

np−1∑
k=0

∥Wy(yt+k+1 − rt+k+1)∥2
2

+ ∥Wu(ut+k − ur
t+k)∥

2
2 + ∥W∆u∆ut+k∥

2
2

s.t. xj+1 = Ak[x′

j 1]
′
+ Bkuj

yj+1 = Ck[x′

j+1 1]′

∆uj = uj − uj−1, j = t + k, k = 0, . . . , np − 1
linear constraints on ∆ut+k, ut+k, xt+k, yt+k
∆ut+k = 0, nm ≤ k < np

to get the optimal sequence u⋆
t , . . . , u

⋆
t+nm−1;

4. set the current input ut = u⋆
t ;

5. update the nominal input sequence ūt+k = u⋆
t+k, 1 ≤ k ≤

nm − 1, ūt+k = u⋆
t+nm−1, nm ≤ k ≤ np − 1.

Output: Command input ut , updated nominal input sequence
{ūt+1, . . . , ūt+np}.

schemes is the so-called linear time-varying (LTV) formulation
(a.k.a. real-time iteration scheme Diehl, Bock, & Schlöder, 2005),
which is based on linearizing the model around the previous op-
timal solution (Gros, Zanon, Quirynen, Bemporad, & Diehl, 2020).

As for EKF, this method requires the activation functions used
in f , g to be differentiable, and the computation of the Jacobian
matrices of the model along the prediction horizon. This can
be mitigated by using the quasi-LPV affine form (7) by directly
computing the matrices A, B, C for the nominal values of xk, uk
along the prediction horizon and neglecting their sensititivies
with respect to xk, uk. This scheme is summarized in Algorithm 1.

6. Experimental results

6.1. Synthetic benchmark problems

We first apply the proposed nonlinear state–space identifica-
tion approach to the following synthetic benchmark problems:



D. Masti and A. Bemporad Automatica 129 (2021) 109666

t

Σ

a

Σ

o
w
a

w
a
w

W
t
n
k
o
s
r

6

w
(
t

a
r
r
m
p
e

m
A
u
W
B
a

he Hammerstein–Wiener system

HW =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xk+1 =

[
0.7555 0.25

−0.1991 0

]
xk +

[
−0.5
0

]
vk

vk =

{ √
uk if u > 0
uk otherwise

wk = [ 0.6993 −0.4427 ] xk
yk = wk + 5 sin(wk)

(11)

nd the discrete-time nonlinear system

T =

⎧⎨⎩
xk+1,1 = xk,1 − k1

√
xk,1 + k2vk

xk+1,2 = xk,2 + k3
√
xk,1 − k4

√
xk,2

yk = xk,2

(12)

that describes a tank system with possible overflows neglected
(Schoukens & Noël, 2017). In (12) we set k1 = 0.5, k2 = 0.4,
k3 = 0.2, k4 = 0.3 and consider two cases: one where we directly
control vk (i.e: vk = uk) that will be referred to as ΣT1, and one
where vk = sign(uk)u2

k that will be referred to as ΣT2.
For both ΣT1 and ΣT2 we collect a training dataset consisting

f 20,000 training samples generated by exciting the system
ith a sequence of step signals of length 5 steps with random
mplitudes drawn from the Gaussian distribution N (1, 1). For

ΣHW we consider a training set of 10,000 samples generated
using the same methodology but with amplitudes of the input
signals distributed in N (0, 1) and length equal to 7 steps. As
test cases, for all systems we consider the open simulation ac-
curacy of the learned model when excited by 1000 test input
samples consisting of random-amplitude step signals with the
same characteristics of the one used for training.

All the signals are scaled by subtracting the empirical mean
and dividing by the standard deviation computed on the training
set. Once normalized, a zero-mean Gaussian white-noise with
standard deviation σ = 0.02 is added on both the training and
test signals to mimic measurement noise.

6.2. Experimental and simulation benchmarks

We further test the capabilities of the proposed approach on
three publicly available datasets. The first is taken from an ex-
perimental magneto-rheological fluid damper system (The Math-
Works, Inc., 2020a; Wang, Sano, Chen, & Huang, 2009), the second
one from a simulated physically-accurate continuous-time two-
tank system (The MathWorks, Inc., 2020b), the third one from
the well known ‘‘Silverbox’’ system (Schoukens & Noël, 2017). The
systems generating the three dataset will be refereed to as ΣRH ,
ΣTank, and ΣS , respectively.

The first two datasets contain 3500 and 3000 samples, respec-
tively. In both cases, the first 2000 samples of the set are used
for training/validation purposes while the remaining samples for
testing. The Silverbox dataset is extracted as in Ljung, Andersson,
Tiels, and Schon (2020). Again the signals in the dataset are
normalized and no additional noise is superimposed.

In all cases, since during the training of the neural networks
we employ an early-stopping criterion based on validation data,
5% of the training dataset is reserved for validation.

6.3. Hyperparameter selection and implementation details

For both the FF network topology (1) and the affine quasi-
LPV one (7), described in Section 4.2 as type (i) and type (ii),
respectively, the hidden part of all the involved networks consist
of 3 layers of 30 neurons each with ReLU (Hahnloser, Sarpeshkar,
Mahowald, Douglas, & Seung, 2000) activation functions, followed
by a final linear output layer.
6

The network has been implemented in Keras (Chollet et al.,
2015) using Tensorflow (Abadi, Agarwal, Barham, Brevdo, Chen,
Citro, et al., 2015) as back-end, and trained via the AMSgrad
algorithm (Reddi, Kale, & Kumar, 2019). The training procedure
is carried out in two stages: first the ANNs are trained with α =

10, β = 0.3, γ = 0 until convergence, and then trained again
(using as a starting point the weights obtained in the previous
phase) using α = 0, β = 10, γ = 1. Unless otherwise noted, ℓ2-
regularization terms with penalty λ = 0.0001 are added on all
but bias terms coefficients of the nonlinear neurons to smooth
the fitting process out. Moreover, the same ℓ2-penalty is added
in the final linear layer of the neural network modeling the last
column of matrix A(xk, uk) in case the quasi-LPV topology (7) is
used. Under the same topology, we also zero the coefficients of
the last column of matrix C(xk, uk).

The above two-step procedure is used to ease the learning
process. As the focus of the first step is mostly on the L1 objective,
the learning of e and d is emphasized (α = 10), with a small
contribution (β = 0.3) of L2 maintained to avoid that the result-
ing state vector cannot be properly updated over time. Once a
good estimate of the decoder/encoder pair has been determined
in the first stage, the second stage takes this as the initial guess to
completely focus (α = 0) on enforcing that the model propagates
correctly over time (β = 10, γ = 1).

Note that in our experiments we have not made any attempt
to optimize the selected values of α, β , γ . When best identi-
fication performance is sought, global optimization algorithms
based on surrogate functions (Bemporad, 2020; Snoek, Larochelle,
& Adams, 2012) could be used for optimal tuning of α, β , γ , and
possibly other hyper-parameters.

Performance results are measured in terms of the best fit ratio
(BFR)

BFR = max
{
0, 1 −

∥yt − ŷt∥2

∥yt − ȳ∥2

}
(13)

here ȳ is the average of the output signal y over all the samples
nd ŷk is the open-loop prediction extracted from Ôk+1 = d(x̂k+1)
ith
x̂k+1 = f (x̂k, uk), k = k0, . . . ,N − 1
x̂k0 = e(Ik0−1)

(14)

e set m = 1 in all tests as we are only interested in predicting
he next output yk+1 and filter the current yk. As we plan to
ever exceed the value 15 for na, nb, all simulations start from
0 = 15 in order to have enough samples to form Ik0−1. Unless
therwise noted, we report the best and average BFR and its
tandard deviation obtained on 10 different runs with different
andom seeds.

.4. Fit results

We evaluate the BFR open-loop simulation performance (13)
hen the fitting process is either based one-step ahead criterion
F = 1) or truncated BPTT (F = 4), for both the quasi-LPV and FF
opologies. In all cases we set nx = 6, na = nb = 10.

Results are reported in Table 2 for the synthetic benchmarks
nd in Table 3 for the experimental/simulation benchmarks. The
esults highlight that the quasi-LPV parameterization (7) well
eproduces the behavior of the system in all the proposed bench-
arks, and slightly outperforms the FF architecture. This is es-
ecially evident for ΣT2. The results also confirm the beneficial
ffect of truncated BPTT.
For comparison, for each problem we train a nonlinear ARX

odels of the same order, equipped with a dense feedforward
NN regressor with 3 layers of 30 ReLU neurons each, trained
sing the System Identification Toolbox for MATLAB (The Math-
orks, Inc., 2019). We consistently achieve roughly the following
FRs: 0.97 (ΣT1), 0.94 (ΣT2), 0.97 (ΣHW ), 0.94 (ΣTank), 0.55 (ΣRH ),
nd 0.94 (Σ ).
S
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able 2
erformance results (BFR) on synthetic benchmarks for different combinations of
opologies and training procedures: A = FF topology, B = quasi-LPV topology;
1 = training based on one-step ahead loss (F = 1), F = training based on
ulti-step ahead loss (F = 4).
System A/1 B/1 A/F B/F

ΣHW

Average 0.983 0.989 0.989 0.991
Standard deviation 0.002 0.001 0.001 0.001
Best 0.986 0.991 0.990 0.992

ΣT2

Average 0.873 0.913 0.943 0.961
Standard deviation 0.024 0.019 0.013 0.015
Best 0.903 0.938 0.963 0.977

ΣT1

Average 0.944 0.969 0.973 0.980
Standard deviation 0.020 0.003 0.003 0.004
Best 0.960 0.976 0.977 0.985

Table 3
Performance results (BFR) on experimental and simulation benchmarks for
different combinations of topologies and training procedures: A = FF topology,

= quasi-LPV topology; 1 = training based on one-step ahead loss (F = 1), F
training based on multi-step ahead loss (F = 4).

System A/1 B/1 A/F B/F

ΣRH

Average 0.815 0.815 0.818 0.882
Standard deviation 0.040 0.044 0.015 0.025
Best 0.859 0.870 0.839 0.908

ΣTank

Average 0.896 0.904 0.916 0.915
Standard deviation 0.008 0.020 0.007 0.009
Best 0.911 0.923 0.932 0.927

ΣS

Average 0.905 0.951 0.966 0.986
Standard deviation 0.015 0.013 0.004 0.003
Best 0.931 0.963 0.974 0.991

6.5. Feature selection and model reduction

We test the model-selection technique presented in
ection 4.3 to reduce na, nb and nx. Starting with nx = 6 and
a = nb = 10, we attempt reducing na, nb by imposing the group

LASSO penalty (9) with χ2 = 0.0003, while maintaining the ℓ2-
regularization penalty λ = 0.0001 on the remaining regularized
coefficients. Similarly, starting with the same values of nx, na, nb,
e impose the group LASSO penalty (8) to attempt reducing nx
ith χ1 = 0.0003. Numerical tests are performed on ΣT2, with
raining carried out using truncated BPTT with F = 4.

The number of coefficients whose absolute value is larger
han 0.001 (which we selected as the threshold used to consider
he coefficient as negligible) is reported in Fig. 2. In particular,
ig. 2(a) clearly shows that only 3 state components are com-
only used, so that nx can be reduced to nx = 3. Similarly,

rom Fig. 2(b) we can note that only yk, . . . , yk−2 and uk, . . . , uk−4
ontribute significantly to the encoder function e, so that we can
ecide to limit Ik to them. This suggests setting na = nb to either
, 4, or 5.
This is confirmed by the results reported in Table 4, which

hows the fit performance occurring when the models are trained
ith nx = 2, na = nb = 5, with nx = 3, na = nb = 5,
nd with nx = na = nb = 5, without including ℓ1-penalties
or sparsification. The difference in performance between using
x = 3, na = nb = 5, and both using nx = na = nb = 5 and the
riginal values nx = 6, na = nb = 10, in the original feedforward
opology is negligible. Very good performance is also obtained
y nx = 2, na = nb = 5, confirming the marginal relevance of
ntroducing a third state shown in Fig. 2(a).

.6. LTV-MPC based on learned model

We evaluate the performance of the MPC controller presented

n Section 5.2 in controlling ΣT2. The MPC controller is based on

7

Fig. 2. Number of active neurons in e, f , d.

Fig. 3. Tracking performance of LTV-MPC (Algorithm 1) applied to control
system ΣT2 (quantities are in normalized units).

Table 4
Performance (BFR) of the reduced-order models in learning ΣT2 . FF-5 =

feedforward topology with nx = na = nb = 5. FF-3/5 = feedforward topology
with nx = 3, na = nb = 5. FF-2/5 = feedforward topology with nx = 2,
na = nb = 5. FF-6 = feedforward topology with nx = 6, na = nb = 10 (reported
for comparison).
System FF-2/5 FF-3/5 FF-5 FF-6

ΣT2

Average 0.905 0.903 0.925 0.943
Std. deviation 0.059 0.061 0.026 0.013
Best 0.948 0.952 0.964 0.963

the quasi-LPV model obtained by training from the same dataset
with nx = 6 and na = nb = 10, and by setting np = 5, Wy = 1,

u = 0.001, W∆u = 0.01, under the box constraints |uk| ≤ 0.8.
Fig. 3 shows the obtained closed-loop performance when

tracking a shifted sine-sweep reference signal. To close the MPC
loop, in this example we used the encoder function to estimate
the state xk from past input/output samples contained in Ik−1,
although other observers (like a time-varying Kalman filter based
on the same quasi-LPV model) could be used as well.

6.7. Computational aspects

The overall CPU time to simulate the closed-loop LTV-MPC
system, running the decoder, and computing the control action
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ia the general purpose L-BFGS-B solver (Oliphant, 2007) over 400
ampling steps is ≈ 5 seconds on a laptop equipped with an Intel
ore i5 6200u CPU and 16 GB of RAM. Note that we did not make
ny attempt towards efficiency of implementation, for example a
ore efficient solver like the one proposed in Saraf and Bemporad

2020) could be used to compute the MPC action.
Regarding the CPU time spent for training the models, the

roposed procedure is carried out on average in ≈ 10 min-
tes on the aforementioned machine for dataset consisting of
0,000 samples. Interestingly, the computation effort is not very
ensitive to the particular choice of nx, na, and nb.
Models with nx = 6, na = nb = 10 require ≈ 10,000

ingle precision coefficients. Clearly, the number of model coeffi-
ients heavily depends on the chosen topology, so that it can be
rastically reduced if memory footprint and/or throughput are of
oncern. Moreover, we mention that one could apply recent re-
ults on model reduction for ANNs, see, e.g., Han, Mao, and Dally
2015) and references therein. In general, one must find the best
radeoff between the number of optimized model coefficients and
he obtained closed-loop tracking performance when training a
onlinear state–space model for control purposes.

. Conclusions

In this paper we have proposed a viable approach to learn
onlinear state–space models from input/output data for model-
ased control systems design. The method can be applied either
o identify a nonlinear model from experimental data, or from
high-fidelity simulator, or to reduce the order of an existing
onlinear model. Indeed, the approach allows the direct control
f the number of states, which in turn dictates the complexity of
odel-based nonlinear estimators and MPC controllers.
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