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Abstract—It is shown that the stabilizing property of
SIORHC (stabilizing I/O receding horizon control). holds for
general stabilizable discrete-time linear plants irrespective of
the condition that the plant has no poles at the origin.

1. Introduction

A PREDICTIVE CONTROLLER with a guaranteed stabilizing
property has been presented recently in Mosca et al. (1990),
Clarke and Scattolini (1991) and Mosca and Zhang (1992)
under the acronym SIORHC (stabilizing I/O receding
horizon control). In short SIORHC consists, at each sample
time, of:

(i) finding a finite sequence of future input increments
which minimizes a quadratic criterion defined over a finite
prediction horizon subject to the constraint that the plant
output matches a desired constant setpoint beyond the
prediction horizon; and

(ii) applying the first sample of the optimal sequence to
the plant according to the receding horizon control strategy.
For a related predictive controller see also the SGPC (stable
generalized predictive controller) of Kouvaritakis et al.
(1992). Recently, Rawlings and Muske (1991) have proposed
a related approach which is based on a finite contro. horizon
but, in contrast to SIORHC, uses an infinite prediction
horizon. It was shown that the resulting receding horizon
controller guarantees closed-loop stability for any linear
stabilizable plant providing that the control horizon is at least
equal to the number of unstable poles of the plant. In Mosca
et al, (1990), Clarke and Scattolini (1991) and Mosca and
Zhang (1992) it has been shown that SIORHC stabilizes any
stalilizable discrete-time linear plant under the only
limitative assumption that the plant transfer function has no
poles at the origin of the complex plane. Note that the above
limitation only ensures the validity of the stabilizing property
but is irrelevant for the existence of the SIORHC law which
is well-defined irrespective of the presence of poles at the
origin.

The aim of the present note is to remove the
above-mentioned limitation by adopting two alternative
methods of stability proof different from the one used in
Mosca et al. (1990), Clarke and Scattolini (1991) and Mosca
and Zhang (1992). Of these two proofs, the first, based on
the monotonicity property of the Riccati equation relevant to
SIORHC and on the so-called fake algebraic Riccati
equation (FARE) argument (see’ Bitmead et al, 1990),
enlightens the connection between SIORHC and the
standard linear quadratic output regulation (LQOR)
problem. The second, which is based on an argument that
seems to be used first by Keerthi and Gilbert (1988) in
receding horizon control problems, though nonconstructive
and subject to problem feasibility, can also cover nonlinear
plants with hard constraints. For a discussion on the stability
issue in the predictive control of continuous-time plants also
see the survey paper of Mayne and Polak (1993),

* Received 11 April 1994; received in final form 8 July
1994; recommended for publication by Editor P. Dorato.

+ Work partially supported by MURST and CNR.

t Dipartimento di Sistemi e Informatica, Universitd di
Firenze, Via di S. Marta, 3-50139 Firenze, Italy.

2013

2. Stabilizing I/ O receding horizon control

For the motivations and solution of the SIORHC problem,
the reader is referred to Mosca and Zhang (1992). Here, just
for convenience, we briefly recall the problem statement.
Consider the discrete-time SISO plant

A(d)A(d)y(t) = B(d) du(2), )

where d denotes the unit delay operator, A(d)=1+a;d +
~o-+a,de, B(d)y=bd+:--+b,d", la,|+|b,|>0,
A(d) = 1-d and su(r):= u(t) —u(t —1) denotes the input
increment. Let {r(k)} be the output reference to be tracked
and &(k):=y(k)— r(k) the corresponding tracking error.
Consider the problem of finding, whenever it exists, a

sequence of T =1 input increments Sup,iryi=
{8u(s),..., %[t + T — 1)} which solves the following con-

strained optimization problem

@

and y:i;+n-—] =!(t + T),(S)

where n:=max{n, +1,n,}, ¥, >0, W, >0, |x|§:=x"Wx,

71
min {2 e + k) 1%, + ||8u(t+k)i|%,,“},

ey Lie=0

subject to ultl ., 2=0,_,

prime denotes transpose, Y. :=[y(f)':-y(+k)]' and
r(k):=[r(k):--r(k)). Then the SIORHC Ilaw is
(S
n times
defined at each sample time ¢ as
su(r) = Su(t). 4)

In Mosca and Zhang (1992) it has been shown that, if
A(d)A(d) and B(d) are coprime polynomials, the SIORHC
problem (1)-(3) admits a unique solution and that, if in
addition

®

SIORHC law (4) stabilizes plant (1) provided that T =n.
Condition (5), which imposes restrictions on the plant that
are both conceptually and practically disturbing, is due to the
fact that the proofs given in Mosca ef al. (1990), Clarke and
Scattolini (1991) and Mosca and Zhang (1992) rely on the
classical stability results of receding horizon control (Bitmead
et al., 1990) which are valid for state space representations
with nonsingular state-transition matrices. Alternative
proofs, not requiring such a limitative assumption, will be
given in the next section.

nl,.<_na+ l,

3. The stabilizing property of SIORHC
Method of proof 1. By defining the state vector

x() = [(yi~"* 1) (Bui=y™ )T (6)
plant (1) can be cast into the state-space representation
x(k +1) = dx(k) + G du(k) o

y(k) = Hx(k)

for suitably defined matrices ®, G and H. It is known that, if
A(d)A(d) and B(d) are coprime, the triplet Z = (P, G, H) is
completely reachable and reconstructible, hence detectable.
For the subsequent stability analysis we assume, without loss
of generality, that (k) =0 and thus e(k) = y(k). For the sake
of simplicity, in equations (2) and (3) we set t=0 and
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x(0)=x. Then, by equation (6), the terminal constraint (3)
becomes

x(N)=0y with N:=T+n—1 (8)
In the following we shall consider minimization of (2) subject
to constraint (8) and the relative RHC law for a generic,
possibly MIMO, completely reachable and detectable plant =

of the form of equation (7). Let R, be the vih order
reachability matrix of =

R,=[®"'G---®G G],

v being the reachability index of X. Then, R, has full row
rank. Consequently, there are input increment sequences
duyo,vy which satisfy the zero terminal state constraint

Ox =x(v)=®"x+ R, 5ul_, (9

for any initial state x. For every 8u, ,, satisfying equation (9)
we write

—1

J(x, Sujg,y) | x(v) = 0x) := gﬂ Iy (), + 11 uk) %, (10)

with W, =W, >0 and ¥, = ¥, > (). Defining
V(x| x(v) =0yx) = min J(x, Buo,y) [x(v)=0x) (11)
“[0,v)
in Chisci and Mosca (1993) it is constructively shown that,

irrespective of the possible singularity of ®, we can construct
a matrix P(v) such that

V(x| x(v) =0x)=x'P(v)x (12)
P(v)=P'(v)=0. (13)

Consider next the zero terminal state regulation over the
interval {0, v]. Taking into account equation (12), we have

Vaar(x | 2(v +1) = 0x) = min {I| y(O) I, + 1| 5u(0) %,
+V(x(1) | x(v) =0x)}
= min {|| y(0) %, + 18u(0) I,
+ x'(1)P(V)x(1)}, (14)
where
x(1) = ®x + G du(0).

Equation (14) is the same as the dynamic programming step
in the standard LQOR problem and yields

Su(0) = —[W, + G'P(v)G] 'G'P(v)®x := Fx (15)

Vysr(x [x(v+ 1) =0x) =x'P(v + 1)x (16)
P(v+1)=®'P(v)® - ®'P(V)G(¥, + G'P(v)G)™!
X G'P(v)®+ H'W,H. 17)
Further, }
P(v+1)=P(v). (18)
In fact,

x'P(v+1)x= smin J(x, Supg,yy | x(v+1) =0y)
20, v)

=J(x, 8,y ® 0y | x(v +1) =0yx)
=J(x, Bijo.) | X(v) = 0x) = x'P(V)x.

Here 5;[0.‘,) denotes the optimal input increment sequence
over [0,v) and ® concatenation. By monotonicity of the
RDE (Bitmead ef al., 1990), equation (18) yields

Pk +1)=<P(k), Yk=wv. (19)

Then, by the FARE argument (Bitmead er al., 1990) we
conclude that the RHC law d&u(r) = Fx(¢) yields an
asymptotically stable closed-loop system whenever N =
v + 1, irrespective of the possible singularity of ®. For single
input plants the above fact can be extended to N=v. We
observe that, relative to the state definition (6), v=2n —1 so
that N = v is equivalent to T =n. Thus, coming back to the

originai SIORHC problem (1)-(4), we can state the
following stability result.

Theorem 1. Consider the SIORHC problem (1)-(4) with
W,>0and W, >0. Let A(d)A(d) and B(d) in equation (1)
be coprime polynomials. Then, irrespective of equation (5),
the SIORHC law exists uniquely and stabilizes plant (1)
whenever T =n = max {n, + 1, n,}.

Method of proof 2. The second stability proof is based on a
monotonicity property (Keerthi and Gilbert, 1988) and is
similar to, yet different from, the one in equation (18). Its
interest consists of the fact that it allows one to deal with
nonlinear plants

x(k + 1) = o(x(k), Su(k))

20
y (k) = m(x(k)) @0
for which Oy is an equilibrium point
0x = ¢(0x, Oy)
21
Oy = n(0x). 21)

Assume, as in the previous section, that r(k)=0. Also
assume that, for plant (20) and (21), the problem of
minimizing equation (2) subject to x(¢r + N) = Oy is uniquely
solvable. Consider for a fixed N the Bellman function
V(1) == Vp(x(t) | x(t + N) =0x), the right-hand side being
defined as in equation (I/Q, along the trajectories of the
controlled system. Let 8u .y, be the optimal input
increment sequence for the initial state x(f). We see that
U 11,048 D0,y drives the plant state
from x(t + 1) = @(x(¢), 8u()) to O at time ¢ + N and hence
by equation (21) also at time ¢+ 1+ N. Then, by virtue of
equation (21) we have

V(O =VE+1D) = |l yOlF, + 18u) 1, (22)

Therefore, {V()}i.s is a monotonically nonincreasing
sequence. Hence, being V() non-negative, as r— o it
converges to V.., 0=V, =V/(0). Consequently, summing the
two sides of equation (22) from ¢t =0 to ¢t = ®, we get

©>V(0) = V(=)= 3 IO, + 1WOIF) @)

This, in turn, implies for ¥, >0 and ¥, >0

lim y(¢)=0, and km du(s)=0,. (24)
>0 {—r00

Summing up, we have the following result.

Theorem 2. Suppose that the problem (2) and (3) with
W, >0, ¥, >0 and equation (3) replaced by x(z + N) =0,,
is uniquely solvable for the nonlinear plant (20) and (21).
Then, RHC law (4) yields asymptotically vanishing I/O
variables.

4. Conclusive remarks

(1) For linear controllable and detectable plants, Theorem
2 implies, at once, asymptotic stability of the controlled
system. #

(2) The method of proof of Theorem 2, though simple and
general, does not unveil the strict connection between
SIORHC and LQOR, nor the solvability conditions, issues
which instead are explicitly focused on the constructive
method of proof of Theorem 1.

(3) Also, the method of proof of Theorem 2 can be used
to cover the case of weights W, (k)>0 and W,(k)>0,
k=0,1,...,N—1, in equation (2). In such a case the
conclusions of Theorem 2 can be readily shown to hold true
provided that

W (k)<W,(k+1) and W,(k)=W,(k+1)

fork=0,1,...,N -2,

(4) Theorem 2 is relevant for its far-reaching conse-
quences on the stability of SIORHC applied to nonlinear
plants once solvability is insured and complementary
system-theoretic properties are added.

(5) The reader can verify that the presence of hard
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constraints on input and state-dependent variables over the
semi-infinite horizon [z, ©) is compatible with the method of
proof of Theorem 2. This makes the results of Theorem 2 of
paramount importance for practical applications where
control problems with constraints are ubiquitous.
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