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a b s t r a c t

In this paper we study constrained stochastic optimal control problems forMarkovian switching systems,
an extension ofMarkovian jump linear systems (MJLS), where the subsystems are allowed to be nonlinear.
We develop appropriate notions of invariance and stability for such systems and provide terminal
conditions for stochastic model predictive control (SMPC) that guarantee mean-square stability and
robust constraint fulfillment of the Markovian switching system in closed-loop with the SMPC law under
veryweak assumptions. In the special but important case of constrainedMJLSwe present an algorithm for
computing explicitly the SMPC control lawoff-line, that combines dynamic programmingwith parametric
piecewise quadratic optimization.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Markovian switching systems consist of a family of nonlinear
subsystems (usually called modes) and a Markov chain that or-
chestrates the switching among them. Since their introduction
(Krasovskii & Lidskii, 1961), they have found numerous applica-
tions due to their ability tomodel dynamical systemswith random
abrupt dynamic changes (failures and repairs) and random time-
delays. Some of the applications include manufacturing systems
(Akella & Kumar, 1986), bioreactors (Delvigne, Blaise, Destain, &
Thonart, 2012), macroeconomics (Zampolli, 2006), and networked
control systems (Patrinos, Sopasakis, & Sarimveis, 2011), to name
a few.

Due to these reasons, a large amount of research has been
conducted concerning various notions of stability such as mean
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square stability (Fang & Loparo, 2002), stochastic stability (Boukas
& Yang, 1995), almost sure stability (Bolzern, Colaneri, & De
Nicolao, 2004) and uniform stability (Lee & Dullerud, 2006).
Furthermore, finite and infinite horizon optimal control both in
discrete (Abou-Kandil, Freiling, & Jank, 1995; Blair & Sworder,
1975) and continuous time (Sworder, 1969; Wonham, 1970) have
been studied extensively. Notably, all the aforementioned works
deal with a special instance of Markovian switching systems,
where individual mode dynamics are linear, namely Markov jump
linear systems (MJLS) (Costa, Fragoso, &Marques, 2005). Regarding
the infinite horizon linear quadratic optimal control problem for
unconstrained MJLS, it can be solved efficiently via a Coupled
Algebraic Riccati equations (CARE) approach (Abou-Kandil et al.,
1995; Blair & Sworder, 1975), or a linear matrix inequalities (LMI)
approach (Rami & Ghaoui, 1996).

However, almost all physical systems are subject to constraints
dictated by physical limits and performance, safety, or economical
considerations. Nonetheless, only few works exist in the literature
concerning optimal control of constrained Markovian switching
systems. Specifically, in Costa, Filho, Boukas, and Marques (1999),
the framework of Kothare, Balakrishnan, and Morari (1996) for
robust model predictive control (MPC) of uncertain linear systems
is extended to MJLS subject to hard symmetric state and control
constraints, while the transition matrix of the Markov chain is
known to lie in a convex set. This suboptimal approach calculates,
on-line, a mode-dependent, linear, state-feedback control law that
minimizes an upper bound on the worst-case expected infinite
horizon cost, by solving an LMI problem. In Vargas, Furloni, and
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do Val (2006), the MPC problem for MJLS with constraints on
the first and second moments for the input and state vector
and unobservable modes is studied. More recently (Bernardini
& Bemporad, 2009, 2012), a Stochastic Model Predictive Control
(SMPC) framework for stochastic constrained linear systems was
proposed. The authors impose a stochastic Lyapunov decrease
condition for the first step of the SMPC algorithm that is robust
with respect to constraint enforcement, and allows to guarantee
mean-square stability and robust invariance so that scenario trees
are only used for performance optimization.

This paper studies the constrained finite horizon stochastic
optimal control problem for discrete-time Markovian switching
systems. Here, the constraints must be satisfied uniformly, over
all admissible switching paths. Properties of the value function
and the mode-dependent optimal policy are derived under a
variety of assumptions. Furthermore, an appropriate notion of
control invariance, namely uniform control invariance, is defined
for Markovian switching systems. In addition, we employ dynamic
programming coupled with the parametric piecewise quadratic
optimization solver (Patrinos & Sarimveis, 2011) to solve explicitly
the constrained finite-horizon constrained stochastic optimal
control problem arising in SMPC for MJLS, without griding the
state-space. For general nonlinear Markovian switching systems
we show how the finite-horizon stochastic optimal control
problem can be formulated as a finite-dimensional optimization
problem. Conditions that guarantee mean-square (exponential)
stability for the system in closed-loop with the SMPC law are
established.

2. Mathematical preliminaries

Let R, R+, N and N+ denote the sets of real numbers, nonnega-
tive real numbers, nonnegative integers and positive integers, re-
spectively. For k1, k2 ∈ N, N[k1,k2] , {k ∈ N|k1 6 k 6 k2}.
The epigraph of an extended-real-valued function f : Rn

→ R ,
[−∞, ∞] is epi f , {(x, α) ∈ Rn

×R|α > f (x)}, its effective domain
is dom f , {x ∈ Rn

|f (x) < ∞} and for any α ∈ R, the correspond-
ing level-set of f is lev6α f , {x ∈ Rn

|f (x) 6 α}. We call f proper if
f (x) < ∞ for at least one x ∈ Rn, and f (x) > −∞ for all x ∈ Rn. A
function f : Rn

→ R is closed if it is lower semicontinuous onRn, or
equivalently if its epigraph is a closed set. A function f : Rn

×Rm
→

R with values f (x, u) is level-bounded in u locally uniformly in x if
for each x̄ ∈ Rn and α ∈ R there exists a neighborhood N (x̄) of x̄,
alongwith a bounded set B ⊂ Rm such that {u|f (x, u) 6 α} ⊂ B for
all x ∈ N (x̄). A function f : Rn

→ R is called piecewise quadratic
(PWQ) if dom f can be represented as the union of a finite number
of polyhedral sets, relative to each of which f is quadratic.

Let S ⊂ N+. For ease of notationwe define the class of functions

fcns(Rn, S) , {f : Rn
× S → R̄|f > 0, f (0, i) = 0, i ∈ S}.

We use the notation cl(Rn, S), conv(Rn, S) and pwq(Rn, S) for the
subclasses of fcns(Rn, S)whosemembers f (·, i) are closed, convex
and PWQ respectively for all i ∈ S. We define the class of sets

sets(Rn, S) , {C = {Ci}i∈S |0 ∈ Ci ⊆ Rn, i ∈ S},

and we use the notation cl-sets(Rn, S), conv-sets(Rn, S) and
poly-sets(Rn, S) for the subclasses of sets(Rn, S) whose member
Ci are closed, convex and polyhedral respectively for all i ∈ S. With
a slight abuse of notation, for f ∈ fcns(Rn, S) wewrite dom f = C ,
meaning that C ∈ sets(Rn, S) and dom f (·, i) = Ci, i ∈ S. f1 6 f2
for f1, f2 ∈ fcns(Rn, S) means f1(x, i) 6 f2(x, i) for every (x, i) ∈

Rn
× S. Likewise, C1

= C2 (C1
⊆ C2) for C1, C2

∈ sets(Rn, S)
means C1

i = C2
i (C1

i ⊆ C2
i ) for every i ∈ S.

The indicator function δC of a set C ⊆ Rn is defined by δC (x) =

0, if x ∈ C and δC (x) = ∞, otherwise. For C ∈ sets(Rn, S), let
δC : Rn

× S → R with δC (·, i) = δCi , i ∈ S. The domain of a set-
valued mapping S : Rd ⇒ Rn, is the set dom S = {p|S(p) ≠ ∅}. If
C is a finite set, then |C | denotes the cardinality of C .
3. Constrained Markovian switching systems

Consider the following discrete-time Markovian switching
system (MSS):

xk+1 = frk(xk, uk). (1)

Here, {rk}k∈N is a discrete-time, time-homogeneous Markov chain
taking values in a finite set S , {1, . . . , S} with transition matrix
P , (pij) ∈ RS×S and initial distribution v = (v1, . . . , vS). We
assume that xk ∈ Rn, uk ∈ Rm. The standing assumption valid
throughout the paper is:

Assumption 1. The mappings fi : Rn
× Rm

→ Rn are continuous
and satisfy fi(0, 0) = 0, i ∈ S.

When needed, we will impose the following assumption:

Assumption 2. fi(x, u) = Aix + Biu, ∀i ∈ S.

Let S consist of all subsets of S, and Ω , Πk∈N(Rn
× Rm

× S). Let
Fk be the minimal σ -field over the Borel-measurable rectangles of
Ω with k-dimensional base and F be the minimal σ -field over all
Borel-measurable rectangles. Define the filtered probability space
(Ω, F, {Fk}k∈N, P) where P is the unique product probability mea-
sure according to the infinite dimensional product measure theo-
rem (Ash, 1972, Theorem 2.7.2), with P(r0 = i0, r1 = i1, . . . , rk =

ik) = vi0pi0 i1 · · · pik−1 ik for any i0, i1, . . . , ik ∈ S and k ∈ N, where
rk is a randomvariable fromΩ to S. LetE[·] denote the expectation
of a random variable with respect to P and E[·|Fk] the conditional
expectation. It can be shown (Tejada, González, & Gray, 2010) that
the augmented state (xk, rk) contains all the probabilistic informa-
tion relevant to the evolution of the Markovian switching system
for times t > k. We call realizations of the Markov chain switching
paths.

Definition 3. The cover Si of a mode i ∈ S is the set of all modes
j ∈ S accessible from i in one time step, i.e., Si , {j ∈ S|pij > 0}.

Definition 4. An admissible switching path of length N ∈ N, r ,
(r0, . . . , rN) for (1) is a switching path for which rk+1 ∈ Srk , for any
k ∈ N[0,N−1]. We denote by G the set of all admissible switching
paths (of infinite length), and by GN the set of all admissible
switching paths of length N . For any i ∈ S, G(i) , {r ∈ G|r0 = i}
and GN(i) , {r ∈ GN |r0 = i} denote the set of all admissible
switching paths emanating from i, of infinite length and length N ,
respectively.

It is assumed that (1)must satisfy the following hard joint state and
input constraints, uniformly, over all admissible switching paths:

(xk, uk) ∈ Yrk , k ∈ N, r ∈ G, (2)

where Yi ⊆ Rn
× Rm, i ∈ S. For each i ∈ S let Ui(x) , {u ∈

Rm
|(x, u) ∈ Yi} and Xi , domUi. Let Y , {Yi}i∈S and X , {Xi}i∈S . A

Borel measurable mapping µ : Rn
× S → Rm, such that µ(x, i) ∈

Ui(x) for each x ∈ Xi and i ∈ S, is called a (mode-dependent) control
law. A sequence of control lawsπ , {µ0, µ1, . . .} is called a (mode-
dependent) policy. Sincewe are only dealingwithmode-dependent
control laws and policies, the adjective ‘‘mode-dependent’’ will
be omitted for brevity henceforth. We denote by Π , {π =

{µ0, µ1, . . .}|µk(x, i) ∈ Ui(x), i ∈ S, k ∈ N} the set of all policies,
and by ΠN the set of all policies of length N . If the policy is of the
form {µ, µ, . . .} then it is called stationary and is simply denoted
by µ. The solution of (1) at time k, given a policy π and a switching
path r with r0 = i and x0 = x, is denoted by φ(k; x, i, π, r).
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4. Finite-horizon stochastic optimal control for MSS

In this section, the finite-horizon stochastic optimal control
problem for constrained MSS is formulated. The stage cost is
assumed to be (possibly) mode-dependent. To improve clarity of
exposition and express the results of the paper in a more general
setting, we will work with extended-real-valued stage costs ℓ
where for each mode i ∈ S, their effective domain is equal to Yi,
i.e., ℓ ∈ fcns(Rn+m, S) with dom ℓ = Y . Furthermore, the terminal
cost function can be mode-dependent, i.e., Vf ∈ fcns(Rn, S). Let
X f , dom Vf ⊆ X . The finite-horizon cost of policy π ∈ ΠN for (1),
starting from x0 = x, r0 = i is:

VN,π (x, i) , E


N−1
k=0

ℓ(xk, uk, rk) + Vf (xN , rN)


(3)

where xk , φ(k; x, i, π, r), uk , µk(φ(k; x, i, π, r), rk) and N is
the horizon length. It is apparent that given a pair (x, i) ∈ Rn

× S
and a policy π ∈ ΠN , the finite-horizon cost (3) is finite if and only
if (xk, uk) ∈ Yrk and xN ∈ X f

rN for all r ∈ GN(i). The constrained
finite-horizon stochastic optimal control problem is:

PN(x, i) : V ⋆
N(x, i) , inf

π∈ΠN
VN,π (x, i), (4a)

Π⋆
N(x, i) , argmin

π∈ΠN

VN,π (x, i). (4b)

We call V ⋆
N : Rn

×S → R,Π⋆
N ⊂ ΠN the value function and optimal

policy mapping, respectively.

4.1. Dynamic programming solution

In this subsection, we study properties of (4) using dynamic
programming. We also define an appropriate notion of controlled
invariance forMSS, namely uniform control invariance and establish
a connection with dynamic programming. In order to study
properties of (4) we introduce some notation due to Bertsekas
(2007).

Definition 5. For any V ∈ fcns(Rn, S) and any control law µ :

Rn
× S → Rm define the operator Tµ as

TµV (x, i) , ℓ(x, µ(x, i), i) +


j∈S

pijV (fi(x, µ(x, i)), j).

Definition 6. For any V ∈ fcns(Rn, S) define the operators T and
S, respectively as

TV (x, i) , inf
u


ℓ(x, u, i) +


j∈S

pijV (fi(x, u), j)


,

SV (x, i) , argmin
u


ℓ(x, u, i) +


j∈S

pijV (fi(x, u), j)


.

We call T and S, the DP operator and the optimal control operator,
respectively. For any k ∈ N, denote by Tk the composition of
T with itself k times. Similarly, for any feedback policy π , and
any k ∈ N, Tµ0Tµ1 · · · Tµk denotes the composition of operators
Tµ0 , Tµ1 , . . . , Tµk . Then the finite-horizon cost (cf. (3)) of the
feedback policy π for (1), starting from x0 = x, r0 = i can be
expressed as

VN,π (x, i) = (Tµ0Tµ1 · · · TµN−1)Vf (x, i),

while the value function can be expressed as

V ⋆
N(x, i) = TNVf (x, i).
The standard DP algorithm to compute the value function (4a) and
the optimal policy mapping (4b) is expressed as

V ⋆
0 = Vf , (5a)

V ⋆
k+1 = TV ⋆

k , U⋆
k+1 = SV ⋆

k , k ∈ N[0,N−1]. (5b)

Upon termination of the DP algorithm, the value function is V ⋆
N and

the optimal policymapping isΠ⋆
N = U⋆

N×· · ·×U⋆
1 (U⋆

k : Rn
×S ⇒

Rm).
In parallel with the DP operator, the so-called predecessor

operator is introduced below.

Definition 7. Given a family of sets C ∈ sets(Rn, S), let R(C) ,
{R(C, i)}i∈S where:

R(C, i) ,


x ∈ Rn

∃ u ∈ Rm s.t. (x, u) ∈ Yi
fi(x, u) ∈ Cr1 , ∀r ∈ G1(i)


. (6)

Using Definition 4, Eq. (6) becomes:

R(C, i) = Projx(Z(C, i)), (7a)

Z(C, i) ,

(x, u) ∈ Yi|fi(x, u) ∈ ∩j∈Si Cj


. (7b)

For any i ∈ S,R(C, i) denotes the set of states x, for which there
exists an admissible input such that, for all admissible switching
paths of length 1 emanating from i, the next state is in Cr1 .

For any k ∈ N, denote by Rk the composition of R, k times
with itself, i.e., Rk(C) , R(Rk−1(C)) = {R(Rk−1(C), i)}i∈S . Let
Rk(C, i) , R(Rk−1(C), i). Obviously, Rk(C) = {Rk(C, i)}i∈S . Here
we make the convention that R0(C) = C .

Theorem 11 presents properties of V ⋆
k ,U

⋆
k, k ∈ N[1,N], inherited

byproperties of ℓ andVf . These propertieswill be studiedunder the
following assumptions on the stage cost, ℓ:

Assumption 8. ℓ ∈ cl(Rn+m, S), dom ℓ = Y and ℓ(·, ·, i) is level-
bounded in u locally uniformly in x, for every i ∈ S.

Assumption 9. In addition to Assumption 8, ℓ ∈ conv(Rn+m, S).

Assumption 10. In addition to Assumption 9, ℓ ∈ pwq(Rn+m, S).

Assumption 8 is the minimal assumption (along with Assump-
tion 1) for which we will guarantee existence of an optimal policy.
The stronger Assumptions 9 and 10 lead to more favorable proper-
ties of V ⋆

k and U⋆
k .

Theorem 11. Consider a Vf ∈ fcns(Rn, S) with dom Vf = X f . Then
V ⋆
k ∈ fcns(Rn, S), k ∈ N[1,N]. Furthermore:

(a) If Assumptions 1 and 8 hold and Vf ∈ cl(Rn, S), then V ⋆
k ∈

cl(Rn, S), k ∈ N[1,N]. In addition, dom V ⋆
k = domU⋆

k =

Rk(X f ), and for each x ∈ domU⋆
k(·, i) the set domU⋆

k(x, i) is
compact, for any i ∈ S, k ∈ N[1,N].

(b) If Assumptions 2 and 9 hold and Vf ∈ conv(Rn, S), then V ⋆
k ∈

conv(Rn, S) andU⋆
k(·, i) is convex-valued and outer-semicontin-

uous relative to int(domU⋆
k(·, i)) for any i ∈ S, k ∈ N[1,N]. Fur-

thermore, if ℓ(·, ·, i) is strictly convex for some i ∈ S, then V ⋆
k (·, i)

is strictly convex andU⋆
k(·, i) is single-valued ondomU⋆

k(·, i) and
continuous relative to int(domU⋆

k(·, i)), k ∈ N[1,N].
(c) If Assumptions 2 and 10 hold and Vf ∈ pwq(Rn, S), then V ⋆

k ∈

pwq(Rn, S) and U⋆
k(·, i) is a polyhedral multifunction, thus

outer-semicontinuous relative to domU⋆
k(·, i) for any i ∈ S,

k ∈ N[1,N]. Furthermore, if ℓ(·, ·, i) is strictly convex for some
i ∈ S, then U⋆

k(·, i) is a single-valued, piecewise-affine mapping,
thus Lipschitz continuous relative to U⋆

k(·, i), for any k ∈ N[1,N].
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Proof. It suffices to prove the claims for k = 1. Then using a
simple induction argument, the corresponding properties for V ⋆

k ,
U⋆

k will hold for all k ∈ N[1,N]. Let hV
i (x, u) , ℓ(x, u, i) +

j∈S pijV (fi(x, u), j), i ∈ S. Then (5b) becomes

V ⋆
k+1(x, i) = inf

u
h
V ⋆
k

i (x, u), (8a)

U⋆
k+1(x, i) = argmin

u
h
V ⋆
k

i (x, u). (8b)

Therefore, properties of the dynamic programming operator can
be inferred by properties of the parametric optimization problem
(8). Obviously, from (7b) dom h

Vf
i = Z(X f , i). Since h

Vf
i > 0 and

h
Vf
i (0, 0) = 0 it follows that V ⋆

1 > 0 and V ⋆
1 (0, i) = 0, i ∈ S, hence

V ⋆
1 ∈ fcns(Rn, S).
(a) Because of Rockafellar and Wets, 2009 (Propositions 1.39,

1.40), h
Vf
i is closed for every i ∈ S. Since Vf is bounded below by

zero and pij > 0, it follows that


j∈S pijVf (fi(x, u), j) > 0. From
the uniform level-boundedness of ℓ(·, ·, i) we have that for any
x̄ ∈ Rn and any α ∈ R there exists a neighborhood N (x̄) along
with a bounded set B ⊂ Rm such that {u|ℓ(x, u, i) 6 α} ⊂ B
for all x ∈ N (x̄). Therefore, {u|h

Vf
i (x, u) 6 α} ⊂ {u|ℓ(x, u, i) 6

α} ⊂ B. Hence, h
Vf
i is proper, closed and level-bounded in u

locally uniformly in x, for every i ∈ S. By Rockafellar and Wets
(2009, Theorem 1.17), it follows that V ⋆

1 (·, i) is proper, closed,
dom V ⋆

1 (·, i) = domU⋆
1(·, i), and for each x ∈ domU⋆

1(·, i), the
set U⋆

1(x, i) is compact, for every i ∈ S. Furthermore, V ⋆
1 (·, i) =

{x|∃ α ∈ R s.t. (x, α) ∈ epi V ⋆
1 (·, i)} = {x|∃ α ∈ R ∃ u s.t. (x, α) ∈

epi h
Vf
i } = {x|∃ u s.t. (x, u) ∈ dom h

Vf
i } = R(X f , i). The first and

the third equality follow from the relationship between epigraphs
and effective domains, the second from the fact that for any x ∈

dom V ⋆
1 (·, i), the minimum is attained because of Rockafellar and

Wets (2009, Proposition 1.18), and the last equality follows from
(7a).

(b) Convexity is preserved under composition with affine
mappings and nonnegative sums, hence h

Vf
i is proper and convex.

The convexity of V ⋆
1 (·, i) and the convex-valuedness of U⋆

1(·, i)
followby Rockafellar andWets (2009, Proposition 2.22). The outer-
semicontinuity of U⋆

1(·, i) relative to int(domU⋆
1(·, i)) follows by

Rockafellar and Wets (2009, Theorem 7.41). If ℓ(·, ·, i) is strictly
convex, one can easily show by definition of strict convexity that
h
Vf
i is strictly convex as well. The single-valuedness of U⋆

1(·, i)
on domU⋆

1(·, i) and its continuity on int(U⋆
1(·, i)) follow by

Rockafellar andWets (2009, Theorem 7.43). In order to prove strict
convexity of V ⋆

1 (·, i), for any x1, x2 ∈ dom V ⋆
1 (·, i), x1 ≠ x2, let

u1 ∈ U⋆
1(x1, i) and u2 ∈ U⋆

1(x2, i). Then V ⋆
1 (τx1 + (1 − τ)x2, i) =

infu h
Vf
i (τx1+(1−τ)x2, u) 6 h

Vf
i (τx1+(1−τ)x2, τu1+(1−τ)u2) <

τV ⋆
1 (x1, i) + (1 − τ)V ⋆

1 (x2, i), for any τ ∈ (0, 1).
(c) The PWQ property is preserved under composition with

affine mappings and nonnegative sums (Rockafellar & Wets,
2009, Exercise 10.22), hence h

Vf
i is proper, convex, PWQ. The

fact that V ⋆
1 ∈ pwq(Rn, S) follows by Rockafellar and Wets

(2009, Corollary 11.32(c)). U⋆
1(·, i) is a polyhedral multifunction

which is proved in Patrinos and Sarimveis (2011, Proposition 5).
Outer-semicontinuity ofU⋆

1(·, i) on V ⋆
1 (·, i) follows fromDontchev

and Rockafellar (2009, Theorem 3D.1), and Lipschitz continuity of
U⋆

1(·, i) on V ⋆
1 (·, i) in case of strict convexity follows from part (b),

convexity of V ⋆
1 (·, i) and Dontchev and Rockafellar (2009, Corol-

lary 3D.5). �

Remark 12. In the case of constrainedMJLS, the value function and
an optimal policy π ⋆

∈ Π⋆
N can be calculated explicitly, using the

DP recursion (5) and the convex parametric piecewise quadratic
optimization solver of Patrinos and Sarimveis (2011). The solver
uses a computable formula for calculating the graphical derivative
(Patrinos & Sarimveis, 2010) of the solution mapping under a
graph traversal framework, to enumerate all critical regions, i.e., all
full-dimensional polyhedral sets on which the solution mapping
is polyhedral. For each k ∈ N[0,N−1], the proposed algorithm
calculates a µ⋆

k ∈ U⋆
k , where µ⋆

k is a piecewise affine (PWA)
mapping for each mode i ∈ S, i.e., dom V ⋆

k (·, i) is decomposed in a
finite number of polyhedral sets {P

j
k,i}j∈Jk,i whereµ⋆

k(·, i) is affine,
i.e., µ⋆

k(x, i) = K j
k,ix + κ

j
k,i if x ∈ P

j
k,i.

Tracing a parallel with invariant set theory for discrete-time
nonlinear systems (Kerrigan, 2000; Rakovic, Kerrigan, Mayne, &
Lygeros, 2006) we introduce the following notion of invariance for
MSS.

Definition 13. A family of sets C ∈ sets(Rn, S) with Ci ⊆ X is
said to be uniformly control invariant for the constrained MSS (1),
if there exists a policy π such that x0 ∈ Cr0 ⇒ φ(k; x, r0, π, r) ∈

Crk , k ∈ N, ∀r ∈ G(r0).

Remark 14. Uniform control invariance is a less conservative no-
tion than classical robust control invariance. By taking into consid-
eration themode of theMSS as an additional discrete-valued state,
a uniform control invariant set is allowed to depend on the current
mode while ensuring satisfaction of constraints for every possible
transition of the underlying Markov chain.

Lemma 15 presents the monotonicity property of the DP operator.
Its proof can be easily inferred by e.g., Bertsekas (2007, Chapter 3)
and is omitted for brevity.

Lemma 15. If V , V ′
∈ fcns(Rn, S)with V 6 V ′ then TkV 6 TkV ′ for

any k ∈ N.

The following lemma gives a geometric characterization of
uniform control invariance.

Lemma 16. A family of sets C ∈ sets(Rn, S)with C ⊆ X is uniformly
control invariant for the Markovian switching system (1), (2) if and
only if C ⊆ R(C).

Proof. For the reverse implication suppose that Ci ⊈ R(C, i) for
some i ∈ S. Then there exists a x ∈ Ci such that fi(x, u) ∉ Cj for
some j ∈ Si and for any u ∈ Ui(x). Pick a switching path r ∈ G

with rk = i and rk+1 = j. It then follows that for some xk ∈ Ci, there
does not exist a uk ∈ Urk(xk) such that xk+1 ∈ Crk+1 contradicting
the definition of uniform control invariance. The opposite direction
follows by an analogous argument. �

Lemma 17 presents a link between uniform control invariance
and the DP operator.

Lemma 17. Suppose that Assumptions 1 and 8 hold.
If Vf ∈ cl(Rn, S) and Vf > TVf then for all k ∈ N[0,N−1]

(a) V ⋆
k > V ⋆

k+1,
(b) dom V ⋆

k+1 is uniformly control invariant.

Proof. (a) Since Vf > TVf , using Lemma 15, V ⋆
k = TkVf > Tk+1Vf =

V ⋆
k+1.
(b) From the assumptions of the lemma, Theorem 11(a) is valid,

hence dom V ⋆
k = Rk(X f ) where X f

= dom Vf . Notice that part
(a) implies that dom V ⋆

k ⊆ dom V ⋆
k+1, or Rk(X f ) ⊆ Rk+1(X f ).

Equivalently, this can be expressed as Rk(X f ) ⊆ R(Rk(X f )).
Invoking Lemma 16, the claim is proved. �
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4.2. Conversion to a finite-dimensional optimization problem

This section shows how the constrained finite-horizon stochas-
tic optimal control problem (4) can be converted to a finite-
dimensional optimization problem. For each i ∈ S let QN(i) ,
N[1,|GN (i)|] and associate with each q ∈ QN(i) the correspond-
ing switching path emanating from i, i.e., rq ∈ GN(i). Also let
uq , {uq

0, . . . , u
q
N−1} denote a control sequence associated with

the q-th switching path and let xq , {xq0, . . . , x
q
N} represent the

sequence of solutions of:

xqk+1 = frqk (x
q
k, u

q
k). (9)

Let x , {xq}q∈QN (i), u , {uq
}q∈QN (i) and

pq
0 = 1, and pq

k+1 = pq
kprqk r

q
k+1

, k ∈ N[0,N−1]. (10)

Then (4) is equivalent to Shapiro, Dentcheva, and Ruszczyński
(2009)

V ⋆
N(x, i) = inf

x,u


q∈QN (i)

N−1
k=0

pq
kℓ(x

q
k, u

q
k, r

q
k ) + pq

NVf (x
q
N , rqN) (11a)

s.t. xq0 = x, ∀q ∈ QN(i), (11b)

xqk+1 = frqk (x
q
k, u

q
k), ∀q ∈ QN(i) k ∈ N[0,N−1], (11c)

xq1k = xq2k , ∀q1, q2 ∈ QN(i), with rq1
[k] = rq2

[k], k ∈ N[0,N−1], (11d)

uq1
k = uq2

k , ∀q1, q2 ∈ QN(i), with rq1
[k] = rq2

[k], k ∈ N[0,N−1], (11e)

(xqk, u
q
k) ∈ Yrqk

, ∀q ∈ QN(i), k ∈ N[0,N−1], (11f)

xqN ∈ X f
rqN

, ∀q ∈ QN(i). (11g)

It is easy to notice that if Assumptions 2 and 9 hold then (11)
is a convex optimization problem, for which efficient solution
algorithms exist. Furthermore, problem (11) possesses favorable
structurewhich can be exploited for its efficient numerical solution
based on techniques of dual decomposition (Shapiro et al., 2009).
However, it can be highly complex for large number of modes and
large prediction horizons. This complexity can be mitigated at the
expense of introducing some conservatism based on scenario tree
reduction (Bernardini & Bemporad, 2012).

5. Stability of autonomous markovian switching systems

In this section, we proceed with the establishment of sufficient
conditions for mean-square stability and exponential mean-
square stability of constrained autonomous MSS. Consider the
autonomous MSS:

xk+1 = frk(xk) (12)

with fi(0) = 0, i ∈ S. Since the system has no input, ‘‘uniformly
control invariant’’ is replaced with ‘‘uniformly positive invariant’’
in Definition 13, the predecessor operator (6) becomes R(C, i) =

{x ∈ Xi|fi(x) ∈ ∩j∈Si Cj} and Lemma 16 remains valid with the
appropriate modifications. The solution of (12) at time k ∈ N given
a switching path r with r0 = i and x0 = x is denoted byφ(k; x, i, r).

Definition 18. Let X ∈ sets(Rn, S) be a uniformly positive
invariant set for (12). We say that the origin is:

(a) Mean square (MS) stable in X if

lim
k→∞

E[∥φ(k; x, i, r)∥2
] = 0, ∀x ∈ Xi, i ∈ S.
(b) Exponentially mean square (EMS) stable in X if there exist θ > 1,
0 < ζ 6 1 such that

E[∥φ(k; x, i, r)∥2
] 6 θζ k

∥x∥2, ∀x ∈ Xi, i ∈ S.

The assumption that X is uniformly positive invariant for (12)
ensures that φ(k; x, i, r) ∈ Xrk for all x ∈ Xi, r ∈ G(i) and i ∈ S.
For any V : X × S → R let:
LV (xk, rk) , E[V (xk+1, rk+1) − V (xk, rk)|Fk].

Due to the Markov property one has:

LV (xk, rk) =


rk+1∈S

prkrk+1V (frk(xk), rk+1) − V (xk, rk).

Lemma 19. For any 0 6 k1 6 k2

E[V (xk2 , rk2) − V (xk1 , rk1)|Fk1 ] = E


k2−1
k=k1

LV (xk, rk)|Fk1


.

Proof. Notice that V (xk2 , rk2) − V (xk1 , rk1) =
k2−1

k=k1
[V (xk+1,

rk+1)−V (xk, rk)]. Taking the conditional expectation:E[V (xk2 , rk2)
−V (xk1 , rk1)|Fk1 ] = E[

k2−1
k=k1

[V (xk+1, rk+1)−V (xk, rk)|Fk1 ]]. Using
properties of the conditional expectation, the right-hand side of the
above becomes: E[

k2−1
k=k1

E[V (xk+1, rk+1) − V (xk, rk)|Fk]|Fk1 ] =

E
k2−1

k=k1
LV (xk, rk)|Fk1


and the statement is valid. �

In the next theorem, sufficient stochastic Lyapunov-like conditions
for MS and EMS stability of (12) are presented.

Theorem 20. Consider the autonomous MSS (12). Let X be a uni-
formly positive invariant set for (12).
(a) Suppose that there exists a V ∈ fcns(Rn, S) and γ > 0 satisfying

LV (x, i) 6 −γ ∥x∥2, ∀ x ∈ Xi, i ∈ S. Then the origin is MS stable
in X for (12).

(b) Assume that there exists a V ∈ fcns(Rn, S) and positive scalars
α, β and γ satisfying the following properties.

α∥x∥2 6 V (x, i) 6 β∥x∥2, (13a)

LV (x, i) 6 −γ ∥x∥2, (13b)

for all x ∈ Xi, i ∈ S. Then the origin is EMS stable in X for (12).
Proof. (a) Using Lemma 19 for k1 = 0 and k2 = k

E[V (xk, rk) − V (x0, r0)] = E


k−1
j=0

LV (xj, rj)



6 −γ

k−1
j=0

E[∥xj∥2
],

implying in turn γ
k−1

j=0 E[∥xj∥2
] 6 V (x0, r0) − E[V (xk, rk)] 6

V (x0, r0). This yields
k−1

j=0 E[∥xj∥2
] 6 V (x0, r0)/γ , i.e., the partial

sums of


∞

j=0 E[∥xj∥2
] form a bounded sequence, therefore the

series converges, implying that one must have limk→∞ E[∥xk∥2
]

= 0.
(b) We have E[V (xk+1, rk+1) − V (xk, rk)] 6 −γ E[∥xk∥2

] 6
−(γ /β)E[V (xk, rk)], where the first inequality follows from (13b)
and the second from (13a). Therefore:

E[V (xk+1, rk+1)] 6 ζE[V (xk, rk)] (14)

where ζ , 1 − (γ /β). Using (13b) and (13a) it is 0 ≤ E[V
(xk+1, rk+1)] 6 E[V (xk, rk)] − γ ∥xk∥2 6 (β − γ )∥xk∥2 and it can
be inferred that 0 ≤ ζ 6 1. Applying recursively (14), we arrive
at E[V (xk, rk)] 6 ζ kV (x0, r0). Using (13a) we have αE[∥xk∥2

] 6
E[V (xk, rk)] 6 ζ k V (x0, r0) 6 ζ kβ∥x0∥2. Finally we arrive at
E[∥xk∥2

] 6 θζ k
∥x0∥2 where θ , β/α > 1. �
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For the rest of this section the focus is on autonomous MJLS:

xk+1 = Arkxk, (15)

where the state vector must satisfy the constraint xk ∈ Xrk , k ∈ N
for all r ∈ G where X ∈ cl-sets(Rn, S). Let Φ(k; r) = Ar0Ar1 · · · Ark
for k > 0 and Φ(0; r) = I . The maximal uniformly positive
invariant set is X⋆

= {X⋆
i }i∈S with X⋆

i = {x ∈ Rn
|Φ(k; r)x ∈

Xrk , ∀ k ∈ N, r ∈ G(i)} and can be calculated via the recursion
Xk+1

= R(Xk), with X0
= X . It is not difficult to see that for any

i ∈ S:

Xk
i = {x ∈ Rn

|Φ(t; r)x ∈ Xrt , ∀t ∈ N[0,k], r ∈ Gk(i)}. (16)

For autonomous LTI systems (|S| = 1) it is known that asymp-
totic stability of (15) implies that the maximal positive invariant
set is finitely determined and the origin belongs to its interior
(Gilbert & Tan, 1991). However, when S > 1, MS stability of (15)
is not sufficient, neither for finite determinedness of X⋆, nor for
its full-dimensionality. For that matter, a stronger notion of sta-
bility is required, i.e., uniform asymptotic stability. The MJLS (15)
can be viewed as a discrete-time linear switched system (Daafouz,
Riedinger, & Iung, 2002; Lee & Dullerud, 2006), where the switch-
ing path is constrained by the matrix Q = (qij) ∈ {0, 1}S×S where
S = |S|, qij = 1 if pij > 0, and qij = 0 otherwise. The MJLS (15)
is said to be uniformly asymptotically stable if for every x ∈ Rn,
Φ(k; r)x converges to zero uniformly, over all r ∈ G, as k ap-
proaches infinity. A necessary and sufficient condition for uniform
asymptotic stability of (15) is the existence of Pi ∈ Rn×n, such that
Pi > 0 and Pi−A′

iPjAi < 0 for all j ∈ Si, i ∈ S (Daafouz et al., 2002).
Notice that uniform asymptotic stability implies mean-square (ex-
ponential) stability. Next, we will establish a sufficient condition
for finite determinedness of X⋆.

Lemma 21. Suppose that (15) is uniformly asymptotically stable, Xi
is compact and 0 ∈ int Xi, i ∈ S. Then X⋆ is finitely determined and
0 ∈ int X⋆

i .

Proof. By monotonicity, the sequence {Xk
} is non-increasing. X⋆

is finitely determined if and only if there exists a k⋆ such that
Xk

= Xk+1, for all k > k⋆. Since Xi is bounded there exists an ϵ > 0
such that Xi ⊆ B(ϵ), for every i ∈ S. This fact, and themonotonicity
of the sequence lead to Xk

i ⊆ B(ϵ), for every k ∈ N, i ∈ S. Since
0 ∈ int Xi and limk→∞ ∥Φ(k; r)∥ = 0 for every r ∈ G, it follows
that there exists a k ∈ N such that Φ(k + 1; r)B(ϵ) ⊆ Xrk+1 , for
every r ∈ Gk+1(i) and since Xk

i ⊆ B(ϵ), we get Φ(k + 1; r)Xk
i ⊆

Xrk+1 , for every r ∈ Gk+1(i), i ∈ S. This shows that x ∈ Xk
i implies

Φ(k + 1; r)x ∈ Xrk+1 . Using (16) this is translated to Xk
⊆ Xk+1,

therefore Xk
= Xk+1, and X⋆ is finitely determined.

To prove that 0 ∈ int X⋆
i , i ∈ S, from the uniform asymptotic

stability of (15) we have that there exists a constant γ1 > 0 such
that ∥Φ(k; r)x∥ 6 γ1∥x∥. Since 0 ∈ int Xi, there exists a γ2 > 0
such that B(γ2) ⊆ Xi, i ∈ S. Then γ1∥x∥ 6 γ2 impliesΦ(k; r)x ∈ Xi
for all i ∈ S and all r ∈ G. Hence B(γ2/γ1) ⊆ X⋆

i and consequently
0 ∈ int X⋆

i for every i ∈ S. �

6. Stochastic MPC for MSS

In stochastic MPC the stationary policy µ⋆
N ∈ SV ⋆

N−1, i.e.,
Tµ⋆

N
V ⋆
N−1 = TV ⋆

N−1 = V ⋆
N is implemented to system (1). For fu-

ture reference, the following notation for the MSS in closed-loop
with the receding horizon controller is introduced:

xk+1 = f
µ⋆
N

rk (xk), (17)

where f
µ⋆
N

i (x) , fi(x, µ⋆
N(x, i)). If Assumptions 2 and 10 hold, then

theprocedure described inRemark12 canbe employed to calculate
off-line themode-dependent, PWA receding horizon controllerµ⋆
N .

The implementation of the receding-horizon controller is trivial,
since only aminimal number of computations is performed on line.
Specifically, at time k, after the state (x(k), r(k)) of (1) is measured,
one needs to find a j ∈ JN,r(k) such that x(k) ∈ P

j
N,r(k), and apply

u(k) = K j
N,r(k)x(k) + κ

j
N,r(k) to the system.

In any other case, if merely Assumptions 1 and 8 hold, one can
calculate on-line the receding horizon control action, by solving at
each time instant k, the optimization problem (11). The following
standard assumption is imposed for the stage cost.

Assumption 22. The stage cost satisfies ℓ(x, u, i) > α∥x∥2 for
every (x, u) ∈ Yi, i ∈ S for some α > 0.

Mean-square stability can be guaranteed under the following
assumption for the terminal cost function.

Assumption 23. Vf ∈ cl(Rn
× S), with Vf > TVf .

Assumption 23 is trivially satisfied when Vf = δ{0}.

Theorem 24. Suppose that Assumptions 1, 8, 22 and 23 hold. Then
the origin is mean-square stable in X⋆

N , dom V ⋆
N for (17).

Proof. By virtue of the fact that V ⋆
N = Tµ⋆

N
VN−1:

LV ⋆
N(x, i) =


j∈S

pijV ⋆
N(f

µ⋆
N

i (x), j) − V ⋆
N(x, i) (18a)

=


j∈S

pijV ⋆
N(f

µ⋆
N

i (x), j) − ℓ(x, µ⋆
N(x, i), i), (18b)

and from Assumption 23 and Lemma 17(a) it is LV ⋆
N(x, i) 6

−ℓ(x, µ⋆
N(x, i), i). Due to Assumption 22 it is LV ⋆

N(x, i) 6 −α∥x∥2.
The claim is proved by invoking Theorem 20(a). �

Assumption 25. Stage cost ℓ(x, u, i) = x′Qix + u′Riu + δYi with
Qi > 0, Ri > 0, i ∈ S. Furthermore Y ∈ poly-sets(Rn+m, S) with
Yi bounded.

For constrained MJLS (Assumption 2), if the stage cost satisfies
Assumption 25, one can choose

Vf (x, i) = x′P f
i x + δX f

i
, (19)

where P f
i , i ∈ S solve the CARE, (Costa et al., 2005, Chapter 4)

P f
i = A′

iEi(P f )Ai + Qi

− A′

iEi(P f )Bi(Ri + B′

iEi(P f )Bi)
−1B′

iEi(P f )Ai, (20)

with Ei(P f ) =


j∈S pijP
f
j , and X f

= {X f
i }i∈S is the maximal uni-

formly positive invariant set for the MJLS in closed loop with the
unconstrained optimal policy:

µ(x, i) = −(Ri + B′

iEi(P f )Bi)
−1B′

iEi(P f )Aix. (21)

In order to assure mean square exponential stability the following
stronger assumption on the terminal cost is required:

Assumption 26. Vf ∈ cl(Rn
× S), with Vf > TVf , Vf (x, i) 6 δ∥x∥2

and 0 ∈ int(dom Vf (·, i)), i ∈ S.

Theorem 27. Suppose that Assumptions 1, 8, 22 and 26 hold and 0 ∈

int(dom Vf ), V ⋆
N(·, i) is continuous on XN

i , dom V ⋆
N(·, i) and XN

i is
compact for every i ∈ S. Then the origin is mean square exponentially
stable in XN for (17).
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Proof. Because of Assumption 22 and V ⋆
N(x, i) = ℓ(x, µ⋆

N(x, i), i)+
j∈S pijVN−1(f

µ⋆
N

i (x), j) it follows that α∥x∥2 6 V ⋆
N(x, i), x ∈

XN
i , i ∈ S. Since Vf > TVf (Assumption 26), using the monotonic-

ity of the DP operator (Lemma 17(a)), we arrive at Vf > V ⋆
N . There-

fore, through Assumption 26, V ⋆
N(x, i) 6 δ∥x∥2. This fact alongwith

the extra assumption 0 ∈ int(dom Vf ), in conjunction with the
continuity and compactness assumption provide an upper bound
for V ⋆

N relative to XN , (Rawlings & Mayne, 2009, Proposition 2.18),
i.e., there exists a β > 0 such that V ⋆

N(x, i) 6 β∥x∥2 for any
x ∈ XN

i , i ∈ S. As it was shown in Theorem 24, XN is uniformly
positive invariant for system (17) andLV ⋆(x, i) 6 −α∥x∥2, for any
x ∈ XN

i , i ∈ S. In virtue of Theorem 20(b), the origin is exponen-
tially mean-square stable in XN for (17). �

An important case where Theorem 27 is valid is SMPC of
constrained MJLS.

Corollary 28. Let Assumptions 2 and 25 hold. Consider the LMIZi (AiZi + BiYi)
′Fi ZiQ

1/2
i Y ′

i R
1/2
i

⋆ Z 0 0
⋆ ⋆ I 0
⋆ ⋆ ⋆ I

 > 0, i ∈ S (22a)


Zi (AiZi + BiYi)

′

⋆ Zj


> 0, j ∈ Si, i ∈ S (22b)

where Fi =
√

pi1I · · ·
√
piS I


, i ∈ S, and Z = diag(Z1,

. . . , ZS). If (22) is feasible, consider the terminal cost (19) where
P f
i = Z−1

i , and X f
= {X f

i }i∈S is the maximal uniformly positive
invariant set for the MSS in closed-loop with µ(x, i) = Kix (Ki =

YiZ−1
i ), i ∈ S. Then the origin is mean-square exponentially stable

in XN
= dom V ⋆

N for (17).

Proof. Consider the closed-loop system xk+1 = (Ark + BrkKrk)xk.
Using the Schur complement formula, Eq. (22a) is equivalent to
P f
i > (Ai + BiKi)

′(


j∈S pijP
f
j )(Ai + BiKi) + (Qi + K ′

i RiKi), for i ∈ S.
Therefore V > TµV > TV . Using the Schur complement formula,
Eq. (22b) becomes P f

i > (Ai + BiKi)
′P f

j (Ai + BiKi), j ∈ Si, i ∈ S,
implying that the origin is uniformly asymptotically stable for the
close-loop system.

By Lemma 21, 0 ∈ int X f
i , i ∈ S. Therefore, the terminal cost

(19) satisfies Assumption 26. Furthermore, Assumption 25 obvi-
ously implies Assumption 10. Therefore, Theorem 11(c) is valid,
hence V ⋆

∈ pwq(Rn, S), implying that V ⋆(·, i) is continuous rel-
ative to its effective domain for i ∈ S. Furthermore, dom V ⋆(·, i) is
compact, hence Theorem 27 is valid, proving EMS of the origin in
dom V ⋆ for (17). �

Note that the LMI (22) is feasible if and only if the set of pair
{(Ai, Bi)}i∈S is mean-square stabilizable, i.e., if there exist feedback
gains {Ki}i∈S so that the closed-loop system is mean-square stable.
The following corollary allows us to perform MPC for nonlinear
MSS using local linearization. This result is reminiscent of the
standard nonlinear MPC approach that can be found in Rawlings
and Mayne (2009, Section 2.5.1.3).

Corollary 29. Suppose that fi, i ∈ S are twice continuously differen-
tiable and Assumptions 1 and 25 hold. For i ∈ S define Ai =

∂ fi
∂x (0, 0),

and Bi =
∂ fi
∂u (0, 0). Let P

f
i be given by (20) for replacing Qi by 2Qi and

Ri by 2Ri. Let Vf be given by (19) with X f
i = {x|x′P f

i x 6 α}. Then,
there exists α > 0 such that Assumption 26 is satisfied and the origin
becomes mean-square exponentially stable in XN

= dom V ⋆
N for the

nonlinear MSS (17).
7. Illustrative examples

7.1. Samuelson’s macroeconomic model

In this example we compare the SMPC scheme for constrained
MJLS against the algorithm of Costa et al. (1999). The algorithm of
Costa et al. (1999) is an extension of the robust MPC algorithm of
Kothare et al. (1996) to stochastic MPC of MJLS with symmetric in-
put and state constraints. Essentially, it is anMPC schemewith pre-
diction horizon 1, where in real-time an LMI problem is solved, to
compute a mode-dependent, linear control law which minimizes
an upper bound of the infinite-horizon cost. The two techniques
will be compared on Samuelson’s multiplier-accelerator macroe-
conomic model (Blair & Sworder, 1975). The system has three op-
erating modes and satisfies Assumption 2 with

A1 =


0 1

−2.5 3.2


, A2 =


0 1

−4.3 4.5


,

A3 =


0 1
5.3 −5.2


,

B1 = B2 = B3 =

0 1

′. The mode-dependent polyhedra con-
straint sets are Y1 = [−10, 10]2, Y2 = [−8, 8] × [−10, 10],
Y3 = [−12, 12] × [−10, 10]. The stage-cost satisfies Assump-
tion 25 with

Q1 =


3.6 −3.8

−3.8 4.87


, Q2 =


10 −3
−3 8


,

Q3 =


5 −4.5

−4.5 5


,

and R1 = 2.6, R2 = 1.165, R3 = 1.111. The transitionmatrix of the
Markov chain is

P =

0.67 0.17 0.16
0.3 0.47 0.23
0.26 0.1 0.64


.

The terminal cost is chosen so as to satisfy Eqs. (19), (20). Themax-
imal uniformly positive invariant set for the system in closed-loop
with (21) chosen as a terminal set. The prediction horizon isN = 6.
The SMPC problem was solved explicitly off-line, using the tech-
nique outlined in Remark 12. The effective domain dom V ⋆

6 (the
region of attraction of the system in closed-loop with the SMPC
controller) consists of 393, 409 and 465 polyhedral sets, for each
one of the three modes, respectively. The region of attraction of
the LMI algorithm (Costa et al., 1999) is computed approximately
by gridding the polyhedral set ProjxY . As expected, the region of
attraction of the proposed SMPC algorithm is a superset of the one
corresponding to the LMI-based MPC algorithm, for every mode of
the Markov chain (Fig. 1).

Next, we simulate the MJLS in closed-loop with the SMPC and
the LMI-based controller for 30 time steps starting from a vertex
of the region of attraction of the LMI-based approach, by selecting
randomly 20 admissible switching paths, for each mode. The goal
of this task is to compare the two design methodologies in terms
of closed-loop simulated cost. As it can be seen from Fig. 2, the
proposed SMPC algorithm always results in a smaller simulation
cost.

Fig. 3 depicts statistical results for simulations of the MJLS sys-
tem in closed-loop with the SMPC controller for 10000 randomly
generated admissible switching paths of length 30 emanating from
mode i = 2 and initial state x0 = −


8 8

′.

7.2. Constrained networked control with random time delay

We apply the proposed SMPC design on a networked con-
trol system (NCS) and manifest its advantages over alternative
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Fig. 3. Simulation of MJLS on closed-loop with SMPC for 10000 switching paths from G30(2) starting from x0 = −[8 8]′ .
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Fig. 4. Simulation of the closed-loop system using the SMPC controller, in continuous time, starting from x(0) = [9.72 8.98]′ and r0 = 1.
approaches found in literature. We consider the NCS model
consisting of a printer described via a linear time-invariant,
continuous-time plant that is controlled using a discrete-time
controller that is connected to the system through a communi-
cation network with induced sensor-to-controller (SC), τ sc, and
controller-to-actuator (CA), τ ca, delays (Cloosterman, 2008). The
controller delay (the time needed by the controller to perform
computations) is assumed to be incorporated into the CAdelay. The
full state of the system is sampled by a time-driven sensor with a
constant sampling interval h > 0. The discrete-time controller is
event-driven and able to monitor the SC delay, via timestamping.
The CA delay is considered to be constant by using the buffering
technique. The discrete-time control signal uk is transformed to
a continuous-time control input u(t) by a zero-order hold device
(ZOH). Based on these assumptions, the NCS model is:

ẋ(t) = Acx(t) + Bcu(t), (23a)

u(t) = uk, t ∈ [kh + τ sc
k + τ ca

k , (k + 1)h + τ sc
k+1 + τ ca

k+1), (23b)

where Ac =


0 1
0 0


, Bc =


0

126.70


. The system is subject to

continuous-time state, x(t) ∈ X , [−10, 10]2, t ∈ R+, input
constraints uk ∈ U = [−2, 2] andQ = 10I2 and R = 1 are the state
and inputweightmatrices for the continuous-time optimal control
problem. The sampling interval is h = 20 ms while the SC delay
can take the values τ sc,1

= 3 ms and τ sc,2
= 15 ms with transition

matrix P =


0.67 0.33
0.30 0.70


. The CA delay is considered constant with

τ ca
= 1ms. Using the technique described in Patrinos et al. (2011),

(23) is transformed into a discrete-time MJLS in the extended
state space ξk , [x′

k u′

k−1]
′

∈ Rnx+nu (xk = x(kh)), whereas
the continuous time constraints on the state vector X , have been
replaced with polyhedral constraint set Y ⊆ Rnx × Rnu × Rnu that
guarantees continuous-time constraint satisfaction for the NCS.

We set the horizon length to N = 10 steps. In the following il-
lustrations we present a visualization of the polyhedral decompo-
sition of the feasible state space onwhich the control law is defined
as a PWA function over these regions. The mode-dependent PWA
control law consists of 61 and 73 critical regions for each of the two
modes.

In order to elucidate the benefits of SMPC we compare our
results with alternative control approaches. The first approach
(Delay-free MPC) is a deterministic MPC scheme for the exact
discretization of the continuous-time system without taking into
consideration the time-varying delay, i.e., for the system xk+1 =

eAchxk + Γ0(h)uk, where Γ0(t) ,
 t
0 eAcsdsBc . Constraints are im-

posed only on discrete sampling times while the cost function is
considered to be quadratic, ℓ(x, u) =

1
2 (x

′Qhx + u′Rhu) where
Qh = hQ and Rh = hR. The second alternative scheme (Non-
switched MPC) is a deterministic MPC controller for the exact
discretization of the continuous-time system where the delay is
considered constant and equal to its greatest value (worst case sce-
nario, τmax = 16 ms), i.e., for the discrete-time system ξk+1 =
eAch Γ0(h) − Γ0(h − τmax)


ξk + Γ0(h − τmax)uk and the con-

straints are imposed only for the sampling times. In order to
compare SMPC against the alternative schemes, 20 simulations
(corresponding to 20 switching paths according to the transi-
tion matrix) for every extreme point of the effective domain of
V ⋆
N(·, i), i ∈ S are performed. For each one of them, SMPC achieved

mean-square stability for the continuous time closed-loop sys-
tem while respecting the constraints in the continuous time. Non-
switched MPC achieved this goal only in 66.77% of the cases while
for delay-free MPC the percentage drops to 8.47%. An illustrative
simulation of the NCS in closed-loop with the SMPC controller is
depicted in Fig. 4.

7.3. Control of a nonlinear Lotka–Volterra model

Consider a discrete-time two-state nonlinear Lotka–Volterra
model whose dynamics is described by:

xk+1 =
arkxk − bxkyk

1 + cxk
+ uk, yk+1 =

dyk − hxkyk
1 + gyk

, (24)
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Fig. 5. Closed-loop trajectories of the Lotka–Volterra system from the initial point
(x0, y0) = (0.2, 0.1) in closed-loop with the nonlinear SMPC controller. (Blue)
Lower bound, (Red) Upper bound, (Dashed) Average value, (Yellow) Individual
trajectories. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

where the parameter ark is governed by a time-homogeneous
Markov chain with states S = {1, 2, 3} and transition matrix

P =

0.85 0.1 0.05
0.2 0 0.8
0.1 0.2 0.7


,

so that ark = ai whenever rk = i and a1 = 0.8, a2 = 1.1,
a3 = 1. The linearization matrices Ai and Bi about the origin which
are given by Corollary 29 are

Ai =


ai 0
0 d


, and Bi =


1
0


.

The system is subject to the following state and input constraints
xk ∈ X = {[

x
y] ∈ R2

| − 1 6 x 6 1, −1 6 y 6 1} and
uk ∈ U = {u ∈ R| − 0.1 6 u 6 0.1}. The other parameters of the
system were chosen to be b = 0.2, c = 0.1, d = 0.95, h = 0.1 and
g = 0.5. We formulated the nonlinear SMPC problem described in
Corollary 29 using α = 0.04 and horizon lengthN = 8. Theweight
matrices in the cost function were set to Qi = 10 · I2 and Ri = 100
for i = 1, 2, 3. The closed-loop trajectories of the Lotka–Volterra
system are presented in Fig. 5 based on 100 randomly generated
admissible switching paths.

8. Conclusions

The present paper has proposed a new SMPC algorithm for
constrained MSS. This class of stochastic switching systems is an
extension of MJLS, a type of systems that have been studied thor-
oughly in the literature. In this work, the general case of nonlin-
ear mode dynamics and state-input constraints are investigated
in detail. Specifically, a new type of positive invariance is intro-
duced, namely uniform positive invariance, that is less conserva-
tive than robust positive invariance and stochastic Lyapunov-type
conditions for mean-square stability are stated and proved. Fur-
thermore, conditions that the terminal cost and terminal set must
satisfy are given, that guarantee mean-square stability of the sys-
tem in closed loop with the proposed SMPC controller. The new
approach is shown to be significantly less conservative than the
ones proposed in the literature, through simulations. For the spe-
cial case of MJLS with quadratic costs and polyhedral constraint
sets, we showhowone can compute the explicit SMPC lawby com-
bining DP and parametric optimization.

Acknowledgments

The authors thank the associate editor and the anonymous
reviewers for their valuable comments and suggestions for
improving the original manuscript.

References

Abou-Kandil, H., Freiling, G., & Jank, G. (1995). On the solution of discrete-time
Markovian jump linear quadratic control problems. Automatica, 31, 765–768.

Akella, R., &Kumar, P. R. (1986). Optimal control of production rate in a failure prone
manufacturing system. IEEE Transactions on Automatic Control, 31(2), 116–126.

Ash, R. B. (1972). Real analysis and probability. Academic Press.
Bernardini, D., & Bemporad, A. (2009). Scenario-based model predictive control of

stochastic constrained linear systems. In Proc. 48th IEEE conf. on decision and
control. Shanghai, China (pp. 6333–6338).

Bernardini, D., & Bemporad, A. (2012). Stabilizing model predictive control of
stochastic constrained linear systems. IEEE Transactions on Automatic Control,
57(6), 1468–1480.

Bertsekas, D. P. (2007). Dynamic programming and optimal control. Vol. II. Athena
Scientific.

Blair, W. P., & Sworder, D. D. (1975). Feedback control of a class of linear discrete
systemswith jump parameters and quadratic cost criteria. International Journal
of Control, 21(5), 833–841.

Bolzern, P., Colaneri, P., & De Nicolao, G. (2004). On almost sure stability of discrete-
time Markov jump linear systems. In Proc. 43rd IEEE conference on decision and
control. Vol. 3, Nassau (pp. 3204–3208).

Boukas, E. K., & Yang, H. (1995). Stability of discrete-time linear systems with
Markovian jumping parameters. Mathematics of Control, Signals, and Systems
(MCSS), 8(4), 390–402.

Cloosterman, M. B. G. (2008). Control of systems over communication networks:
modelling, analysis and design (Ph.D. thesis). The Netherlands: Eindhoven
University of Technology.

Costa, O. L. V., Filho, E. O. A., Boukas, E. K., & Marques, R. P. (1999). Constrained
quadratic state feedback control of discrete-time Markovian jump linear
systems. Automatica, 35(4), 617–626.

Costa, O. L. V., Fragoso, M. D., & Marques, R. P. (2005). Discrete-time Markov jump
linear systems. Springer.

Daafouz, J., Riedinger, P., & Iung, C. (2002). Stability analysis and control
synthesis for switched systems: a switched Lyapunov function approach. IEEE
Transactions on Automatic Control, 47(11), 1883–1887.

Delvigne, F., Blaise, Y., Destain, J., & Thonart, P. (2012). Impact of mixing
imperfections on yeast bioreactor performances: scale-down reactor concept
and related experimental tools. Cerevisia, 37(2), 68–75.

Dontchev, A. L., & Rockafellar, R. T. (2009). Implicit functions and solution mappings.
Springer.

Fang, Y., & Loparo, K. A. (2002). Stochastic stability of jump linear systems. IEEE
Transactions on Automatic Control, 47(7), 1204–1208.

Gilbert, E. G., & Tan, K. T. (1991). Linear systems with state and control constraints:
the theory and application ofmaximal output admissible sets. IEEE Transactions
on Automatic Control, 36(9), 1008–1020.

Kerrigan, E. C. (2000). Robust constraint satisfaction: invariant sets and predictive
control (Ph.D. thesis). UK: Department of Engineering, University of Cambridge.

Kothare, M. V., Balakrishnan, V., & Morari, M. (1996). Robust constrained
model predictive control using linear matrix inequalities. Automatica, 32(10),
1361–1379.

Krasovskii, N. N., & Lidskii, E. A. (1961). Analysis design of controller in systemswith
random attributes: part 1. Automation and Remote Control, 22, 1021–1025.

Lee, J. W., & Dullerud, G. E. (2006). Uniform stabilization of discrete-time switched
and Markovian jump linear systems. Automatica, 42(2), 205–218.

Patrinos, P., & Sarimveis, H. (2010). A new algorithm for solving convex parametric
quadratic programs based on graphical derivatives of solution mappings.
Automatica, 46(9), 1405–1418.

Patrinos, P., & Sarimveis, H. (2011). Convex parametric piecewise quadratic
optimization: theory and algorithms. Automatica, 47(8), 1770–1777.

Patrinos, P., Sopasakis, P., & Sarimveis, H. (2011). Stochasticmodel predictive control
for constrained networked control systems with random time delay. In Proc.
18th IFAC world congress. Milano, Italy (pp. 12626–12631).

Rakovic, S. V., Kerrigan, E. C., Mayne, D. Q., & Lygeros, J. (2006). Reachability analysis
of discrete-time systems with disturbances. IEEE Transactions on Automatic
Control, 51(4), 546–561.

Rami, M. A., & Ghaoui, L. E. (1996). LMI optimization for nonstandard Riccati
equations arising in stochastic control. IEEE Transactions on Automatic Control,
41(11), 1666–1671.

Rawlings, J. B., & Mayne, D. Q. (2009). Model predictive control: theory and design.
Madison: Nob Hill Publishing.

Rockafellar, R. T., & Wets, R. J. B. (2009). Variational analysis. Springer Verlag.
Shapiro, A., Dentcheva, D., & Ruszczyński, A. (2009). Lectures on stochastic

programming: modeling and theory. SIAM.

http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref1
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref2
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref3
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref5
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref6
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref7
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref9
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref10
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref11
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref12
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref13
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref14
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref15
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref16
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref17
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref18
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref19
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref20
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref21
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref22
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref23
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref25
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref26
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref27
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref28
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref29


2514 P. Patrinos et al. / Automatica 50 (2014) 2504–2514
Sworder, D. (1969). Feedback control of a class of linear systems with jump
parameters. IEEE Transactions on Automatic Control, 14(1), 9–14.

Tejada, A., González, O. R., & Gray,W. S. (2010). On nonlinear discrete-time systems
driven by Markov chains. Journal of the Franklin Institute, 347, 795–805.

Vargas, A.N., Furloni, W., & do Val, J.B.R. (2006). Constrained model predictive
control of jump linear systems with noise and non-observed Markov state. In
American control conference. Minneapolis (pp. 929–934).

Wonham, W. M. (1970). Random differential equations in control theory. Academic
Press Inc.

Zampolli, F. (2006). Optimal monetary policy in a regime-switching economy:
the response to abrupt shifts in exchange rate dynamics. Journal of Economic
Dynamics and Control, 30(9–10), 1527–1567.

Panagiotis Patrinos is currently an Assistant Professor at
the IMT Institute for Advanced Studies Lucca, Italy. Previ-
ously, he was a Post-Doctoral fellow at IMT Lucca and at
University of Trento. He received his Ph.D. in Control and
Optimization, M.Sc. in Applied Mathematics and M.Eng. in
Chemical Engineering, all from National Technical Univer-
sity of Athens, in 2010, 2005 and 2003, respectively. His
current research interests are focused on devising efficient
algorithms for large-scale distributed optimization with
applications in embedded model predictive control (MPC)
and machine learning. He is also interested in stochastic,

risk-averse and distributedMPCwith applications in the energy and power systems
domain.

Pantelis Sopasakis was born in Athens, Greece, in 1985.
He received his diploma in Chemical Engineering in 2007
and an M.Sc. with honours in Applied Mathematics in
2009 from the National Technical University of Athens.
In December 2012, he defended his Ph.D. Thesis titled
‘‘Modelling and control of biological and physiological
systems’’ from the School of Chemical Engineering, NTU
Athens. In January 2013 he joined the Dynamical Systems,
Control and Optimization (DYSCO) research unit at IMT
Lucca as a post-doctoral Fellow. His research interests re-
volve around model predictive control (MPC), optimiza-

tion, sampled-data systems, impulsive systems and control of stochastic systems.
Haralambos Sarimveis received his Diploma in Chemical
Engineering from the National Technical University of
Athens (NTUA) in 1990 and his M.Sc. and Ph.D. degrees
in Chemical Engineering from Texas A&M University,
in 1992 and 1995, respectively. Since August 2000, he
has been with the School of Chemical Engineering at
NTUA. Currently, he is an Associate Professor in the
‘‘Process Control and Informatics’’ laboratory. His research
interests include analysis and identification of dynamical
systems, automatic control with emphasis on model
predictive control, computational intelligence, computer

aided molecular design, and supply chain management. His research work has
resulted in more than 90 articles in leading scientific journals and a large number
of papers at scientific conferences.

Alberto Bemporad received his master’s degree in
Electrical Engineering in 1993 and his Ph.D. in Control
Engineering in 1997 from the University of Florence, Italy.
He spent the academic year 1996/1997 at the Center for
Robotics and Automation, Department of Systems Science
and Mathematics, Washington University, St. Louis, as a
visiting researcher. In 1997–1999 he held a postdoctoral
position at the Automatic Control Laboratory, ETH Zurich,
Switzerland, where he collaborated as a senior researcher
in 2000–2002. In 1999–2009 he was with the Department
of Information Engineering of the University of Siena,

Italy, becoming an associate professor in 2005. In 2010–2011 he was with the
Department of Mechanical and Structural Engineering of the University of Trento,
Italy. In 2011 he joined as a full professor the IMT Institute for Advanced Studies
Lucca, Italy, where he became the director in 2012. He cofounded the spinoff
company ODYS S.r.l.

He has publishedmore than 250 papers in the areas ofmodel predictive control,
hybrid systems, automotive control, multiparametric optimization, computational
geometry, robotics, and finance. He is author or coauthor of various MATLAB
toolboxes for model predictive control design, including the Model Predictive
Control Toolbox (The Mathworks, Inc.). He was an Associate Editor of the IEEE
Transactions on Automatic Control during 2001–2004 and Chair of the Technical
Committee on Hybrid Systems of the IEEE Control Systems Society in 2002–2010.
He is IEEE Fellow since 2010.

http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref30
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref31
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref33
http://refhub.elsevier.com/S0005-1098(14)00347-1/sbref34

	Stochastic model predictive control for constrained discrete-time Markovian switching systems
	Introduction
	Mathematical preliminaries
	Constrained Markovian switching systems
	Finite-horizon stochastic optimal control for MSS
	Dynamic programming solution
	Conversion to a finite-dimensional optimization problem

	Stability of autonomous markovian switching systems
	Stochastic MPC for MSS
	Illustrative examples
	Samuelson's macroeconomic model
	Constrained networked control with random time delay
	Control of a nonlinear Lotka--Volterra model

	Conclusions
	Acknowledgments
	References


