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a b s t r a c t

The paper presents a stochastic MPC (SMPC) formulation suitable for maximizing the average time until
a discrete-time linear system with additive random disturbance violates prescribed constraints. The
SMPC procedure is based on a scenario tree that encodes the most likely system behavior for a given
tree density, where each branch of the tree represents a specific evolution of the system that occurs
with a certain probability. A mixed-integer linear program (MILP) is developed that maximizes the
average time until constraint violation for a given scenario tree. Feedback is provided by reconstructing
the scenario tree and recomputing the MILP solution over a receding time horizon based on the
current state of the system. The average time until constraint violation achieved by the SMPC strategy
approaches the optimal value as the scenario tree density is increased. Two numerical case studies,
including an adaptive cruise control problem, demonstrate the effectiveness of the proposed SMPC
strategy compared to dynamic programming solutions.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

This paper is concerned with the control problem of maximiz-
ng the time before a specified set of constraints is violated by
given system. Such problems arise in many engineering appli-
ations, in particular, those constrained by finite resources (fuel,
nergy, or, component life) or where limited control authority
s available to counteract large persistent disturbances, which
s common in underactuated systems as, for example, discussed
y Kolmanovsky and Zidek (2018).
In optimal control theory, such problems are known as exit-

ime problems. The properties of exit-time problems were stud-
ed by Barles and Rouy (1998), Bayraktar et al. (2010), Buckdahn
nd Nie (2016), Crandall et al. (1984), Lions (1983), and Malisoff
2001), and in the references therein. The optimal solution satis-
ies the Hamilton–Jacobi–Bellman (HJB) equation in the so-called
iscosity or weak sense, where the notion of viscosity solutions to
artial differential equations was described by Crandall and Lions
1983). However, explicit solutions to the HJB equation only exist
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005-1098/© 2020 Elsevier Ltd. All rights reserved.
for special problems, see, for example, Clark and Vinter (2012)
or Kolmanovsky and Maizenberg (2002).

The discrete-time formulation of the problem, on the other
hand, is computationally more tractable. In this context, model
predictive control (MPC) appears attractive as an effective method
for solving high-dimensional constrained control problems. At
each sampling time, MPC exploits a solution to an open-loop
optimal control problem based on a prediction model of the
system and its current state. Only the first element of the solution
sequence is applied to the system as the control input. The
process is repeated at the next sampling time. This approach
provides feedback to compensate for unmodeled effects.

A systematic MPC approach to exit-time problems for deter-
ministic linear systems was developed by Zidek et al. (2017).
In this paper the approach is extended to stochastic systems
where the objective is to maximize the average time before
constraint violation. We focus on linear systems with additive
random disturbance, but the developments can readily be ap-
plied to exit-time problems for other classes of stochastic linear
systems. Initial results were published in the conference paper
by Zidek et al. (2018). Compared to the previous publication,
in this paper we extend the theoretical analysis of the problem
and develop additional theoretical results. Moreover, we provide
additional practical considerations and present a comprehensive
numerical case study on stochastic adaptive cruise control.

In the uncertain system case, robust MPC techniques may

be used where the control law only considers the worst-case
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isturbance scenario; examples of robust MPC are given in the
apers by Lee and Yu (1997) and Mayne et al. (2005). On the
ther hand, a less conservative variant of robust MPC is Stochastic
PC (SMPC) which explicitly accounts for the uncertainty of the
isturbances as demonstrated by Cannon et al. (2009), Couchman
t al. (2006), Di Cairano et al. (2014), Primbs and Sung (2009),
nd Mesbah (2016). At the same time, recent developments in
ardware and numerical methods may facilitate practical use
f SMPC. We further discuss practical considerations and the
otential for fast embedded applications in Section 5.2 of this
aper.
Similar to the developments by Bernardini and Bemporad

2012), we propose an SMPC scheme that uses a tree structure
o encode the most likely disturbance scenarios. A mixed-integer
inear program (MILP) is developed that obtains a control policy
hat maximizes the average time until constraint violation for a
iven scenario tree. In order to obtain the current control input,
he MILP solution is recomputed at each sampling time over a
eceding time horizon based on the current state and an updated
cenario tree which in turn is based on the current disturbance
alues. The average time until constraint violation for this SMPC
aw is shown to approach the optimal value as the number of tree
odes goes to infinity.
The paper is structured as follows. In Section 2, we formulate

he problem and reason about the existence of a solution. In
ection 3, the scenario tree structure is discussed and an algo-
ithm for constructing a scenario tree is presented. The MILP
hat maximizes the average time until constraint violation for a
iven scenario tree is developed in Section 4. Based on the MILP,
he SMPC strategy is stated in Section 5, which also includes a
iscussion on the practical applicability of the proposed approach.
wo examples, including a car following problem, are presented
n Section 6, where we also compare the SMPC solutions against
ynamic programming solutions. A conclusion is provided in
ection 7.

. Problem formulation

.1. Stochastic linear system

We consider a stochastic linear discrete-time system repre-
ented by

t+1 = Atxt + Btut + wt , (1)

here xt ∈ Rn and ut ∈ Ut ⊂ Rp denote the state and
ontrol input vectors, respectively, at a time instant t ∈ Z≥0, At
and Bt are time-dependent matrices, and the set Ut represents
prescribed constraints on the control input vector at time instant
t . The variable w denotes a measured random disturbance that is
modeled by a Markov chain. The disturbance can take values in
the finite set

W = {w1, w2, . . . , w|W |}, (2)

of cardinality |W | > 0.
The approach of modeling the disturbance as a Markov chain

with a finite number of states is consistent with the one adopted
in the stochastic dynamic programming literature, an overview of
which is provided by Puterman (2014). Markov chains are used
in a wide area of applications, such as physics, chemistry, biology,
manufacturing, and economics. For example, a Markov chain was
used by Lin et al. (2004) to model the driver demand for hybrid
vehicles, Ikonen et al. (2016) employed a Markov chain model
for chemical process control, and Zidek and Kolmanovsky (2017)

used Markov chains to model the traffic on a two-lane road.

2

A key characteristic of a Markov chain is that the next state
only depends on the current state, but not on previous transi-
tions that led to the current state. In this paper, we denote the
transition probabilities by

PW (wj
|wi) = PW (wt+1 = wj

|wt = wi) ∈ [0, 1], (3)

for all wi, wj
∈ W and t ∈ Z≥0.

2.2. Stochastic optimal control problem

In addition to Ut , we introduce the time-dependent set Gt ∈

Rn that represents prescribed state constraints. Furthermore, we
denote a control policy by

π : Gt ×W × Z≥0 → Ut , (4)

for all t ∈ Z≥0, i.e., the control input vector at a time instant t is
obtained by ut = π (xt , wt , t), where Π is the set of admissible
(i.e., Ut-valued) control policies. For a given control policy π ∈ Π

and initial condition x0 ∈ G0 and w0 ∈ W , the random variable τ ,
also referred to as the first exit-time, denotes the time instant at
which constraint violation occurs for the first time,

τ (x0, w0, π ) = inf{t ∈ Z≥0 : xt /∈ Gt}, (5)

where xt is the response of (1) to the initial condition x0 and
w0 when using the control policy π . Note that the value of τ

is random as it depends on the random realization of {wt}. The
average (i.e., the expected value of the) first exit-time is denoted
by

τ̄ (x0, w0, π ) = E{τ (x0, w0, π )}. (6)

Then the optimal control problem of maximizing the average first
exit-time is as follows:

max
π∈Π

τ̄ (x0, w0, π ). (7)

Throughout the paper we make the following assumption about
the sets Gt and Ut .

Assumption 1. The sets Gt and Ut are polytopes for all t ∈ Z≥0,
where the set of state constraints, Gt , is given by

Gt = {x : Ctx ≤ bt}. (8)

2.3. Existence of maximizing sequence

The following theorem provides conditions under which τ̄ is
bounded. We adopt the following assumption in this regard.

Assumption 2. There exists T > 0 and w̄ ∈ W such that w̄

overpowers any admissible control and the deterministic system,

xt+1 = Atxt + Btπ (xt , w̄, t)+ w̄,

exits Gt in at most T steps for all x0 ∈ G0 and π ∈ Π . In addition,
PW (w̄|w̄) > 0 and w̄ is accessible from each w ∈ W , meaning
Prob(wn = w̄, given w0 = w) > 0, for some n > 0.

Theorem 1. Suppose Assumption 2 holds. Then there exists T̄ > 0
such that

τ̄ (x, w, π ) ≤ T̄ ,

for all x ∈ G0, w ∈ W, and π ∈ Π .
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roof. Let x ∈ G0, w ∈ W , and π ∈ Π be a given initial condition
nd admissible control policy. The corresponding average first
xit-time may be expressed as follows:

τ̄ (x, w, π ) =
∞∑
i=1

iP(τ (x, w, π ) = i)

≤

∞∑
i=1

iP(τ (x, w, π ) ≥ i),

(9)

where P(τ (x, w, π ) = i) and P(τ (x, w, π ) ≥ i) denote the
probabilities that the first exit-time is equal to i or greater than
or equal to i, respectively. Using Assumption 2 and

ρw̄,T ,i = Prob(w̄ occurs T times in a row
prior to t = i− 1),

(10)

P(τ (x, w, π ) ≥ i) is bounded according to

P(τ (x, w, π ) ≥ i) ≤ 1− ρw̄,T ,i, (11)

where w̄ and T are defined in Assumption 2. Using Assumption 2
(in particular: w̄ is accessible from every wi

∈ W ) and denoting

qT = (PW (w̄|w̄))T × Prob(w̄ is reached from w

in at most |W | steps),
(12)

which is greater than zero due to the accessibility of w̄ and
PW (w̄|w̄) > 0 by Assumption 2, it follows that

ρw̄,T ,i ≥

⌊
i−1

T+|W |

⌋
−1∑

k=0

(1− qT )kqT

= qT

⎛⎝1− (1− qT )
⌊

i−1
T+|W |

⌋
1− (1− qT )

⎞⎠
= 1− (1− qT )

⌊
i−1

T+|W |

⌋
,

(13)

where ⌊·⌋ is the floor operator. Hence, (11) becomes

P(τ (x, w, π ) ≥ i) ≤ (1− qT )
⌊

i−1
T+|W |

⌋
, (14)

nd (9) may be written as follows:

τ̄ (x, w, π ) ≤
∞∑
i=1

i(1− qT )
⌊

i−1
T+|W |

⌋

≤

∞∑
k=0

(k+ 1)(T + |W |)2(1− qT )k

= (T + |W |)2
(
1− qT
q2T
+

1
qT

)
=

(
T + |W |

qT

)2

= T̄ .

(15)

emark 1. Theorem 1 guarantees the existence of a maximizing
sequence for all initial conditions, x ∈ G0 and w ∈ W , i.e., a
sequence {πn} in Π such that τ̄ (x, w, πn)→ supπ∈Π τ̄ (x, w, π ).

For the following developments, it is assumed that the se-
quence in Remark 1 converges, meaning a solution exists, for all
initial conditions.

Assumption 3. A solution π∗ ∈ Π (may not be unique) to
problem (7) exists for each x0 ∈ G0 and w0 ∈ W .
3

Fig. 1. Scenario tree example for 12 nodes, including |SN | = 6 leaf nodes.

. Scenario tree

In order to optimize over a subset of all possible distur-
ance scenarios, similar to the work by Bernardini and Bemporad
2012), a scenario tree is constructed that contains the most likely
isturbance scenarios for a given number of tree nodes. A tree
ode is denoted by η ∈ TN , where

N = {η0, η1, . . . , ηN},

enotes a tree with N + 1 nodes. The node η0 is the root node of
he tree. The predecessor of a node η ∈ TN is given by pre(η). The
et of successors of a node η ∈ TN is denoted by

ucc(η) = {ηsucc(η)
1 , η

succ(η)
2 , . . . , η

succ(η)
|W | }.

The nodes that do not have a successor node in TN form the set
f leaf nodes, which is given by

N = {η ∈ TN : succ(η) ∩ TN = ∅}.

Fig. 1 shows an example scenario tree,

T11 = {η0, η1, . . . , η11},

for a given Markov chain with |W | = 3. For example, succ(η1) =
η2, η6, η11}, in Fig. 1, i.e., η

succ(η1)
1 = η2, η

succ(η1)
2 = η6, and

η
succ(η1)
3 = η11. The set of leaf nodes in Fig. 1 is given by

S11 = {η5, η7, η8, η9, η10, η11}.

With each η ∈ TN , we associate a disturbance wη as well as a state
vector xη , control input uη , and time instant tη , where wη0 = w0,
η0 = x0, and tη0 = 0 for the root node. Moreover, for each
∈ TN \ {η0}, xη satisfies the dynamics in (1). Consequently,

η = Atpre(η)xpre(η) + Btpre(η)upre(η) + wpre(η). (16)

he probability of reaching a node η ∈ TN , starting from the root
ode, is given by

η = ρpre(η)PW (wη|wpre(η)) ∈ [0, 1], (17)

here ρη0 = 1. Algorithm 1 implements the scenario tree gener-
tion suitable for either offline or online use. The set C contains
he candidate nodes that are considered when adding a node to
he tree. At each iteration, the node η ∈ C with the greatest
robability ρη is chosen from the set of candidate nodes, and the
uccessors of η are added to the list of candidate nodes. Thus, the
ree is intended to capture most likely scenarios subject to the
otal number of nodes constrained to be N + 1.
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Algorithm 1 Design of scenario tree TN

1: TN ← {η0}; C← ∅; ρη0 ← 1
2: tη0 ← 0; xη0 ← x0; wη0 ← w0
3: i← 0
4: while i < N do
5: for j ∈ {1, 2, . . . , |W |} do
6: w

η
succ(ηi)
j

← wj (wj
∈ W )

7: t
η
succ(ηi)
j

← tηi + 1

8: ρ
η
succ(ηi)
j

← ρηiPW (wj
|wηi )

9: end for
0: C← C ∪ succ(ηi)
1: ηi+1 ← argmaxη∈C ρη (pick any maximizer)
2: TN ← TN ∪ {ηi+1}

3: C← C \ {ηi+1}

4: i← i+ 1
5: end while

In general, a scenario tree TN contains |SN | ≥ 1 unique distur-
bance trajectories/scenarios that are denoted by

{wt}η = {wt : t ∈ Z[0,tη]}η
= (w0, . . . , wpre(pre(η)), wpre(η), wη),

(18)

for each leaf node η ∈ SN . For example, {wt}η9 = (w0, wη1 ,
wη6 , wη9 ) in Fig. 1.

For a given tree TN with initial x0 ∈ G0 and w0 ∈ W and control
policy πN ∈ Π , the deterministic first exit-time corresponding to
the disturbance trajectory {wt}η , see (18), is defined by

τN,η(x0, w0, πN ) =min{min{t ∈ Z[0,tη] : xt /∈ Gt}

∪ {tη + 1}},
(19)

for each η ∈ SN , where xt is the deterministic response of (1)
under {wt}η when using the control policy πN ∈ Π . Note that
for some {wt}η , xt may not exit Gt for t ∈ Z[0,tη]; in this case,
τN,η(x0, w0, πN ) = tη + 1 in line with (19). The average first exit-
time for a given scenario tree TN and a control policy πN ∈ Π is
given by

τ̄N (x, w, πN ) =
∑
η∈SN

τN,η(x, w, πN )ρη. (20)

In analogy to problem (7), the optimal control problem of max-
imizing the average first exit-time over a subset of disturbance
scenarios defined by tree TN can be expressed as

max
πN∈Π

τ̄N (x, w, πN ). (21)

The following two sets are defined:

HN,η = {η0, . . . , pre(pre(η)),
pre(η), η}, for all η ∈ SN ,

(22)

KN,ξ = {η ∈ SN : ξ ∈ HN,η}, for all ξ ∈ TN . (23)

HN,η is the set of nodes of the disturbance scenario associated
with leaf node η ∈ SN . KN,ξ is the set of leaf nodes whose
associated disturbance scenarios contain the node ξ ∈ TN . For
example, in Fig. 1,

H11,η7 = {η0, η1, η2, η7} and K11,η1 = {η5, η7, η9, η11}.

Moreover, for a given control policy π ∈ Π and scenario tree TN ,
N ∈ Z+, with initial condition x = x0 ∈ G0 and w = w0 ∈ W ,
the set of leaf nodes η ∈ SN with associated first exit-time
τN,η(x, w, π ) = i ∈ Z+ is given by

Z (π, i) = {η ∈ S : τ (x, w, π ) = i}. (24)
N N N,η

4

To simplify the notations, we drop the dependence on x and w
on the left hand side.

The next result (Theorem 2) shows that, in terms of the aver-
age first exit-time, a solution to problem (21) is arbitrarily close
to a solution (if one exists) of problem (7) for sufficiently large N .
Theorem 2 is based on Lemma 1.

Lemma 1.

lim
N→∞

τ̄N (x, w, π ) = τ̄ (x, w, π ), (25)

for all x ∈ G0, w ∈ W, and π ∈ Π .

Proof. Let π ∈ Π be a given control policy and x ∈ G0 and w ∈ W
be a given initial condition. Then, by (20),

lim
N→∞

τ̄N (x, w, π ) = lim
N→∞

∑
η∈SN

τN,η(x, w, π )ρη

= lim
N→∞

⎛⎝ tN∑
i=1

i
∑

η∈ZN (π,i)

ρη

⎞⎠ ,

(26)

where tN = max{tη : η ∈ TN} + 1. Since W is a finite set, it
follows from the tree generation procedure (Algorithm 1) that
eventually every branch corresponding to non-zero probability of
next disturbance value continues. Thus, for each i ∈ Z+,

lim
N→∞

∑
η∈ZN (π,i)

ρη = Prob(τ (x, w, π ) = i). (27)

Moreover, tN →∞ as N →∞. Consequently, from (26) and (27)
it can be shown that

lim
N→∞

τ̄N (x, w, π ) =
∞∑
i=1

iProb(τ (x, w, π ) = i)

= τ̄ (x, w, π ).

(28)

Theorem 2. Suppose Assumption 3 holds. Then, for each x ∈ G0,
w ∈ W, and ε > 0, there exists N̄ > 0 such that

max
πN∈Π

τ̄N (x, w, πN )+ ε ≥ max
π∈Π

τ̄ (x, w, π ), (29)

τ̄ (x, w, π∗N )+ ε ≥ max
π∈Π

τ̄ (x, w, π ), (30)

where π∗N ∈ argmaxπN∈Π
τ̄N (x, w, πN ), for all N ≥ N̄ .

Proof. For a given initial condition, x ∈ G0 and w ∈ W , let TN
be the scenario tree for a given N ∈ Z+. Moreover, let π∗ ∈ Π

be a solution to problem (7), which exists by Assumption 3, and
let π∗N ∈ Π be a control policy that maximizes the average first
exit-time for TN according to problem (21), which exists due to
the existence of a solution to (7). It follows that

τ̄N (x, w, π∗N ) ≥ τ̄N (x, w, π∗). (31)

The optimal average first exit-time of problem (7) may be written
as follows:

τ̄ (x, w, π∗) = τ̄N (x, w, π∗)+ τ̄Rest,N (x, w, π∗), (32)

where τ̄Rest,N represents the portion of all scenarios not described
by TN . By Lemma 1, τ̄N (x, w, π∗) approaches τ̄ (x, w, π∗) as N →
∞ and thus τ̄Rest,N (x, w, π∗) → 0. This implies that for every
ε > 0, there exists N̄ > 0 such that

τ̄ (x, w, π∗) ≤ τ̄N (x, w, π∗)+ ε, (33)

for all N ≥ N̄ . It follows from (31) and (33) that

τ̄ (x, w, π∗)+ ε ≥ τ̄ (x, w, π∗), (34)
N N
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or all N ≥ N̄ . In analogy to (32), it follows from adding
¯Rest,N (x, w, π∗N ) to (34) that

τ̄ (x, w, π∗N )+ ε ≥ τ̄ (x, w, π∗), (35)

or all N ≥ N̄ , which proves (30).

. Mixed-integer linear program

.1. Formulation

In this section, a mixed-integer linear program (MILP) is pro-
osed that solves problem (21). By Theorem 2, the average first
xit-time of a solution to problem (21) is arbitrarily close to
he average first exit-time of a solution to problem (7) for a
ufficiently large N .
In what follows, for a given tree TN , a set of control inputs that

atisfy the control constraints is denoted by

N = {uη ∈ Utη : η ∈ TN \ SN}. (36)

ikewise, a set of states, xη , for each node of the tree is denoted
y XN .
Furthermore, for each node η ∈ TN , we use a binary variable

δη to indicate the condition that the state constraints are violated,
i.e., xtη /∈ Gtη . DN denotes a set of δη values for a tree TN ,

N = {δη ∈ {0, 1} : η ∈ TN}. (37)

he MILP for a given tree TN is as follows:

min
XN ,UN ,DN

∑
η∈TN

∑
ξ∈KN,η

δηρξ s.t. (38a)

xη = Atpre(η)xpre(η) + Btpre(η)upre(η) + wpre(η),

for all η ∈ TN \ {η0}
(38b)

η ∈ Utη , for all η ∈ TN \ SN (38c)

η ≥ δpre(η), for all η ∈ TN \ {η0} (38d)

η ∈ {0, 1} ⊂ Z, for all η ∈ TN (38e)

Ctηxη ≤ btη + 1Mδη, for all η ∈ TN , (38f)

where 1 denotes the column vector of ones and M is a large
ositive number consistent with the ‘‘Big-M’’ approach described
n Section 9.1.3 of the textbook by Williams (2013). The dynamics
f the system are captured by (38b) which follows from (16). Ctη
nd btη in (38f) represent the state constraints as defined in (8).

.2. Theoretical results

The following result states conditions for the existence of a
olution to MILP (38).

emma 2. For a given TN , N ∈ Z+, suppose M > 0 is sufficiently
large such that (38f) is satisfied for all η ∈ TN and xη according to
(38b) for any UN . Then a solution to MILP (38) exists.

Proof. Because M is assumed to be sufficiently large, for a given
TN , N ∈ Z+, δη = 1 for all η ∈ TN satisfies the constraints of the
MILP for any UN . Since δη ∈ {0, 1} and N + 1 is the number of
tree nodes, the number of possible sets DN is 2N+1. Furthermore,

ξ ∈ [0, 1] for all ξ ∈ TN . Thus, a feasible solution exists for at
least one of the 2N+1 DN sets, i.e., the existence of a solution to
MILP (38) follows.

Section 4.3 further discusses how to select a proper M , in
particular: how to choose M sufficiently large as required by
Lemma 2.
5

Theorem 3 shows that, under suitable assumptions, a solution
to MILP (38) is equivalent to a solution to problem (21). This
result is based on the fact that a solution, UN , of MILP (38) defines
a control policy πUN according to

πUN (xη, wη, tη) = uη ∈ UN , (39)

or each η ∈ TN \ SN and xη satisfying (16) with upre(η) ∈ UN .
ikewise, a control policy π∗N ∈ Π defines a set of control inputs
or a given tree TN as

N (π∗N ) = {uη = π∗N (xη, wη, tη) : η ∈ TN \ SN}, (40)

here xη satisfies (16) for upre(η) ∈ UN (π∗N ).

heorem 3. Suppose Assumptions 1 and 3 hold and M is suffi-
iently large as in Lemma 2. Then U∗N is a solution to MILP (38) if the
ontrol policy πU∗N

according to (39) is a solution to problem (21).
ikewise, π∗N ∈ Π is a solution to problem (21) if UN (π∗N ) according
o (40) is a solution to MILP (38).

roof. Let x = x0 ∈ G0 and w = w0 ∈ W be a given initial
ondition and TN be the corresponding scenario tree, N ∈ Z+. For
he first part of the proof, suppose π∗N is a solution to problem
21). Thus,

¯N (x, w, π∗N ) ≥ τ̄N (x, w, π#
N ), (41)

or all π#
N ∈ Π . A solution to MILP (38) exists due to the

ssumptions and Lemma 2. Using (40), fix UN = UN (π∗N ) in MILP
38) and denote the resultingDN byD∗N = {δη∗ ∈ {0, 1} : η ∈ TN}.
imilarly, let D#

N = {δη# ∈ {0, 1} : η ∈ TN} denote the MILP
olution when UN = UN (π#

N ) is fixed. Hence, by (38d)–(38f), for
ach η ∈ SN , δξ∗ = 1 iff tξ ≥ τN,η(x, w, π∗N ), δξ# = 1 iff
ξ ≥ τN,η(x, w, π#

N ), δξ∗ = 0 iff tξ < τN,η(x, w, π∗N ), and δξ# = 0 iff
ξ < τN,η(x, w, π#

N ) for all ξ ∈ HN,η . Consequently, according to
19), it follows that

N,η(x, w, π∗N ) = tη + 1−
∑

ξ∈HN,η

δξ∗ (42a)

N,η(x, w, π#
N ) = tη + 1−

∑
ξ∈HN,η

δξ#, (42b)

or all η ∈ SN . Then, using (20), (41), and (42), one obtains∑
η∈SN

(tη + 1−
∑

ξ∈HN,η

δξ∗)ρη = τ̄N (x, w, π∗N )

≥ τ̄N (x, w, π#
N ) =

∑
η∈SN

(tη + 1−
∑

ξ∈HN,η

δξ#)ρη.
(43)

onsequently,∑
η∈SN

∑
ξ∈HN,η

δξ∗ρη ≤

∑
η∈SN

∑
ξ∈HN,η

δξ#ρη. (44)

y (22) and (23), η ∈ SN and ξ ∈ HN,η iff ξ ∈ TN and η ∈ KN,ξ .
herefore, (44) is equivalent to∑

ξ∈TN

∑
η∈KN,ξ

δξ∗ρη ≤

∑
ξ∈TN

∑
η∈KN,ξ

δξ#ρη, (45)

hich shows that UN (π∗N ),D
∗

N is a solution to MILP (38). This
ompletes the first part of the proof.
For the second part of the proof, let U∗N ,D∗N be a solution to

ILP (38), which exists by Lemma 2, where D∗N = {δη∗ ∈ {0, 1} :
∈ TN}. Hence,∑ ∑

δη∗ρξ ≤

∑ ∑
δη#ρξ , (46)
η∈TN ξ∈KN,η η∈TN ξ∈KN,η
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or any UN = U#
N fixed in MILP (38) with corresponding solution

#
N = {δη# ∈ {0, 1} : η ∈ TN}. Now define πU∗N

according to (39).
Since the dynamics in (1) and (38b) are equivalent, it follows from
(19) and (38d)–(38f) that, for each η ∈ SN ,

τN,η(x, w, πU∗N
) = min{min{tξ ∈ Z[0,tη] :

δξ∗ = 1, ξ ∈ HN,η} ∪ {tη + 1}}

= tη + 1−
∑

ξ∈HN,η

δξ∗.
(47)

Thus, by (20), the average first exit-time of tree TN with control
policy πU∗N

is given by

τ̄N (x, w, πU∗N
) =

∑
η∈SN

(tη + 1−
∑

ξ∈HN,η

δξ∗)ρη. (48)

In analogy, define πU#
N
according to (39). Hence,

τ̄N (x, w, πU#
N
) =

∑
η∈SN

(tη + 1−
∑

ξ∈HN,η

δξ#)ρη. (49)

Using (22) and (23), it follows from (46), (48), and (49) that

τ̄N (x, w, πU∗N
)− τ̄N (x, w, πU#

N
)

=

∑
η∈SN

∑
ξ∈HN,η

(δξ# − δξ∗)ρη

=

∑
ξ∈TN

∑
η∈KN,ξ

(δξ# − δξ∗)ρη ≥ 0,

(50)

implying that πU∗N
is a solution to problem (21).

4.3. Choosing M

In practice, choosing M for MILP (38) to be sufficiently large as
required by Lemma 2 may be achieved by setting M to the largest
number that can be represented by a given computer, which may,
however, lower the computational performance. On the other
hand, underestimating M may also be tolerated in practice since
it effectively tightens the state constraints which may result in
potentially more conservative (sub-optimal) solutions.

Alternatively, the least upper bound for M to be sufficiently
large as required by Lemma 2 can be determined by solving a
linear program (LP) for each node of the tree. The LP for a node
ξ ∈ TN has the following form:

Mξ = max
XN ,UN

Ctξ xξ − btξ s.t. (51a)

xη = Atpre(η)xpre(η) + Btpre(η)upre(η) + wpre(η),

for all η ∈ TN \ {η0}
(51b)

η ∈ Utη , for all η ∈ TN \ SN , (51c)

here Mξ = [Mξ,1, . . . ,Mξ,n]
⊤ is a column vector. The least

pper bound (LUB) for M to be sufficiently large is obtained from
he solutions to LPs (51) as

LUB = max
ξ∈TN

max
i∈{1,...,n}

Mξ,i. (52)

. Stochastic MPC

.1. Theoretical results

For a given scenario tree TN with initial w ∈ W and root
ode wη0 = w, the control policy πU∗N

, derived from the MILP
solution U∗N according to (39), maximizes the average first exit-
time τ̄N for a given TN (Theorem 3) and achieves average first
exit-times τ̄ arbitrarily close to the optimal value of problem (7)
6

for sufficiently large N (Theorem 2). However, πU∗N
is only defined

or the disturbance scenarios encoded by tree TN , which are the
ost likely scenarios for the specified N according to Algorithm 1.
hus, starting at w0 = w, wt /∈ {wη : η ∈ TN , tη = t} may occur
t some t ∈ Z+, i.e., a disturbance scenario may occur that is not
epresented by TN .

Therefore, a stochastic MPC (SMPC) strategy is proposed based
n MILP (38), where the solution of the MILP is recomputed
t each time instant for an updated tree TN based on the cur-

rent state vector. This approach furthermore provides feedback
to compensate for unmodeled effects and can be effective in
the context of controlling a nonlinear system and/or when the
exact disturbance model is unknown. In such a case, the stochas-
tic linear model in (1) and the Markov chain for wt serves as
n approximation of the nonlinear system and/or the unknown
isturbance model.
For a given x ∈ Gt0 , w ∈ W , and t0 ∈ Z≥0, the proposed SMPC

cheme establishes the following control policy πSMPC,N ∈ Π :

SMPC,N (x, w, t0) = uη0 ∈ U∗N , (53)

here U∗N is a solution to MILP (38) for the scenario tree TN with
oot node η0 and

η0 ← t0, xη0 ← x, and wη0 ← w,

n Step 2 of Algorithm 1. It follows from Theorems 2 and 3 that,
n terms of first exit-time performance, the control policy πSMPC,N
n (53) is arbitrarily close to a solution (assuming one exists,
.e., Assumption 3) of problem (7) for sufficiently large N . This is
ummarized in Theorem 4, the proof of which follows from the
roofs of Theorems 2 and 3.

heorem 4. Suppose Assumptions 1 and 3 hold, πSMPC,N is as in
53), and M is sufficiently large as in Lemma 2. Then, for each x ∈ G0,
∈ W, and ε > 0, there exists N̄ > 0 such that

¯ (x, w, πSMPC,N )+ ε ≥ max
π∈Π

τ̄ (x, w, π ),

or all N ≥ N̄ .

.2. Practical implementation

Mixed-integer programming, including MILP, has non-
olynomial complexity in the worst-case, which makes practical
ixed-integer MPC (MI-MPC) applications with strict real-time
onstraints challenging. However, since MI-MPC was introduced
bout two decades ago, see e.g., Bemporad and Morari (1999),
nd initial applications were presented, such as by Richards and
ow (2005), a lot of progress has been made on efficient solvers
uitable for embedded real-time applications. For example, Be-
porad and Naik (2018), Hespanhol et al. (2019), Marcucci and
edrake (2019), and Stellato et al. (2018) have developed branch-
nd-bound-based algorithms and efficient warm start strategies
or solving mixed-integer programs for fast embedded MI-MPC by
xploiting the specific structure of the optimal control problem.
In addition to the improvements in software, computer pro-

essing speeds have increased by several orders of magnitude
ue to hardware advancements in field programmable arrays,
ulti-core processors, and graphics processing units as discussed,

or example, by Abughalieh and Alawneh (2019), Grubmüller
t al. (2018), Phung et al. (2017), Rogers and Slegers (2013), and
ampathirao et al. (2018).
While the recent hardware improvements and solver devel-

pments are encouraging for reducing worst-case computation
imes of mixed-integer programs, we also introduce a relaxed
ersion of MILP (38), a standard LP, that is used as a fallback to
nforce computation time limits if an allocated time for the MILP
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olution is exceeded. The LP for a given tree TN is obtained by
eplacing the integer variables δη in MILP (38) by non-negative
eal variables εη for all η ∈ TN . Thus, the LP is as follows:

min
XN ,UN ,EN

∑
η∈TN

∑
ξ∈KN,η

εηρξ s.t. (54a)

xη = Atpre(η)xpre(η) + Btpre(η)upre(η) + wpre(η),

for all η ∈ TN \ {η0}
(54b)

η ∈ Utη , for all η ∈ TN \ SN (54c)

η ≥ εpre(η) ≥ 0, for all η ∈ TN \ {η0} (54d)

tηxη ≤ btη + 1εη, for all η ∈ TN , (54e)

where XN and UN , see (36), are sets of states and control values,
respectively, corresponding to the nodes of a tree TN . A set of εη

values for a tree TN is denoted by EN = {εη ≥ 0 : η ∈ TN}. A
solution to LP (54) always exists because εη ≥ 0 can always be
chosen sufficiently large such that (54e) is satisfied for all η ∈ TN .

Our numerical case studies in Section 6 suggest that using the
relaxed LP as a fallback in case the MILP computation exceeds a
prescribed maximum time is effective. However, the connections
between solutions of MILP and relaxed LP need to be better
understood in general. Further research in this direction is left
to future work.

Algorithm 2 SMPC implementation
1: t ← 0
2: x, w← obtain current x(t) and w(t)
3: TN ← output of Algorithm 1 with tη0 ← t , xη0 ← x,

and wη0 ← w in Step 2 of Algorithm 1
4: tcomp ← 0
5: while computing solution of MILP (38) do
6: if tcomp > tmax then
7: Go to Step 12
8: end if
9: tcomp ← update tcomp

10: end while
11: U∗N ← solution of MILP (38); go to Step 13
12: U∗N ← solution of LP (54)
13: u(t)← apply control uη0 ∈ U∗N to the system
14: t ← t + 1
15: Go to Step 2

Algorithm 2 outlines the practical implementation of the SMPC
strategy. At each time instant t , the current state vector and
isturbance are obtained in Step 2 of Algorithm 2. Based on
hese values, a new scenario tree is constructed in Step 3 using
lgorithm 1. Then a solution U∗N of MILP (38) is computed. If the
ILP computation time tcomp exceeds a specified upper bound

max, solving the MILP is terminated in Steps 6–8, and LP (54)
s solved instead. The root node control input uη0 of the MILP
olution U∗N (or the LP solution in case tcomp > tmax) is applied
o the system in Step 13 and the procedure is repeated at the
ext time instant t + 1.

.3. Selecting the number of tree nodes

The problem of choosing the number of tree nodes is similar
o the problem of selecting the prediction horizon in conventional
PC. Thus, similar to conventional MPC, N can be selected during

he algorithm calibration and tuning phase based on the trade-
ff between performance and computation time. In the offline
alibration phase, numerical experiments may be used to assess
he required N for a specific problem. Typically, the optimal
7

value of N is where the average first exit-time dependence on
N obtained from simulations begins to flatten out as N grows.
Figs. 3 and 7 demonstrate this pattern for the two numerical case
studies in this paper.

While some general problem-agnostic guidelines exist for con-
ventional MPC, for example, based on settling time and relaxed
dynamic programming inequality as discussed by Grüne and Pan-
nek (2017), the development of similar guidelines in our case is
left to future work.

6. Numerical case studies

This section provides numerical case studies of applications of
the proposed SMPC strategy in Algorithm 2. In order to reduce
computation times, the scenario trees TN (wi) with wη0 = wi

are precomputed offline and stored for each wi
∈ W instead

of constructing TN online at each time instant. All computations
nvolving the SMPC strategy are performed in MATLAB 2016 on a
aptop, where the Hybrid Toolbox developed by Bemporad (2004)
with default settings) is used to solve LPs and MILPs.

.1. Case study 1

In this case study, we investigate the influence of the number
f tree nodes on the solution for a stochastic linear time-varying
ystem of the form[
r1,t+1
r2,t+1

]
=

[
1 0.1
−0.1 1.2

][
r1,t
r2,t

]
+

[
0

0.5 sin(t/2)

]
ut +

[
0
wt

]
,

(55)

where x = [r1, r2]⊤ denotes the state vector and the control input
s u ∈ [−1, 1].

The disturbance w takes values in the set W = {−1, 0, 1} with
transition probabilities PW (wi

|wj) = [PW ,Mat]j,i (j = row number
and i = column number), i, j ∈ {1, 2, 3}, given by the following
matrix:

PW ,Mat =

[ 0 0.8 0.2
0.3 0.5 0.2
0.35 0.4 0.25

]
.

he constraints for the optimal control problem (7) are given by
he set Gt ≡ {x : −2 ≤ r1 ≤ 2,−2 ≤ r2 ≤ 2}.

The time limit in Algorithm 2 for solving the MILP is set to
max = 10 s. The following results are for an initial x0 = [0, 0]⊤
nd w0 = −1. Fig. 2 shows a sample trajectory (for N = 200),
here the dashed lines indicate the respective constraints.
The average first exit-time τ̄ (based on 1000 random simula-

ions for each N) is plotted against N in Fig. 3. For comparison,
dynamic programming (DP) solution obtained by conventional
alue iteration, see Bertsekas (2005), is shown as a reference in
ig. 3 (dashed line). The DP solution, achieving τ̄ = 32.41 s, is
ased on a discrete grid of the state space using linear inter-
olation between the grid points, where a relatively dense grid
f 900000 points is used here. The set defining the control con-
traints is discretized as well, using an equidistant grid with 21
oints. About 1.8 h are required to compute the DP control policy
ffline when implemented in C++ 11. Due to the dense grid
epresentations of both Gt and Ut , the DP reference solution is
xpected to be close to a solution of the optimal control problem
7).

In line with Theorem 4, it can be seen in Fig. 3 that the
MPC solution improves with increasing N and approaches the
P solution (which we expect to be close to an optimal solution),
here the DP reference is slightly exceeded for N ≥ 500. This
xceedance is attributed to the numerical approximation errors.
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Fig. 2. Numerical case study 1: sample trajectory showing the states r1 (top plot)
nd r2 (second plot), as well as the control input u (third plot) and disturbance
(bottom plot) vs. t .

Fig. 3. Numerical case study 1: average first exit-time τ̄ vs. N (based on 1000
andom simulations for each N).

he computation time (in MATLAB) for the SMPC scheme to
ompute the control input at each time instant according to
lgorithm 2 (Steps 2–13) is shown in Fig. 4 for different N . The
8

Fig. 4. Numerical case study 1: average (top) and worst-case time (bottom) to
compute control ut (Steps 2–13 in Algorithm 2) vs. N (based on 1000 random
simulations for each N).

top plot in Fig. 4 shows the average computation time, which
increases nearly exponentially with N . The worst-case/maximum
computation time is shown in Fig. 4 (bottom), where the pre-
scribed limit on the MILP computation time tmax = 10 s is reached
at least once for N ≥ 400.

.2. Case study 2: Car following

A car following or adaptive cruise control problem is treated
n this case study. The problem involves two vehicles: the lead
ehicle and the follower vehicle. With s denoting the distance
etween the two vehicles, the objective is to control the speed
f the follower vehicle vf, such that the time gap between the

two vehicles,

Tg = s/vf, (56)

tays within prescribed bounds for as long as possible.
The speed of the lead vehicle vl is modeled by a Markov chain

hat takes values in the set

= {27, 27.25, 27.5, . . . , 32} m/s,

hich contains 21 elements. The system is represented by the
ollowing model:

st+1 = st +∆t(vl,t − vf,t ),
vf,t+1 = vf,t +∆tat .

(57)

e consider a sampling time of ∆t = 1 s. The control input at a
ime instant t is the acceleration of the follower vehicle,

at ∈ [−1, 0.3]m/s2.

The state constraints for this problem are represented by the set,

Gt ≡ {s, vf : Tg = s/vf ∈ [0.5, 2.5] s, vf ≤ 30m/s}.

The transition probabilities of the lead vehicle velocity are similar
to the values in Kolmanovsky and Filev (2009), which are based
on experimental data. Moreover, as in Kolmanovsky and Filev
(2009), the possibility of another vehicle cutting in upfront is
taken into account by slightly modifying the model. In this case
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Fig. 5. Car following case study, sample trajectory using the SMPC approach
ithout applying a control input penalty (β = 0): follower speed vf (top plot),

time gap Tg (second plot), control input a (third plot), and disturbance vl (bottom
plot) vs. time t .

study, such an event may occur with a probability of 0.05 if the
time gap Tg is greater than 2.2 s In case of another vehicle cutting
in upfront, the distance between the vehicles is set to half of the
previous distance. Moreover, the vehicle is assumed to cut in with
a speed of 29.5 m/s. The model is thus a stochastic hybrid model
with state-dependent probabilities for mode switches.

As in the previous example, we compare the results of the
proposed SMPC approach to a DP approach. The DP approach
is able to explicitly account for the hybrid characteristics of the
system. The SMPC strategy, on the other hand, uses the stochastic
linear model in (57) as an approximation of the system, while
neglecting the possibility of another vehicle cutting in upfront.
SMPC compensates for the unmodeled effects through feedback.

Both approaches (SMPC and DP) generate frequent aggressive
velocity changes which may be uncomfortable for passengers
and inefficient, i.e., wasting fuel. In order to avoid this, control
9

Table 1
Car following case study, SMPC solution with N = 100: influence of control
input penalty weight β on average first exit-time τ̄ (1500 random simulations
each).
β 0 0.01 0.05 0.1
τ̄ (s) 858 465.1 302.9 13.4

inputs are penalized by considering the weighted sum of the
absolute values of the control inputs as an additional objective
to be minimized. This modification of the optimization problem
(7) is a follows:

max
π∈Π

τ̄ (x0, w0, π )− βE

{
τ (x0,w0,π )−1∑

t=0

|π (xt , wt , t)|

}
, (58)

here xt results from applying the control policy π to (1). The
factor for weighting the control input penalty is denoted by β .

The SMPC approach is modified accordingly by penalizing the
weighted sum of |uη|. As done in Earl and D’Andrea (2005), this is
achieved by introducing new variables γη ≥ 0 for each η ∈ TN\SN ,
and adding the following control input constraint to MILP (38)
and LP (54) for each η ∈ TN \ SN :

− γη ≤ uη ≤ γη. (59)

Moreover, the weighted sum of γη values,

β
∑

η∈TN\SN

γη, (60)

s added to the objective functions of MILP (38) and LP (54).
For numerical reasons, the probability of each scenario, given

y ρη for all η ∈ SN , is normalized by dividing ρη by the sum of
he probabilities of all scenarios of tree TN , i.e.,

η,norm = ρη/
∑
ξ∈SN

ρξ . (61)

hich, instead of ρη , is used in (38a) and (54a).
Table 1 shows the average first exit-time τ̄ with the SMPC ap-

roach for different control input penalty weights β . As expected,
¯ decreases with increasing β since a large β emphasizes less
ntense and less frequent acceleration/deceleration.

Note that we run 1500 random simulations to estimate τ̄ for
ach case since the result does not significantly change beyond
hat. The limit on the MILP computation time is set to tmax = 1 s.

The difference between penalizing the control inputs vs. not
enalizing the control inputs is furthermore demonstrated in
igs. 5 and 6, which show sample trajectories using the SMPC
pproach with β = 0 and β = 0.01, respectively. It is evident
hat without control input penalty the control inputs are frequent
nd large in value in order to maintain the follower vehicle speed
ear its maximum value. In contrast, with control penalty the
ontrol inputs are lower and smaller in value, resulting in an
verall smoother, hence more comfortable, trajectory.
For the remainder of this case study, we use β = 0.01 for the

MPC approach as well as for the DP solution for comparison. For
he DP comparison, we use a uniform grid of 33600 points for
he state space and linearly interpolate between the grid points.
he control space is uniformly discretized into 14 points between
he minimum and maximum values. This setting implemented
n C++ 11 requires about six hours to compute the DP control
olicy offline. The SMPC approach, on the other hand, is capable
o be employed in an online setting. This can be seen in Fig. 8
hich shows the online computation times (average and worst-
ase values per simulation run) for different tree sizes N . The
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Fig. 6. Car following case study, sample trajectory using the SMPC approach
ith control input penalty (β = 0.01): follower speed vf (top plot), time gap
g (second plot), control input a (third plot), and disturbance vl (bottom plot)
s. time t .

Fig. 7. Car following case study: average first exit-time τ̄ vs. N (1500 random
imulations each).

MPC solutions are computed in MATLAB, whereas an implemen-
ation in a lower-level programming language such as C++ is

expected to further improve computation times.

10
Fig. 8. Car following case study: average (top) and worst-case time (bottom) to
compute control ut (Steps 2–13 in Algorithm 2) vs. N (1500 random simulations
each).

The average first exit-time τ̄ vs. the tree size N is shown in
Fig. 7. The DP solution with conventional value iteration, yielding
an average first exit-time of 539 s, is also shown for compari-
son. As in the previous example (see Fig. 3), the SMPC solution
improves with increasing N and approaches the DP solution.

7. Conclusion

A stochastic model predictive control (SMPC) strategy was
developed for solving optimal control problems with the objec-
tive of maximizing the average time until a linear system with
additive random disturbance violates prescribed constraints on
its state variables. The SMPC strategy is based on a tree structure
with a specified number of tree nodes and a tree generation
algorithm has been defined to emphasize the inclusion of the
most relevant scenarios. By repeatedly solving a mixed-integer
linear program over a receding time horizon based on the current
state variables and disturbance, the SMPC strategy obtains solu-
tions arbitrarily close to the optimal solution in terms of average
time until constraint violation. The effectiveness of the proposed
SMPC strategy was demonstrated in two numerical case studies,
including a car following control problem.
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