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a b s t r a c t

Due to safety constraints and unstable open-loop dynamics, system identification of many real-world
processes often requires gathering data from closed-loop experiments. In this paper, we present a
bias-correction scheme for closed-loop identification of Linear Parameter-Varying Input–Output (LPV-IO)
models, which aims at correcting the bias caused by the correlation between the input signal exciting
the process and output noise. The proposed identification algorithm provides a consistent estimate of
the open-loop model parameters when both the output signal and the scheduling variable are corrupted
by measurement noise. The effectiveness of the proposed methodology is tested in two simulation case
studies.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many real world systems must be identified based on data
collected from closed-loop experiments. This is typical for open-
loop unstable plants, where a feedback controller is necessary to
perform the experiments, and in many applications in which a
controller is needed to keep the system at certain operating points.
Safety, performance, and economic requirements are further mo-
tivations to operate in closed-loop.

From the system identification point of view, one of the main
issues which makes identification from closed-loop experiments
more challenging than in the open-loop setting is due to the
correlation between the plant input and output noise. If such a
correlation is not properly taken into account, approaches that
work in open loop may fail when closed-loop data is used (Ljung,
1999). Several remedies have been proposed in the literature to
overcome this problem, especially for the Linear Time-Invariant
(LTI) case (see Forssell & Ljung, 1999; Van den Hof, 1998 for an
overview). These approaches can be classified in: direct methods,
which neglect the existence of the feedback loop and apply predic-
tion errormethods directly on the input–output data after properly
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parametrizing the noisemodel; indirectmethods, where the closed-
loop system is identified and the model of the open-loop plant is
then extracted exploiting the knowledge of the controller and of
the feedback structure; joint input–output methods, which treat the
measured input and output signals as the outputs of an augmented
multi-variable system driven by external disturbances. The model
of the open-loop process is then extracted based on the estimate
of different transfer functions of the augmented system. Unlike
indirect methods, an exact knowledge of the controller is not
needed.

Unfortunately, the extension of these approaches to the Lin-
ear Parameter-Varying (LPV) case is not straightforward, mainly
because the classical theoretical tools which are commonly used
in closed-loop LTI identification no longer hold in the LPV set-
ting (Tóth, 2010), such as transfer functions and commutative
properties of operators. Therefore, only few contributions address-
ing identification of LPV systems from closed-loop data are avail-
able in the literature. A subspace method, which can be applied
both for open- and closed-loop identification of LPV models, was
proposed in van Wingerden and Verhaegen (2009). The idea of
thismethod is to construct amatrix approximating the product be-
tween the extended time-varying observability and controllability
matrices, and later use an LPV extension of the predictor subspace
approach originally proposed in Chiuso (2007). As far as the iden-
tification of LPV Input–Output (LPV-IO) models is concerned, the
closed-loop output error approach proposed in Landau and Karimi
(1997) in the LTI setting is extended in Boonto andWerner (2008)
to the identification of LPV-IO models, whose parameters are es-
timated recursively through a parameter adaptation algorithm.
Instrumental-Variable (IV) based methods are proposed in Abbas
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and Werner (2009), Ali, Ali, and Werner (2011) and Tóth, Laurain,
Gilson, and Garnier (2012). The contribution in Abbas andWerner
(2009) ismainly focused on the identification of quasi-LPV systems,
where the scheduling variable is a function of the output. Themain
idea in Abbas and Werner (2009) is to recursively estimate the
output signal (and thus the scheduling variable) through recursive
least-squares and later use the estimated signals (instead of the
measurements) to obtain a consistent estimate of the open-loop
model parameters through IV methods. An indirect approach is
used in Ali et al. (2011), where IV methods are used to estimate a
model of the closed-loop systembased on pre-filtered external ref-
erence and output signals. The plant parameters are later extracted
from the estimated closed-loop model using plant-controller sep-
aration methods. In Tóth et al. (2012), an iterative Refined In-
strumental Variable (RIV) approach is proposed for closed-loop
identification of LPV-IOmodels with Box–Jenkins noise structures.
At each iteration of the IV algorithm, the signals are pre-filtered by
stable LTI filters constructed using the parameters estimated at the
previous iteration. The filtered signals are then used to build the
instruments, which are used to recompute an (improved) estimate
of themodel parameters. Unlike themethods in Abbas andWerner
(2009) and Ali et al. (2011), which are restricted to the case of LTI
controllers, the approach in Tóth et al. (2012) can handle both LTI
and LPV controllers.

This paper presents a bias-correction approach for closed-loop
identification of LPV systems. The main idea underlying bias-
correction methods is to eliminate the bias from ordinary Least
Squares (LS) to obtain a consistent estimate of the model param-
eters. Bias-correction methods have been used in the past for
the identification of LTI systems both in the open-loop (Hong,
Söderström, & Zheng, 2007; Zheng, 2002) and closed-loop set-
ting (Gilson & Van den Hof, 2001; Zheng & Feng, 1997), as well as
for open-loop identification of nonlinear (Piga & Tóth, 2014) and
LPV systems from noisy scheduling variable observations (Piga,
Cox, Tóth, & Laurain, 2015). The main idea behind the closed-loop
identification algorithmproposed in this paper is to quantify, based
on the available measurements, the asymptotic bias due to the
correlation between the plant input and the measurement noise.
Recursive relations are derived to compute the asymptotic bias
based on the knowledge of the controller and of the closed-loop
structure of the system. Furthermore, in order to handle the more
realistic scenario where not only the output signal, but also the
scheduling variables are corrupted by a measurement noise, the
proposed approach is combined with the ideas presented in Piga
et al. (2015), with the following improvements:

• an analytic expression, in terms of Hermite polynomials,
is provided to compute the bias-correcting term used to
handle the noise on the scheduling variable;
• as the bias-correcting term depends on the variance of the

noise corrupting the scheduling variable, a bias-corrected
cost function is introduced. This cost function serves as a
tuning criterion to determine the value of the unknown
noise variance via cross-validation.

Overall, the proposed closed-loop LPV identification approach
offers a computationally low-demanding algorithmwhich: (i) pro-
vides a consistent estimate of the model parameters; (ii) can be
applied under LTI or LPV controller structures; (iii) does not require
to identify the closed-loop LPV system; (iv) can handle noisy obser-
vations of the scheduling signal.

The paper is organized as follows. The notation used throughout
the paper is introduced in Section 2. The considered identifica-
tion problem is formulated in Section 3. Section 4 describes the
proposed closed-loop bias-correction approach that is extended in
Section 5 to handle the case of identification from noisy measure-
ments of the scheduling signal. Two case studies are reported in
Section 6 to show the effectiveness of the presented method.

2. Notation

Let Rn be the set of real vectors of dimension n. The ith element
of a vector x ∈ Rn is denoted by xi and ∥x∥2 = x⊤x denotes the
square of the 2-norm of x. Formatrices A ∈ Rm×n and B ∈ Rp×q, the
Kronecker product between A and B is denoted by A⊗ B ∈ Rmp×nq.
Given a matrix A, the symbol [A]n×m means that A is a matrix of
dimension n × m. Let Iba be the sequence of successive integers
{a, a + 1, . . . , b}, with a < b. The floor function is denoted by
⌊·⌋, where ⌊m⌋ is the largest integer less than or equal to m. The
expected value of a function f w.r.t. the random vector x ∈ Rn is
denoted byEx1,...,xn {f (x)}. The subscript x1, . . . , xn is dropped from
Ex1,...,xn when its meaning is clear from the context.

3. Problem formulation

3.1. Data generating system

By referring to Fig. 1, consider the LPV data-generating closed-
loop system So. We assume that the plant Go is described by the
LPV difference equations with output-error noise

Go :

{
Ao(q−1, po(k))x(k) = Bo(q−1, po(k))u(k),

y(k) = x(k)+ e(k), (1)

and that the controller Ko is a known LPV or LTI system described
by

Ko : Co(q−1, po(k))u(k) = Do(q−1, po(k)) (r(k)− y(k)) , (2)

where r(k) is a bounded reference signal of the closed-loop system
So; u(k) ∈ R and y(k) ∈ R are the measured input and output
signals of the plant Go, respectively; x(k) is noise-free output;
e(k) ∼ N (0, σ 2

e ) is an additive zero-mean white Gaussian noise
with variance σ 2

e corrupting the output signal; po(k) : N → P
is the measured (noise-free) scheduling signal and P ⊆ Rnp is
a compact set where po(k) is assumed to take values. In order
not to make the notation too complex, from now on we assume
that po(k) is scalar (i.e., np= 1). The operator q denotes the time
shift (i.e., q−ix(k) = x(k− i)), and Ao(q−1, po(k)), Bo(q−1, po(k)),
Co(q−1, po(k)) and Do(q−1, po(k)) are polynomials in q−1 of degree
na, nb, nc and nd − 1, respectively, defined as follows:

Ao(q−1, po(k)) = 1+
na∑
i=1

aoi (po(k))q
−i,

Bo(q−1, po(k)) =
nb∑
i=1

boi (po(k))q
−i,

Co(q−1, po(k)) = 1+
nc∑
i=1

coi (po(k))q
−i,

Do(q−1, po(k)) =
nd−1∑
i=0

doi+1(po(k))q
−i,

where the coefficient functions aoi , b
o
i , c

o
i , d

o
i are supposed to be

polynomials in po(k), i.e.,

aoi (po(k)) = āoi,0 +
ng∑
s=1

āoi,sp
s
o(k), (3a)

boi (po(k)) = b̄oi,0 +
ng∑
s=1

b̄oi,sp
s
o(k), (3b)

coi (po(k)) = c̄oi,0 +
ng∑
s=1

c̄oi,sp
s
o(k), (3c)
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Fig. 1. Closed-loop LPV data-generating system.

doi (po(k)) = d̄oi,0 +
ng∑
s=1

d̄oi,sp
s
o(k), (3d)

with āoi,s ∈ R and b̄oi,s ∈ R being unknown real constants to be
identified, while c̄oi,s ∈ R and d̄oi,s ∈ R are known coefficients char-
acterizing the controller Ko. In order not to burden the notation,
the polynomials in (3) are assumed to have the same degree ng .

The following assumptions are made for the closed-loop data
generating system:

A1. the measurement noise e(k) is uncorrelated with the
scheduling signal po(k) and with the external reference sig-
nal r(k);

A2. to avoid algebraic loops, the open-loop plant is strictly
causal, i.e., bo0(po(k)) = 0;

A3. the controller ensures closed-loop stability of the system So
for any scheduling trajectory po(k) ∈ P.

In order to describe the plant Go in a compact form, the follow-
ing matrix notation is introduced:

āoi =
[
āoi,0 ā

o
i,1 · · · ā

o
i,ng

]⊤
,

b̄oj =
[
b̄oj,0 b̄

o
j,1 · · · b̄

o
j,ng

]⊤
,

θo =

[(
āo1
)⊤
· · ·
(
āona
)⊤(b̄o1)⊤ · · · (b̄onb)⊤]⊤,

po(k) =
[
1 po(k) p2o(k) · · · p

ng
o (k)

]⊤
,

χo(k) = [−x(k−1) · · · − x(k−na), u(k−1) · · · u(k−nb)]⊤,
φo(k) = χo(k)⊗ po(k). (4)

Based on the above notation, the plant Go in (1) can be rewritten as
follows:

Go : y(k) = φ⊤o (k)θo + e(k). (5)

3.2. Model structure for identification

The following parametrized model structure Mθ is considered
to describe the true LPV plant Go in (1):

Mθ : y(k) =−
na∑
i=1

ai(po(k))y(k− i)

+

nb∑
j=1

bj(po(k))u(k− j)+ ϵ(k), (6)

where ϵ(k) is the residual term.

The functions ai : R→ R and bj : R→ R are parametrized as
follows:

ai(po(k)) = āi,0 +
ng∑
s=1

āi,spso(k) = ā⊤i po(k), (7a)

bj(po(k)) = b̄j,0 +
ng∑
s=1

b̄j,spso(k) = b̄⊤i po(k). (7b)

Note that, since the paper aims at presenting a consistent closed-
loop identification algorithm, the problem of model structure se-
lection is not addressed. Thus, we assume that both the true plant
Go and the model Mθ share the same parameters na, nb and ng .

By using a similar matrix notation already introduced to de-
scribe the true plant Go in (5), the LPV model Mθ in (6) can be
written in the linear regression form:

Mθ : y(k) = φ⊤(k)θ + ϵ(k), (8)

where

θ = [ā⊤1 · · · ā
⊤

na b̄
⊤

1 · · · b̄
⊤

nb ]
⊤, (9)

is the vector of model parameters to be identified and φ(k) is the
regressor with measured outputs and scheduling signals at time k,
defined as

φ(k) = χ (k)⊗ po(k), (10)

with

χ (k)= [−y(k−1) · · · − y(k−na), u(k−1), . . . , u(k−nb)]⊤. (11)

The identification problem addressed in this paper aims at com-
puting a consistent estimate of the true system parameter vector
θo, given the model orders na, nb and ng and an N-length observed
sequenceDN = {u(k), y(k), po(k), r(k)}Nk=1 of data generated by the
closed-loop system So in Fig. 1. To this aim, a novel identification
algorithm based on asymptotic bias-corrected least squares is de-
scribed in the next sections.

4. Bias-corrected least squares

It is well known that ordinary least squares give an asymptoti-
cally biased estimate of the model parameters due to the feedback
structure (Söderström & Stoica, 1989). In this section we quantify
this bias and show how to remove it to give a consistent estimate
of the model parameter vector θ .

4.1. Bias in the least-squares estimate

Consider the LS estimate θ̂LS given by

θ̂LS =

(
1
N

N∑
k=1

φ(k)φ⊤(k)

)
  

ΓN

−1
1
N

N∑
k=1

φ(k)y(k), (12)

under the assumption thatmatrixΓN is invertible. In order to com-
pute the difference between the LS estimate θ̂LS and true system
parameters θo, the output signal (5) is rewritten as follows:

y(k) = φ⊤o (k)θo + e(k)

= [χo(k)⊗ po(k)]⊤θo + e(k)

= [χ (k)⊗ po(k)]⊤θo
+ [(χo(k)−χ (k))⊗ po(k)]⊤ θo + e(k)

= φ⊤(k)θo +∆φ(k)θo + e(k), (13)
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with

∆φ(k)= [(χo(k)−χ (k))⊗ po(k)]⊤ = φ⊤o (k)− φ⊤(k). (14)

Based on the representation of y(k) in (13), the difference between
the least-square estimate θ̂LS and the true system parameter vector
θo can be expressed as follows:

θ̂LS − θo = Γ −1N

N∑
k=1

1
N

φ(k)y(k)− θo

= Γ −1N
1
N

N∑
k=1

φ(k)
(
φ⊤(k)θo +∆φ(k)θo + e(k)

)
− θo

= Γ −1N
1
N

N∑
k=1

φ(k)φ⊤(k)  
ΓN

θo

+ Γ −1N
1
N

N∑
k=1

φ(k)∆φ(k)θo

+ Γ −1N
1
N

N∑
k=1

φ(k)e(k)− θo

= Γ −1N
1
N

N∑
k=1

φ(k)∆φ(k)θo  
B∆(θo,φ(k),∆φ(k))

+ Γ −1N
1
N

N∑
k=1

φ(k)e(k)  
Be

. (15)

Because of strict causality of the plant Go (see Assumption A2),
the regressor φ(k) is uncorrelated with the current value of the
noise e(k). Thus, the term Be in (15) asymptotically (as N → ∞)
converges to zero with probability 1 (w.p. 1). Therefore, asymp-
totically, the bias in the LS estimate θ̂LS is only due to the term
B∆(θo, φ(k), ∆φ(k)), i.e.,

lim
N→∞

θ̂LS − θo = lim
N→∞

B∆(θo, φ(k), ∆φ(k)).

Note that, since the bias term B∆(θo, φ(k), ∆φ(k)) depends on
the true systemparameters θo aswell as on the noise-free regressor
φo(k), it cannot be computed and thus it cannot be simply removed
from the LS estimate θ̂LS.

In order to overcome the first difficulty due to the depen-
dence of B∆(θo, φ(k), ∆φ(k)) on θo, the following estimate, inspired
by Piga et al. (2015), is introduced:

θ̃CLS = θ̂LS − B∆(θ̃CLS, φ(k), ∆φ(k)), (16)

with

B∆(θ̃CLS, φ(k), ∆φ(k)) = Γ −1N
1
N

N∑
k=1

φ(k)∆φ(k)θ̃CLS.

The main idea behind (16) is to correct the least-squares estimate
θ̂LS by removing the bias term B∆, which is evaluated at the param-
eter estimate θ̃CLS instead of at the unknown system parameters
θo. Note that (16) provides an implicit expression for the estimate
θ̃CLS, as the term B∆ depends on θ̃CLS itself. By simple algebraic
manipulations, (16) can be rewritten as follows:

θ̃CLS =θ̂LS − Γ −1N
1
N

N∑
k=1

φ(k)∆φ(k)θ̃CLS

=θ̂LS − Γ −1N
1
N

N∑
k=1

φ(k)φ⊤o (k)θ̃CLS + Γ −1N ΓN θ̃CLS

=Γ −1N

(
1
N

N∑
k=1

φ(k)y(k)

)
+

− Γ −1N
1
N

N∑
k=1

φ(k)φ⊤o (k)θ̃CLS + θ̃CLS.

Thus,

θ̃CLS =

(
1
N

N∑
k=1

φ(k)φ⊤o (k)

)−1
1
N

N∑
k=1

φ(k)y(k). (17)

Using the definition ∆φ(k) = φ⊤o (k) − φ⊤(k), (17) can be written
as

θ̃CLS = R−1N

(
1
N

N∑
k=1

φ(k)y(k)

)
, (18)

where

RN =
1
N

(
N∑

k=1

φ(k)φ⊤(k)+
N∑

k=1

φ(k)∆φ(k)

)
.

Property 1. Assuming that the following limit exists:

lim
N→∞

R−1N ,

then θ̃CLS is a consistent estimate of true system parameters θo, i.e.,

lim
N→∞

θ̃CLS = θo w.p. 1. (19)

Proof. By substituting (13) into (18), we obtain

θ̃CLS = R−1N
1
N

(
N∑

k=1

φ(k)(φ⊤(k)+∆φ(k))

)
  

RN

θo

+ R−1N

(
1
N

N∑
k=1

φ(k)e(k)

)
.

Since the regressor φ(k) is uncorrelated with the current value of
the noise e(k), the term 1

N

∑N
k=1φ(k)e(k) asymptotically converges

to zero w.p. 1. Thus,

lim
N→∞

θ̃CLS = θo w.p. 1. ■

As ∆φ(k) depends on the unknown noise-free regressors φo(k)
the estimate θ̃CLS in (18) cannot be computed. To overcome this
problem, the term φ(k)∆φ(k) is replaced by a bias-eliminatingma-
trixΨk, which is constructed (as explained in the following section)
in such a way that it only depends on the available measurements
DN and it satisfies the following property:

C1 : lim
N→∞

1
N

N∑
k=1

φ(k)∆φ(k) = lim
N→∞

1
N

N∑
k=1

Ψk w.p. 1.

4.2. Construction of the bias-eliminating Ψk

A bias-eliminating matrix Ψk satisfying condition C1 is
constructed by evaluating the expected value of the matrix
E{φ(k)∆φ(k)}, as follows:

Ψk = E{φ(k)∆φ(k)}

= E{(χ (k)⊗ po(k))([(χo(k)− χ (k))⊗ po(k)]⊤)}

= E{(χ (k)⊗ po(k))(
[
(χo(k)− χ (k))⊤ ⊗ (p⊤o (k))

]
)}

= E{
[
χ (k)(χo(k)− χ (k))⊤

]
⊗
[
po(k)p⊤o (k)

]
}
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= E{Υk ⊗ Po(k)}
= E{Υk} ⊗ Po(k), (20)

with

Υk = χ (k)(χo(k)− χ (k))⊤, (21a)

Po(k) = po(k)p⊤o (k). (21b)

The derivations reported above follow from the mixed-product
property of the Kronecker product.

(A⊗ B) (C ⊗ D) = (AC)⊗ (BD) . (22)

Property 2. The matrix E{Υk} is given by

[E{Υk}](na+nb)×(na+nb) = Λk =

[
(Υ y

k )na×na 0na×nb ,

(Υ u
k )nb×na 0nb×nb ,

]
(23)

where Υ
y
k and Υ u

k are upper triangular matrices,

Υ
y
k =

⎡⎢⎢⎢⎢⎣
f1(k− 1) f2(k− 2) · · · fna (k− na)

0 f1(k− 2)
. . .

...
...

. . .
. . . f2(k− na)

0 · · · 0 f1(k− na)

⎤⎥⎥⎥⎥⎦ , (24a)

Υ u
k =

⎡⎢⎢⎢⎢⎢⎣
g1(k−1) g2(k−2) · · · · · · gna (k−na)

0 g1(k−2)
. . .

...
...

. . .
. . .

...

0 · · · 0
. . . gna−nb+1(na−nb+1)

⎤⎥⎥⎥⎥⎥⎦ ,

(24b)

and

fm(k− j) = E{−y(k− j+m− 1)e(k− j)},
gm(k− j) = E{u(k− j+m− 1)e(k− j)} ∀m = Ina1 ,

and

fm(k) = gm(k) = 0 for k ≤ 0. (25)

Proof. See Appendix A.1.

Property 3. The relation between fm(k) and gm(k) can be expressed
by the following recursion, initialized with f1(k) = −σ 2

e for all k =
1, . . . ,N,

gm(k) = −
min(nc ,m−1)∑

i=1

ci(po(k+m−1))gm−i(k) (26a)

+

min(nd,m)∑
j=1

dj(po(k+m−1))fm−j+1(k), (26b)

fm(k) = −
m−2∑
i=1

aoi (po(k+m−1))fm−i(k) (26c)

−

min(nb,m−1)∑
j=1

boj (po(k+m−1))gm−j(k). (26d)

Proof. See Appendix A.2.

Remark 1. In the case of open-loop data, the input signal is
uncorrelated with the measurement noise affecting the output,
i.e., E {u(k− i)e(k− j)} = 0, ∀i ̸= j. Moreover, as themeasurement
noise is assumed to be white, i.e., E {y(k− i)e(k− j)} = 0 ∀i ̸= j,
we have that

1. Υ u
k = 0nb×na ,

2. Υ
y
k is a diagonal matrix with the diagonal entries

[
Υ

y
k

]
i,i =

−σ 2
e , and thus it does not depend on the true system param-

eter vector θo.

The above matrices can be used to remove the bias in the
identification of open-loop LPV models with an output-error type
noise structure. ■

4.3. Bias corrected estimate

The matrix Ψk, which actually depends on the true sys-
tem parameter θo, is constructed using Properties 2 and 3
(namely, (20), (23) and (26)) using an estimated parameter vector
θ̂CLS instead of the unknown θo. Specifically, an implicit expression
for the final bias-corrected estimate is given by

θ̂CLS=

(
1
N

N∑
k=1

(
φ(k)φ⊤(k)+Ψk(θ̂CLS)

))−1(1
N

N∑
k=1

φ(k)y(k)

)
. (27)

The main properties enjoyed by the estimate θ̂CLS in (27) are re-
ported in the following.

Property 4. Assume that the following limit

lim
N→∞

(
1
N

N∑
k=1

(
φ(k)φ⊤(k)+Ψk(θo)

))−1
(28)

exists. Then, asymptotically, the true system parameter vector θo is a
solution of (27), namely, for θ = θo,

θ= lim
N→∞

(
1
N

N∑
k=1

(
φ(k)φ⊤(k)+Ψk(θ )

))−1(1
N

N∑
k=1

φ(k)y(k)

)
, (29)

where the limit in (29) holds w.p. 1. Thus, if θo is the unique solution
of (29), then the estimate θ̂CLS in (27) is consistent, i.e.,

lim
N→∞

θ̂CLS = θo. (30)

Proof. By construction, E{Ψk(θo)} = E{φ(k)∆φ(k)}, then Condition
C1 follows from Ninness’ strong law of large numbers (Ninness,
2000). See Piga et al. (2015, Appendix A2) for a detailed proof. By
substituting

y(k) =
(
φ⊤(k)+∆φ(k)

)
θo + e(k)

into the right-hand side of (29), we obtain(
1
N

N∑
k=1

φ(k)φ⊤(k)+Ψk(θo)

)−1(
1
N

N∑
k=1

φ(k)
(
φ⊤(k)+∆φ(k)

))
θo (31a)

+

(
1
N

N∑
k=1

(
φ(k)φ⊤(k)+Ψk(θo)

))−1(1
N

N∑
k=1

φ(k)e(k)

)
. (31b)

As the regressor φ(k) is uncorrelated with the white noise
e(k), (31b) converges to zero w.p. 1 as N →∞. Furthermore, from
condition C1, it follows that (31a) converges to θo as N → ∞.
Thus, (29) holds for θ = θo. Furthermore, taking the limit of
the left- and right-hand side of (27), (30) follows from (29) and
uniqueness assumption. ■

Note that (27) provides an implicit expression for the bias-
corrected estimate θ̂CLS. In order to overcome this problem, (27)
is solved iteratively as detailed in Algorithm 1. The main idea of
Algorithm 1 is to compute, at each step τ , the bias-eliminating
matrixΨk using the estimate θ̂

(τ−1)
CLS obtained at step τ −1 and then
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Algorithm 1 Iterative bias-correction algorithm
Input: noise variance σ 2

e ; tolerance ϵ; maximum number τmax of
iterations; initial condition θ̂

(0)
CLS.

1. let τ ← 0;

2. while: τ ≤ τmax

2.1. let τ ← τ + 1;

2.2. compute Ψk(θ̂
(τ−1)
CLS ) using Eqs. (20), (23) and (26);

2.3. calculate the bias corrected estimates θ̂
(τ )
CLS in (27);

2.4. if
θ̂ (τ )

CLS − θ̂
(τ−1)
CLS


2
≤ ϵ

2.4.1 exitwhile;

2.5. end if

3. end while

Output: Bias-corrected estimate θ̂CLS.

to compute θ̂
(τ )
CLS based on (27). Algorithm 1 can be initializedwith a

randomvector θ̂ (0)
CLS or, for instance,with the LS estimates θ̂LS in (12).

Although convergence of Algorithm 1 is not theoretically proven,
and its final solution may depend on the chosen initial condition,
Algorithm 1 seems to be quite insensitive to initial conditions and
its convergence has been empirically observed from numerical
tests (cf. Section 6.1).

4.4. Estimate with unknown noise variance

In computing the bias-correcting matrix Ψk (and thus the bias-
corrected estimate θ̂CLS in (27)), the variance σ 2

e of the noise cor-
rupting the output signal measurements is assumed to be known.
This is a restrictive assumption which may limit the applicability
of the proposed identification approach. However, the unknown
noise variance can be simply tuned via cross-validation. Specifi-
cally, the following cost can be minimized through a grid search
over σ 2

e,i:

J (θ̂ i
CLS, σ

2
e,i) =

1
Nc

Nc∑
k=1

(
y(k)− x̂i(k)

)2
, (32)

where Nc is the length of the calibration set. The sequence x̂i
denotes the open-loop simulated output of themodel with param-
eters θ̂ i

CLS estimated from Algorithm 1 using a given value of σ 2
e,i as

a guess for σ 2
e . The simulated output is defined as follows:

x̂i(k) = φ̂⊤cal(k)θ̂
i
CLS,

where the regressor φ̂cal(k) (as defined in (4)) is given by

χ̂(k) =
[
−x̂i(k−1) · · ·−x̂i(k−na) u(k−1) · · · u(k−nb)

]⊤
,

φ̂cal(k) = χ̂(k)⊗ po(k).

It is worth stressing that the cost J in (32) is minimized only
with respect to the scalar parameter σe. Specifically, once σ 2

e = σ 2
e,i

is fixed, the corresponding θ̂ i
CLS (which depends on the chosen σ 2

e,i)
is given by (27) and the corresponding cost J can be computed.
Among the considered values ofσ 2

e,i, the oneminimizingJ is taken.

5. Bias-correction with noisy scheduling signal

So far we have assumed that noise-free measurements of the
scheduling variable po(k) are available. However, in many real

applications, this might not be a realistic assumption, as the
scheduling signal is often related to a measured signal and thus
inherently corrupted by measurement noise (e.g., velocity and
lateral acceleration in vehicle lateral dynamics modelling Cerone,
Piga, and Regruto, 2011, gate–source voltage of a transistor in the
description of an electronic filter Lataire, Louarroudi, Pintelon, and
Rolain, 2015, air speed and flight altitude in aircraft control Apkar-
ian, Gahinet, andBecker, 1995). This noise induces a bias in the final
parameter estimate θ̂CLS (27). Starting from the results presented in
Section 4 and in Piga et al. (2015) (where open-loop LPV identifica-
tion from noisy scheduling variable measurements is addressed),
in this section we show how to compute an asymptotically bias-
free estimate of the LPV model parameters from closed-loop data
with noisy measurements of the scheduling signal.

In particular, we consider the closed-loop data-generating sys-
tem So in Fig. 1, and we assume that the noise-free scheduling
signal po(k) is corrupted by an additive zero-mean white Gaussian
noise with variance σ 2

η , independent of the output noise e(k), i.e.,

p(k) = po(k)+ η(k), E {η(k)e(t)} = 0, ∀k, t.

Following the same ideas described in Section 4, we quantify the
bias in the LS estimate stemming from the output noise e(k) and
from the scheduling signal noise η(k).

5.1. Bias-corrected least squares

By defining the ‘‘observed’’ regressor vector as

φp(k) = χ (k)⊗ p(k),

with χ (k) defined in (11) and

p(k) =
[
1 p(k) p2(k) · · · png (k)

]⊤
, (33)

the standard least-squares estimate is given by

θ̂
p
LS =

(
1
N

N∑
k=1

φp(k)φ⊤p (k)

)
  

Γ
p
N

−1
1
N

N∑
k=1

φp(k)y(k). (34)

By similar algebraic manipulations used in (15), the asymptotic
bias in the LS estimate (34) is expressed as

lim
N→∞

θ̂
p
LS − θo = lim

N→∞
(Γ p

N )
−1 1

N

N∑
k=1

φp(k)∆φ(k)θo  
B∆(θo,φp(k),∆φ(k))

+ lim
N→∞

(Γ p
N )
−1 1

N

N∑
k=1

φp(k)∆φp(k)θo  
Bp(θo,φp(k),∆φp(k))

, (35)

with ∆φ(k) as defined in (14) and

∆φp(k) = [χ (k)⊗ (po(k)− p(k))]⊤.

Following the same rationale used to define θ̃CLS in (16), let us
introduce the bias-corrected estimate

θ̃
p
CLS = θ̂

p
LS − B∆(θ̃

p
CLS, φp(k), ∆φ(k))

− Bp(θ̃
p
CLS, φp(k), ∆φp(k)). (36)

Remark 2. In the case of noise-free scheduling signal observations
(i.e., po(k) = p(k)) φp(k) = φ(k) and Bp(θ̃

p
CLS, φp(k), ∆φp(k)) = 0.

Thus, (36) coincides with (16). ■
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θ̃CLS =

(∑N
k=1 [χ (k)⊗ p(k)] [χo(k)⊗ po(k)]⊤

N

)−1⎛⎝ 1
N

N∑
k=1

φ⊤p (k)y(k)

⎞⎠ (38a)

=

(∑N
k=1

[
χ (k)χ⊤o (k)

]
⊗
[
p(k)p⊤o (k)

]
N

)−1⎛⎝ 1
N

N∑
k=1

φ⊤p (k)y(k)

⎞⎠ (38b)

=

(∑N
k=1

[
χ (k)(χo(k)− χ (k))⊤

]
⊗
[
p(k)p⊤o (k)

]
+
[
χ (k)χ⊤(k)

]
⊗
[
p(k)p⊤o (k)

]
N

)−1⎛⎝ 1
N

N∑
k=1

φ⊤p (k)y(k)

⎞⎠ (38c)

=

(∑N
k=1 [χ (k)∆χ (k)]⊗

[
p(k)p⊤o (k)

]
+
[
χ (k)χ⊤(k)

]
⊗
[
p(k)p⊤o (k)

]
N

)−1⎛⎝ 1
N

N∑
k=1

φ⊤p (k)y(k)

⎞⎠ . (38d)

Box I.

By algebraic manipulations, the estimate θ̃
p
CLS in (36) can be

rewritten explicitly as follows:

θ̃
p
CLS =

⎛⎝∑N
k=1 φp(k)φ⊤o (k)

N  
⎞⎠−1

R(p0)

(
1
N

N∑
k=1

φp(k)y(k)

)
, (37)

or equivalently as in (38).1 (See the equations in Box I.)
Then, a bias-corrected estimate θ̂

p
CLS can be obtained from (38d)

as follows:

• replace the matrix χ (k)χ⊤(k) ⊗
[
p(k)p⊤o (k)

]
by a matrix

χ (k)χ⊤(k) ⊗ Ψ
p
k depending only on the available dataset

Dp
N = {u(k), y(k), p(k), r(k)}

N
k=1 and satisfying condition:

C2 : lim
N→∞

1
N

N∑
k=1

p(k)p⊤o (k)= lim
N→∞

1
N

N∑
k=1

Ψ
p
k w.p. 1. (39)

• replace thematrix [χ (k)∆χ (k)]⊗
[
p(k)p⊤o (k)

]
by amatrixΩk

depending only on the available dataset Dp
N and satisfying

the following condition:

C3 : lim
N→∞

1
N

N∑
k=1

[χ (k)∆χ (k)]⊗
[
p(k)p⊤o (k)

]
= lim

N→∞

1
N

N∑
k=1

Ωk w.p. 1. (40)

The procedure to construct the matrices Ψ
p
k and Ωk satisfying

conditions C2 and C3 is outlined in the following section.

5.2. Construction of the bias-eliminating matrices

5.2.1. Construction of Ψ p
k

Inspired by Piga et al. (2015), the bias-correction matrix Ψ
p
k

satisfying condition C2 in (39) is constructed as follows:

1. compute the analytic expression of E{p(k)p⊤o (k)}. Note that,
sincepo(k) andp(k) are polynomials in po(k) and p(k) (see (4)
and (33)), the entries of E{p(k)p⊤o (k)} are polynomials in
po(k);

2. express the nth order monomial pno(k) in terms of the ex-
pected value of the noise-corrupted observation pn(k) and
noise varianceσ 2

η as the ‘‘probabilists’’ Hermite polynomial:2

1 Eq. (38b) follows from (38a) and the Kronecker product property (22).

pno(k) = E

{
(n!)

⌊n/2⌋∑
m=0

(−1)mσ 2m
η

m!(n− 2m)!
pn−2m(k)

2m

}
; (41)

3. compute the matrix Ψ
p
k by replacing each of the monomials

po(k), p2o(k), p
3
o(k), . . . appearing in the analytic expression

of E{p(k)p⊤o (k)}, with the term inside the expectation oper-
ator in (41).

By construction, the matrix Ψ
p
k satisfies

E
{
Ψ

p
k

}
= E

{
p(k)p⊤o (k)

}
. (42)

Based on (42) and Ninness’ strong law of large numbers (Ninness,
2000), Ψ

p
k satisfies Condition C2. An example of construction of

matrix Ψ
p
k is reported in Appendix A.3.

5.2.2. Construction of Ωk
The matrix Ωk satisfying condition C3 can be constructed

by properly combining the ideas used to construct the bias-
eliminating matrices Ψ

p
k (see Section 5.2.1) and Υ

y
k and Υ u

k (intro-
duced in (24)). Specifically, matrix Ωk is constructed in such a way
that the following equality holds:

Ee,η {Ωk} = Ee,η
{
[χ (k)∆χ (k)]⊗

[
p(k)p⊤o (k)

]}
. (43)

Since, χ (k)∆χ (k) does not depend on the noise η(k) and p(k)p⊤o (k)
does not depend on the output noise e, and since the random
variables e(k) and η(k) are independent, (43) is equivalent to

Ee,η {Ωk} = Ee {[χ (k)∆χ (k)]} ⊗ Eη

{[
p(k)p⊤o (k)

]}
. (44)

Note that χ (k)∆χ (k) is equal to Υk as defined in (21a). Thus,
Ee {[χ (k)∆χ (k)]} is equal toΛk (see (23)) and it can be constructed
using the results in Property 2. However, Λk defined in (23) de-
pends on the noise-free scheduling signal po, and thus its expres-
sion can be only derived analytically, but it cannot be constructed
based on the available datasetDp

N . Nevertheless, asΛk(po) does not
depend on the random variable η, condition (44) becomes

Ee,η {Ωk} =Λk(po)⊗ Eη

{[
p(k)p⊤o (k)

]}
=Eη

{
Λk(po)⊗

[
p(k)p⊤o (k)

]}
. (45)

Thus,Ωk can be constructed based on the same procedure outlined
in Section 5.2.1 to constructΨ p

k , replacing the termE
{[

p(k)p⊤o (k)
]}

in Section 5.2.1 with the term Eη

{
Λk(po)⊗

[
p(k)p⊤o (k)

]}
.

2 The expression of pno(k) in terms of the expected value of the noise-corrupted
observation pn(k) and noise variance σ 2

η is not reported in Piga et al. (2015) in terms
of the Hermite polynomial (41), but in terms of recursive constructions which can
be proved to have the compact expression in (41).



M. Mejari et al. / Automatica 87 (2018) 128–141 135

As thematrixΛk(po) has a dynamic dependence on po (i.e., it is a
function of po(k), po(k−1), . . .), the analytic expression ofΛk(po)⊗[
p(k)p⊤o (k)

]
has product terms such as pno(k), p

n
o(k− 1), . . .. Never-

theless, as the noise terms η(k) and η(k− t) are uncorrelated, ∀t ̸=
0, we have that Eη {pn(k)pn(k− 1)} = Eη {pn(k)}Eη {pn(k− 1)},
and theHermite polynomial expression defined in (41) can be used
to construct Ωk.

5.3. Bias-corrected estimate

Based on (38d) and the ideas introduced in the previous sec-
tions, the final bias-corrected estimate θ̂

p
CLS is given by

θ̂
p
CLS=

(
1
N

N∑
k=1

Ωk(θ̂
p
CLS)+

[
χ (k)χ⊤(k)

]
⊗ Ψ

p
k

)−1

×

(
1
N

N∑
k=1

φ⊤p (k)y(k)

)
. (46)

Note that, as in the case of noise-free scheduling signal, the matrix
Ωk depends on the true system parameter vector θo, and the
estimate θ̂

p
CLS should be computed based on an iterative approach

similar to Algorithm 1.

Property 5. Assume that the following limit

lim
N→∞

(
1
N

N∑
k=1

Ωk(θ̂
p
CLS)+

[
χ (k)χ⊤(k)

]
⊗ Ψ

p
k

)−1
. (47)

exists. Then, asymptotically, the true system parameter vector θo is a
solution of (46), namely, for θ = θo,

θ= lim
N→∞

(
1
N

N∑
k=1

Ωk(θ )+
[
χ (k)χ⊤(k)

]
⊗ Ψ

p
k

)−1

×

(
1
N

N∑
k=1

φ⊤p (k)y(k)

)
, (48)

where the limit in (48) holds w.p. 1. Thus, if θo is the unique solution
of (48), then the estimated θ̂

p
CLS in (46) is consistent, i.e.,

lim
N→∞

θ̂
p
CLS = θo. (49)

Proof. Property 5 follows from conditions C2 and C3 and from the
same rationale used in the proof of Property 4. ■

5.4. Estimation with unknown variances σ 2
e and σ 2

η

In computing the bias correcting matrices Ωk and Ψ
p
k , the noise

variances σ 2
e and σ 2

η are assumed to be known. In the case of
noise-free scheduling variable, the open-loop simulation error was
used in Section 4.4 as a performance criterion to tune σ 2

e via cross
validation. However, in the noisy p scenario, a cross-validation
procedure will fail, as a model with the ‘‘true’’ system parameters
θo will not provide the ‘‘true’’ output due to the fact that the
scheduling variable p(k) used to simulate the output of themodel is
not the ‘‘true’’ one. In order to overcome this problem, we propose
next a novel procedure based on a bias-free tuning criterion.

Let us introduce the simulated regressor

χ̂ (k) =
[
−ŷ(k−1) · · · − ŷ(k−na), u(k−1), . . . , u(k−nb)

]⊤
, (50)

where ŷ(k) is the bias-corrected simulated model output at time k
given by

ŷ(k) =
[
χ̂ (k)⊗ pC(k)

]⊤
θ̂
p
CLS (51)

and pC(k) being the vector of bias-corrected monomials.3
Given an estimate θ̂

p
CLS, computed through (46) for fixed values

of σe and ση , and a calibration dataset of length Nc not used to
compute θ̂

p
CLS, define the cost

JBC

(
θ̂
p
CLS(σe, ση)

)
=

⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐ 1Nc

Nc∑
k=1

[
χ (k)χ̂⊤(k)⊗ Ψ

p
k

]
θ̂
p
CLS

(
σe, ση

)
−

1
Nc

Nc∑
k=1

(
Ωk(θ̂

p
CLS)+

[
χ (k)χ⊤(k)

]
⊗ Ψ

p
k

)
θ̂
p
CLS

(
σe, ση

) ⏐⏐⏐⏐⏐
⏐⏐⏐⏐⏐
2

. (52)

The cost JBC will be referred to as bias-corrected cost and, as
discussed in the following property, it should be used as a criterion
to tune the unknown noise variances σ 2

e and σ 2
η .

Property 6. The bias-corrected cost (52) asymptotically achieves its
minimum at θ̂

p
CLS = θo, i.e.,

θo = argmin
θ

lim
Nc→∞

JBC(θ ) w.p. 1. (53)

Proof. See Appendix A.4.

Property 6 proves that, if JBC(θ ) has asymptotically a unique
minimizer, then its minimum is achieved at the true system pa-
rameter vector θo. Thus, JBC (θ) is an asymptotically bias-free
criterion which can be used to assess the quality of a given model
parameter vector θ̂

p
CLS. Therefore, the hyper-parameters σe and ση

can be tuned through a grid search using JBC

(
θ̂
p
CLS(σe, ση)

)
as a

performance metric on a calibration dataset.

6. Case studies

In order to show the effectiveness of the proposed identification
method, we consider two examples. In the first example, we focus
on the effect of the measurement noise on the final parameter es-
timate, hence the model structure of the true LPV data-generating
system is assumed to be exactly known. As a more realistic case
study, the second example addresses the identification of a non-
linear two-tank system. All the simulations are carried out on an i5
2.40-GHz Intel core processor with 4 GB of RAM running MATLAB
R2015b.

The performance of the identified models is assessed on a
noiseless validation dataset not used for training through the Best
Fit Rate (BFR) index, defined as

BFR = max

⎧⎪⎨⎪⎩1−

√∑Nval
k=1

(
y(k)− ŷ(k)

)2∑Nval
k=1 (y(k)− ȳ)2

, 0

⎫⎪⎬⎪⎭ , (54)

with Nval being the length of the validation set and ŷ being the
estimated model output and ȳ the sample mean of the output
signal.

6.1. Example 1

6.1.1. Data-generating system
The considered closed-loop data-generating system So is taken

from (Abbas, Ali, &Werner, 2010), and it consists of an (unknown)

3 The vector of bias-corrected monomials pC(k) is such that it only depends on
p(k) andση and satisfies the conditionE

{
pC(k)

}
= po(k). Thus, it can be constructed

using the Hermite polynomial (41). For instance, when po(k) =
[
1 po(k) p2o(k)

]⊤ ,
then pC(k) =

[
1 p(k) p2(k)− σ 2

η

]⊤ .
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LPV plant Go described by (1), with

Ao(q−1, pk) = 1+ ao1(po(k))q
−1
+ao2(po(k))q

−2, (55a)

Bo(q−1, pk) = bo1(po(k))q
−1
+bo2(po(k))q

−2, (55b)

where

ao1(po(k)) = 1.0− 0.5po(k)− 0.1p2o(k), (56a)

ao2(po(k)) = 0.5− 0.7po(k)− 0.1p2o(k), (56b)

bo1(po(k)) = 0.5− 0.4po(k)+ 0.01p2o(k), (56c)

bo2(po(k)) = 0.2− 0.3po(k)− 0.02p2o(k). (56d)

The noise term e(k) corrupting the output observations is a white
Gaussian noise with standard deviation σe = 0.05. This corre-
sponds to a Signal-to-Noise Ratio (SNR) of 12.5 dB, where the SNR
on the output channel is defined as

SNRy = 10 log
∑N

k=1 (x(k)− x̄)2∑N
k=1 e2(k)

, (57)

with x̄ denoting the mean of the noise free output.
The controller Ko is LTI and known, and it is described by (2)

with

Co(q−1, pk) = 1+ co1 (po(k))q
−1
+ co2 (po(k))q

−1,

Do(q−1, pk) = do1(po(k))+ do2(po(k))q
−1
+ do3(po(k))q

−2,

with

co1 (po(k)) = −0.28, c
o
2 (po(k)) = 0.5,

do1(po(k)) = 0.35, do2(po(k)) = −0.28, d
o
3(po(k)) = 0.1.

The scheduling signal trajectory is described by:

po(k) = 1.1(0.5 sin(0.35πk)+ 0.05).

The reference r(k) is a white noise signal with uniform distri-
bution in the interval [−1 1]. A training dataset DN of length
N = 20,000 is used to estimate the plant Go and, in order to assess
the statistical properties of the proposed identification approach,
a Monte-Carlo study with 100 runs is performed. At each Monte-
Carlo run, a new dataset of inputs u(k), scheduling variables po(k),
reference signal r(k) and noise e(k) is generated.

6.1.2. Model structure
As a model structure for the plant Go, we consider the second-

order LPV model

y(k) = −
2∑

i=1

ai(po(k))y(k− i)+
2∑

j=1

bj(po(k))u(k− j),

where the coefficient functions ai(po(k)) and bj(po(k)) are
parametrized as second order-polynomials:

a1(po(k)) = a1,0 + a1,1po(k)+ a1,2p2o(k),

a2(po(k)) = a2,0 + a2,1po(k)+ a2,2p2o(k),

b1(po(k)) = b1,0 + b1,1po(k)+ b1,2p2o(k),

b2(po(k)) = b2,0 + b2,1po(k)+ b2,2p2o(k).

6.1.3. Identification from noise-free scheduling signal
First, we assume that the observations of the scheduling vari-

able po(k) are not corrupted by ameasurement noise. The following
two cases are considered:

1. the variance σ 2
e of the noise e(k) on the output signal y(k) is

known;
2. σ 2

e is unknown.

Furthermore, since Algorithm1depends on the initial guess θ̂
(0)
CLS

used to iteratively compute the bias-correcting matrix Ψk(θ̂
(τ−1)
CLS )

(see Step 2.2), we test its sensitivity w.r.t. different initial condi-
tions θ̂

(0)
CLS.

Identification with known variance σ 2
e

The identification results obtained through standard least-
squares and the closed-loop bias-correction approach presented in
Algorithm 1 are compared in Table 1, which shows the averages
and the standard deviations of the estimated model parameters
over 100 Monte-Carlo runs. The average CPU time for computing
the estimate for a given value of noise variance is 2.5 s.

In order to further assess the performance of the developed
identification scheme, we also compute the BFR on a noise-free
validation dataset of length Nval = 10,000, which is reported in Ta-
ble 2. The obtained results show that, unlike the least squares, the
proposed approach provides a consistent estimate of the system
parameters. This leads to a higher BFR (namely, better reconstruc-
tion of the output signal on the validation set) w.r.t. least squares.

In order to analyse the sensitivity of Algorithm1w.r.t. the initial
condition θ̂

(0)
CLS, we initialize Algorithm 1with 100 different random

values of θ̂
(0)
CLS. The initial values of each component of θ̂

(0)
CLS are

chosen randomly from a uniform distribution in the interval [0 1].
The iterative algorithm is stopped when no change in the final
estimate is observed or when a maximum number of iterations
τmax

= 50 is reached. The same training data-set is used in all
runs. We observe that the algorithm is insensitive to the initial
conditions and it provides the samemodel estimate, resulting in an
equal BFR for all the 100 different initial conditions θ̂

(0)
CLS (see Fig. 2).

The proposed method is also compared with a prediction-error
method (PEM). In the prediction-error identification framework,
the unknown plant parameters θ are obtained by minimizing the
one-step ahead prediction-error: ϵθ (k) = y(k) − ŷ(k | k − 1) =
φ̂⊤(k)θ , resulting in the minimization of the following non-convex
loss function:

W(DN , θ ) =
1
N

N∑
k=1

ϵ2
θ (k)

where the regressor φ̂(k) (as defined in (4)) is given by

χ̂(k) =
[
−ŷ(k−1) · · · − ŷ(k−na), u(k−1) · · · u(k−nb)

]⊤
,

φ̂(k) = χ̂(k)⊗ po(k).

The average CPU time taken by the PEM to find the estimate is
2.5 s. The estimated model parameters and the achieved BFR are
reported in Tables 1 and 2, respectively. Similar results are ob-
tained by the bias-correction approach and PEM. However, unlike
PEM, the proposed bias-correction approach leads to a consistent
parameter estimate also in the case of noisy scheduling variable
observations (as shown in the results reported in Section 6.1.4).

Identification with unknown noise variance σ 2
e

We now consider the case where the variance σ 2
e of the noise

corrupting the output signal is not known a priori, but recovered
through the cross-validation procedure described in Section 4.4.
Fig. 3 shows the cost function J (σe) (multiplied by Nc for a better
visualization) defined in (32) against different values of the hyper-
parameter σe. Note that the minimum of J is achieved exactly at
the true value of the noise standard deviation (i.e., at σe = 0.05).
Thus, since the true value of σ 2

e is exactly recovered, the estimated
model parameters coincide with the ones obtained in the case of
known variance σ 2

e (and already provided in Table 1).

6.1.4. Identification from noisy scheduling signal
In this paragraph, the proposed closed-loop identification algo-

rithm is tested for the case of noisy measurements of the schedul-
ing signal. To this aim, the scheduling variable observations are
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Table 1
Example 1. Identification from noise-free scheduling signal measurements: means
and standard deviations (over 100 Monte-Carlo runs) of the estimated parame-
ters using Least Squares, the proposed closed-loop bias-correction method and
prediction-error method (PEM).

True value Least squares Bias-correction PEM

1 0.7542± 0.0085 0.9992± 0.0138 0.9976± 0.0082
−0.5 −0.2117± 0.0194 −0.4785± 0.0425 −0.4999± 0.0188
−0.1 −0.9288± 0.0525 −0.1245± 0.1229 −0.0873± 0.0606
0.5 0.3449± 0.0057 0.5000± 0.0088 0.4986± 0.0057
−0.7 −0.7288± 0.0099 −0.6961± 0.0181 −0.7016± 0.0088
−0.1 −0.1685± 0.0295 −0.0994± 0.0609 −0.0898± 0.0403
0.5 0.5001± 0.0037 0.5008± 0.0041 0.4996± 0.0023
−0.4 −0.4007± 0.0070 −0.3997± 0.0081 −0.4007± 0.0027
0.01 −0.0266± 0.0194 0.0063± 0.0235 0.0109± 0.0108
0.2 0.0671± 0.0058 0.1995± 0.0082 0.1986± 0.0043
−0.3 −0.0788± 0.0136 −0.2887± 0.0267 −0.2999± 0.0118
−0.02 −0.4697± 0.0352 −0.0337± 0.0680 −0.0147±0.0328

Table 2
Example 1. Identification from noise-free scheduling signal measurements: Best Fit
Rates (BFRs) over (noise-free) validation data.

Method BFR

Least-squares 0.8202
Bias-correction 0.9964
PEM 0.9984

Fig. 2. Example 1. Best fit rate for different initial conditions θ̂
(0)
CLS of Algorithm 1.

Fig. 3. Example 1. Bias-corrected cost J (defined in (32)) vs noise standard
deviation σe .

corrupted by an additive zero-mean white Gaussian noise ηo(k)
with standard deviation ση = 0.12. This corresponds to a Signal-
To-Noise Ratio SNRp equal to 10 dB.4

The unknown model parameters are computed through the
following three approaches:

4 The Signal-To-Noise Ratio SNRp on scheduling variable observations is defined
similarly to (57).

Table 3
Example 1. Identification with noisy scheduling signal measurements: means and
standard deviations (over 100 Monte-Carlo runs) of the estimated parameters us-
ing Least Squares, Bias Correction 1 and Bias Correction 2. For the sake of simplicity,
the coefficients multiplying the quadratic terms in (56) are set to 0.

True value Least squares Bias correction 1 Bias correction 2

1 0.6908± 0.0070 1.0161± 0.0087 0.9965± 0.0087
−0.5 −0.3337± 0.0160 −0.4524± 0.0311 −0.4970± 0.0358
0.5 0.3297± 0.0044 0.5003± 0.0049 0.4948± 0.0051
−0.7 −0.6123± 0.0082 −0.6274± 0.0152 −0.6906± 0.0169
0.5 0.4970± 0.0021 0.5002± 0.0023 0.5155± 0.0023
−0.4 −0.3769± 0.0062 −0.3662± 0.0067 −0.4221± 0.0075
0.2 0.0357± 0.0043 0.2083± 0.0055 0.2058± 0.0057
−0.3 −0.1727± 0.0105 −0.2765± 0.0176 −0.3095± 0.0204

Table 4
Example 1. Identification with noisy scheduling signal observations: Best Fit Rates
(BFRs) over validation data achieved by Least-squares, Bias Correction 1 and Bias
Correction 2.

Method
θo − θ̂


2 BFR

Least squares 0.4513 0.7784
Bias correction 1 0.0977 0.9641
Bias correction 2 0.0314 0.9710

1. Least Squares;
2. Bias Correction 1: closed-loop bias-correction without han-

dling the bias due to the noise on p. The model parameters
are estimated using Algorithm 1, correcting only the bias
due to the output noise e.

3. Bias Correction 2: closed-loop bias-correction correcting
both the bias due to the noise on the scheduling signal
observations and the bias due to the feedback structure.

First, we consider the case when the noise variances σ 2
e and σ 2

η

are known. The estimated model parameters are provided in Table
3. The norm

θo − θ̂


2
of the difference between the true system

parameters θo and the estimate parameters θ̂ is reported in Table 4,
along with the BFRs on validation data. The obtained results show
that correcting the bias due to the noise on the scheduling signal
observations further improves the finalmodel parameter estimate.

Finally, we present the results of the proposed method when
no information is available a priori about the variance of the noise
corrupting the output and the scheduling signal measurements.
As detailed in Section 5.4, the standard deviations of the noise
signals is estimated by cross-validation using the bias corrected
cost function JBC in (52) as a performance criterion. Fig. 4 shows
the bias-corrected cost JBC plotted against the range of values of
σe and ση . For clarity, we have shown the 2-D plot of JBC versus σe
for different values of ση in Fig. 4(b). The cost JBC as a function of
ση for fixed value of σe at which the minimum is achieved (i.e., at
σe = 0.05) is plotted in Fig. 4(c). It can be seen from the figure that
the minimum is achieved at the true values of ση and σe (i.e., σe =

0.05 and ση = 0.12).

6.2. LPV identification of a nonlinear two-tank system

As a second case study, we consider the identification of the
nonlinear two-tank system reported in Smith and Doyle (1988).
The physical system consists of two tanks, placed one above the
other. The upper tank receives the liquid inflow through a pump.
The voltage applied to the pump is the input u(t), which controls
the inflow of the liquid in the upper tank. The lower tank gets
the liquid inflow via a small hole at the bottom of the upper tank.
The output y(t) is the liquid level of the lower tank. The following
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(a) Bias corrected cost JBC vs σe and ση .

(b) JBC vs σe for different values of ση .

(c) JBC vs ση for fixed value of σe = 0.05.

Fig. 4. Example 1. Bias corrected cost JBC (defined in (52)) vs hyper-parameters σe
and ση .

nonlinear equations are used to simulate the behaviour of the
system:

ẋ1(t) = (1/A1)(ku(t)− a1
√
2gx1(t)), (59a)

ẋ2(t) = (1/A2)(a1
√
2gx1(t)− a2

√
2gx2(t)), (59b)

y(t) = x2(t), (59c)

where A1 = 0.5m2and A2 = 0.25m2 are the cross-section areas of
tank 1 and 2, respectively, a1 = 0.02m2and a2 = 0.015m2 are the
cross-section areas of the holes in the two tanks, g = 9.8 m/s2 is
the acceleration due to gravity, x1(t) and x2(t) are the liquid levels
in tank 1 and tank 2, respectively. The reader is referred to Smith
and Doyle (1988) for a more detailed description of the considered
two-tank system.

The plant is controlled by a proportional controller u = Kx2(t),
with K = 1, and the output y(t) is measured with a sampling
time of 0.3 s. To gather data, the closed-loop system is excited
with a discrete-time zero-mean white noise reference signal r(k)
uniformly distributed in the interval [2 15] followed by a zero-
order hold block. Themeasured output y(k) is corrupted by awhite

Fig. 5. Example 2. Validation dataset: true output, simulated output of the LSmodel,
and simulated output of the bias-corrected model.

Table 5
Example 2. Best fit rates over validation data achieved by least-squares and closed-
loop bias-correction.

Method BFR

Least squares 0.3517
Bias-correction 0.7748

Gaussian noise N (0, σ 2
e ) with σe = 0.01, which corresponds to an

SNR of 20 dB.
To estimate the plant, we consider the LPVmodel structureMθ

described in (6) and (7),withna = 2,nb = 1 andpolynomial degree
ng = 2. The input u(k− 1) is used as a scheduling signal p(k). Thus,
the considered model is actually quasi-LPV. N = 20,000 and Nval =

5000 samples are used for training and validation, respectively.
The actual and simulated outputs of themodels estimated through
standard least-squares and the proposed bias-correction method
are plotted in Fig. 5. For the sake of visualization, only a subset of
validation data is plotted. Furthermore, the BFRs of the estimated
models are reported in Table 5. Note that, although the true sys-
tem (59) does not belong to the model class Mθ , the proposed
bias-correction approach outperforms standard least squares in
estimating the dynamics of the two-tank system.

7. Conclusions

This paper has introduced a novel bias-correction approach for
closed-loop identification of LPV systems. Starting from a least-
square estimate, the proposed method exploits the knowledge of
the controller to recursively compute an estimate of the asymptotic
bias in the model parameters due to the feedback loop. This bias
is then eliminated in order to obtain a consistent estimate of the
open-loop plant. Based on a similar rationale, the bias caused
by the noise corrupting the scheduling variable observations is
also corrected, thus extending the applicability of the approach
to realistic scenarios where not only the output signal, but also
the scheduling signal observations are affected by a measurement
noise. The computation of the bias strongly depends on the noise
variance. In case this is not available or it cannot be estimated
through dedicated experiments, a bias-corrected cost serves as a
performance criterion for tuning the noise variance. The reported
examples point out that the proposed method outperforms least-
squares in terms of achieving a consistent estimate of the open-
loop model parameters, provided that the true system belongs to
the chosen model class. Although the latter assumption is barely
achieved in practice, correcting the bias due to the measurement
noise also leads to a significant improvement in the final model
estimate when an under-parametrized model structure is consid-
ered, as shown in the second case study. Future activities will
be devoted to the extension of the presented approach under
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more general controller structures, like linear model-predictive
controllers, which are characterized by piecewise-affine state-
feedback control laws. Furthermore, the conditions to guarantee
convergence of the iterative Algorithm 1 will be sought.

Appendix

A.1. Proof of Property 2

The a-priori known controller Ko and the closed-loop structure
So in Fig. 1 are exploited to construct the matrix Ψk, taking into
account that the input signals depend on the measurement noise
e(k) due to the presence of feedback. Property 2 can be proved as
follows. According to (20),

Ψk = E{φ(k)∆φ(k)} = E {Υk} ⊗ Po(k),

with

E {Υk} = E
{
χ (k)(χo(k)− χ (k))⊤

}
. (A.1)

By definition of χ (k) and χo(k), we have

χo(k)− χ (k) =
[
e(k− 1) · · · e(k− na) 01×nb

]⊤
.

Then,

E {Υk} = E
{
χ (k)(χo(k)− χ (k))⊤

}
=

E

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−y(k− 1)e(k− 1) · · · −y(k− 1)e(k− na)
... −y(k− i)e(k− i)

... 0na×nb
−y(k− na)e(k− 1) · · · −y(k− na)e(k− na)
u(k− 1)e(k− 1) · · · u(k− 1)e(k− na)

...
. . .

... 0nb×nb
u(k− nb)e(k− 1) · · · u(k− nb)e(k− na)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(A.2)

The following observations are made to compute E {Υk} explicitly.
The value of input and output at time k does not depend on the
future values of the measurement noise e, i.e.,

E {y(k− i)e(k− j)} = 0,
E {u(k− i)e(k− j)} = 0 ∀i > j.

This implies that the matrices Υ
y
k and Υ u

k are upper triangular as
in (24a) and (24b).

A.2. Proof of Property 3

The recurrence relations in Property 3 can be proved with the
following observations:

1. Due to the strict causality of the plant Go and since e is white,
the noise-free output x(k) does not depend on the current
and future values of the measurement noise, i.e.,

E {x(k− i)e(k− j)} = 0 ∀i ≥ j.

Thus, for i = j,

− E {y(k− i)e(k− i)}
= − E {(x(k− i)+ e(k− i))e(k− i)}
= − E {x(k− i)e(k− i)} − E {e(k− i)e(k− i)}

=0− σ 2
e = −σ 2

e = f1(k− i). (A.3)

2. The terms fm(k) and gm(k) can be computed in a recursive
manner as described in the following. Let us first consider
the term fm(k). By definition:

fm(k) = −E {y(k+m− 1)e(k)} .

By writing y(k) as x(k)+ e(k), we have

fm(k) = −E {x(k+m−1)e(k)+e(k+m−1)e(k)}

= −E {x(k+m−1)e(k)}

= −E

{
−

na∑
i=1

aoi (po(k+m−1))x(k+m−1−i)e(k)

+

nb∑
i=1

boj (po(k+m−1))u(k−m−1−j)e(k)

}

=−

na∑
i=1

aoi (po(k+m−1))(−E {x(k+m−1− i)e(k)})

−

nb∑
i=1

boj (po(k+m−1))(E {u(k−m−1−j)e(k)})

with f1(k) = −σ 2
e (see (A.3)). Note that,

− E {x(k+m− 1− i)e(k)} = fm−i(k),
E {u(k−m− 1− j)e(k)} = gm−j(k).

Thus,

fm(k) = −
na∑
i=1

aoi (po(k+m−1))fm−i(k)

−

nb∑
i=1

boj (po(k+m−1))gm−j(k).

Since fm = 0 and gm = 0, for m ≤ 0, we have

fm(k) = −
m−2∑
i=1

aoi (po(k+m− 1))fm−i(k)

−

min(nb,m−1)∑
j=1

boj (po(k+m− 1))gm−j(k).

Consider now the term gm(k). Since the reference sig-
nal r(k) is uncorrelated with the measurement noise e(k),
i.e., E(r(k)e(k′)) = 0,∀k, k′, the terms gm(k) (for m =

1, . . . , na) can be computed as

gm(k) = E {u(k+m−1)e(k)}

= E

{
−

nc∑
i=1

ci(po(k+m−1))u(k+m−1−i)e(k)

+

nd−1∑
j=0

dj+1(po(k+m−1))(−x(k+m−1−j)e(k))

⎫⎬⎭
= −

nc∑
i=1

ci(po(k+m−1))(E {u(k+m−1−i)e(k)})

+

nd−1∑
j=0

dj+1(po(k+m−1))(−E {x(k+m−1−j)e(k)})

= −

nc∑
i=1

ci(po(k+m−1))gm−i(k)

+

nd−1∑
j=0

dj+1(po(k+m−1))fm−j(k).

Since fm = 0 and gm = 0, form ≤ 0, it follows that

gm(k) = −
min(nc ,m−1)∑

i=1

ci(po(k+m−1))gm−i(k)
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+

min(nd,m)∑
j=1

dj(po(k+m−1))fm−j+1(k).

Thus, the recurrence relations in Property 3 are proved.

A.3. Construction of Ψ p
k

For clarity of exposition, the procedure outlined in Section 5.2
to construct Ψ

p
k is shown via the following example.

Consider the following vector of monomials

po(k) = [1 po(k) p2o(k)]
⊤, p(k) = [1 p(k) p2(k)]⊤.

Then,

p(k)p⊤o (k) =

⎡⎣ 1 po(k) p2o(k)
p(k) p(k)po(k) p(k)p2o(k)
p2(k) p2(k)po(k) p2(k)p2o(k)

⎤⎦ .

By writing p(k) as po(k) + η(k) and taking the expectation of
p(k)p⊤o (k) w.r.t. the random variable η(k), we get

E[p(k)p⊤o (k)] =⎡⎣ 1 po(k) p2o(k)
po(k) p2o(k) p3o(k)

p2o(k)+ σ 2
η p3o(k)+ σ 2

η po(k) p4o(k)+ σ 2
η p

2
o(k)

⎤⎦ .

Then, matrix Ψ
p
k is constructed by replacing each monomial pno(k)

with the Hermite polynomial in (41), that is

Ψ
p
k =

⎡⎣ 1 p(k) p2(k)− σ 2
η

p(k) p2(k)− σ 2
η p3(k)− 3σ 2

η p(k)
p2(k) p3(k)−2σ 2

η p(k) p4(k)− 5σ 2
η p

2(k)+2σ 4
η

⎤⎦.

A.4. Proof of Property 6

Because of conditions C2 and C3, we have

lim
Nc→∞

1
Nc

Nc∑
k=1

Ωk(θo)+
[
χ (k)χ⊤(k)

]
⊗ Ψ

p
k =

lim
Nc→∞

1
Nc

Nc∑
k=1

φp(k)φ⊤o (k) w.p. 1. (A.4)

Let us now focus on the term χ (k)χ̂⊤(k) ⊗ Ψ
p
k appearing in the

bias-corrected cost (52).
For the sake of simplicity, let us assume that the initial condition

χ̂ (1) used to simulate the bias-corrected output ŷ(1) is known,
i.e., χ̂ (1) = χo(1). This means

Eη

{
ŷ(i)
}
= yo(i) ∀i = −na + 1, . . . , 0. (A.5)

Let us now prove, by induction, that for θ̂
p
CLS = θo,

Eη

{
ŷ(k)

}
= yo(k) ∀ k > 0. (A.6)

Suppose that the above equation holds for k− na, . . . , k− 1, i.e.,

Eη

{
ŷ(k− i)

}
= yo(k− i) ∀i = 1, . . . , na. (A.7)

Note that, for θ̂
p
CLS = θo,

Eη

{
ŷ(k)

}
= θ⊤o

(
Eη

{
χ̂ (k)⊗ pC(k)

})
(A.8a)

= θ⊤o
(
Eη

{
χ̂ (k)

}
⊗ Eη

{
pC(k)

})
(A.8b)

= θ⊤o
(
Eη

{
χ̂ (k)

}
⊗ po(k)

)
(A.8c)

= θ⊤o [χo(k)⊗ po(k)] (A.8d)
= yo(k), (A.8e)

where (A.8b) follows fromwhite noise assumption on η and (A.8d)
follows from (A.7) and construction of the bias-corrected mono-
mials pC(k). Thus, from (A.5), (A.7) and (A.8), (A.6) follows by
induction.

Eq. (A.6) also implies that

Eη

{
χ̂ (k)

}
= χo(k) ∀ k > 0. (A.9)

Thus,

Eη

{
χ (k)χ̂⊤(k)⊗ Ψ

p
k

}
(A.10a)

=Eη

{
χ (k)χ̂⊤(k)

}
⊗ Eη

{
Ψ

p
k

}
(A.10b)

=χ (k)χ⊤o (k)⊗ Eη

{
p(k)p⊤o (k)

}
(A.10c)

=Eη

{
χ (k)χ⊤o (k)⊗ p(k)p⊤o (k)

}
(A.10d)

=Eη

{
(χ (k)⊗ p(k)) (χo(k)⊗ po(k))⊤

}
(A.10e)

=Eη

{
φp(k)φ⊤o (k)

}
, (A.10f)

where (A.10c) follows from (A.9) and (42). Then, because of (A.10)
and Ninness’ strong law of large numbers (Ninness, 2000), at
θ̂
p
CLS = θo, we have

lim
Nc→∞

1
Nc

Nc∑
k=1

χ (k)χ̂⊤(k)⊗ Ψ
p
k

= lim
Nc→∞

1
Nc

Nc∑
k=1

φp(k)φ⊤o (k) w.p. 1. (A.11)

Thus, from (A.4) and (A.11), we obtain:

lim
Nc→∞

JBC (θo) = 0 w.p. 1. (A.12)

Property 6 follows from (A.12) and because of non-negativity of the
cost JBC. This completes the proof.

Note that, even if the initial conditions are not exactly known
(i.e., assumption (A.5) is not satisfied), Property 6 still holds since
the error due to the mismatch between the true initial conditions
and the ones used to simulate the output ŷ vanishes asymptot-
ically, under the assumption that the system is asymptotically
stable.
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