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Abstract

We present a simple local approach for planning the motion of nonholonomic robots

navigating among obstacles� suitable for sensor�based implementation� Existing methods

lead to open�loop solutions which are either obtained in two stages� approximating a pre�

viously built holonomic path� or computationally intensive� being based on con�guration

space discretization� Our nonholonomic planner� by explicitly taking into account the

nonholonomic nature of the robot kinematics� employs a direct projection strategy to

modify on�line the output of a generic local holonomic planner� and generates velocity

control inputs that realize the desired motion in a least�squares sense� As a result� a

feedback scheme is obtained which can use only local sensor information� The proposed

approach is applied to unicycle and car�like kinematics� and in order to avoid motion

stops away from the desired goal� various force �elds are considered and compared by

simulation�

� Introduction

Robots whose motion is subject to non�integrable constraints involving time derivatives of the

con�guration variables belong to the class of nonholonomic mechanical systems ���� Typical

examples are wheeled mobile robots moving on the plane under perfect rolling constraints�

The e�ect of these constraints is to limit the local mobility of the robotic system	 though not

restricting in the large the accessibility of the whole con�guration space�

For nonholonomic robots	 the design of feasible trajectories joining arbitrary initial and

�nal con�gurations is not straightforward	 and can be tackled as an intrinsic nonlinear control

problem� In this respect	 open�loop schemes and feedback control are possible solutions� Based

on a di�erential geometric analysis	 open�loop commands that exactly drive to the goal have

been derived in �
	 �	 �� for the class of mobile robots that can be put in the so�called chained

form �
�	 e�g�	 for a car with N trailers� Feedback schemes are indeed more robust but subject

to a basic limitation nonholonomic systems cannot be stabilized to a given con�guration
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by means of a continuously di�erentiable feedback law	 as follows from a general result due

to Brockett ���� This motivated the more complex design of discontinuous ���	 smooth time�

varying ���	 or hybrid ���� feedback control laws� A common characteristic of these open�

or closed�loop methods is that a sequence of maneuvers is required in order to complete a

point�to�point motion	 like in parking a car or docking a truck with trailers� The presence of

obstacles in the operational space is not taken into account at this stage�

On the other hand	 the literature on motion planning with obstacle avoidance is quite

rich ���� for conventional �holonomic� robots	 that can move in any direction of the free con�

�guration space� Following a hierarchical approach	 the speci�c kinematics of the robot is not

taken into account in the higher level planning phase� With this simplifying assumption	 two

major approaches can be identi�ed	 namely algorithmic and incremental planning� Methods

of the �rst class search for a solution path in the free con�guration space	 directly facing

the combinatorial complexity of the problem� Techniques from real algebraic geometry are

used to guarantee completeness	 that is �nding a solution whenever one exists� The resulting

algorithms are powerful but very di�cult to implement for high�dimensional con�guration

spaces� Moreover	 shape and location of all obstacles must be known a priori�

Incremental methods are heuristic in nature but can operate in a feedback mode	 thus

being more suitable for sensor�based navigation through partially unknown environments�

With arti�cial potential �eld methods	 the robot moves under the local e�ects of repulsive

�elds associated to obstacles and an attractive �eld pulling toward the goal ����� These �elds

may be de�ned in the con�guration space or	 more conveniently	 in the cartesian space� The

main limitation is the arising of local minima in the total potential �eld	 where no descent

direction exists for the motion�

Several modi�cations have been introduced to overcome this problem	 such as repulsive

�elds with elliptic isocontours ����	 biharmonic functions ����	 navigation functions ��
� and

numerical potential �elds ����� Another method that can avoid motion stops using only local

information is the vortex �eld method ���� Repulsive actions are replaced by vortical velocity

�ows so that the robot is forced to turn around the obstacles�

Methods that solve the planning problem for mobile robots by taking explicitly into

account both the nonholonomic constraints and the presence of obstacles have been proposed

in ��
	 ��	 ��	 ���� In ��	 ���	 a two�stage approach is proposed for a car�like robot a complete

path avoiding obstacles is generated �rst with a conventional �holonomic� planner	 and then

decomposed and approximated with feasible segments complying with the nonholonomic

constraints� Shortest paths of bounded curvature were obtained in ��
�	 while a discretization

of the con�guration space is essential in ����	 where graph search based on Dijkstra algorithm

is performed� A common requirement of this class of methods is the a priori knowledge of

the environment	 so that the solutions are inherently o��line� Heuristic rules have been used

in ���� for a car�like robot so as to guarantee collision avoidance�

There is indeed a lack of work considering all the following aspects together �i� non�

holonomy of the wheeled vehicle kinematics	 �ii� presence of obstacles	 �iii� a priori unknown

environment	 with local information acquired by sensors	 �iv� on�line feedback control solu�

tion� In this paper we propose an on�line local navigation technique for nonholonomic vehicles

moving in the presence of obstacles� The idea is to employ a feasible projection strategy to

modify on�line the output of a holonomic incremental planner�

The resulting feedback scheme	 depicted in Fig� �	 uses only local information	 limited
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Figure � Hierarchical approach to incremental nonholonomic motion planning�

e�g� to the range of distance sensors� The crucial feature of this strategy is that it should

not create additional blocking points in the con�guration space of the nonholonomic vehicle�

We highlight the general approach and then apply it to two common mobile robot kinematic

con�gurations Unicycle and car�like� For the latter	 both front� and rear�wheel driving are

considered in a uni�ed model� Suitably de�ned arti�cial force �elds are used as holonomic

planner� Their output is �ltered through the vehicle kinematics	 so as to realize the desired

cartesian motion in a least�squares sense� A feedback scheme is used to de�ne reference values

for the remaining free variables	 in order to align the vehicle to the local �eld� Simulation

results are reported which compare di�erent kinds of arti�cial �elds used in the holonomic

planner�



� Incremental motion planning for nonholonomic robots

We consider the planar motion of a wheeled mobile robot� Denoting by X � Rn the vector

of generalized coordinates	 assume that the system motion is subject to a set of p � n

nonholonomic constraints in the form

A�X� �X � �� ���

that arise in connection with the �rolling without slipping� condition on the wheels� Note that

the presence of rolling wheels does not necessarily imply that motion on the plane is subject

to nonholonomic constraints� Wheels with side rollers or other complex mechanisms may be

used to guarantee omnidirectionality�

Since constraint ���	 involving the time derivatives of the generalized coordinates	 is not

integrable	 the dimension of the con�guration space cannot be reduced� However	 all feasible

velocities �X should satisfy the following equation

�X � G�X� u� u � Rn�p� ���

where the n� p independent columns of G�X� are a basis for the null space of A�X�� Equa�

tion ��� is the kinematic model of the mobile robot� Depending on the choice of the null

space basis	 the components ui will have a di�erent meaning� Indeed	 there is one choice

which leads to a convenient physical interpretation of u in terms of the available command

inputs� Notice that eq� ��� represents an underactuated mechanical system	 with less inputs

than generalized coordinates�

We assume in the following that control inputs are at the velocity level� In practice	 this

is not restrictive for real mobile robot control� Although the modeling can easily be extended

to second order and to include the system dynamics ����	 eq� ��� already displays the main

di�culty due to nonholonomy� In fact	 system ��� is essentially underactuated 	 having strictly

less independent inputs u than motion planning variables X �

Given any desired smooth trajectory Xd�t� �feasible or not�	 a straightforward approach

is to design the input command u using the pseudoinverse control law

u � G��X� �Xd � �GT�X�G�X����GT�X� �Xd� ���

This solution locally minimizes the error � �Xd � �X� in a least�squares sense� If the desired

velocity �Xd satis�es the nonholonomic constraint ��� at the current X 	 eq� ��� will result

in zero velocity error� Note that the pseudoinversion ��� gives the command input u as a

feedback law depending on the current state X � In order to balance error components and to

handle nonhomogeneous units	 the state X can be pre�weighted or	 equivalently	 a weighted

pseudoinverse can be used�

In eq� ���	 �Xd can be chosen as the output of an incremental holonomic planner� If

arti�cial potentials are used to drive the robot	 then

�Xd � �rXU�X� � �rX�Ua�X� � Ur�X��� �
�

with an attractive potential Ua to the goal Xg and a repulsive potential Ur�

However	 working with potentials de�ned in the whole con�guration space X is com�

putationally ine�cient ����� In view of the planar nature of the motion problem	 one can



partition X as �Xp� X��	 with the positional part Xp � �x� y� � R� and the angular part

X� � Rn��� For example	 in a car with N trailers	 Xp are the cartesian coordinates of one

representative point of the robot �typically	 the position of the last trailer �����	 while X�

contains the orientation and the steer angle of the car as well as the relative orientation of

each trailer� Potential �elds can then be set up for Xp	 i�e�	 directly in the operational space

where obstacles live	 by de�ning several cartesian points Pi � �xi� yi� on the �multibody�

mobile robot� Each of these control points will be subject to a �eld Ua�i � Urep	 being Ua�i

the attractive �eld associated to the goal for Pi� The desired motion becomes

�Xd � �
X
i

JTi �X�rXp
�Ua�i�Pi� � Ur�Pi�� � ���

where Ji�X� is the Jacobian of the kinematic mapping Pi � fi�X� of the i�th control point�

Substitution of eqs� �
� or ��� in ��� yields a nonholonomic motion planner� Its perfor�

mance obviously depends on the characteristics of the holonomic planner	 but also on the

interaction between the latter and the projection scheme�

In order to allow for more �exibility in the design	 we split Xd in two components XH�d

and XA�d	 keeping the �rst in eq� ���	 and specifying the desired motion of the remaining

generalized coordinates XA�d in a more general form

�XA�d � ��X� �XH�d�� ���

where an explicit hierarchic dependence of XA�d on XH�d has been introduced �Fig� ��� As

an example	 in Sect� 
 we will set XA � Xp � �x� y�	 XH � X� � � for the unicycle	 and

in Sect � XA � �x� y� ��	 XH � X� � � for the car�like robot� The design of a suitable � is

strictly related to the kinematic structure of the vehicle and is critical for the success of the

method� In particular	 one should guarantee that no additional blocking points are generated

in the con�guration space X of the nonholonomic vehicle	 beside those possibly existing for

Xp�

We note that	 as long as the overall feedback law ��� is continuously di�erentiable	 the

scheme will not be able to stabilize the mobile robot at a given con�guration Xg �or	 equiv�

alently	 not all control points Pi will reach their �nal position�� In fact	 this would violate

the theoretical result of Brockett ���	 as applied to nonholonomic systems� However	 since

our objective is the de�nition of a navigation method among obstacles	 we are not interested

in the speci�c con�guration reached at the end of the motion	 provided that the positional

coordinates of the robot reach their destination Xp�g�

Finally	 we point out a possible shortcoming of the method� Since the commands of the

holonomic planner are realized only in a least�squares sense	 there is no complete guarantee

that obstacles will be avoided during motion� Therefore	 use of motion safety margins related

to the maximum velocity error is advisable�

� Arti�cial force �elds

In order to complete the design of the motion planner	 we have to de�ne the way in which the

forces acting on the wheels of the robot are generated from the task environment �goal�obstacles��

One basic component of the proposed planner is its holonomic part which can be essentially

based on any local approach� According to eq� ���	 we will work with arti�cial potentials
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Figure � Obstacle polar coordinate frame�

de�ned in the cartesian space R�	 where Xp � �x� y�� More speci�cally	 we follow ���� and

superpose one �eld Ua�x� y�	 which attracts the robot towards the goal position �xg� yg�	 with

a repulsive �eld Ur�x� y� for each obstacle	 devoted to prevent collisions�

For obstacle avoidance	 three kinds of �elds are considered as repulsive forces rUr	 viz�

stricly repulsive	 vortex and circumventive �elds� For the sake of illustration	 we describe the

�elds generated by a single	 simply connected obstacle in the two�dimensional workspace�

��� Attractive Fields

For the goal attractive potential	 we can either use the paraboloidic pro�le

Ua�x� y� �
ka
�
k�x� xg� y � yg�k

�� ���

or the conical pro�le

Ua�x� y� � kak�x� xg� y � yg�k� ���

or	 even better	 a combination of the two� In fact	 an attractive force depending linearly

on the error norm �paraboloidic potential� becomes very large at large distances from the

goal	 dominating over the other forces acting on the robot� On the other hand	 such a �eld

smoothly slows down the robot near the goal	 avoiding chattering phenomena�

��� Stricly Repulsive Fields

An hyperboloidic stricly repulsive potential is de�ned at each point �x� y� as ����

Urep�x� y� �

�
�
�
� �
��x�y� �

�
��
�� � if ��x� y� � ���

�� else	

where � � ��x� y� is the minimum distance of the point from the obstacle	 �� is the distance

of in�uence of the repulsive �eld	 and � 	 � determines how fast the potential decays away

from the obstacle�
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Figure � Strictly repulsive �eld for a circular obstacle�

When the obstacles are modeled as circles �e�g�	 by approximating real shapes acquired

by sensors�	 let �x�� y�� and r� be	 respectively	 the coordinates of the center and the radius of

the obstacle	 �xg� yg� the coordinates of the goal position	 and 
� the angle formed by vector

�xg�x�� yg � y�� with the x�axis �see Fig� ��� It is convenient to consider a polar coordinate

frame ��� 
� centered in �x�� y��	 with 
 � � the direction of the x�axis� The repulsive force

becomes then

Frep��� 
� �

�
� �
�
� �

��
���� �

��
i�� if � � ���

�� else�
���

with � � �� r� and i� � �cos
� sin
�	 and is depicted in Fig� ��

It is easy to see that	 in the case of m circular obstacles	 the total potential �eld has

always at least m saddle points but no isolated local minima other than the goal ��
�� In the

presence of obstacles of arbitrary shape	 and in particular with boundary segments of zero

curvature	 local minima will appear with possibly large basins of attraction�

��� Vortex Fields

As a less conventional approach	 we will also use the vortex �eld method ����� The basic idea

is to replace the antigradient of the given strictly repulsive �eld with a �ow rotating around

the obstacle� Analytically	 this amounts to moving along the direction de�ned by

Fvor�Xp� � �

� �Urep�Xp�
�y

��Urep�Xp�
�x

�
� ����

with the � sign corresponding to counterclockwise �CCW� rotation of the vortex �see Fig� 
��

Note that the norm of the vortex �eld Fvor is the same of rUrep	 and it goes to zero at

distance �� with continuity� The attractive �eld is left unchanged�



Figure 
 Vortex �eld for a rectangular obstacle�

In the case of convex obstacles with domains of in�uence that do not overlap	 it is possible

to guarantee the completeness of the vortex �eld method� The choice of CW or CCW

rotation for an obstacle should be made so that the relative angle between the attractive

direction �rUa and Fvor when entering its in�uence range is � ��� � The method has to be

complemented with a suitable relaxation procedure which discards the vortex �and thus the

in�uence of the �bypassed� obstacle� when the relative angle j
�
�j in Fig� �� is smaller that

��� ����� Other higher�level strategies can be devised to generalize the method to non�convex

obstacles or uncertain environments �����

In alternative to the above relaxation procedure	 we describe here a modi�cation for the

case of circular obstacles �or for circles enclosing real obstacles�� The idea is to build a �eld

similar to the velocity �eld described by the steady �ow of a liquid in the presence of a

cylindrical obstacle� A possible choice for the �eld is

Fvor��� 
��

�
� sign�sin�
�
����

�
�
� �

��
����i�� � if �����

�� else	
����

where i�� � �� sin
� cos
�� The resulting force �eld is shown in Fig� ��

We stress that the heuristics for vortex rotation and relaxation are locally de�ned and

can be implemented on line in a sensor�based planner� Finally	 note that the vortex �eld

method does not enforce an explicit repulsive action	 so that a more conservative choice of

the gain in ��� will be necessary to avoid the robot approaching too closely the obstacles�

��� Circumventive Fields

Both �elds described above have some drawbacks� The �rst repels the robot in a direction

which is orthogonal to the border of the obstacle	 often keeping it too far from the obstacle

itself	 while the second may lead the robot to graze the obstacle� Hence	 it is advisable to

have a �eld that is repulsive close to the obstacle and vortical at larger distances�
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Figure � Vortex �eld �owing around a circular obstacle�

Consider the unit vectors respectively associated to Frep and Fvor

E� � i�

E�

� � � sign�sin�
� 
��� i
�

� �

and the smooth weighting function

���� � �� �
�

��
�e�

�

�� �

which is monotonically decreasing from � to �� The rate of decay of ���� depends on the

parameter ��� We call circumventive �eld the convex combination of a repulsive and a vortical

component

Fcir��� 
��

�
�����E����������E�

� ��
�
�
� �
��
����� if ����

�� else�
����

Fig� � reports an example for a circular obstacle	 while Fig� � depicts its superposition with

the attractive �eld ���	 which gives the total force �eld used in the holonomic planner�

In the presence of multiple obstacles	 the total �eld is obtained by adding the �elds

independently de�ned for each obstacle�

� Application to the unicycle

In this section	 we apply the proposed approach to the kinematics of a unicycle �Fig� ��	

where X � �x� y� �� is the con�guration vector� In this case	 there is only one nonholonomic
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Figure � Circumventive �eld for a circular obstacle�

rolling constraint of the form ���

� sin � � cos � � �

�
� �x

�y
��

�
� � �� ����

The kinematic model is determined as	
�

�

�x � cos � u�
�y � sin � u�
�� � u��

��
�

where u� is the driving velocity and u� is the steering velocity� This model applies to a large

class of mobile robots	 including the Nomad ���
TM

available in our Laboratory� Nomad has

a circular base of radius R � �� cm with three wheels that translate together	 controlled by

one motor	 and rotate together	 controlled by a second motor�

According to eq� ���	 the control input is chosen as

u � G��X� �Xd �

�
cos � sin � �

� � �

��� �xd
�yd
��d

�
� � ����

This expression has a direct geometric interpretation� The driving velocity u� is the orthogonal

projection of the �possibly infeasible� desired cartesian velocity along the robot main axis	

while the steering velocity u� exactly realizes the desired rotation� Note that in the present

case G� � GT � also	 unitary translational and rotational velocities are given the same weight�

The desired velocity �Xd in eq� ���� comes from an incremental holonomic planner� In the

following	 we assume that the orientation of the mobile robot has no relevance for obstacle
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collision	 as in the case of Nomad� As a consequence	 the obstacles can be grown by R and

holonomic planning will be made only for the central point of the robot�� The positional part
�Xp�d � � �xd� �yd� is then obtained from eq� ��� as

�Xp�d � �rXp
Ua�Xp� � Fr�Xp� ����

where Fr is one of the �elds ��� ���� described in the previous section�

To complete the planning method we assign the rotational part of �X��d � ��d by specifying

the form of � in eq� ���� For the unicycle it is convenient to use

��d � atan�f �xd� �ydg � �� ����

The rationale for this choice is simple� Since the unicycle can instantaneously execute linear

motions only along its main axis	 we force the vehicle to align itself with the �eld �ow�

Although the robot has circular symmetry	 it is implicit in eq� ���� that the forward direction

�i�e� the one characterized by �� will be aligned� By de�ning atan�f�� �g � �	 the above

function remains continuous along any approaching direction to the goal� The resulting

command will be

u� � kp� �xd cos � � �yd sin ��

u� � k��atan� f �xd� �ydg � ��� ����

where �xd and �yd are given by eq� ����� Gains kp and k� are introduced to allow for addi�

tional freedom in weighting the two input commands� This is equivalent to use a weighted

pseudoinverse in eq� �����

�We are using a single control point	 In the case of non
circular robots� it will be necessary to specify

multiple control points on the robot body for successful motion planning	
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Theorem � The motion of the unicycle under the control law ���� and attractive �eld ���

converges to the desired position goal Xp�g in the absence of obstacles	

Proof� � Let

V �
�

�
kXp�g �Xpk

�
�

�

�
kEpk

� � �� ����

Since �Xp�d � �kaEp from eq� ����	 the time derivative of V along the closed�loop trajectories

is

�V � � �XT
p Ep � �u� � cos � sin � �Ep

� �kpkaE
T
p


cos �

sin �

�
� cos � sin � �Ep � ��

We have that �V � � i� the row vector � cos � sin � � is orthogonal to Ep� Whenever �V � �

and Ep �� �	 the system dynamics becomes �x � �y � �	 �� � ���� Hence	 the largest invariant

set such that �V � � is Xp � Xp�g� By LaSalle�s theorem	 the result follows�

The above argument shows that the control law does not introduce further local minima in

the con�guration space of the nonholonomic robot	 beside those possibly due to the holonomic

�eld in R�� Note that it is not possible to prove convergence for position and orientation	 in

view of the continuous di�erentiability of the chosen control law in the absence of obstacles�

� Application to car�like robots

We refer to the car�like robot model depicted in Fig� �� As usual	 front and rear axles are

collapsed respectively in a front and rear median wheel	 reducing the model to that of a

bicycle or	 equivalently	 of a unicycle with one trailer � We assume pointwise and pure rolling

contact between the ground and the wheels�

Let P � �x� y� be the position of the front wheel	 Pr � �xr� yr� the position of the rear

wheel	 � the distance between the two wheels	 � the orientation of the robot w�r�t� the x�axis	

� the steering angle	 and � � � � � the heading angle of the front wheel w�r�t� the x�axis�
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Figure � Car�like robot model�

Moreover	 denote by uf and ur the velocity of the front and rear wheel	 respectively	 and by

u	 the steering rate of the front wheel�

The coordinates of the two points P and Pr are related by the rigid body constraint

x � xr � � cos �

y � yr � � sin ��
����

Depending on which wheel is active	 we distinguish between rear�wheel and front�wheel driv�

ing � We are interested in obtaining a model format that is valid for both types of driving�

Rear�wheel driving � The kinematic equations can be written in the form

�xr � ur cos �

�yr � ur sin �

� �� � ur tan�
�� � u	�

����

De�ning two new system inputs u� and u� through

ur � u� cos� ����

u	 � u� �
u� sin �

�
����

and using eqs� ����	 model ���� can be transformed in

�x � u� cos �

�y � u� sin �

� �� � u� sin�� � ��
�� � u��

��
�

Front�wheel driving � The kinematic equations are

�x � uf cos�� � ��

�y � uf sin�� � ��

� �� � uf sin�
�� � u	�

����



Letting

uf � u� ����

and u	 as in eq� ����	 model ���� takes the form ��
��

Note that	 by dropping the third equation	 eqs� ��
� formally represent the kinematic model

of a unicycle� We develop motion control algorithms directly for model ��
�	 independently

of which is the driving wheel� De�ne

X �

�
����

x

y

���

�

�
���� � ����

where � 	 � is a weighting real number� By eqs� ��
� the pseudoinverse of G�X� takes the

form

G��X� �
�

� � �� sin��� � ��
��

cos � sin � � sin�� � �� �

� � � � � �� sin��� � ��

�

and the feedback law ��� for tracking a desired trajectory Xd � �xd� yd� ���d� �d� becomes

u� �
�xd cos� � �yd sin � � ��� ��d sin �

� � �� sin� �
����

u� � ��d� ����

When � � f���g	 the desired ��d has no e�ect on u��

In order to apply the control law ��� ���	 we need to specify the desired values for �xd	

�yd	 ��d	 and ��d�

��� Local trajectory generation

Let an arti�cial force �eld be de�ned in the cartesian workspace so as to pull the robot

toward the target position while avoiding obstacles	 according to the structures detailed in

Sect� �� We suppose that this �eld is given by the superposition of an attractive component	

acting only on the front wheel �i�e�	 the reference point �x� y��	 and of a component aimed

at keeping the robot away from the obstacles	 acting on both wheels� Referring to Fig� ��	

let Ff � �Ff�x� Ff�y� and Fr � �Fr�x� Fr�y� be the force acting on the front and rear wheel	

respectively�

De�ning Xr � �xr� yr� ���� ��	 we have

�Xr � J�X� �X�

where	 from eqs� ���� and ����	 the Jacobian has the form

J�X� �

�
����

� � � sin � �

� � �� cos � �

� � � �

� � � �

�
���� �
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By the virtual work principle	 a force Fr on the rear wheel is equivalent to a force F r
f on the

front wheel and a torque M� acting on the vehicle orientation	 as given by�
����
F r
f�x

F r
f�y

M�

M


�
�����JT�X�

�
����
Fr�x
Fr�y
�

�

�
�����
�
����

Fr�x
Fr�y

��Fr�x sin � � Fr�y cos ��

�

�
���� � ����

Hereafter	 we shall indicate with

F �

�
Fx
Fy

�
� F r

f � Ff � Fr � Ff

M � M�

the total force and torque performing work on the x	 y	 and � coordinates�

The desired values �xd	 �yd	 and ��d are selected as the natural motion in quasi�static con�

ditions arising from the above force �eld	 i�e�	 from eq� �����
�xd
�yd

�
� kfF ��d � kfM� ����

with kf 	 �� As a result	 the control input u� is completely de�ned by eq� ���� and �����

We must still de�ne the steering command u� in eq� ����� To this end	 we will determine

a desired angle �d such that	 aligning � to �d	 the robot tends to move in the direction of

the �eld� With reference to Fig� ��	 when F �� �	 �d will be de�ned as the angle �a of the

direction of the force F 	 up to a rotation of  rad� When F � � but M �� �	 one should select

�d so as to allow the rotation of the robot� If both F and M are zero	 the robot is at rest�

Therefore	 we have two possible situations�



Case F �� �� We have

�a � ATAN��Fy � Fx��

For �d	 we choose the di�erentiable expression

�d � � � arcsin�sin�� � �a���

so that �d � � is an acute angle �see Fig� ���� In order to let � track �d	 we impose

d

dt
�� � �d� � k
�� � �d� � �� k
 	 �� ����

The parameter k
 determines the readiness of the steering subsystem	 and hence the dynamic

range of the steering command u�� We have

d

dt
�� � �d� � sign�cos�� � �a��� �� �

Fx �Fy � Fy �Fx
F �
x � F �

y

�

and �
�Fx
�Fy

�
� rF

�
�x

�y

�
� rF �

�
�Fx
�x

�Fx
�y

�Fy
�x

�Fy
�y

�
�

Recalling eq� ��
�	 and de�ning sign��� � �	 we obtain

u���
k
�� � �d�

sign�cos����a��
�

u�
jjF jj�

h
�Fy Fx

i
rF

�
cos �

sin �

�
����

as a steering control law�

Case F � �� If this situation arises with both Ff and Fr being zero	 the robot will rest and

we can park the steering wheel at any desired angle �g� Otherwise	 we choose the desired

direction �a as the angle formed by vector Ff with the x�axis

�a � ATAN��Ff�y� Ff�x��

Then	 we de�ne

�d �

�
� � arcsin�sin�� � �a��� if Ff � �Fr �� ��

� � �g� if Ff � Fr � ��
��
�

and

u� � �k
�� � �d�� ����

In the case of rear�wheel driving	 if F � � choice ��
� may lead to problems when Ff is almost

orthogonal to �� In this case	 � would tend to ��
� and the robot would stop� We overcome

this problem by saturating the term arcsin�sin�� � �a�� to ��
 in eq� ��
��

The following theorem gives a stability result for the proposed control scheme in the absence

of obstacles and under mild hypotheses on the force �eld�

Theorem � In the absence of obstacles �Fr � ��
 assume a potential function Ua  R
�	 R

is de�ned with the following properties�

��	� Ua�xg� yg� � �

��	� Ua�x� y� 	 �� 
�x� y� �� �xg� yg�

�	� rUa�x� y� �� �� 
�x� y� �� �xg� yg��



where G � �xg� yg� is the goal position for the representative point �x� y�	 Then
 the force

�eld

F �x� y� �

�
�rUa�x� y�� if �x� y� �� �xg� yg��

�� if �x� y� � �xg� yg��

along with the control law ������� and the associated de�nitions
 drives the car�like robot ����

to G parking the steering angle � to a desired �g	

Proof� De�ne the Lyapunov�like function

V �x� y� �� � Ua�x� y� �
�

�
�� � �d�

��

Then	 by eqs� ��
� and ����

�V �
�Ua

�x
�x�

�Ua

�y
�y � �� � �d�� �� � ��d�

� ��Fx cos � � Fy sin ��u� � k
�� � �d�
��

Since Fr � �	 we have M � � and ��d � �	 and hence from eq� ���� and ����

�V � �kf
�Fx cos� � Fy sin ��

�

� � �� sin� �
� k
�� � �d�

� � ��

If F �� � and F is perpendicular to �cos�� sin ��	 then � � �d � ���	 and hence �V � �� If

F � �	 then �V � � i� � � �d	 or	 by eq� ��
�	 i� � � �g � By LaSalle�s theorem	 the result

follows�

Theorem � applies for example when F is the negated gradient of a potential with paraboloidic

pro�le ��� or conical pro�le ����

In the presence of obstacles	 the force Fr acting on the rear wheel may introduce some

di�culties� As F 	 �	 the desired direction �d becomes undetermined and the tracking

de�ned by eq� ���� is impossible with bounded inputs �see also eq� ������ In order to overcome

this shortcoming	 we remove ��d from eq� ����	 setting u� as in eq� ����� In the performed

simulations	 this modi�cation did not appreciably change the robot behavior�

� Simulation Results

��� Unicycle

We simulated the proposed planner for a unicycle in a scene with circular obstacles	 although

both the arti�cial potential and the vortex �eld methods apply to obstacles of arbitrary

shape� Input saturations were included	 with bounds on u� and u� respectively at � m!sec

and ����!sec	 the bounds of Nomad scaled by a factor of � to speed up simulations� The

steering saturation limits the reorientation capability of the vehicle� Controller gains were

always set to kp � �	 k� � �	 while the holonomic planner parameters were ka � �	 kr � �	

� � �	 �� � � m� Integration was performed using the �fth order Runge�Kutta method of

SIMULINK	 with sampling interval Tc����������� sec�

In Figs� � and 
	 we �rst show for comparison two successful outputs of the holonomic

planners obtained respectively with arti�cial potentials and with vortex �elds� The two paths

are topologically di�erent	 due to the choice of a CW vortex direction for the �rst encountered
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obstacle� The nonholonomic motions obtained for ���� � � are shown respectively in Figs� �

and �	 with the associated control inputs� In both cases the nonholonomic motion closely

approximates the holonomic one	 and the position error exponentially goes to zero in the

terminal phase� Note that the unicycle in Fig� �� undergoes initially a large reorientation	

because its heading opposes the chosen vortex direction �CW� of the �rst obstacle� Corre�

spondingly	 the steering input saturates� This suggests more in general to keep into account

the actual vehicle orientation when deciding the vortex direction for a sensed obstacle�

While navigating among obstacles	 the driving velocity obtained using vortex �elds is

saturated at all instants� This is due to the non�repulsive nature of the vortex when ap�

proaching an obstacle the robot does not experience an opposing �eld� On the other hand	

arti�cial potential �elds tend to slow down motion when facing an obstacle� A nonholonomic

planner based on vortex �elds is thus expected to generate faster point�to�point motions�

In some cases	 the performance of the two holonomic planners is drastically di�erent�

Using arti�cial potentials	 a blocking saddle point can be met� this motivates the unsuccessful

output of the nonholonomic planner in Fig� ��� Three large reorientations occur near saddle

points located in front of obstacles	 before the motion de�nitely stops� Instead	 in Fig� �� a

solution path is obtained with the scheme based on vortex �elds�

We have applied the proposed method to several other situations	 and the performance was

always satisfactory� Accurate tuning of the controller gains was not necessary	 but we argue

that it may be needed to handle complex situations �e�g�	 when only sudden reorientation

would avoid collision��



-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -5 0 5 10

G

S

Figure �� Holonomic motion using vortex �elds �Example I��

Field Type max jurj max ju	j

Strictly Repulsive ����
� ���
��

Vortex ������� �����

Circumventive ������ 
���
�

Table � Comparison of input dynamic ranges in the simulation of Fig� �

��� Car�like

We simulated the proposed planner for a car�like robot moving among circular obstacles

in a two�dimensional workspace� The integration of the kinematic and planning equations

was performed as using SIMULINK and the �fth�order Runge�Kutta method	 with sampling

interval Tc����������� sec�

In Fig� �� we report the results obtained with the �elds ���	 ����	 and ���� proposed in

Sect� �� All of them are successful	 even if the path generated by the strictly repulsive �eld

�dotted line� is more erratic� We have set � � 
	 � � �	 k
 � ��	 kf � �	 �� � �����	 while
��d was removed from eq� ���� by setting u� as in eq� ����� The region of in�uence around

each obstacle is represented with a circle� The attractive potential is conical outside a circle

of unit radius centered at the goal	 and paraboloidic inside�

While in the circumventive and the vortex �eld case the robot reached the goal in about

�� s	 with a strictly repulsive �eld this time resulted in about �� s� However	 in comparing

these values it is fair to consider the dynamic range of the inputs	 which are reported in Ta�

ble �� Since the geometric paths are invariant to time�scaling	 the trade�o� between traveling

time and input e�ort can be regulated by premultiplying the inputs ur �or uf� and u	 by the

same factor ku�

In the second simulation �Fig� ���	 the rightmost obstacle of Fig� �� was slightly shifted



to the left� The strictly repulsive �eld method fails in this case	 since the robot meets a local

minimum of the overall force �eld� Instead	 the circumventive �eld successfully drives the

robot to the goal	 thanks to its vortical component�

In the simulation shown in Fig� ��	 the rightmost obstacle was shifted further to the left�

The vortex �eld method ���� fails as the robot touches the obstacle �kFvork 	 ��� This is

avoided when the circumventive �eld ���� is used	 thanks to its repulsive component�

	 Conclusions

We have proposed a general integrated approach for locally planning the motion of wheeled

mobile robots among obstacles� The nonholonomic planner consists of two basic components

a local holonomic planner generating an incremental output	 and an on�line projection scheme

which modi�es it so to yield a feasible path together with the corresponding control inputs�

As a result	 a hierarchical feedback scheme is obtained which can be used in real�time by

feeding sensor data simply to the holonomic planner� This is derived by attractive	 repulsive	

and vortex �eld methods	 whose combined use produces the desired obstacle avoidance action�

The projection scheme have been devised so to avoid generation of additional blocking points�

The feedback component of the scheme is guaranteed to stabilize the robot to a given cartesian

position	 in the absence of obstacles�

This approach has been applied to the case of a unicycle with circular symmetry	 and of a

car�like robot� Simulation results has shown that the proposed planner performs satisfactorily

in situations where high maneuverability is not essential� Therefore	 the planner is more suited

for navigation through a semi�cluttered environment rather than for parking purposes with

limited clearance�

Future work includes the implementation of this method on the NOMAD ��� �unicycle�

and on a laboratory prototype �car�like�	 where state feedback is obtained by integrating

ultrasonic and odometric measurements	 and the extension to other vehicles	 e�g� the car

with N trailers�
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