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Abstract: This paper proposes a hierachical hybrid MPC approach to design feedback
control functions for stabilization and autonomous navigation of unmanned air vehicles. After
formulating the nonlinear dynamical equations of a “quadcopter” air vehicle, a linear MPC
controller is designed to stabilize the vehicle around commanded desired set-points. These are
generated at a slower sampling rate by a hybrid MPC controller at the upper control layer, based
on a hybrid dynamical model of the UAV and of its surrounding environment, with the overall
goal of controlling the vehicle to a target set-point while avoiding obstacles. The performance of
the complete hierarchical control scheme is assessed through simulations and visualization in a
virtual 3D environment, showing the ability of linear MPC to handle the strong couplings among
the dynamical variables of the quadcopter under various torque and angle/position constraints,
and the flexibility of hybrid MPC in planning the desired trajectory on-line.

Keywords: Model predictive control, hierarchical control, mixed logical dynamical systems,
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1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have emerged over the
last few years as a very active research area, due to the
large variety of missions where they can replace humans
in accomplishing complex exploration tasks, especially in
dangerous environments, for both military and civilian
applications. Several different types of UAVs are available
and have been investigated, where each one is most suit-
able for a particular purpose. Gliders and planes are energy
efficient and can be used in long-range applications, but in
general they need wide operating spaces. Small helicopters,
and in particular quadcopters, require more energy for
navigation but can operate in limited workspaces, as they
can take off and land vertically, and easily hover above
targets. An example of quadcopter is depicted in Figure 1.

The ability to navigate in smaller workspaces is paid by
an increased complexity in controlling the vehicle (Altug
et al., 2005), mainly due to the highly nonlinear and
coupled dynamics, and to limitations on actuators and
pitch/roll angles. Besides classical PID control strategies,
a few other approaches were proposed in the literature
for stabilization of quadcopters: nonlinear control (Castillo
et al., 2004), LQR (Kivrak, 2006), visual feedback (Al-
tug et al., 2005), and H∞ (Chen and Huzmezan, 2003).
Because of stringent hard constraints on rotor torques
and soft constraints on pitch and roll angles (and alti-
tude), in this paper we propose linear Model Predictive
Control (MPC) for quadcopter stabilization and offset-
free tracking of desired orientations, positions and veloc-
ities. MPC is in fact particularly suitable for control of
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Fig. 1. Example of quadcopter: the Silverlit Toys X-UFO

multivariable systems governed by constrained dynamics,
as it allows to operate closer to the boundaries imposed
by hard constraints, compared to more classical control
schemes (Maciejowski, 2002).

In the context of UAVs, MPC techniques have been mainly
applied for formation flight (Dunbar and Murray, 2002;
Dunbar, 2001), (Borrelli et al., 2005), (Li and Cassan-
dras, 2006). This represents a higher level of control
for autonomous navigation, where reference trajectories
are commanded to stabilization algorithms placed at the
lower-level. In the context of path planning for obsta-
cles avoidance, several other solutions have been pro-
posed in the literature, such as potential fields (Chuang,
1998), A∗ with visibility graphs (Hoffmann et al., 2008;
Latombe, 1991), nonlinear trajectory generation (see e.g.
the NTG software package developed at Caltech (Dunbar
and Murray, 2002), and mixed-integer linear programming
(MILP) (Richards and How, 2002). In particular the latter
has shown the great flexibility of on-line mixed-integer
optimization in real-time trajectory planning of aircrafts,
as also reported in (Pallottino et al., 2002) where on-line
MILP techniques were proved very effective in handling
multiaircraft conflict avoidance problems.



Fig. 2. Quadcopter model
In this paper we propose a two-layer MPC approach to
quadcopter stabilization and on-line trajectory generation
for autonomous navigation with obstacle avoidance. A
linear constrained MPC controller with integral action
takes care of the stabilization task. At a higher hierarchical
level and lower sampling rate, a hybrid MPC controller
generates on line the path to follow to reach a given target
position/orientation while avoiding obstacles. Such a hier-
achical MPC setup can be easily extended to cope with
missions involving multiple cooperating (or competing)
UAVs.

The paper is organized as follows. In Section 2 we describe
a nonlinear model of the quadcopter, whose linearization
provides the prediction model for linear MPC design in
Section 3 for stabilization under constraints and tracking
of generic trajectories. The performance of linear MPC
stabilization is assessed in simulation using the FlightGear
virtual environment. Then, the higher-level hybrid MPC
controller is described in Section 4 for obstacle avoidance.
Finally, some conclusions are drawn in Section 5.

2. NONLINEAR QUADCOPTER DYNAMICS

A quadcopter air vehicle can move freely in the three-
dimensional space, therefore six degrees of freedom are
needed to describe its dynamics, as depicted in Figure 2.
We denote by x, y, z the position of the vehicle and by θ, φ,
ψ its rotations around the Cartesian axes, relative to the
“world” frame I. In particular, x and y are the coordinates
in the horizontal plane, z is the vertical position, ψ is
the yaw angle (rotation around the z-axis), θ is the
pitch angle (rotation around the x-axis), and φ is the
roll angle (rotation around the y-axis). The dynamical
model adopted in this paper is mainly based on the model
proposed in (Castillo et al., 2004), slightly modified to take
into account realistic friction effects.

As described in Figure 2, each of the four motors M1,
M2, M3, M4 generate four thrust forces f1, f2, f3, f4, and
four torques τ1, τ2, τ3, τ4, respectively, which are adjusted
by manipulating the voltages applied to the motors. As a
result, three torques τθ, τφ, τψ around their corresponding
axes are generated

τθ = (f2 − f4)l (1a)
τφ = (f3 − f1)l (1b)

τψ =
4∑

i=1

τi (1c)

where l is the distance between each motor and the
center of gravity of the vehicle, as well as a total force
u = f1 + f2 + f3 + f4, that allow changing the position
and orientation coordinates of the quadcopter freely in the
three-dimensional space.

By letting τ = [τθ τφ τψ]′ be the overall torque vector,
η = [θ φ ψ]′ the angular displacement vector, and J the
inertia matrix, the rotational dynamics of the quadcopter
are described by

τ = Jη̈ + Jη̇ − 1
2

∂

∂η
(η̇′Jη̇) (2)

which can be rewritten as
η̈ = τ̃ (3)

where τ̃ = [τ̃θ τ̃φ τ̃ψ]′ is treated as a new command input.
Through rotational transformations between the frame I
and the one placed in the center of mass of the quadcopter,
we obtain the dynamic equations

mẍ = −u sin θ − βẋ (4a)

mÿ = u cos θ sin φ− βẏ (4b)
mz̈ = u cos θ cos φ−mg − βż (4c)

θ̈ = τ̃θ (4d)

φ̈ = τ̃φ (4e)

ψ̈ = τ̃ψ (4f)
where the damping factor β takes into account realistic
friction effects. The nonlinear dynamical model has twelve
states (six positions and six velocities) and four inputs (one
total force, three torques), largely coupled through the
nonlinear relations in (4). In the next section we propose
a linear MPC approach to cope with the stabilization of
such a multivariable dynamics under constraints on input
and state variables.

3. LINEAR MPC FOR STABILIZATION

In order to design a linear MPC controller for the quad-
copter air vehicle, we first linearize the nonlinear dynami-
cal model (4) around an equilibrium condition of hovering.
The resulting linear continuous-time state-space system is
converted to discrete-time with sampling time Ts{

ξL(k + 1) = AξL(k) + BuL(k)
yL(k) = ξL(k) (5)

where ξL(k) = [θ, φ, ψ, x, y, z, θ̇, φ̇, ψ̇, ẋ, ẏ, ż, zI]′ ∈ R13 is
the state vector, uL(k) = [u, τ̃θ, τ̃φ, τ̃ψ]′ ∈ R4 is the
input vector, yL(k) ∈ R13 is the output vector (that we
assume completely measured or estimated), and A, B, C,
D are matrices of suitable dimensions obtained by the
linearization process. The additional state, zI =

∫
(z − zd)

is included to provide integral action on the altitude z,
so that offset-free tracking of the desired setpoint zd is
guaranteed in steady-state. The integral action is mainly
due to counteract effect of the gravity force acting against
the force developed by the collective input u.

The linear MPC formulation of the Model Predictive
Control Toolbox for Matlab (Bemporad et al., 2004b) is
used here, where the MPC control action at time k is
obtained by solving the optimization problem



min


∆uL(k|k)

...
∆uL(m−1+k|k)

ε





NL−1∑

i=0




ny∑

j=1

|wy
j [yLj(k + i + 1|k)−

rLj(k + i + 1)] |2 +
nu∑

j=1

|w∆u
j ∆uLj(k + i|k)|2 + ρεε

2





(6a)
subject to

umin
Lj ≤ uLj(k + i|k) ≤ umax

Lj , j = 1, . . . , nu

ymin
Lj − εV y,min

Lj ≤ yLj(k + i + 1|k) ≤ ymax
Lj + εV y,max

Lj
j = 1, . . . , ny

∆u(k + h|k) = 0, h = NLu, . . . , NL

ε ≥ 0
(6b)

for all i = 0, . . . , NL − 1, with respect to the sequence of
input increments {∆u(k|k), . . . ,∆u(NLu − 1 + k|k)} and
the slack variable ε. In (6a) the subscript “()j” denotes
the jth component of a vector, “(k + i|k)” denotes the
value predicted for time k + i based on the information
available at time k, rL(k) is the current sample of the
output reference, V y,min, V y,max are constant vectors with
nonnegative entries which represent the designer’s concern
for relaxing the corresponding output constraint, ny = 13
is the number of outputs, nu = 4 is the number of
inputs. The linear MPC controller sets u(k) = u(k −
1) + ∆u∗(k|k), where ∆u∗(k|k) is the first element of the
optimal sequence.

3.1 Linear MPC tuning and validation

The linear MPC controller is tuned according to the
following setup. Regarding input variables, we set umin

Lj =
−6 Nm, umax

Lj = 6 Nm, j = 1, 2, 3, umin
L4 = −6 N, umax

L4 =
6 N, w∆u

i,j = 0.1, ∀j = 1, . . . , 4, i = 0, . . . , NL − 1. For
output variables we set a lower bound ymin

L6 = 0 on altitude
z, and upper and lower bounds ymax

L1−2 = −ymin
L1−2 = π

12
on pitch θ and roll φ angles. The output weights are
wy

j = 1, j ∈ {4, 5, 11, 12}, on x, y, ẋ, ẏ, respectively,
and wy

j = 10 on the remaining output variables. The
chosen set of weights ensures a good trade-off between
fast system response and actuation energy. The prediction
horizon is NL = 20, the control horizon is NLu = 3, which,
together with the choice of weights, allow obtaining a good
compromise between tracking performance, robustness,
and limited computational complexity. The sampling time
of the controller is Ts = 1

14 s. The remaining parameters
V y,min, V y,max, ρε are defaulted by the Model Predictive
Control Toolbox (Bemporad et al., 2004a).

The closed-loop performance is tested by simulating the
nonlinear quadcopter model (4) under the effect of the
linear MPC controller (6) using Simulink and the Model
Predictive Control Toolbox. Additional blocks were de-
signed to generate reference signals from either the com-
puter keyboard or an external four-axes joystick. More-
over, the numerical signals are connected to an anima-
tion block based on FlightGear (Basler et al., 2008) for
3D visual inspection on the regulation performance, con-
nected through a graphical user interface designed for

Fig. 3. Visualization of quadcopter dynamics in FlightGear
(chase view)

Fig. 4. Linear MPC for tracking generic position references

easy human-machine interaction. FlightGear allows one to
very intuitively move the quadcopter around the virtual
world to any desired direction by sending desired set-point
commands directly from the keyboard or joystick, and as-
sess closed-loop performance visually. An animation movie
can be retrieved at http://www.dii.unisi.it/hybrid/
aerospace/quadcopter. Due to different angle represen-
tation systems, the following coordinate transformation


θ′

φ′

ψ′



 =

[ cos ψ − sinψ 0
sinψ cos ψ 0

0 0 1

] [
θ
φ
ψ

]

is used to map the signals (θ, φ, ψ) generated by model (4)
into the coordinates (θ′, φ′, ψ′) defining the angle coordi-
nates of the quadcopter in the virtual environment:

Figure 4 shows simulation results obtained by tracking a
generic reference signal. The corresponding input plots are
shown in Figure 5, where the thick solid line represents the
collective activity u. Note that u is nonzero at steady-state
due to the task of keeping the quadcopter in hovering. The
other lines represent, respectively, the actuations on pitch
τ̃θ, roll τ̃φ, and yaw τ̃ψ angles.

Note that because of the constraints imposed on θ and φ,
the nonlinear dynamics of the vehicle is maintained close
enough to the linearized model used in the MPC design.
As performance is rather satisfactory, the possible use of
multiple MPC controllers based on models linearized at
different conditions has not been explored here.

The results were obtained on a Core 2 Duo running Matlab
R2008a and the MPC Toolbox under MS Windows. The
average CPU time to compute the MPC control action
is about 13 ms per time step, which is about 1/6 of



Fig. 5. Linear MPC: commanded inputs

the sampling time Ts. No attempt was done to speed up
computations, such as using fast on-line MPC implemen-
tations (Wang and Boyd, 2008) or explicit off-line MPC
solutions (Bemporad et al., 2002).

4. HYBRID MPC FOR OBSTACLE AVOIDANCE

The linear MPC design developed in Section 3 is quite
satisfactory in making the quadcopter air vehicle track
references on position/orientation and velocity, despite
the strong coupling among states and the presence of
constraints (6b).

As shown in Figure 6, we extend the linear MPC design
with a hierarchical architecture where at the top layer a hy-
brid MPC controller commands set-points rL on positions,
angles, and velocities in order to accomplish the main mis-
sion, namely reach a given target position (xt, yt, zt) while
avoiding obstacles 1 . We assume that target and obstacle
positions may be time-varying and not known in advance,
so that off-line (optimal) planning would not be possible.
Hence, we still rely on model predictive control ideas
to generate the set-points (xd, yd, zd) to the linear MPC
controller in real-time. The proposed approach consists of
constructing an abstract hybrid model of the controlled air
vehicle and of the surrounding obstacles, and then use a
hybrid MPC strategy for on-line generation of the desired
positions (xd, yd, zd) (the remaining output set points in
vector rL are all zero).

The simulation results of Section 3 show that the closed-
loop dynamics composed by the quadcopter and the linear
MPC controller can be very roughly approximated as a 3-
by-3 diagonal linear dynamical system, whose inputs are
(xd, yd, zd) and whose outputs are (x, y, z). Accordingly,
the dynamics is formulated in discrete-time as

{
x(k + 1) = α1xx(k) + β1x(xd(k) + ∆xd(k))
y(k + 1) = α1yy(k) + β1y(yd(k) + ∆yd(k))
z(k + 1) = α1zz(k) + β1z(zd(k) + ∆zd(k))

(7)

where ∆xd(k) is the increment of desired x-position com-
manded at time kThyb, and Thyb > Ts is the sampling time
of the hybrid MPC controller.

Input increments ∆xd(k), ∆yd(k), ∆zd(k) are upper and
lower bounded by a quantity ∆
1 The formulation of this paper can be immediately extended to
include the yaw angle ψ as an additional controlled variable. Note
that ψ is dynamically decoupled in steady-state from (x, y, z).

Fig. 6. Hierarchical structure

−∆
[

1
1
1

]
≤

[
∆xd(k)
∆yd(k)
∆zd(k)

]
≤ ∆

[
1
1
1

]
(8)

Constraint (8) is a tuning knob of the hybrid MPC
controller, as it allows one to directly control the speed
of maneuver of the quadcopter by imposing constraints on

the reference derivatives
∥∥∥∥

[
ẋd(t)
ẏd(t)
żd(t)

]∥∥∥∥
∞
≤ ∆ · Thyb.

Obstacles are modeled as polyhedral sets. For minimizing
complexity, the ith obstacle, i = 1, . . . ,M , is modeled as
the tetrahedron

Aobski

[
x(k)−xi(k)
y(k)−yi(k)
z(k)−zi(k)

]
≤ Bobs (9)

where Aobs

[
x
y
z

]
≤ Bobs is a fixed hyperplane repre-

sentation of a reference tetrahedron, ki is a fixed scal-

ing factor, and
[

xi(k)
yi(k)
zi(k)

]
is a reference point of the ob-

stacle. In this paper we choose Aobs, Bobs such that
the corresponding polyhedron is the convex hull of vec-

tors
[

0
0
0

]
,
[

5/2
0
0

]
,
[ 0

5/2
0

]
,

[
5/6
5/6
5/2

]
, which makes the reference

point
[ xi

yi
zi

]
its vertex with smallest coordinates.

Equation (9) can be rewritten as

Aobski

[
x(k)
y(k)
z(k)

]
≤ Cobs(k) (10)

where Cobs(k) = Bobs + Aobski

[
xi(k)
yi(k)
zi(k)

]
∈ R4 is a quantity

that may vary in real-time. Here, it is modeled in predic-
tion through the constant dynamics

Cobs(k + 1) = Cobs(k) (11)

Finally, to represent the obstacle avoidance constraint,
define the following binary variables δij ∈ {0, 1}, i =
1, . . . ,M , j = 1, . . . , 4

[δij(k) = 1] ↔ [Aj
obski

[
x(k)
y(k)
z(k)

]
≤ Cj

obs(k)] (12)

where j denotes the jth row (component) of a matrix
(vector). The following logical constraints



4∨

j=1

¬δij(k) = TRUE, ∀i = 1, . . . ,M (13)

impose that at least one linear inequality in (10) is vio-

lated, therefore enforcing the quadcopter position
[

x(k)
y(k)
z(k)

]

to lie outside each obstacle.

The sampling time Thyb must be chosen large enough to
neglect fast transient dynamics, so that the lower and
upper MPC designs can be conveniently decoupled. On
the other hand, the obstacle avoidance constraint (13) is
only imposed at multiples of Thyb, and hence an excessively
large sampling time may lead to trajectories that go
through the obstacles during intersampling intervals.

The overall hybrid dynamical model is obtained by col-
lecting (7), (11), (12), (13). These are modeled through
the modeling language HYSDEL (Torrisi and Bemporad,
2004) and converted automatically by the Hybrid Tool-
box (Bemporad, 2003) into a mixed logical dynamical
(MLD) system form (Bemporad and Morari, 1999)

ξH(k + 1) = AξH(k) + B1∆uH(k) (14a)
yH(k) = CξH(k) (14b)

E2δ(k) ≤ E1∆uH(k) + E4ξH(k) + E5, (14c)
where ξH(k) = [x(k) y(k) z(k) C ′

1(k) . . . C ′
M (k) xd(k −

1) yd(k − 1) zd(k − 1)]′ ∈ R6+4M is the state vector,
∆uH(k) = [∆xd(k) ∆yd(k) ∆zd(k)]′ ∈ R3 is the input
vector, yH(k) = [x(k) y(k) z(k)] ∈ R3 is the output
vector, and δ(k) ∈ {0, 1}4M is the vector of auxiliary
binary variables defined in (12). The inequalities (14c)
include a big-M representation (Bemporad and Morari,
1999) of (12) and a polyhedral inequality representation
of (13). Matrices A, B1, C, E1, E2, E4, E5 have suitable
dimensions and are generated by the HYSDEL compiler.
In order to design a hybrid MPC controller, consider the
finite-time optimal control problem

min
{∆u(k)}NH−1

k=0

NH−1∑

j=0

(yH(k + j + 1)− yHt)′Q(yH(k + j + 1)

− yHt) + ∆u′H(k + j)R∆uH(k + j) (15a)
s.t. MLD dynamics (14) (15b)

constraints (8) (15c)
where NH is the prediction horizon, yHt = [xt yt zt]′ is
the target destination, and Q ≥ 0 and R > 0 are weight
matrices of R3×3.

The MLD hybrid dynamics (14) has the advantage of
making the optimal control problem (15) solvable by
mixed-integer quadratic programming (MIQP). At each
sample step k, given the current reference values yH(k) and
the current state ξ(t), Problem (15) is solved to get the first
optimal input sample ∆u∗H(k), which is commanded as
the increment of desired set-point (xd, yd, zd) to the linear
MPC controller at the lower hierarchical level.

4.1 Simulation results

To test the behavior of the overall system we cascade
the linear MPC controller described in Section 3 with the
hybrid MPC controller designed in this section, according
to the hierarchical scheme of Figure 6. The simulation

Fig. 7. Obstacle avoidance maneuvers commanded by the
hybrid MPC controller

Fig. 8. Position and reference signals

consists of avoiding three obstacles (tetrahedra) of differ-
ent dimensions, placed along the path between the quad-
copter and the target point (see Figure 7). The following
parameters are employed: α1x = α1y = α1z = 0.6, β1x =
β1y = β1z = 0.4 for the approximation of the lower level
dynamics; NH=10 (prediction horizon), Thyb=2 s, and
∆ = 1

5Thyb; k1 = k3 = 1, k2 = 2
3 are the scaling factors for

the tetrahedra; Q = I3×3 and R = 0.1 ·I3×3 are the weight
matrices; the initial position is x(0) = y(0) = z(0)=0 and
the target point is located at xt = yt = zt=10.

The overall performance is quite satisfactory: The trajec-
tory generated on-line circumvents the obstacles without
collisions (see Figure 7), and finally the quadcopter settles
at the target point (see Figure 8). Note that in the first
transient the altitude z first drops by about 3 m due to
the effect of gravity.

In the simulations we assumed that the positions of the
obstacles were known at each sample step. In more realistic
applications with several obstacles it may be enough to
only know the locations of the obstacles which are closest
to the vehicle, for a threefold reason. First, because of
the finite-horizon formulation, remote obstacles will not
affect the optimal solution, and may be safely ignored to
limit the complexity of the optimization model. Second,
because of the receding horizon mechanism, the optimal
plan is continuously updated, which allows one to change
the maneuvers to avoid new obstacles. Third, in a practical
context obstacles may be moving in space, and since such
dynamics is not modeled here, taking into account remote



obstacles in their current position has a weak significance.
The number M of obstacles to be taken into account
in the hybrid model clearly depends on the density of
the obstacles and the speed of the vehicle. Note that,
depending on the sensor system on board of the vehicle, it
may be even impossible to measure the position of remote
obstacles.

The average CPU time to compute the hybrid MPC action
for set-point generation is about 17 ms per time step
on the same platform used for linear MPC, using the
mixed-integer quadratic programming solver of CPLEX
11.2 (ILOG, Inc., 2008).

5. CONCLUSIONS

In this paper we have shown how model predictive control
strategies can be employed for autonomous navigation of
unmanned aerial vehicles such as quadcopters. Due to the
multivariable and constrained dynamics of such UAVs, a
linear MPC design takes care of the nontrivial task of sta-
bilization of the vehicle. Then, a hybrid MPC “pilot” takes
care of generating the path to follow in real-time to reach a
given target while avoiding obstacles. Compared to off-line
planning methods, such a feature of on-line generation of
the 3D path to follow is particularly appealing in realistic
scenarios where the positions of the target and of the
obstacles are not known in advance, but rather acquired
(and possibly time-varying) during operations. Moreover,
compared to on-line planning methods like potential fields,
hybrid MPC offers much more flexibility in specifying
constraints, prioritization of tasks, etc. in a very direct
and natural way.

The results of this paper can be extended in many ways.
First, further improvements on stabilization (such as faster
response) could be achieved by extending the nonlinear
model with the inclusion of motor/blade dynamics, there-
fore treating motor voltages as command inputs. Second,
the approach can be immediately extended to coordina-
tion of multiple UAVs, where each of them is stabilized
by a local linear MPC controller (or any other type of
stabilizing controller), and decentralized hybrid MPC is
used at the tactical level to accomplish the mission. Due
to the flexibility of specifying set-points and constraints
of hybrid MPC, several different mission scenarios can be
easily formulated and solved.
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