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Abstract

A new approach for fault detection and state estimation
of hybrid systems is presented. The method relies
on the modeling framework for hybrid systems intro-
duced by [4]. This framework considers interacting
propositional logic, automata, continuous dynamics
and constraints. The proposed approach is illustrated
by considering the fault detection problem of the three-
tank benchmark system.

1 Introduction

Many practical control, estimation and fault detection
problems involve hybrid systems, here losely defined
as systems involving both continuous and discrete
variables. Various approaches have been proposed for
modeling hybrid systems [10, 6]. Often engineering
systems include “logic” components (eg. if-then-else
rules, finite state machine, etc. ) which are conveniently
described via propositional logic. Moreover, in addition
to a quantitative system description there might
be some available qualitative information about the
behavior of the system, for instance in terms of
heuristic knowledge.

Recently it was shown [4, 15] that expressing logical
propositions in the form of linear constraints on integer
variables leads to a powerful modeling framework, the
so called mixed logical dynamical (MLD) form. It allows
to describe a broad number of important classes of
systems, like piecewise linear systems, systems with
mixed discrete/continuous inputs and states, and many
others more [4]. The framework permits to include and
prioritize constraints, and incorporate heuristic rules in
the description of the model.

In this work we first show that the MLD form can
be used as a new tool to model systems with faults.
Next we define the moving horizon estimation problem,
which can be considered dual to (receding horizon)
model predictive control [9]. At each time step we solve
a least squares estimation problem over a finite horizon
backwards from the current time. The resulting

optimization problem is a mixed-integer quadratic
program (MIQP), for which efficient solvers exist,.
We propose to use this moving horizon estimation
formulation to estimate states and faults of hybrid
systems in the MLD form.

To demonstrate the effectiveness of the modeling
approach and the fault detection scheme, we apply the
method to a well studied problem in the fault detection
literature, namely the three tank benchmark system
[11].

In the form presented in this paper the moving horizon
estimator does not address all relevant issues in state
estimation and fault detection. For example, it does
not explicitly take into account any stochastic aspects.
Nevertheless, it is a new and promising method to deal
with state estimation and fault detection for the broad
class of hybrid systems.

The paper is organized as follows. In Section 2 we
recall the general MLD form. In Section 3 we present a
first principles model of the three tank system and we
derive its MLD form. Since this derivation is tedious
and involves the application of a set of fixed rules, a
compiler was developed for the translation into the
MLD form. In Section 4 we present the compilable
definition of the three tank system. In Section 5 we
extend the ideas of [4] to the fault detection and the
state estimation problem. The ideas are illustrated
with simulations of the three tank system, which are
presented in Sections 6 and 7. A few remarks about,
the computational aspects are given in Section 8. A
more detailed version of this paper can be found in [I].

2 The Mixed Logic Dynamic Form

The mixed logical dynamic (MLD) form has been
introduced in [4]. The general MLD form is:

~(t + 1) = Ax(t) + 131u(t) + B26(t) + B3z(t) (la)

~(t) = Cz(t) + ~lu(t) + D2d(t) + ~sZ(t) (lb)

132c$(t)+ E3z(t) < Elu(t) + Elx(t) + Es (lC)
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Figure 1: COSY Three-Tank Benchmark

x are the continuous and binary states, u are the
continuous and binary inputs, b and z represent binary
and continuous auxiliary variables. The latter are
introduced when translating logic propositions into
linear inequalities. All constraints are summarized in
the inequality (lc). The description (1) only appears to
be linear; the variables 6 are constrained to be binary.

3 Model of Three Tank System

The three tank system represented in Fig. 1 has been
adopted recently as a standard benchmark problem
for fault detection and reconfigurable control [11, 5].
Here we report a simplified physical description of
the system (more details can be found in [7]). From
the conservation of mass in the tanks we obtain the
differential equations

hl = ;(QI - Q13v1 -Q13v13 - QLI) (2)

hz = ;(Q2 – Q23V2- Q23V23) (3)

h3 = ~(Q13v1 + Q13v13 + Q23V2 + Q23V23 - Qiv) (4)

where the Q‘s denote flows and A is the cross-sectional
area of each of the tanks [11]. By Torricelli’s law, the
flow through a lower valve V2S(i = 1,2) is

The flow through the valve VL1 (VAr3) is obtained by
setting hl (h3) in place of (hi – h3) in (5), and through
the upper valves Vi by setting max{ h., hj } in place
of hj, (j = 1,2, 3). In order to express the physical
model (3)–(5) in the MLD form (1), we approximate
the nonlinearity in (5) with a straight line, as follows:

d

2g
Qi3vi3 w ~isvis (hi – hs), ki3 ~ azSi3 ~ (6)

max

Note that more accurate approximations of the square
root could be used. According to [4] we have that:

where M and m are upper and lower bounds on j(x).
Another fact we take from [4] is :

[

z>mb
z = c$f(x) is equivalent to (8),3 ~ f(z) – m(l –6)

z ~ f(z) – M(I – d)

(7) and (8) are used to obtain the MLD form. By
introducing the auxiliary variables ~i3 = Vi3(hi – h3)
(i = 1} 2), and (8), Eq. (6) can be expressed through
mixed-integer linear inequalities. In order to take into
account the flows through the upper valves V1, V2,

define for i = 1,2,3 the auxiliary binary variables

[doi(t) = 1] ++ [hi(t) > hv] (9)

and continuous variables

Zoi~ max{hv, hi} – h. = ~oi(hi – h.). (lo)

Then, for i = 1,2, and Zi ~ Vi(,zoi – .Z03)

Qi3Vi z ki~i,
d

2g
ki~aZSi h _h

max v

Similarly, one has QL1 z kLIZL~ and QN3 E kNszN3,
where kLl, kNs depend on SL1, SN3 respectively and
axe defined as in (6), where zLl & VL1hl and zN3 ~
VNshs.

In addition, hi, Qj must fulfill the operating constraints

0< hi ~ hmaX, (i= 1,2,3) 0< Qj <Qmax, (j = 1,2).

Finally, the differential equations (3) are discretized by

replacing ii(t) by “ ‘i+~,–h’ ‘~), where T, is the sample

time. Defining

one obtains the form (1). Tank 2 is used only for
reconfiguration purposes.

4 System Description in HYSDEL

The transformation of first principles hybrid system
descriptions, like (2) to (4) into the MLD form requires
the application of a set of given rules. It is therefore
a task that is preferably automated. To avoid the
tedious procedure of deriving the MLD form by hand, a
compiler is currently under development that generates
the matrices A, Bi, C, Di and .Ei in (1). The problem
specification language to the compiler is HYSDEL
(HYbrid System Description Language). In Fig. 2
we report the description of the three-tank system
developed in the previous section in HYSDEL.
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, Description of variables end constants
state hl, h2, h3; % Tank levels
input Q1, C12; ‘1 Input flows
input VI ,V2, V13, V32, VL1,VN3; % Valves
const A,Ts, kl, k2, kl, hv, hmax, Qmax,e; % Constants

% Variable types
real hl,h2, h3, z13, z32, zOl, z02, z03, zl, z2, zll, zn, Ql, Q2;
logic Vl, V2, V13, V23, VLl, VN3,dOl, d02, d03;

X Relations
dOl = {hl-hv >= O, Ml, ml, e};
d02 = {h2-hv >= O, Ml, ml, e};
d03 = {h3-hv >= O, Ml, ml, e};
z13 = V13*(hl-h3) @SX, -hmax, e};
z23 = V23*(h2-h3) @nmx, -hmex, e};
zOI = dOl*(hl-hv) {hmax-hv, O, e};
z02 = d02*(h2-hv) {bmax-hv, O, e};
z03 s d03*(h3-hv) {hmex-hv, O, e};
Z1 = VI*(ZO1-Z03) Oumx-hv, hv-hmax, e};
Z2 = V2*(Z02-Z03) {hmex-hv, hv-bmax, e};
z1l = VLl*hl {hmax, O, e};
zn = VN3*h3 {hmax, O, e};

% Dther constraints
must hl <. bmax, h2 <. hmax, h3 <. hmax;
must hl >= O, h2 >= O, h3 >= O;
must Q1 <= Qmax, 92 <= Qmax;
must QI >= O, Q2 >= O;

% Update
update hl = hl+Ts/A*(Ql-k2*zl-kl*z13-kl*zll);
update h2 = h2+T8/A*(k2*zl+kl*z13+k2*z2+kl*z32-kl*zn);
update h3 = h3+Ts/A*(Q2-kl*z32-k2*z2);

Figure 2: HYSDEL description of the three-tank system.

5 Moving Horizon Estimation for MLD
Systems

We mentioned above that the MLD framework (1) can
be used for the synthesis of model predictive controllers
[4]. The method requires the solution of an MIQP
at each sample time, The dual problem, i.e. the
moving horizon estimation problem [14, 13] can also be
formulated in terms of the iterative solution of MIQPs.
The goals of such an estimation can be state estimation,
fault detection, disturbance estimation. The common
feature in all these problems is the minimization of
a quadratic cost function involving the quantities to
be estimated. Contrary to the control problem, the
estimation horizon extends backwards in time, allowing
at time t to estimate the quantities of interest at times
prior to t.

In the following we consider moving horizon estimation
for the purpose of fault detection and state estimation
in some detail. The three-tank system presented in
Section 3 will be used as a benchmark example for the
illustration of the method.

Consider an MLD system, where the occurrence of
~ faults can be modeled with unmeasured binary
disturbances. We assume that the dynamics of
the system in the presence of each fault is known.
Therefore we extend the MLD model (1) by including

three unmeasured variables:

. Fault, i.e. binary disturbance ~(t) E {O, l}f

● Input disturbance ((t) E Rm

. Output disturbance <(t)E RP

We define the mixed logic dynamic fault (MLDF) form:

z(t + 1) = Az(t)+Blu(t) + Bzb(t) + ~3~(t) + ~6@(t) + t(~)
(ha)

y(t)= cz(t)+D17qt) + D2d(t) + D3z(t) + Ddcj(t) + <(t)
(llb)

&d(t) + ~3Z(t) < ~l~(t) + E4Z(t) + ~5 + ~6@(~) (llC)

A moving horizon estimator for (11) can be formulated
as follows. At time t we know the last T input and

output data U(t) and Y(t):

U(t) = [u(t– T), u(t– T+ l),... ,u(t–l), u(t)]

Y(t) = [y(t– T), y(t– T+l)) . . . ,y(t–l), y(t)]

and the estimates Z(t – 1), A(t – 1), $(t – 1) and
X(t – 1) from the estimation at time t– 1:

Z(t–1) = [;(t–qt– l),2(t–T+llt– 1),... ,.2(t-21t- 1)]

A(t–1) = [i(t–Tlt– l), i(t–T+llt– 1),... ,J(t–21t– 1)]

‘$(t-l) = [~(t–Tlt– l), ~(t–T+llt– 1),... ,~(t–21t– 1)]

X(t–1) = [*(t–Tlt–l), i(t–T+l[t–1),... ,*(t–lIt–l)]

At time t we can consider the following estimate
evolution:

[

i(t – qt) ~ i(t– Tlt– 1) + Az(t)
i(t+k+lp) = Ai(t + /clt)+ Blu(t + k) + Bz~(t + kit)+

B3.2(t +klt) +B6j(t+klt) +&(t+klt)

j(t + kit) = Ci(t+klt) +Dlu(t+k) +D2$(t +klt)+

~3~(t + kit) + D6d(t + kit) + ((t + klt~
~z$(t+ktt)+~qi(t+klt) < ~4i(t+k[t)+~l U(t+~)+~5+~6d(t+ ~/t)

(12)

fork =–T,... , – 1. Let us define the optimization
variable at time t as:

Xt = [Az(t), i(t–T’+lH, ,$(t–llt),2(t–T+l[t),....

qt-llt), f$(t–T+llt),. . . ,d(t–qt),

~(t-T+llt),. ,&(t-l/t), <(t-T+ llt), ,<(tIt)]

and the cost function at time t as:

(~(Xt) = llWt)ll& + ~l=-T+l l[~(t + kit) – Y(t + k)ll&+

ll<(t+k[t)l& + ll&t+klt)llQm) +~~:_2-+1 (ll~(t+~lt)-

i(t + klt – 1)11:4 + Ilt(t + w~7) + Z&+l (llqt+klt)-

$(t+kp- 1)11~2+ l12(t+klt)– qt+w- 1)11:3+

Ild(t+klt)- d(t+klt- 1)1136)

(13)

where the matrices Qi are symmetric, positive semidef-
inite and have appropriate dimensions. The estimates
at time t are obtained by solving
problem:

mi,nJ(Xt)

subject to (12)

the optimization
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With the estimates Xt and with the estimate evolution
(12), we can reconstruct the state estimate X(t):

x(t) = [i(t–1’+llt),... i(t – llt), . . . ,i(tlt)] (14)

Note that the optimization problem is an MIQP.
Setting Q2, Q3, QA and QG to zero in (13) reduces the
estimator to an FIR filter with input U(.) and Y(.) and
the estimates as output. This is one way to guarantee
the stability of the estimator.

6 Simulations of the Three Tank System

The method described in Section 5 was used for the
fault detection problem of the tank system. We
consider the closed loop system with a PI controller
cent rolling hl by manipulating Q1 and a switching
controller controlling h3 by manipulating VI. The

control aim is to keep level hl = 0.5 and h3 = 0.1,
which cannot be met exactly because of the hysteresis
of the switching controller for V1 [11]. The following 3
types of faults are considered:

● ~1 Leak in tank 1

● 42 Valve V1 blocked closed

. 63 Valve V1 blocked open

Fault @l has already been considered in the modeling
of Section 3 as binary input U2. To model @2
and 43 we can “filter” the control signal U5 to
valve VI with a processing unit, that introduces the
potential faults, see Fig. 3. The actual input to
the valve V1 is a new auxiliary variable ~. The

Figure 3: The faults ~z and qh can override the binary
control signal us to valve VI

defining relations for the actuator signal ~ can be
formulated with logical connective and then rewritten
in conjunctive normal form (CNF). However, the
translation of CNF into linear inequalities requires the
introduction of additional auxiliary Boolean variables.
It is preferable [2] to first build up the truth table for
the relations between the involved variables and to find
the inequalities delimiting the convex hull of the points
corresponding to the rows of the truth table. The truth
table is given in table 1. The interpretation of table 1
is that all combinations of [U5,q52,43, ~] E {O, 1}4 not
appearing as a row in table 1 cannot occur and are
“invalid”. The linear inequalities in table 1 exclude all
invalid combinations and are fulfilled by the rows of
the truth table. They can be found as described in [2].
The results in Fig. 4 show a simulation, where the leak

Table 1: Truth table for the relations between the control
signal to Vl and the faults and the corresponding
linear inequalities
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Figure 4: Simulation of a leak ~1 from time t = 20 until
t = 60, and a blocking valve 9$2 from time
t = 40 until t = 80.

#l and the blocking 42 occurs at different times. Here
we have chosen a horizon of T = 3 steps. For t = O
up to t = 20 no faults are simulated. From t = 20 to

t = 60 there is a leak in tank 1, whereas from t = 40
to t = 80 the switching valve blocks. Both faults are
detected correctly with a few time steps of delay. Note
however that during the startup there are a few false
alarms of fault 42, i.e. blocking of valve VI. These
wrongly detected faults are due to the fact, that the
level in tank 1 has not yet reached the height of valve
VI. Therefore no liquid can pass through VI, which
is indistinguishable from a blocked valve V1. To avoid
this problem it is very natural to formulate the clause

[hl s h.] ~ @2 = O. According to [4] this additional
specification can be translated into the linear inequality
O ~ xl – h. – m + #2(rn – e), which can be added to
the MLD constraints

The fault estimates are free of any errors with this
correction, as can be seen in Fig. 5. Figure 6 shows
a simulation, where the leak is simulated from t = 20
until t= 40, valve V1 is stuck closed from t= 40 until
t = 60 and stuck open from t = 60 until t = 80. The
faults are correctly identified with only a few time steps

of delay.

7 State Estimation Problem

As we saw in the set up presented in Section 5, it
is possible to compute state estimates of a system in

2474



stale ewlllaum error
0,m!!l~.-.L.-.:.-.:-
. ::
-7 0 --
,. :[[

j ...7...7.---

*?’”
0 m ~meen 80 100

esllnltiti WtpJl

‘n
0...1. .. .. . ..+. . .. . .. .

~

-o J---; ---+---;----
. . . .. .. . . . .. .. . . . . .

‘-o . . . . . .. .. . . .. . .. . . . . .
.— –4-–-4-...

,0 40 so m ,W

estkmwc I.”H $, [t-l h)‘--ii:!1. . . . . . . . . . . . . . . .
!}

w-!ti;::....................
Oa “44&e 40 co

Figure 5: The same simulation as in Fig. 4, with the
requirement [hl < Isv] * f#2 = O
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Figure 6: Simulation of the three types of faults in the
tank system

MLD form, by solving an MIQP at each time step. To
illustrate this, we assume that in the tank system only
level hl is measured. In Fig. 7 we estimate level h3
with this measurement.

8 Computational Aspects

The biggest handicap is the computational complexity
of the MIQPs, that is exponentially increasing with the
number of binary optimization variables b and @. This
complexity is, however, inherent in the problem and not
a particular disadvantage of the proposed method. On
average, branch and bound algorithms are an efficient
way to solve MIQPs [12, 8]. Problem specific knowledge
can be incorporated in the node selection strategy and
in the branching rule to speed up the computations
dramatically [3].

9 Conclusions

We have extended the ideas of receding horizon control
to the state estimation and fault detection problem.
The three tank system benchmark demonstrated the
usefulness of the new methodology. The mixed logic
dynamic framework proves to be a convenient modeling
tool for hybrid systems, which allows one to solve
estimation and fault detection problems effectively.
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