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Abstract

This paper presents a modeling formalism for hybrid
systems which allows to formulate and solve several
practical problems, such as control, formal verification,
state estimation, and fault detection. As an extension
to previous works we report a technique that allows to
reduce the number of auxiliary binary variables in the
modeling phase.

1 Introduction

The concept of model of a system is traditionally associ-
ated with differential or difference equations, typically
derived by physical laws governing the dynamics of the
system under consideration. Consequently, most of the
control theory and tools have been developed for such
systems, in particular for systems whose evolution is
described by smooth linear or nonlinear state transition
functions. On the other hand, in many applications
the system to be controlled is also constituted by parts
described by logic, such as for instance on/off switches
or valves, gears or speed selectors, evolutions dependent
on if-then-else rules. Often, the control of these systems
is left to schemes based on heuristic rules inferred from
practical plant operation.

Recently, in the literature researchers started deal-
ing with hybrid systems, namely hierarchical systems
constituted by dynamical components at the lower
level, governed by upper level logical/discrete compo-
nents [9, 5]. However, in some applications a precise
distinction between different hierarchic levels is not
possible, especially when dynamical and logical facts
are dramatically interdependent. For such a class of
systems it is even not clear how to obtain models
systematically.

This paper proposes a framework for modeling,
controlling, estimating, and verifying models of systems
described by interacting physical laws, logic rules,
and operating constraints. According to techniques
described e.g. in [17, 6, 13], propositional logic is
transformed into linear inequalities involving integer
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and continuous variables. This allows to arrive at
Mized Logical Dynamical (MLD) systems described
by linear dynamic equations subject to linear mixed-
integer inequalities, i.e. inequalities involving both
continuous and binary (or logical, or 0-1) variables.
MLD systems generalize a wide set of models, among
which there are constrained linear systems, finite state
machines interacting with dynamic systems, some
classes of discrete event systems, piece-wise linear
systems, systems with discrete inputs.

Several questions of interest when dealing with MLD
systems can be suitably formulated as mixed-integer
optimization problems. For feedback control purposes,
we propose a predictive control scheme which is able to
stabilize MLD systems on desired reference trajectories
while fulfilling operating constraints, and possibly take
into account previous qualitative knowledge in the form
of heuristic rules. The dual problem of state estimation
can be set up as an optimization problem over a
sequence of past estimates.

The aim of the verification problem is to check whether
there exist an initial condition and an input sequence,
such that a system can be driven to a certain state
space region. Typically this region represents a set
of dangerous or unsuitable operating conditions. For
systems in MLD form this problem can be solved
through algorithms based on linear and mixed-integer
linear programs. For details and a case study on an
automotive suspension system, the reader is referred
to [4].

This paper is organized as follows. In Section 2 some
basic facts from propositional calculus, Boolean alge-
bra, and mixed-integer linear inequalities are reviewed.
An alternative formulation for the translation of purely
logical relations into linear inequalities is presented in
Section 3. These tools are used in Section 4 to motivate
the definition of MLD systems, and in Section 5 to
provide examples of systems which can be modeled
within this framework. Section 6 deals with the optimal
control of MLD systems and shows how heuristics can
be taken into account. Section 7 briefly summarizes the



techniques to solve the state estimation/fault detection
problem. Some considerations about the computa-
tional aspects are given in Section 8.

2 Propositional Calculus and Linear Integer
Programming

By following standard notation [16, 6, 17], we adopt
capital letters X; to represent statements, e.g. “x > 0”
or “Temperature is hot”. X; is commonly referred to
as a literal, and has a truth value of either “T” (true)
or “F” (false). Boolean algebra enables statements
to be combined in compound statements by means
of connectives: “A” (and), “V” (or), “~” (not), “—”
(implies), “<” (if and only if), “®” (exclusive or) (a
more comprehensive treatment of Boolean calculus can
be found in digital circuit design texts, e.g. [7, 10].
For a rigorous exposition see e.g. [11]). Connectives
satisfy several properties (see e.g. [7]), which can
be used to transform compound statements into
equivalent statements involving different connectives,
and simplify complex statements. Correspondingly
one can associate with a literal X; a logical variable
8; € {0,1}, which has a value of either 1 if X; =T, or
0 otherwise. Integer programming has been advocated
as an efficient inference engine to perform automated
deduction [6]. A propositional logic problem, where
a statement X; must be proved to be true given a
set of (compound) statements involving literals X,

., Xn, can in fact be solved by means of a linear
integer program, by suitably translating the original
compound statements into linear inequalities involving
logical variables §;. In fact, the propositions and linear
constraints reported in Table 1 can easily be seen to be
equivalent. Similar ideas originally came up in the early
1960°s dealing with the synthesis of linear switching
circuits [12, 14]. Threshold logic was introduced
to synthesize arbitrary combinational circuits as an
alternative to realizations with AND/OR/NOT gates.

We borrow this computational inference technique
to model logical parts of processes and heuristic
knowledge about plant operation as integer linear
inequalities. As we are interested in systems which
have both logic and dynamics, we wish to establish a
link between the two worlds. In particular, we need
to establish how to build statements from operating
events concerning physical dynamics. The key idea
is to use mized-integer linear inequalities, i.e. linear
inequalities involving both continuous variables z € R"
and logical {indicator) variables § € {0,1}, as described
in Table 1. Consider for instance the statement X £
[f(z) < 0] where f : R* — R is linear, assume that
z € X, where X is a given bounded set, and define

M 2 max f(z), m = min f(z) (1)

Theoretically, an over[under|-estimate of M [m] suffices
for our purpose. However, more realistic estimates

Table 1: Basic conversion of logic relations into mixed-
integer inequalities. Relations involving the form
[0 = 0] can be obtained by substituting (1 — d)
for 4 in the corresponding inequalities.

relation logic mixed integer
(in)equalities
P1 AND [61 = 1] A [(52 = 1] 6 =1
(n) 8 =1
P2 [63:1]H —& +63§0
[61:1]/\[6221] —024+63 <0
1462 —d5 <1
P4 OR (V) [6: =1]Vv[s =1] 1 +62 > 1
P5 3 = 1| & (51 — 53 S 0
[51:1]V[62:1] 62—63S0
—8; —82+4d3<0
P6 NOT (~) ~ I8 =1] 5 =0
P7 XOR (@) [51 = 1] (2] [52 = } 6y + 62 =
P8 [53:1](—-) —51—52+53S0

[(5121]@[5221] —d1+682-3d3<0
61 — 82 — 83 <0

01 +03 +d3 <2

P9 | IMPLY (=) | i =1]= [0z = 1] 8 —32 <0

P10 [fle) SO —T6=1] flz) > e+ (m - )8
Pil [F=1]> [Fz) <0 F(z) <M — M3
Piz | IFF (&) i=1]o [0 =1] 5 -8, =0

P13 FOESUE N F(e) <M - M

f(@) > et (m—e)d

P14 Product z=20-f(x) 2<M3$
—z< -mé

f(x) —m(1 —8)
—f(z)+ M(1—8)

<
_ZS

provide computational benefits [17, p. 171]. By
associating the binary variable 4 with the literal X,
one can transform X 2 [f(z) < 0] into mixed integer
inequalities as described in P13, Table 1, where € is
a small tolerance (typically the machine precision),
beyond which the constraint is regarded as violated.
Note that sometimes this translation requires the
introduction of auziliary variables [17, p. 178], for
instance according to P14 a product between logic and
continuous quantities requires the introduction of a real
variable z.

3 Automatic Translation of Truth Tables into
Linear Integer Inequalities

Any combinational relation of logical variables can be
represented in conjunctive normal form (CNF). Using
CNF the derivation of linear inequalities describing a
given relation requires the introduction of auxiliary
binary variables prior to the usage of the rules of table
1. However, this procedure increases the number of
binary variables, which is undesirable.

We describe a method for translating any logical
relation between Boolean literals, given in the form of
a logical proposition or truth table, into a set of linear
integer inequalities. This set is also proved to provide
the smallest domain after relaxation. Contrary to
other methods which perform the translation through
CNF, the proposed approach does not introduce
any additional Boolean variable. This feature, and
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the minimality of the relaxed set, are particularly
appealing when the model is used to set up mixed-
integer programs. The results of applying the method
can be seen as a generalization of the rules of Table 1 for
relations involving an arbitrary number of exclusively
discrete variables combined by arbitrary connectives.

Consider the following problems:

¢ PB1 Impose that the proposition F(Xy,...
is true

e PB2 Define X, = f(Xq,...

» Xn)

7Xn—1)

The two problems can be given in terms of truth tables
or using connectives “A” (and), “v” (or), “~” (not),
“—” (implies), “” (if and only if), “®” (exclusive
or). As it is immediate to transform statements given
in terms of connectives into truth tables, without loss of
generality we assume that F', f are defined via a truth
table. It is also clear that problem PB2 is included in
PBI1.

Consider the unit hypercube H £ [0,1]", and let H
denote the set of its vertices. Let conv(S) be the convex
hull of a set S C H, and Cy(S) the complementary set
in H of S,ie. Cyg(S)US = H, Cu(S)NS = 0. The
following Lemma 1 proves that the subsets S of H can
be “wrapped” inside a polytope which does not contain
any vector of the complementary set Cy(S).

Lemma 1 Let S C H. Then conv(S)Cx{(S) = 0.

Proof: All vectors h € H are extreme points of
H. Therefore, they cannot be written as nontrivial
convex linear combinations of other vectors in H. In
particular, the vectors h, € Cy(S) cannot be written
as convex combinations of vectors hy € S. This proves

that k. € conv(S), Yh. € Cu(S). a

Consider now the truth table 7 expressing the
combinations of é;, ..., d§, associated with problems
PB1/PB2. Let m be the number of rows in 7, and
let T = {Ri,...,Rmn} the set of the rows R; of T,
considered as vectors in R", i.e. the collection of all
true combinations of F'. Each component of a row R;
is either 0 or 1, and therefore R; € H, ie. R; is a
vertex of the hypercube H.

Theorem 1 Let T be a truth table associated to
a statement F on literals X;, ..., X,. Then
F(Xi,...,X,) is true if and only if the vector 6§ £
[61,...,0,) € {0,1}" satisfies the inequalities

Ad < B

where the polytope P £ {6 : AS < B} = conv(T).
Moreover, each integer translation P = {6 : Aé < B}
of F' is such that P C P, i.e. P is minimal.
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Figure 1: Convex hull of the rows of the truth table of
Xz =X1 A Xs.

Proof: If § is a true combination, then 4§ is a row R; of
the truth table, i.e. § € T, and therefore é € conv(T).
On the contrary, let § € conv(T). If § were a false
combination, i.e. § € Cy(T), Lemma 1 would be
violated. Moreover, if P is an integer representation
of F, then R; € P, Vi =1,...,m. Since P is convex,
P =conv({Ry,... ,R,}) C P. o

Several packages exist for transforming a polyhedron P
from the form P = {z: = =Y 1", Azi + 30, piri},
where z;, r; are the extreme points and extreme
directions of P respectively, 0 < A; <1, > Ay = 1,4, >
0, to the form P = {z : Az < B}. For a detailed
survey of these packages, the reader is referred to http:
//wwu.geom.umn.edu/software/cglist/ch.html.

Example 3.1

Consider the relation X3 = X; A X,, whose truth table
is

X1 Xq X3 41 [P ds
F F F 0 0 0
F T F < 0 1 0
T F F 1 0 0
T T T 1 1 1

The rows of the truth table are represented as points in
R? in Fig. 1. Their convex hull, computed by using the
package lrs written by David Avis, McGill University
(ftp://mutt.cs.mcgill.ca/pub/C), coincides with
the linear inequalities in P2 (Table 1). m|

4 Mixed Logical Dynamic (MLD) Systems

In the previous Sections we have provided some
tools to transform logical facts involving continuous
variables into linear inequalities. These tools can be
used to express relations describing the evolution of
systems where physical laws, logic rules, and operating
constraints are interdependent. The general form



of the system class obtained are the Mixed Logical
Dynamic (MLD) systems [3] given by the following
linear relations

z{t + 1) = Az(t) + Biu(t) + B2d(t) + Bsz(t) (2a)
y(t) = Cz(t) + Dyu(t) + D2d(t) + Dsz(t) (2b)
Eg(s(t) + E3Z(t) < Elu(t) -+ E4$(t) + Ex (26)

Each of the vectors z (state), u (input), and y (output)
is partitioned into discrete and continuous components,

e.g.,

T = [ ic ] , 2 ER™, 2, € {0,1}™, n 2 n.+ng
i

In principle, the inequality in expression (2c) might be
satisfied for many values of §(t) and/or 2(t). On the
other hand, in order to define trajectories in the z and
y-space for system (2), we require that z(¢+1) and y(t)
are uniquely determined by z(t) and u(t), i.e., that the
system is well posed (for a formal definition see [3]).
Typically, when the model derives from a real system,
there is no need to check for well-posedness. However,
a simple numerical test for checking this property is
reported in [3]. We will denote by a:(t,to,:co,uﬁu_l)
the trajectory generated in accordance with (2) by
applying the command inputs u(tg), u(te + 1), ...,
u(t — 1) from the initial state x(tg) = zo-

Note that input/state constraints of the form Fx +
Gu < H have the form (2¢). Therefore, operating
constraints can be included in (2c).

5 Model Components Transformable in MLD
Form

The class of MLD systems includes the following
important classes of systems:

e Linear Hybrid Systems;

» Sequential logical systems (Finite State Ma-
chines, Automata) (n. = 0);

¢ Nonlinear dynamic systems, where the nonlinear-
ity can be expressed through combinational logic
(ng = 0);

e Some classes of discrete event systems;

e Linear systems, possibly subject to constraints
where the terms “combinational” and “sequential” are
borrowed from digital circuit design jargon.

In [3] some examples are described of basic systems
that can be expressed as MLD systems, such as linear
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systems with output nonlinearities, discrete inputs,
qualitative outputs, bilinear systems, piece-wise linear
systems, and automata driven by events on continuous
dynamics. We refer to [3] for a detailed discussion of
these model types.

6 Control

For an MLD system of the form (2), consider the
following problem: Given an initial state z; and a
final time T, find (if it exists) the control sequence
ud ' 2 {u(0),u(1),... ,u(T — 1)} which transfers the
state from zo to z; and minimizes the performance

ndex
T-1
— A .
J(ug ™ 20) 2 3 flult) —uglly, + [18(, zo,ub) — 65113, +
t=0

llz(t, @0, ub) 2 1, +Iw(t, 3o, uh ™)~z |13), +llu(t, zo, ub™ )~y 113,

(3)
subject to the terminal state constraint

T—1
z(T, zo,u

)=z (4)
and the MLD system dynamics (2), where ||z||3, £
Qz, Q; = Q; > 0,7 =1,...,5, are given weight
matrices, and zy, uy, d¢, 25, yy satisfy (2) in steady
state for z(t + 1) = z(t) = z;.

This optimal control problem can be solved as a Mized-
Integer Quadratic Program (MIQP). In fact, let z(¢)
be a compact notation for z(, mo,uffl), and use the
same convention for §(¢), z(¢). From (2a), we have the
formula
t—1
Alzo+ > A [Bru(t — 1 — i) + Bad(t — 1 — i)+
=0
Bsz(t — 1 —1)]

x(t)

(5)

where the relation between z(t) and zo, uffl is only

apparently linear, because (i), 2(7) hide a nonlinear
dependence on zo and uf ™!, as observed earlier. By
plugging (5) into (2c¢) and (3), the optimization
problem is an MIQP in the variables {u(0),... ,u(T —
1),6(0),...,8(T —1),2(0),...,2(T - 1)}.

In order to track a desired reference r(t), the opti-
mization problem (3)-(4) is solved on-line in a receding
horizon fashion leading to a model predictive con-
troller [3]. In particular, at each time ¢, J(u!*7~! x(¢t))
is minimized for y; = r(t) (and zy, ds, z; defined
correspondently), and only the first optimal move u(t)
is applied to the system.

A

The framework of MLD systems allows to include
information about the process in form of heuristic
rules and logic statements. Prioritization of contraints
can also be naturally incorporated when solving the
optimal control problem. For details we defer to [3],
where a stability result for the controller above is also
given.



7 State Estimation and Fault Detection

In the last Section we pointed out that the MLD
framework (2) can be used for the synthesis of a
model predictive controller [3]. The dual problem,
i.e. the moving horizon estimation problem {[15] can
also be formulated in terms of the iterative solution
of MIQPs. The aims of such an estimation can
be of various nature, like state estimation, fault
detection or disturbance estimation. The common
feature in all these problems is the minimization of
a quadratic cost function involving the quantities to
be estimated. Contrary to the control problem, the
estimation horizon extends backwards in time, allowing
at time ¢ to estimate the quantities of interest at times
prior to t. For further details about an application of
fault detection and state estimation to MLD systems
see [2].

8 Computational Aspects

One drawback of the methods described in this paper
lies in the complexity of the MILPs and MIQPs
that must be solved. These types of optimization
problems exhibit an exponential increase of the worst
case complexity with an increasing number of binary
variables. However, this does not necessarily preclude
the application of the methods. For instance, if we use
branch and bound methods (considered widely to be
best for these types of problems [8]) the solution time
can vary considerably according to the tree exploring
strategy and the branching variable selection rule.

We have experimented successfully with a tree explor-
ing strategy which assumes that the binary variables
change only infrequently over the considered time
horizon [1]. This assumption is particularly good, when
the binary variables represent faults that do not occur
very often and that are usually not recoverable.

Also note that for control purposes it is not critical
to find the global optimum to guarantee stability, a
feasible suboptimal solution suffices.

9 Conclusions

Motivated by the key idea of transforming proposi-
tional logic into linear mixed-integer inequalities, and
by the availability of techniques for solving mixed-
integer quadratic programs, this paper presented a
framework for modeling and controlling systems de-
scribed by both dynamics and logic, and subject to
operating constraints, denoted as Mized Logical Dy-
namical (MLD) systems. The MLD structure is also
suitable for formal verification, state estimation, and
fault detection.
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