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Abstract
For a broad class of nonlinear continuous-time sys-
tems this paper addresses the problem of satisfying input
and/or state hard constraints. The approach consists of
adding to a primal compensated nonlinear system a Ref-
erence Governor (RG). This is a predictive discrete-time
device which, taking into account the current value of the
state, filters the desired reference trajectory in such a way
that a nonlinear primal compensated control system can
operate in a stable way with satisfactory tracking perfor-
mance and no constraint violation. The resulting hybrid
system is proved to fulfill the constraints, as well as sta-
bility and tracking requirements, and the related compu-
tational burden turns out to be moderate and executable

with current computing hardware.

1. Introduction
Recently, there has been a significant research interest in
feedback control of dynamic systems with input and/or
state constraints [1, 2]. Moving horizon optimal control
[3, 4, 5] and model predictive control {6, 7] have been
proved to be effective tools to deal with tracking problems
with input/state constraints. These methods are based
on the receding horizon philosophy: a sequence of future
control actions is chosen according to a prediction of the
future evolution of the system and applied to the plant
until new measurements are available. Then, a new se-
quence is evaluated which replaces the previcus one. Each
sequence is evaluated by means of an optimization proce-
dure which take into account two objectives: maximize
the tracking performance, and protect the system from
possible constraint violations. However, when applied to
models described by nonlinear differential equations, this
requires the on-line solution of high dimensional nonlinear
optimization problems. In order to drastically reduce the
related computational burden, we assume that a primal
controller has already been designed to stabilize the sys-
tem and provide nice tracking properties in the absence
of constraints, and only consider the constraint fulfillment
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Figure 1: Control scheme with RG.

task. This is left to a reference governor (RG), a non-
linear device which is added to the primal compensated
nonlinear system. Whenever necessary, the RG modifies
the reference supplied to the primal control system so as
to enforce the fulfillment of the constraints. The RG oper-
ates in accordance with the receding horizon strategy men-
tioned above, by selecting on-line optimal reference input
sequences which are parameterized by a scalar quantity.

Previous studies along these lines have already ap-
peared in {8, 9, 10], [11, 12] and {13, 14] for linear control
systems.

2. Problem Formulation and

Assumptions
Consider the following nonlinear system
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representing in general a (nonlinear) plant under (nonlin-
ear) feedback, where: z(t) € R" is the state vector, which
collects both plant and controller states; w(t) € R? is the
reference input, which in the absence of constraints would
coincide with a desired reference r(t) € RP; y(t) € RP
is the output vector which shall track (). Since input
and/or state variables of the plant can be expressed as a
function of z(t) and w(t), without loss of generality we de-
fine c(t) € R™*P as the vector to be constrained within a
given set C.

Assumption 1 C is compact and has a nonempty inte-
rior.

Compactness of C is non restrictive since in practice the
desired references and state variables are bounded. Since
we are interested in operating on vectors [z’ w']’ in C,
we restrict the properties required by system (1) to the
projections of C on the z-space

Xé{meR”: Elwe]R",[;] GC}
and the projection on the w-space W, which is defined
analogously. It is easy to show that compactness of C
implies that both X and W are compact. System (1) is
required to fulfill the following assumptions.

Assumption 2 Yw € W, there exists a unique equilib-
rium state T, € X.

We denote by

X(): R = R (2)
the function implicitly defined by ®(X(:),:) = 0, and
define z, £ X (w), cw = [z}, w']' . Notice that in general

weWHcy €C.

Assumption 3 The mapping ®(z,w) : X x W= R" is
continuous in (z,w).

Consider now an arbitrarily small scalar § > 0, and define
the following set

Ws £ {w € W: Blcw,8) CC}. (3)

where B(cy,d) denotes the closed ball {¢ € R**?
llc = cwll < 6}. We restrict the set of reference inputs
w which can be supplied by assuming that

Assumption 4 (Reference Input Conditioning) The
class of reference inputs is restricted to a conver,
nonempty, and compact set Ws C Ws C W.

Assumption 4 is needed to prevent that the border of C is
approached in steady-state, and is required later to prove
Theorem 2. The constraint ¢ € C and the reference input
conditioning can be summarized as the unique constraint

c€Cs2C[) (X x Ws) (4)
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where Cs is compact. We fix § > 0 such that Cs is
nonempty. In order to derive the properties proved in
Sect. 3., system (1) is supposed to satisfy some extra
assumptions.

Assumption 5 For all piece-wise constant reference
input signals w(t) € Ws, t € [0,+00), and for all ini-
tial states z(0) € X, there erists a unique solution
z(t, z(0), w(t)) of (1) defined Vt € [0, +00).

In the following we shall denote by z(t,z(0), w) the so-
lution corresponding to a constant reference w(t) = w,
Vit € [0, +00).

Assumption 6 (Converging Input Converging State Sta-
bility) Let w(t) — w € Ws, and each component of vec-
tor w(t) be monotonically convergent. Then, Vz(0) € X,
limi—y 00 2(t, 2(0), w(t)) = zyp-

In particular, Assumption 6 ensures that z,, is an asymp-
totically stable solution of (t) = ®(z(t), w).

Assumption 7 (Uniform-in-Ws Stability) Let w(t) =
w € Ws. Then, YA > 0 there exists a(A\) > 0 such that
12(0) — zu|l < a(d) = |iz(t,2(0), w) — zull < A, VE 20,
Yw € Ws.

The aim of this paper is to design a Reference Gouv-
ernor (RG), a discrete-time device which, based on the
current state z(t) and desired reference r(t), generates
the reference input w(t) so as to satisfy the constraint
(4) and minimize the tracking error. The RG operates in
discrete-time, in that it is applied every RG period T. The
reference input w(t) is generated on-line in a predictive
manner: at time t = kT a virtual reference input signal
{w(t+0)}, o € (0,+00), is selected in such a way that the
corresponding predicted evolution ¢(t + o, z(t), w(t + o))
lies within Cs, Yo > 0. Then, according to a receding
horizon strategy, the virtual signal is applied during the
following interval (¢,t + T'); at time £ + T a new selection
is performed.

Consider the class of virtual constant reference input
signals, introduced by [13], which are parameterized by
the scalar 8 and defined by

w(kT +0,8) = rkT)+ plw((k — 1)T) — r(kT))
£ wp, Yo >0, k€N,
w(—T) = Wq

()
where N = {0,1,...}. At each time kT a parameter
B(kT) € R, and the corresponding constant reference
input wy = wg(kT), are selected in accordance with the
optimization criterion

arg mingso 32
subj. to ¢(kT + o, z(kT), w(kT + 7,3)) € Cs,
Vo € (0, +00)

(6)

BkT) =



and
w(t) = wyg, Vt € (KT, (k+ 1)T]

Notice that by minimizing 3% one attempts to minimize
lw — ||, and therefore ||y — r||*>. A parameter 8, or a
constant reference w, satisfying the constraints in (6) will
be referred to as edmissible.

Assumption 8 (Feasible Initial Condition) The ini-
tial state x(0) is such that there exists at least one admis-
sible virtual constant reference input wo € Ws.

For instance Assumption 8 is satisfied for an equilibrium
states £(0) = z,,, corresponding to wg € Wj.

3. Main Results
Proposition 1 Suppose that r(t) = r, ¥t > 0, and
Assumptions 8—4 hold. Then there exists lim; o, w(t) =
Weo € Ws. In addition, each component of vector w(t) is
monotonically convergent.

Proof. If wg = r, then 8(kT) = 0 is admissible, Yk € N.
Therefore, w(t) = r, Vt > 0, and we = r (the RG
behaves as an all-pass filter). Suppose wg # r. Since
BkT) > 0, wp, = 7+ Wg{—rn[wo — 7], where dy 2
|lwe — r|l. By construction, at time (k + 1)T, 8 =1 is
admissible, and hence B((k+1)T) < 1. Then, 0 < d}; =
B ((k + )T)d: < d2, Vk € N, and hence there exists
doo = limg—soo dg. Consequently, lims ;oo w(t) = Weo £
r+ ﬂ;%f—m[wo — r]. By compactness of Ws, we € Ws
follows. |

Lemma 1 Suppose that Assumptions 1-5 and 7 hold.
Consider two reference inputs w,, wp € Ws, wa # ws. Let
z(kT) = &y, +Az € X, and let n such that B(cy,,n) € C.
Then there exists a ¥ > 0, dependent on w, and n, such
that reference input w, + v{(wp — wg) is admissible for all
|Aa]l < a(n/2), and for all 0 < v < 7.

Proof. See [15]. O

Proposition 2 Suppose that r(t) = r, V&t > 0, and
Assumptions 1-8 hold. Then lim; oo w(t) = w, € W;
with

llw =]

subject to w =1 + plwe — 7] € Ws
(7)

where wg € Ws is an admissible reference input at time

t=0.

w, = arg min
p€[0,1] {

Proof. By Prop. 1 there exists lim; oo w(t) = we € W,
and the convergence is component-by-component mono-
tonic. Suppose by contradiction we, # w,. By Assump-
tion 6, there (;axists a time to such that ||z (o, z(0), w(te)) —

Tuwell £ @ (). Hence, by Lemma 1, there exists a con-

stant 7 > 0 such that w, £ we + Y(w, — We) is ad-
missible at time tg, V- such that 0 < v < 4. Then,

lw(t)=r| £ ||lwy—r||. Since r, w(t), wy, weo are collinear,

it follows that ||w(t) = Weo|| = ||w(t) = w |} + ||wy —wWeo || =
Y|lw, = weo|| > 0, Vt > t5, which contradicts the hypoth-
esis lims—y oo W(t) = Woo- a

Lemma 2 (Finite Stopping Time) Under the hypotheses
of Prop. 2, there exists a stopping time ts such that
w(t) = wy for all t > t,.

Proof. See [15]. 0
Next Theorem 1 summarizes the previous results.

Theorem 1 Suppose r(t) = r, ¥t > 0, and Assump-
tions 1-8 hold. Then, after a finite time ty the RG gen-
erates a constant reference input w(t) = w,, where w, is
given by (7). Consequently, system (1) is asymptotically
driven from x(0) to z,, with no constraint violation.

Notice that, when r € Wjs, the RG has no effect on the
asymptotic behavior of y(t), which instead depends on the
tracking properties of the primal system (1).

The optimization criterion (6) requires that the con-
straint (kT + o, z(kT), wg) € Cs is checked for all ¢ > 0.
In this section, we show that it suffices to verify this con-
dition over a finite prediction horizon (0, Too).

Definition 1 (Constraint Horizon) The constraint hori-
zon T is defined as the shortest prediction horizon such
that ¢(t + 0,z(t),w) € C5, Vo > 0 & c(t + o,z(t),w) €
Cs, V0 < 0 < Too, Vz(t) € X, Yw € W,

When w(t) = w, the following Theorem 2, whose proof
is reported in [15], proves that, for a fixed scalar A > 0, the
state z(t) converges to the ball B(z,,\) in a finite time T
which is not dependent of the initial state z(0) € X and
reference input w € W;.

Theorem 2 Let Assumptions 1, 8, and 5-7 be satisfied.
Then for all A > O there exists a finite time T()\) such
that, ¥c(0) = [z'(0) w']’ € Cs,

lz(t, (0), w) = zwll < A, VE2T(A). (8)

By (3) and Assumption 4, Theorem 2 proves that T
exists and satisfies the inequality T, < T(4).

4. RG Numerical Implementation

The numerical implementation of the RG involves
some approximations, which arise from two main reasons.
The evolution ¢(kT + o,z(kT),ws) is evaluated by nu-
merical integration of (1) from initial state x(kT), and
consequently constraint fulfillment is only checked at in-
tegration steps. Moreover, the optimal 3(kT') defined in
(6) is found by numerical optimization.

Numerical integration is performed by using a stan-
dard fourth order Runge-Kutta method with adaptive
stepsize control, using the constants reported in Cash and
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Figure 2: Response without RG.

Karp [16]. Constraint fulfillment is checked during inte-
gration.

On-line optimization is performed by using a bisec-
tion method over the interval [0,1]. A finite number N
of candidates is evaluated, where the number of trials N
equals the number of numerical integrations. The selec-
tion of the optimal B(kT) is performed according to the
following algorithm:

Algorithm 1

1. If 8 = 0 is admissible, set (kT) := 0 and
STOP.
2. Set 8~ =0, Bt :=1.

3.
4.

Set 8:= (8T +B7).

If 3 is admissible, set 3+ := 8. Otherwise,
set B~ = B.

5. Execute steps (3), (4), and (5) N —1 times.
6. Set B(kT) := 3 and STOP.

Notice that if constraint fulfilment is never achieved when
Procedure A is executed, the algorithm yields 8{kT") = 1,
which, by construction, is always admissible.

For a given T, N is determined by both the desired
integration accuracy and the constraint horizon Ti,,. Since
admissibility of 8 = 0 is always tried first, the optimal
B(kT) is evaluated with a worst case precision of 2~ (V=1).
It is clear that if global minimization procedures were
adopted in selecting B(¢), better tracking properties might
be achieved, at the expense of an increased computational
effort.

5. Simulation Results
The performance of the RG presented in the previous
sections has been tested by computer simulations on a two
link robot moving on a horizontal plane.

5.1. Nonlinear Model

Each joint is equipped with a motor for providing in-
put torque, encoders and tachometers are used for mea-
suring the joint positions 67, #, and velocities 61, 6o. By
using Lagrangian equations, and by setting

x=1[01016:05], y=1616:), T =[T1 Ta]', w = [614 024],

where 14, 024 denote the desired values for joint positions
and 771, 72 the motor torques, the dynamic model of the
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Figure 3: Response with RG (T' = 0.001 s).
robot can be expressed as
.’i)z T _
H(z)[m]-l—C(x)[%]—T (9)

where H(z), C(z) are reported in [15]. Individual joint
PD controllers

provide reference tracking. As a general rule to design
controllers to be used in connection with a RG, in order
to maximize the properties of tracking one should try to
select a primal controller which provides a fast closed-
loop response of system (1). Usually this corresponds to
large violations of the constraints, which therefore can
be enforced by inserting a RG. In [15], it is shown that
system (9)—(10) fulfills the required assumptions.

Simulations have been carried out with the system
parameters reported in [17]. Fig. 2 shows the closed loop
system behavior for a constant desired reference r1 (%)
r2(t) = 0, t € Ry, in the absence of the RG. In order to
bound the input torques within the range

|7i] < 60 Nm, |73| < 15 Nm,

kpi(zy —wi) + kg1zo

10
kpo(x3 — wg) + kaazs (10)

|

=I
=2

(11)

which has been represented by shadowed areas in Fig. 2,
the RG is applied. The initial condition 6 (0) = 2(0) = 0,
01(0) = 62(0) = 0 and wo = [0 0]’ satisfy Assumption 8. A
RG period T = 0.001 s, a constraint horizon Te, = 0.4 s,
N = 10 admissibility evaluations per period, and § ~ 0 are
selected as parameters of the RG. The set C is determined
by (11) and by further limiting the state and reference
input in such a manner that only constraints (11) become
active. The resulting trajectories are depicted in Fig. 3.
The further constraint

|92| S 0.2 rad



Parameter (1)
1 T '
0.5
0
0 05 1
Time (s)
Torques

Joint coordinates

Parameter i(t)

0 0.1 02 03 04 0.5 0.6 0.7 08 0.9 1
Time (8)

Figure 4: Response with RG, torque constraints, and the
constraint |1 — 82| < 0.2 rad. The generated reference input is
depicted (thin line) together with the joint trajectories (thick
lines)

is taken into account by the RG and the related simu-
lated trajectories are depicted in Fig 4 (T' = 0.001 s). The
slight chatter on the # and torque trajectories is caused
by the approximations involved in the optimization pro-
cedure described in Sect. 4.. Finally, the RG is applied
in connection with a nonconstant desired reference tra-
jectory, as shown in Fig. 5. The results described above
were obtained on a 486 DX2/66 personal computer, us-
ing Matlab 4.2 and Simulink 1.3 with embedded C code.
The CPU time required by the RG to select a single 5(t)
ranged between 7 and 18 ms.
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