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Abstract— The contribution of this paper is a novel tree-based
stochastic model predictive control (SMPC) approach to solve
the optimal exit-time control problem for stochastic systems,
that is to maximize the expected value of the first time instant
at which prescribed constraints are violated. A scenario tree
with a specified number of tree nodes is used to encode the most
likely system behavior, where each path on the tree corresponds
to a distinct disturbance scenario. For linear discrete-time
systems with an additive random disturbance, a mixed-integer
linear program (MILP) obtains solutions arbitrarily close to
the optimal solution for a sufficient number of tree nodes. In
order to compensate for an incomplete scenario tree and/or
unmodeled effects, feedback is provided by recomputing the
MILP solution over a receding time horizon based on the
current state and disturbance / scenario tree. Two numerical
case studies, including an adaptive cruise control problem,
demonstrate the effectiveness of the proposed SMPC scheme
compared to dynamic programming solutions.

I. INTRODUCTION

In this paper, we consider stochastic linear discrete-time
systems of the form,

xt+1 = Atxt +Btut + wt, (1)

where xt ∈ Rn and ut ∈ Ut ⊂ Rp denote the state and
control input vectors, respectively, at a time instant t ∈ Z≥0

and At and Bt are time-dependent matrices. The non-empty
time-dependent sets Gt ∈ Rn and Ut define state and control
constraints, respectively.

The variable w denotes a measured random disturbance
that is modeled by a Markov chain and takes values in a
finite set W = {w1, w2, ..., w|W |} of cardinality |W | > 0.
The transition probabilities for w are given by PW (wj |wi) =
PW (wt+1 = wj |wt = wi) ∈ [0, 1] for all wi, wj ∈ W and
t ∈ Z≥0. A control policy is denoted by π : Gt×W×Z≥0 →
Ut for all t ∈ Z≥0, i.e., ut = π(xt, wt, t), and Π is the set
of admissible (i.e., Ut-valued) control policies. For a given
control policy π ∈ Π and initial x0 ∈ G0 and w0 ∈ W ,
the random variable τ , also referred to as the first exit-time,
denotes the time instant at which constraint violation occurs
for the first time,

τ(x0, w0, π) = inf{t ∈ Z≥0 : xt /∈ Gt}, (2)

where xt is the response of (1) to the initial condition x0 and
w0 when using the control policy π. Note that the value of τ
is random as it depends on the random realization of {wt}.

This research is supported by the National Science Foundation Award
Number EECS 1404814.

1Department of Aerospace Engineering, University of Michigan, Ann
Arbor, MI. Emails: robzidek@umich.edu, ilya@umich.edu

2IMT – Institute for Advanced Studies Lucca, Italy. Email:
alberto.bemporad@imtlucca.it

The average (i.e., the expected value of the) first exit-time is
given by

τ̄(x0, w0, π) = E{τ(x0, w0, π)}, (3)

and the optimal control problem of maximizing the average
first exit-time is as follows

max
π∈Π

τ̄(x0, w0, π). (4)

Problem (4) can be found in many engineering applica-
tions, in particular, those with finite resources (fuel, energy,
component life, etc.) or where large persistent disturbances
(e.g., wind gusts) are present. Furthermore, driving policies
for autonomous vehicles can be generated based on problem
(4) as demonstrated in [1]. A solution to problem (4) may
be viewed as providing drift counteraction in order to delay
constraint violation and is therefore also referred to as drift
counteraction optimal control.

A model predictive control (MPC) scheme was proposed
for the deterministic version of problem (4) in [2]. For non-
exit time problems, stochastic MPC (SMPC) that accounts
for the uncertainty in the disturbance has been considered in
[3], [4], [5], [6]. At the same time, recent developments in
hardware and numerical methods [7] may facilitate practical
use of SMPC.

The main contribution of this paper is a novel SMPC
scheme to solve problem (4). Similar to the developments
in [8], our approach uses a tree structure to encode the
most likely disturbance scenarios. We show that a mixed-
integer linear program (MILP) yields a control policy that
maximizes the average first exit-time for a given scenario
tree. Moreover, as the number of tree nodes goes to infinity,
the average first exit-time achieved by the MILP solution
approaches the optimal average first exit-time of problem
(4). The SMPC policy is given by recomputing the MILP
solution over a receding time horizon at each time instant
based on the current state and an updated scenario tree (based
on the current disturbance). Thus, feedback is provided to
counteract unmodeled effects and incomplete scenario trees
(since a scenario tree only includes a subset of all possible
scenarios).

The structure of the paper is as follows. In Section II, a
scenario tree is discussed and an algorithm for constructing
one is provided. The MILP that maximizes the average first
exit-time for a given scenario tree is formulated in Section
III. Based on the MILP, the SMPC strategy is stated in
Section IV. Section V presents two numerical case studies,
including an adaptive cruise control (ACC) problem. A
conclusion is provided in Section VI. Throughout this paper,
we make the following two assumptions.
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Assumption 1: A solution π∗ ∈ Π (may not be unique) to
problem (4) exists for each x0 ∈ G0 and w0 ∈W .

Assumption 2: The sets Gt and Ut are polytopes for all
t ∈ Z≥0, where Gt is given by

Gt = {x : Ctx ≤ bt}. (5)

II. SCENARIO TREE

In order to optimize over a subset of all possible dis-
turbance scenarios, similar to the work in [8], a scenario
tree is constructed that contains the most likely disturbance
scenarios for a given number of tree nodes. A tree node is
denoted by η ∈ TN , where

TN = {η0, η1, ..., ηN},

denotes a tree with N+1 nodes. The node η0 is the root node
of the tree. The predecessor of a node η ∈ TN is given by
pre(η). The set of successors of a node η ∈ TN is denoted
by

succ(η) = {ηsucc(η)
1 , η

succ(η)
2 , ..., η

succ(η)
|W | },

and the set of leaf nodes of TN has the form,

SN = {η ∈ TN : succ(η) ∩ TN = ∅}.

Figure 1 shows an example scenario tree T11 =
{η0, η1, ..., η11} for a given Markov chain with |W | = 3.
For example, succ(η1) = {η2, η6, η11} and η

succ(η1)
1 = η2,

η
succ(η1)
2 = η6, and η

succ(η1)
3 = η11 in Figure 1. The set of

leaf nodes is S11 = {η5, η7, η8, η9, η10, η11} in Figure 1.

Fig. 1: Scenario tree example for 12 nodes, including |SN | =
6 leaf nodes.

With each η ∈ TN , we associate a disturbance wη as well
as a state vector xη , control input uη , and time instant tη ,
where wη0 = w0, xη0 = x0, and tη0 = 0 for the root node.
Moreover, for each η ∈ TN \{η0}, xη satisfies the dynamics
in (1). Consequently,

xη = Atpre(η)xpre(η) +Btpre(η)upre(η) + wpre(η). (6)

The probability of reaching node η ∈ TN , starting from the
root node, is given by

ρη = ρpre(η)PW (wη|wpre(η)) ∈ [0, 1], (7)

where ρη0 = 1. Algorithm 1 implements the scenario tree
generation suitable for either offline or online use. The set
C contains the candidate nodes that are considered when
adding a node to the tree. At each iteration, the node η ∈ C
with the greatest probability ρη is chosen from the set of
candidate nodes, and the successors of η are added to the
list of candidate nodes. Thus, the tree is intended to capture
most likely scenarios subject to the total number of nodes
constrained to be N + 1.

Algorithm 1 Design of scenario tree TN
1: TN ← {η0}; C ← ∅; ρη0 ← 1
2: tη0 ← 0; xη0 ← x0; wη0 ← w0

3: i← 0
4: while i < N do
5: for j ∈ {1, 2, ..., |W |} do
6: wη

succ(ηi)

j ← wj (wj ∈W )
7: tη

succ(ηi)

j ← tηi + 1

8: ρη
succ(ηi)

j ← ρηiPW (wj |wηi)
9: end for

10: C ← C ∪ succ(ηi)
11: ηi+1 ← arg maxη∈C ρ

η (pick any maximizer)
12: TN ← TN ∪ {ηi+1}
13: C ← C \ {ηi+1}
14: i← i+ 1
15: end while

In general, a scenario tree TN contains |SN | ≥ 1 unique
disturbance trajectories/scenarios that are denoted by

{wt}η = {wt : t ∈ Z[0,tη]}η

= (w0, ..., w
pre(pre(η)), wpre(η), wη),

(8)

for each leaf node η ∈ SN . For example, {wt}η9 =
(w0, w

η1 , wη6 , wη9) in Figure 1.
For a given tree TN with initial x0 ∈ G0 and w0 ∈ W

and control policy πN ∈ Π, the deterministic first exit-time
corresponding to the disturbance trajectory {wt}η , see (8),
is defined by

τηN (x0, w0, πN ) = min{min{t ∈ Z[0,tη ] : xt /∈ Gt}
∪ {tη + 1}},

(9)

for each η ∈ SN , where xt is the deterministic response
of (1) under {wt}η when using the control policy πN ∈ Π.
Note that for some {wt}η , xt may not exit Gt for t ∈ Z[0,tη ];
in this case, τηN (x0, w0, πN ) = tη + 1 in line with (9). The
average first exit-time for a given scenario tree TN and a
control policy πN ∈ Π is given by

τ̄N (x,w, πN ) =
∑
η∈SN

τηN (x,w, πN )ρη. (10)

In analogy to problem (4), the optimal control problem
of maximizing the average first exit-time over a subset of
disturbance scenarios defined by TN can be expressed as

max
πN∈Π

τ̄N (x,w, πN ). (11)
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The following sets are defined

HηN = {η0, ...,pre(pre(η)),

pre(η), η}, for all η ∈ SN ,
(12)

KξN = {η ∈ SN : ξ ∈ HηN}, for all ξ ∈ TN , (13)

where HηN is the set of nodes of the disturbance scenario
associated with leaf node η ∈ SN and KξN is the set of
leaf nodes whose associated disturbance scenarios contain
the node ξ ∈ TN . For example, in Figure 1,

Hη711 = {η0, η1, η2, η7} and Kη111 = {η5, η7, η9, η11}.

Moreover, for a given control policy π ∈ Π and scenario
tree TN , N ∈ Z+, with initial condition x = x0 ∈ G0 and
w = w0 ∈W , the set of leaf nodes η ∈ SN with associated
first exit-time τηN (x,w, π) = i ∈ Z+ is given by

ZN (π, i) = {η ∈ SN : τηN (x,w, π) = i}. (14)

The next result (Theorem 1) shows that, in terms of the
average first exit-time, a solution to (11) is arbitrarily close
to a solution (if one exists) of problem (4) for sufficiently
large N . Theorem 1 is based on Lemma 1.

Lemma 1:

lim
N→∞

τ̄N (x,w, π) = τ̄(x,w, π), (15)

for all x ∈ G0, w ∈W , and π ∈ Π.
Proof: Let π ∈ Π be a given control policy and x ∈ G0

and w ∈W be a given initial condition. Then, by (10),

lim
N→∞

τ̄N (x,w, π) = lim
N→∞

∑
η∈SN

τηN (x,w, π)ρη

= lim
N→∞

 tN∑
i=1

i
∑

η∈ZN (π,i)

ρη

 ,

(16)

where tN = max{tη : η ∈ TN} + 1. Since W is a finite
set, it follows from the tree generation procedure (Algorithm
1) that eventually every branch corresponding to non-zero
probability of next disturbance value continues. Thus, for
each i ∈ Z+,

lim
N→∞

∑
η∈ZN (π,i)

ρη = Prob(τ(x,w, π) = i). (17)

Moreover, tN → ∞ as N → ∞. Consequently, (16) and
(17) imply that

lim
N→∞

τ̄N (x,w, π) =

∞∑
i=1

iProb(τ(x,w, π) = i)

= τ̄(x,w, π).

(18)

Theorem 1: Suppose Assumption 1 holds. Then, for each
x ∈ G0, w ∈W , and ε > 0, there exists N̄ > 0 such that

τ̄(x,w, π∗N ) + ε ≥ max
π∈Π

τ̄(x,w, π), (19)

where π∗N ∈ arg maxπN∈Π τ̄N (x,w, πN ), for all N ≥ N̄ .
Proof: For a given initial x ∈ G0 and w ∈W , let TN be

the scenario tree for a given N ∈ Z+. Moreover, let π∗ ∈ Π
be a solution to problem (4), which exists by Assumption
1, and let π∗N ∈ Π be a control policy that maximizes the
average first exit-time for TN according to (11), which exists
due to the existence of a solution to (4). It follows that

τ̄N (x,w, π∗N ) ≥ τ̄N (x,w, π∗). (20)

The optimal average first exit-time of problem (4) may be
written as follows

τ̄(x,w, π∗) = τ̄N (x,w, π∗) + τ̄Rest,N (x,w, π∗), (21)

where τ̄Rest,N is the average first exit-time of all scenarios
not described by TN . By Lemma 1, τ̄N (x,w, π∗) approaches
τ̄(x,w, π∗) as N →∞ and thus τ̄Rest,N → 0. This implies
that for every ε > 0, there exists N̄ > 0 such that

τ̄(x,w, π∗) ≤ τ̄N (x,w, π∗) + ε, (22)

for all N ≥ N̄ . It follows from (20) and (22) that

τ̄N (x,w, π∗N ) + ε ≥ τ̄(x,w, π∗), (23)

for all N ≥ N̄ . In analogy to (21), it follows from adding
τ̄Rest,N (x,w, π∗N ) to (23) that

τ̄(x,w, π∗N ) + ε ≥ τ̄(x,w, π∗), (24)

for all N ≥ N̄ , which proves (19).

III. MILP FORMULATION

In this section, an MILP is proposed that solves (11),
where, by Theorem 1, the average first exit-time of a solution
to (11) is arbitrarily close to the average first exit-time of a
solution to problem (4) for a sufficiently large N .

In what follows, a set of control inputs for a given tree
TN is denoted by

UN = {uη ∈ Utη : η ∈ TN \ SN}. (25)

Moreover, a given UN defines a control policy πUN according
to

πUN (xη, wη, tη) = uη ∈ UN , (26)

for each η ∈ TN \ SN and xη satisfying (6) where upre(η) ∈
UN . Likewise, a control policy π∗N ∈ Π defines a set of
control inputs for a given tree TN by

UN (π∗N ) = {uη = π∗N (xη, wη, tη) : η ∈ TN \ SN}, (27)

where xη satisfies (6) for upre(η) ∈ UN (π∗N ).
Using (5) [see (29e)], (6) [see (29b)], and (25) [see (29a)],

the MILP for a given tree TN is stated in (29) below, where

DN = {δη ∈ {0, 1} : η ∈ TN}, (28)

denotes the set of δη values for the tree TN , M is a large
positive number, 1 denotes the n-dimensional row vector
of ones, and the control constraints uη ∈ Utη for all η ∈
TN \ SN are satisfied due to (25). The next result states
conditions for the existence of a solution to MILP (29).

Lemma 2: For a given TN , N ∈ Z+, suppose M > 0 is
sufficiently large such that Ctηxη ≤ btη +1M for all η ∈ TN
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and xη according to (29b) for any UN . Then a solution to
MILP (29) exists.

Proof: Because M is assumed to be sufficiently large,
for a given TN , N ∈ Z+, δη = 1 for all η ∈ TN satisfies the
constraints of the MILP for any UN . Since δη ∈ {0, 1}, the
number of possible sets DN is finite. Furthermore, ρξ ∈ [0, 1]
for all ξ ∈ TN . Thus, a feasible solution exists for at least
one of the DN sets and the existence of a solution to MILP
(29) follows.

min
UN ,DN

∑
η∈TN

∑
ξ∈KηN

δηρξ s.t. (29a)

xη = Atpre(η)xpre(η) +Btpre(η)upre(η) + wpre(η),

for all η ∈ TN \ {η0}
(29b)

δη ≥ δpre(η), for all η ∈ TN \ {η0} (29c)
δη ∈ {0, 1} ⊂ Z, for all η ∈ TN (29d)
Ctηx

η ≤ btη + 1Mδη, for all η ∈ TN . (29e)

The following theorem shows that, under suitable assump-
tions and based on (26) and (27), a solution to MILP (29)
is equivalent to a solution to (11).

Theorem 2: Suppose Assumptions 1 and 2 hold and M is
sufficiently large as in Lemma 2. Then U∗N is a solution to
MILP (29) if the control policy πU∗

N
according to (26) is a

solution to (11). Likewise, π∗N ∈ Π is a solution to (11) if
UN (π∗N ) according to (27) is a solution to MILP (29).

Proof: Let x = x0 ∈ G0 and w = w0 ∈W be a given
initial condition and TN be the corresponding scenario tree,
N ∈ Z+. For the first part of the proof, suppose π∗N is a
solution to (11). Thus,

τ̄N (x,w, π∗N ) ≥ τ̄N (x,w, π#
N ), (30)

for all π#
N ∈ Π. A solution to MILP (29) exists due to the

assumptions and Lemma 2. Using (27), fix UN = UN (π∗N )
in MILP (29) and denote the resulting DN by D∗N = {δη∗ ∈
{0, 1} : η ∈ TN}. Similarly, let D#

N = {δη# ∈ {0, 1} :

η ∈ TN} denote the MILP solution when UN = UN (π#
N ) is

fixed. Hence, by (29c)–(29e), for each η ∈ SN , δξ∗ = 1 iff
tξ ≥ τηN (x,w, π∗N ), δξ# = 1 iff tξ ≥ τηN (x,w, π#

N ), δξ∗ = 0

iff tξ < τηN (x,w, π∗N ), and δξ# = 0 iff tξ < τηN (x,w, π#
N )

for all ξ ∈ HηN . Consequently, according to (9), it follows
that

τηN (x,w, π∗N ) = tη + 1−
∑
ξ∈HηN

δξ∗ (31a)

τηN (x,w, π#
N ) = tη + 1−

∑
ξ∈HηN

δξ#, (31b)

for all η ∈ SN . Then, using (10), (30), and (31), one obtains∑
η∈SN

(tη + 1−
∑
ξ∈HηN

δξ∗)ρη = τ̄N (x,w, π∗N )

≥ τ̄N (x,w, π#
N ) =

∑
η∈SN

(tη + 1−
∑
ξ∈HηN

δξ#)ρη.
(32)

Consequently,∑
η∈SN

∑
ξ∈HηN

δξ∗ρη ≤
∑
η∈SN

∑
ξ∈HηN

δξ#ρη. (33)

By (12) and (13), η ∈ SN and ξ ∈ HηN iff ξ ∈ TN and
η ∈ KξN . Therefore, (33) is equivalent to∑

ξ∈TN

∑
η∈KξN

δξ∗ρη ≤
∑
ξ∈TN

∑
η∈KξN

δξ#ρη, (34)

which shows that UN (π∗N ),D∗N is a solution to MILP (29).
This completes the first part of the proof.

For the second part of the proof, let U∗N ,D∗N be a solution
to MILP (29), which exists by Lemma 2, where D∗N =
{δη∗ ∈ {0, 1} : η ∈ TN}. Hence,∑

η∈TN

∑
ξ∈KηN

δη∗ρξ ≤
∑
η∈TN

∑
ξ∈KηN

δη#ρξ, (35)

for any UN = U#
N fixed in MILP (29) with corresponding

solution D#
N = {δη# ∈ {0, 1} : η ∈ TN}. Now define πU∗

N

according to (26). Since the dynamics in (1) and (29b) are
equivalent, it follows from (9) and (29c)–(29e) that, for each
η ∈ SN ,

τηN (x,w, πU∗
N

) = min{min{tξ ∈ Z[0,tη ] :

δξ∗ = 1, ξ ∈ HηN} ∪ {t
η + 1}}

= tη + 1−
∑
ξ∈HηN

δξ∗.
(36)

Thus, by (10), the average first exit-time of tree TN with
control policy πU∗

N
is given by

τ̄N (x,w, πU∗
N

) =
∑
η∈SN

(tη + 1−
∑
ξ∈HηN

δξ∗)ρη. (37)

In analogy, define πU#
N

according to (26). Hence,

τ̄N (x,w, πU#
N

) =
∑
η∈SN

(tη + 1−
∑
ξ∈HηN

δξ#)ρη. (38)

Using (12) and (13), it follows from (35), (37), and (38)
that

τ̄N (x,w, πU∗
N

)− τ̄N (x,w, πU#
N

)

=
∑
η∈SN

∑
ξ∈HηN

(δξ# − δξ∗)ρη

=
∑
ξ∈TN

∑
η∈KξN

(δξ# − δξ∗)ρη ≥ 0,

(39)

implying that πU∗
N

is a solution to (11).

IV. SMPC STRATEGY

A. Theoretical Results

For a given scenario tree TN with initial w ∈W and root
node wη0 = w, the control policy πU∗

N
, derived from the

MILP solution U∗N according to (26), maximizes the average
first exit-time τ̄N for a given TN (Theorem 2) and achieves
average first exit-times τ̄ arbitrarily close to the optimal
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value of problem (4) for sufficiently large N (Theorem 1).
However, πU∗

N
is only defined for the disturbance scenarios

encoded by tree TN , which are the most likely scenarios for
the specified N according to Algorithm 1. Thus, starting at
w0 = w, wt /∈ {wη : η ∈ TN , tη = t} may occur at some
t ∈ Z+, i.e., a disturbance scenario may occur that is not
included in TN .

Therefore, an SMPC scheme is proposed using MILP
(29), where the solution of the MILP is recomputed at each
time instant for an updated tree TN based on the current
state vector. This approach furthermore provides feedback
to compensate for unmodeled effects and can be effective in
the context of controlling a nonlinear system and/or when
the exact disturbance model is unknown. In this case, the
stochastic linear model in (1) and the Markov chain for wt
serve as an approximation of the nonlinear system and/or the
unknown disturbance model.

For a given x ∈ Gt0 , w ∈ W , and t0 ∈ Z≥0, the SMPC
scheme defines the following control policy πSMPC,N ∈ Π,

πSMPC,N (x,w, t0) = uη0 ∈ U∗N , (40)

where U∗N is a solution to MILP (29) for the scenario tree
TN with root node η0 and tη0 ← t0, xη0 ← x, and wη0 ← w
in Step 2 of Algorithm 1. It follows from Theorems 1 and
2 that, in terms of first exit-time performance, πSMPC,N in
(40) is arbitrarily close to a solution (assuming one exists)
of problem (4) for sufficienlty large N . This is summarized
in Theorem 3.

Theorem 3: Suppose Assumptions 1 and 2 hold, πSMPC,N

is as in (40), and M is sufficiently large as in Lemma 2.
Then, for each x ∈ G0, w ∈ W , and ε > 0, there exists
N̄ > 0 such that τ̄(x,w, πSMPC,N ) + ε ≥ max

π∈Π
τ̄(x,w, π)

for all N ≥ N̄ .

B. Implementation

Algorithm 2 SMPC implementation
1: t← 0
2: x,w ← obtain current x(t) and w(t)
3: TN ← output of Algorithm 1 with tη0 ← t, xη0 ← x,

and wη0 ← w in Step 2 of Algorithm 1
4: tcomp ← 0
5: while computing solution of MILP (29) do
6: if tcomp > tmax then
7: go to Step 12
8: end if
9: tcomp ← update tcomp

10: end while
11: U∗N ← solution of MILP (29); go to Step 13
12: U∗N ← solution of LP (41)
13: u(t)← apply control uη0 ∈ U∗N to the system
14: t← t+ 1; go to Step 2

In practice, the SMPC strategy may be implemented as
in Algorithm 2. At each time instant t, the current state
vector and disturbance are obtained in Step 2 of Algorithm

2. Based on these values, a new scenario tree is constructed
in Step 3 using Algorithm 1. Then a solution U∗N of MILP
(29) is computed. Since MILP is NP-complete [9], [10] and
computing a solution may take considerably long in the
worst-case, an upper bound tmax on the MILP computation
time is specified. If the computation time tcomp is greater
than tmax, computing an MILP solution is terminated (Steps
6–8) and a relaxed version of the MILP, a standard linear
program (LP), is solved instead. The LP for a given tree TN
is obtained by replacing the integer variables δη in MILP
(29) by non-negative real variables εη for all η ∈ TN . Thus,
the LP is as follows

min
UN ,EN

∑
η∈TN

∑
ξ∈KηN

εηρξ s.t. (41a)

xη = Atpre(η)x
pre(η) +Btpre(η)u

pre(η) + wpre(η),

for all η ∈ TN \ {η0}
(41b)

εη ≥ εpre(η) ≥ 0, for all η ∈ TN \ {η0} (41c)
Ctηx

η ≤ btη + 1εη, for all η ∈ TN , (41d)

where UN is as in (25) and a set of εη values for a tree
TN is denoted by EN = {εη ≥ 0 : η ∈ TN}. Note that a
solution to LP (41) always exists because εη ≥ 0 can always
be chosen sufficiently large such that (41d) is satisfied for
all η ∈ TN .

The root node control input uη0 of the MILP solution
U∗N (or the LP solution in case tcomp > tmax) is applied to
the system in Step 13 of Algorithm 2 and the procedure is
repeated at the next time instant t+ 1.

V. NUMERICAL CASE STUDIES

Numerical case studies of problems of the form (4) are
treated using the SMPC strategy given by Algorithm 2. The
first case study in Section V-A considers a second-order
linear system and investigates the influence of the number of
tree nodes on the solution. In the second case study (Section
V-B), the ACC problem that was solved with dynamic pro-
gramming (DP) techniques in [11] is solved with the SMPC
strategy and results are compared. In both case studies, the
scenario tree for each wi ∈W is precomputed offline, where
TN (wi) denotes the scenario tree corresponding to the initial
disturbance wη0 = wi. Hence, TN ← TN (w) in Step 3 of
Algorithm 2 instead of constructing TN at each time instant.

All computations involving the SMPC strategy are per-
formed in MATLAB 2015a on a laptop with an i5-6300
processor and 8 GB RAM. The Hybrid Toolbox [12] (default
settings) is used to solve LPs and MILPs.

A. Influence of Number of Tree Nodes
In this case study, the influence of N on the solution is

investigated, where a tree TN contains N + 1 nodes. The
following stochastic linear time-varying system is considered[

r1,t+1

r2,t+1

]
=

[
1 0.1
−0.1 1.2

] [
r1,t

r2,t

]
+

[
0

0.5 sin(t/2)

]
ut +

[
0
wt

]
,

(42)
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where x = [r1, r2]> denotes the state vector and the control
input is u ∈ [−1, 1]. The constraints for the optimal control
problem (4) are given by the set Gt ≡ {x : −2 ≤ r1 ≤
2,−2 ≤ r2 ≤ 2}.
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Fig. 2: Numerical case study on the influence of the number
of tree nodes: sample trajectories showing the states r1 (top
plot) and r2 (second plot) as well as the control input u (third
plot) and disturbance w (bottom plot) vs. t.

The disturbance w takes values in the set W = {−1, 0, 1}
with transition probabilities PW (wi|wj) = [PW,Mat]j,i (j =
row number and i = column number), i, j ∈ {1, 2, 3}, given
by the following matrix

PW,Mat =

 0 0.8 0.2
0.3 0.5 0.2
0.35 0.4 0.25

 .
The time limit in Algorithm 2 for solving the MILP is

set to tmax = 10 sec. The following results are for an
initial x0 = [0, 0]> and w0 = −1. Figure 2 shows sample
trajectories (for N = 200), where the dashed red lines

indicate the respective constraints.
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Fig. 3: Numerical case study on the influence of the number
of tree nodes: average first exit-time τ̄ vs. N (for 1000
random simulations for each N ).
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Fig. 4: Numerical case study on the influence of the number
of tree nodes: average (top) and worst-case time (bottom) to
compute control ut (Steps 2–13 in Algorithm 2) vs. N (for
1000 random simulations for each N ).

The average first exit-time τ̄ (1000 random simulations for
each N ) is plotted against N in Figure 3. For comparison,
a DP solution with conventional value iteration [13] applied
to a discrete grid of the state space using linear interpolation
between the grid points (the set defining the control con-
straints is discretized as well, using an equidistant grid with
21 points) is shown as a reference in Figure 3 (dashed blue
line), achieving τ̄ = 32.41 sec. This DP solution is obtained
for a relatively dense grid of 900000 points, which requires
about 1.63 hours to compute the control policy offline when
implemented in C on a desktop computer. Due to the dense
grids (for both Gt and Ut), the DP reference solution is
expected to be close to a solution of the optimal control
problem (4).

In line with Theorem 3, it can be seen in Figure 3
that the SMPC solution improves with increasing N and
approaches the DP solution (which we expect to be close to
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an optimal solution), where the DP value is slightly exceeded
for N ≥ 500. Note that in this case, the average first exit-time
achieved by the SMPC strategy appears to be monotonically
non-decreasing when increasing N , which may not hold in
general. The computation time (in MATLAB) of the SMPC
scheme for computing the control input at each time instant
according to Algorithm 2 (Steps 2–13) is shown in Figure 4
for different N . The top plot in Figure 4 shows the average
computation time, which increases nearly exponentially with
N . The worst-case / maximum computation time is shown in
Figure 4 (bottom), where the prescribed limit on the MILP
computation time tmax = 10 sec is reached for N ≥ 400.

B. Car Following – Adaptive Cruise Control

The same ACC problem (same model, constraints, initial
condition, etc.) as in [11] is solved with the proposed SMPC
scheme. The results are compared against the DP-based
solution from [11], which achieves an average first exit-time
of τ̄ = 2591 sec (for 1000 random simulations). Note that
the simulation model in this example is a stochastic hybrid
model with state-dependent probabilities for mode switches
since there is a 10 % chance of another vehicle cutting
in upfront if the time gap Tg between the two vehicles is
greater than 2.2 sec, see [11]. The DP approach in [11] is
able to explicitly consider such hybrid models. On the other
hand, the SMPC strategy assumes a linear model with an
additive random disturbance modeled by a Markov chain and
neglects the possibility of another vehicle cutting in upfront.
It compensates for the unmodeled effects as MPC provides
feedback (see Algorithm 2). With N set to 100, the SMPC
strategy achieves an average first exit-time of τ̄ = 3120 sec
(1000 random simulations), which is an improvement of 20
% compared to the DP solution. The DP solution can be
improved by using denser state space discretizations, which,
however, would increase computation times exponentially
(curse of dimensionality). For the SMPC strategy, on average,
5 msec are required to compute the control input at each time
instant and 60 msec in the worst-case. Sample trajectories of
the time gap between the follower and lead vehicle and of
the follower vehicle velocity are shown in Figure 5, where
the dashed red lines indicate the prescribed constraints.

VI. CONCLUSION

The optimal control problem of maximizing the average
time before prescribed state and control constraints are
violated for the first time was considered for stochastic
linear systems with an additive disturbance. The disturbance
scenarios were encoded by a tree structure with a specified
number of tree nodes and the tree generation algorithm has
been defined to emphasize the inclusion of the most relevant
scenarios. Based on the tree structure, a stochastic model
predictive control (SMPC) strategy was proposed that, for
sufficiently large trees, obtains solutions arbitrarily close to
the optimal solution by repeatedly solving a mixed-integer
linear program over a receding time horizon based on the
current state and disturbance. The effectiveness of the SMPC

strategy was demonstrated in two numerical case studies,
including a stochastic adaptive cruise control problem.
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Fig. 5: ACC problem: sample trajectories over time of time
gap Tg between follower and lead vehicle (top) and follower
vehicle velocity vf (bottom).
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