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Abstract— As the connectivity of consumer devices is rapidly
growing and cloud computing technologies are becoming more
widespread, cloud-aided algorithms for parameter estimation
can be developed to exploit the theoretically unlimited storage
memory and computational power of the “cloud”, while relying
on information provided by multiple sources. With the ulti-
mate goal of developing monitoring, diagnostic and prognostic
strategies, this paper focuses on the design of a Recursive
Least-Squares (RLS) based estimator for identification over
a multitude of similar devices (such as a mass production)
connected to the cloud. The proposed approach, that relies on
Node-to-Cloud-to-Node (N2C2N) transmissions, is designed so
that: (i) estimates of the unknown parameters are computed
locally and (ii) the local estimates are refined on the cloud by
exploiting the additional information that the devices have sim-
ilar characteristics. The proposed approach requires minimal
changes to local (pre-existing) RLS estimators.

I. INTRODUCTION

With the increasing connectivity between devices, the
interest in distributed solutions (e.g., for control [4] and
machine learning [3]) has been rapidly growing. In particular,
the problem of parameter estimation over networks has been
extensively studied in the context of Wireless Sensor Net-
works (WSNs) [2], [9], [10]. Due to the low communication
power of the nodes in WSNs, research has mainly been
devoted to obtain fully distributed approaches, i.e., methods
that allow exchanges of information between neighbor nodes
only. Even though such a choice enables to reduce multi-
hop transmissions and improve robustness to node failures,
convergence speed to reach consensus is limited by the fact
that nodes only communicate with neighbors. Moreover, to
attain a global consensus the topology of the network must be
carefully chosen to enable exchanges of information between
different groups of neighbor nodes.

At the same time, with recent advances in cloud computing
[11] it is possible to acquire and release resources with min-
imum effort so that each node can have on-demand access
to shared resources, theoretically characterized by unlimited
storage space and computational power. This motivates to
reconsider the approach towards a more centralized strategy,
where some computations are still performed at the node
level, but the most time and memory consuming ones are
executed on the cloud. This requires the communication
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Fig. 1. Cloud-connected vehicles.

between the nodes and a fusion center, i.e., the cloud, where
the data gathered from the nodes are properly merged.

Cloud computing has been considered for automotive
vehicle applications in [6], [7] and [12]. As a motivating
example for another potential automotive application, con-
sider a vehicle fleet with vehicles connected to the cloud
(see Figure 1). In such a setting, measurements taken on-
board of the vehicles can be used for cloud-based diagnostics
and prognostics purposes. In particular, the measurements
can be used to estimate parameters that may be common to
all vehicles, such as parameters in models of component wear
or fuel consumption models, and parameters that may be spe-
cific to each individual vehicle. References [5], [13] suggest
potential applications of such approaches for prognostics of
automotive fuel pumps and brake pads. Specifically, the rate
of component wear as a function of the workload (cumulative
fuel flow or energy dissipated in the brakes) can be estimated
as a common parameter to all vehicles or at least to all
vehicles in the same class.

In this paper a centralized approach for recursive estima-
tion of parameters in the least-squares sense is presented.
The method has been designed under the hypothesis of (i)
ideal transmission, i.e., the information exchanged between
the cloud and the nodes is not corrupted by noise, and the
assumption that (ii) all the nodes are described by the same
model, which is supposed to be known a priori. Differently
from what is done in many distributed estimation methods
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(e.g., see [10]), where the nodes estimate common unknown
parameters, the strategy we propose allows one to account
for more general consensus constraints. As a consequence,
our method can be applied to problems where only a subset
of the unknowns is common to all the nodes, while other
parameters are purely local, i.e., they are different for each
node. A priori specified constraints on the parameters can
also be handled by our algorithms.

Our estimation approach is based on defining a sepa-
rable optimization problem which is then solved through
the Alternating Direction Method of Multipliers (ADMM),
similarly to what has been done in [10] but performing
the computation both locally and on the cloud instead of
using a fully distributed scheme. The estimation problem is
thus solved through a two-step strategy: (i) local estimates
are recursively retrieved by each node using the measure-
ments acquired from the sensors available locally; (ii) global
computations are performed to refine the local estimates,
which are supposed to be transmitted to the cloud by each
node. Note that, based on the aforementioned characteristics,
back and forth transmissions to the cloud are required. A
transmission scheme referred to as Node-to-Cloud-to-Node
(N2C2N) is thus employed.

The main features of our strategies are: (i) the use of recur-
sive formulas to update the local estimates of the unknown
parameters; (ii) the possibility to account for the presence
of both purely local and global parameters, that can be
estimated in parallel; (iii) the straightforward integration of
the proposed techniques with pre-existing Recursive Least-
Squares (RLS) estimators already running on board of the
nodes.

The paper is organized as follows. Section II is devoted
to the problem formulation and the presentation of our basic
approach, along with the display of the results of simulation
examples that show the effectiveness of the approach and
its performance in different scenarios. In Section III, the
approach proposed in Section II is extended to be able to
deal with the more general case of constrained consensus-
based estimation. The results of a simulation example are
then reported. Concluding remarks and directions for future
research are summarized in Section IV.

A. Notation

Let Rn be the set of real vectors of dimension n, N is
the set of natural numbers and R+ be the set of positive
real numbers, excluding zero. Given a set A, let Ā be the
complement of A and PA denote the Euclidean projection
onto A. Given a vector a ∈ Rn, ai denotes the ith component
of a and ‖a‖2 is the Euclidean norm of a. Let A′ denote the
transpose of A, with A ∈ Rn×p, In be the identity matrix of
size n and 0n be an n-dimensional column vector of ones.

II. COLLABORATIVE ESTIMATION FOR PARTIAL
CONSENSUS

Suppose that the output/regressor pairs
{yn(τ), Xn(τ)}tτ=1, n = 1, . . . , N , collected from N
data sources until time t, are available to identify a set

of unknown parameters. Furthermore, assume that the N
data-generating systems share the same model, which is
supposed to be accurately approximated as

yn(τ) = Xn(τ)′θn + en(τ) for n = 1, . . . , N, (1)

where yn(τ) ∈ Rny , θn ∈ Rnθ is the vector of unknown
parameters to be estimated and en is a zero-mean white noise
sequence independent on Xn. As the behavior of all the N
systems is supposed to be described by the same model, ny
and nθ are equal for all n ∈ {1, . . . , N}.

In addition, let us suppose that there exists a parameter
vector θg ∈ Rng , with ng ≤ nθ, such that

Pθn = θg, ∀ n ∈ {1, . . . , N} (2)

with P ∈ Rng×nθ known a priori. Depending on how
P is chosen, different situations can be considered, e.g.,
θm = θn ∀n,m ∈ {1, . . . , N} with n 6= m, if P = Inθ .

To exploit all the available information to generate least-
square estimates of {θn}Nn=1 and θg , we formulate the
following problem

min
{θn}Nn=1

N∑
n=1

fn(θn)

s.t. Pθn = θg, n = 1, . . . , N

(3)

with fn : Rnθ → R ∪ {+∞} equal to

fn(θn) =
1

2

t∑
τ=1

[
λt−τn ‖yn(τ)−Xn(τ)′θn‖

2
2

]
, (4)

where λn ∈ (0, 1] represents the forgetting factor [8]
associated to the nth data-generating system. Problem (3)
should be solved so to (i) to retrieve an estimate for θn
locally and (ii) to refine such estimates and identify θg using
the data gathered from the N sources. As a consequence,
(i) N local processors and (ii) and the cloud, where the
data are merged, are required. Under the hypothesis that the
computational power available locally is limited, it is also
desirable to update the estimates recursively to reduce the
amount of computations that has to be performed by the N
local processors.

The Alternating Direction Method of Multipliers (ADMM)
[1] can be used to solve problem (3). According to [1], we
define the augmented Lagrangian associated with (3) as

L=

N∑
n=1

{
fn(θn) + δ′n(Pθn − θg) +

ρ

2
‖Pθn − θg‖22

}
, (5)

where ρ ∈ R+ is a tunable parameter and δn ∈ Rng is the
Lagrange multiplier associated with the consensus constraint.
The ADMM steps that have to be performed to solve problem
(3) are thus:

θ̂(k+1)
n (t) = argmin

θn

L(θn, θ̂
g,(k), δ(k)n ), (6a)

θ̂g,(k+1) =argmin
θg

L({θ̂(k+1)
n (t)}Nn=1, θ

g, {δ(k)n }Nn=1), (6b)

δ(k+1)
n = δ(k)n + ρ(P θ̂(k+1)

n (t)− θ̂g,(k+1)), (6c)
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with k ∈ N indicating the ADMM iteration. It has to
be pointed out that (6a)–(6c) are similar to the formulas
proposed in [1] to solve the consensus problem, with the
exception that in this case the more general consensus
constraint (2) is considered.

Let us focus on the update of θ̂g . The explicit solution for
(6b) is:

θ̂g,(k+1) =
1

N

N∑
n=1

(
P θ̂(k+1)

n (t) +
1

ρ
δ(k)n

)
. (7)

The updated estimate θ̂g,(k+1) is thus computed as the
combination of the sample means of {P θ̂(k+1)

n (t)}Nn=1 and
of the dual variables δ(k)n .

The explicit solution of (6a), with fn defined as in (4), is:

θ̂(k+1)
n (t) = φn(t)

{
Yn(t) + P ′(ρθ̂g,(k) − δ(k)n )

}
, (8)

where

Yn(t) =

t∑
τ=1

[
λt−τn Xn(τ)yn(τ)

]
, (9)

φn(t) =

([
t∑

τ=1

λt−τn Xn(τ)Xn(τ)′

]
+ ρP ′P

)−1
. (10)

As we want to find recursive updates for the local estimates
θ̂n, consider the expression for the nth local estimate ob-
tained at t− 1 after ADMM iterations are terminated

θ̂n(t−1)=φn(t)
[
Yn(t−1)+P ′(ρθ̂g(t−1)−δn(t−1))

]
,

(11)

where θ̂g(t− 1) and δn(t− 1) are the global estimate and
the Lagrange multipliers, respectively, at step t− 1.

Based on the definition of φn(t) in (10), it can be proven
that φn(t) can be recursively updated as

Rn(t) = λnInX̃ + X̃n(t)′φn(t− 1)X̃n(t),

Kn(t) = φn(t− 1)X̃n(t)Rn(t)−1, (12)

φn(t) = λ−1n (Inθ −Kn(t)X̃n(t)′)φn(t− 1), (13)

with nX̃ = ny + ng and

X̃n(t) = [Xn(t)
√
ρ(1−λn)P ′ ] ∈ Rnθ×nX̃ . (14)

We note that the updates (12)-(13) agree with the standard
Recursive Least Squares (RLS) algorithm [8], with X̃n(t)
replacing the regressor Xn(t) and the dimensions of the
identity matrix in (12) being properly changed. Furthermore,
the updates (12)-(13) are independent of the ADMM iteration
k, and they depend on local quantities only. Consequently,
Kn(t) and φn(t) can be updated by the local processor once
per time-step using the recursive formulas (12)-(13).

Furthermore, it can be proven that θ̂
(k+1)
n (t) can be

computed as

θ̂(k+1)
n (t) = θ̂rlsn (t) + θ̂admm,(k+1)

n (t), (15)

where

θ̂admm,(k+1)
n (t)=φn(t)P ′

(
ρ∆

(k+1)
g,λn

(t)−∆
(k+1)
λn

)
, (16)

θ̂rlsn (t)= θ̂n(t−1)+Kn(ỹn(t)−X̃n(t)′θ̂n(t−1)), (17)

and ỹn(t) = [ yn(t)′ 01×ng ]
′.

The quantities ∆
(k+1)
g,λn

(t) and ∆
(k+1)
λn

in (16) are defined
as

∆k+1
g,λn

(t) = θ̂g,(k) − λnθ̂g(t− 1), (18a)

∆
(k+1)
λn

(t) = δ(k)n − λnδn(t− 1). (18b)

Based on (18a), θ̂
admm,(k+1)
n (t) depends on the global

estimate θ̂g,(k). Consequently, at each step t ∈ N,
θ̂
admm,(k+1)
n (t) should be computed as in (16) on the cloud,

not to require the local processors and the center of fusion
to exchange information at each ADMM iteration. On the
other hand, θ̂rlsn (t) can be updated recursively and once
per time-step by the n-th local processor using Recursive
Least Squares (17), thus allowing to integrate the proposed
approach with pre-existing RLS estimators available locally.

The approach, summarized in Algorithm 1, thus requires
the local processors to transmit {θ̂rlsn , φn} to the cloud,
while the cloud has to communicate θ̂n to each system.

Remark 1: Algorithm 1 requires the initialization of the
local and global estimates. If some data {yn(τ), Xn(τ)}To

τ=1

are available to be processed in a batch mode, θ̂n(0) can be
chosen as the best linear model

θ̂n(0) = argmin
θ

To∑
τ=1

‖yn(τ)−Xn(τ)′θ‖22

and θ̂g(0) can be computed as the mean of {P θ̂n(0)}Nn=1.
Moreover, the matrices φn, n = 1, . . . , N , can be initialized
as φn(0) = γInθ , with γ > 0. �

A. Example 1 (θg = θn)

Suppose that the N systems are described by the following
model

yn(t) = 0.9yn(t− 1) + 0.4un(t− 1) + en(t), (19)

where yn(t) ∈ R, Xn(t) =
[
yn(t− 1) un(t− 1)

]′
, un is

known and it is generated as a sequence of i.i.d. elements uni-
formly distributed in the interval [2, 3], and en ∼ N (0, Rn)
is a white noise sequence, with {Rn ∈ N}Nn=1 randomly
chosen in the interval [1, 30]. Evaluating the effect of the
noise on the output yn through the Signal-to-Noise Ratio
SNRn, i.e.,

SNRn = 10 log

∑T
t=1 (yn(t)− en(t))

2∑T
t=1 en(t)2

dB (20)

the chosen covariance matrices yield to SNRn in the interval
[7.8, 20.8] dB, n = 1, . . . , N .

Initializing φn as φn(0) = 0.1Inθ , while θ̂n(0) and θ̂go are
sampled from the distributions N (θ̂g, 2Inθ ) and N (θ̂g, Inθ ),
respectively, {λn = Λ}Nn=1, with Λ = 1, and ρ = 0.1,
the performance of the proposed approach are quantitatively

2729



Algorithm 1 ADMM-RLS for partial consensus
Input: Data Xn(1), yn(1), Xn(2), yn(2), . . ., initial matri-

ces φn(0) ∈ Rnθ×nθ , initial local estimates θ̂n(0), initial La-
grange multipliers δn,o, forgetting factors λn, n = 1, . . . , N ,
initial global estimate θ̂go , parameter ρ ∈ R+.

1. iterate for t = 1, 2, . . .

Local
1.1. for n = 1, . . . , N do

1.1.1. compute X̃n(t) as in (14);
1.1.2. compute Kn(t) and φn(t) with (12) - (13);
1.1.3. compute θ̂rlsn (t) with (17);

1.2. end for;
Global

1.1. do
1.1.1. compute θ̂

admm,(k+1)
n (t) with (16), n =

1, . . . , N ;
1.1.2. compute θ̂(k+1)

n (t) as in (15);
1.1.3. compute θ̂g,(k+1) with (7);
1.1.4. compute δ(k+1)

n with (6c), n = 1, . . . , N ;
1.1.5. k ← k + 1;

1.2. until a stopping criteria is satisfied (e.g. maxi-
mum number of iterations attained);

2. end.

Output: Estimated global parameters θ̂g(t), estimated local
parameters θ̂n(t), n = 1, . . . , N .

TABLE I
ADMM-RLS: ‖RMSEg‖2

N
T 10 102 103 104

2 1.07 0.33 0.16 0.10
10 0.55 0.22 0.09 0.03
102 0.39 0.11 0.03 0.01

assessed for different values of N and T through the Root
Mean Square Error (RMSE)

RMSEgi =

√√√√ 1

T

T∑
t=1

(
θgi − θ̂

g
i (t)

)2
, i = 1, . . . , ng. (21)

As shown in Table I the accuracy of the estimates tends to
increase if the number of data sources N and the estimation
horizon T increase. For N = 100 and T = 1000, the
estimates obtained applying Algorithm 1 are compared with
the ones retrieved performing RLS on the cloud using the
lumped data pairs {y̌(t), X̌(t)}Tt=1

1. As expected, both the
approaches lead to the same RMSEg = 0.03.

B. Example 2: Non-informative systems

Consider a set of N = 100 dynamical systems modelled
as
yn(t)=θg1yn(t−1)+θn,2yn(t−2)+θg2un(t−1)+en(t), (22)

1y̌(t) is obtained stacking all the measured output {yn(t)}Nn=1 in a single
vector. The lumped regressor X̌(t) is built similarly.
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Fig. 2. Global parameters. Black : true, blue : estimate with ADMM-RLS.
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Fig. 3. Local parameters θ8,i, i = 1, 2, 3. Black : true, blue : ADMM-RLS.

where θg = [0.2, 0.8]′, θn,2 is sampled from the normal
distribution N (0.4, 0.0025), so that it is different for the N
systems, and en ∼ N (0, Rn). The noise covariance matrices
Rn are randomly chosen within the interval [1, 20] and,
thus, SNRs are in the interval [3.1, 14.6]. We assume that
Nni = 20 systems randomly chosen among the N available
data sources are not excited enough to be able to retrieve
locally an accurate estimate of the unknowns [8]. Such a
condition is simulated by setting un = 0 and Rn = 10−8. By
using the same initial setting and parameters as in Example 1,
we obtain the global estimates reported in Figure 2. The
resulting estimates {θ̂gi }2i=1 converge to the actual values of
the global parameters even if 20% of the systems provide
non-informative data.

The local estimates {θ̂8,i}3i=1 are reported in Figure 3,
with the 8th system being among the ones with non ex-
citing inputs. As shown in Figure 3(b) θ̂8,2 is constant
(θ̂8,2 = θ̂8,2(0)) over the estimation horizon, as expected.
Instead, the proposed collaborative approach allows us to
accurately estimate θ8,1 and θ8,3 (see Figures 3(a) and 3(c)).
We can thus conclude that the proposed estimation method
“forces” the estimates of the global components of θn to
follow θ̂g , while contributions from the systems that lacked
excitation are discarded.

III. CONSTRAINED COLLABORATIVE ESTIMATION

Suppose that an additional constraint is added to problem
(3), so that the optimization problem to be solved takes the
form

minimize
N∑
n=1

fn(θn)

s.t. Pθn = θg n = 1, . . . , N,

θn ∈ Cn, n = 1, . . . , N,

(23)
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with fn as in (4) and Cn being a convex set representing
constraints on the parameter values. These additional con-
straints can be used to enforce the global parameter θg to
belong to a convex set C (with Cn = C ∪ {Cn ∩ C̄}).

Following [1], the new optimization problem in (23) can
be reformulated as

minimize
N∑
n=1

{fn + gn(zn)}

s.t. Pθn = θg n = 1, . . . , N,

θn = zn, n = 1, . . . , N,

(24)

where {zn ∈ Rnθ}Nn=1 are auxiliary variables and {gn}Nn=1

are the indicator functions of the sets {Cn}Nn=1, with

gn(zn) =

{
0 if zn ∈ Cn
+∞ otherwise.

(25)

The augmented Lagrangian associated with the considered
problem is:

L =

N∑
n=1

{
fn(θn) + gn(zn) + δ′n,1(θn − zn)+

+δ′n,2(Pθn−θg)+
ρ1
2
‖θn−zn‖22+

ρ2
2
‖Pθn−θg‖22

}
, (26)

where two sets of Lagrange multipliers, {δn,1 ∈ Rng}Nn=1

and {δn,2 ∈ Rnθ}Nn=1, have been introduced.
Based on [1], the ADMM steps that have to be performed

to solve (24) are:

θ̂(k+1)
n (t) = argmin

θn

L(θn, θ̂
g,(k), z(k)n , δ(k)n ), (27a)

z(k+1)
n = argmin

zn

L(θ̂n,(k+1)(t), θ̂
g,(k), zn, δ

(k)
n ), (27b)

θ̂g,(k+1) =argmin
θg

L({θ̂(k+1)
n , z(k+1)

n , δ(k)n }Nn=1, θ
g), (27c)

δ
(k+1)
n,1 = δ

(k)
n,1 + ρ1(θ̂(k+1)

n (t)− z(k+1)), (27d)

δ
(k+1)
n,2 = δ

(k)
n,2 + ρ2(P θ̂(k+1)

n (t)− θ̂g,(k+1)). (27e)

Solving (27b)–(27c), the updates for the auxiliary variables
and θ̂g are:

z(k+1)
n = PCn

(
θ̂(k+1)
n (t) +

1

ρ1
δ
(k)
n,1

)
, (28)

θ̂g,(k+1) =
1

N

N∑
n=1

(
P θ̂(k+1)

n (t) +
1

ρ2
δ
(k)
n,2

)
, (29)

where z(k+1)
n is obtained through a projection onto the set

Cn. It has to be pointed out that both the z and the Lagrange
multiplier updates in (28) and (27d), respectively, depend
on local quantities only. However, (28) and (27d) depend
also on the ADMM iteration and, consequently, zn and δn,1
should be updated on the cloud.

Consider the local update (27a). The explicit solution of
(27a) is given by,

θ̂(k+1)
n (t)=φn(t)

{
Yn(t)−δ(k)n,1 −P ′δ

(k)
n,2+

+ρ1z
(k)
n + ρ2P

′θ̂g,(k)
}
, (30)

with Yn defined as in (9) and

φn(t)=

([
t∑

τ=1

λt−τn Xn(τ)Xn(τ)′

]
+ρ1Inθ+ρ2P

′P

)−1
.

(31)
As the ultimate goal is to obtain recursive formulas to
update θ̂n, consider the estimates at t− 1, obtained once
the stopping criteria for ADMM has been satisfied:

θ̂n(t− 1)=φn(t− 1){Yn(t− 1)−δn,1(t− 1)+

− P ′δn,2(t− 1) + ρ1zn(t− 1) + ρ2P
′θ̂g(t− 1)},

(32)

where δn,1(t− 1), δn,2(t− 1), zn(t− 1) and θ̂g(t) are the
estimates obtained at t− 1.
It can thus be proven that φn(t) can be updated as in (12)–
(13), with the extended regressor X̃n(t) defined as

X̃n(t)=
[
Xn(t)

√
(1− λn)ρ1Inθ

√
(1− λn)ρ2P

′
]
, (33)

with X̃n(t) ∈ Rnθ×nX̃ and nX̃ = ny + nθ + ng .
Furthermore, it can also be shown that θ̂n can be updated
as in (15), where θ̂rlsn (t) is computed as in (17) with
ỹn(t) = [ yn(t)′ 01×nθ 01×ng ] , and

θ̂admm,(k+1)
n (t)=φn(t)

[
ρ1∆

(k+1)
z,λn

(t)+ρ2P
′∆

(k+1)
g,λn

(t)+

−∆
(k+1)
1,λn

− P ′∆(k+1)
2,λn

]
, (34)

where

∆
(k+1)
z,λn

(t) = z(k)n − λnzn(t− 1)

∆
(k+1)
g,λn

(t) = θ̂g,(k) − λnθ̂g(t− 1)

∆
(k+1)
1,λn

= δ
(k)
n,1 − λnδn,1(t− 1)

∆
(k+1)
2,λn

= δ
(k)
n,2 − λnδn,2(t− 1).

The same observations made with respect to the computation
of θ̂admmn and θ̂rlsn reported in Section II can be extended to
the considered setting. The proposed ADMM-RLS scheme
for constrained collaborative estimation is summarized in
Algorithm 2.

A. Example 3

Suppose that the data collected from N = 100 systems,
described by the model in (22), over an estimation horizon
T = 5000 are available. Furthermore, assume that we know
a priori that θn,1 ∈ [ 0.19, 0.21 ], θn,3 ∈ [ 0.79, 0.81 ] and we
constrain θ̂n,2 in the set [ θn,2−0.1, θn,2+0.1 ]. By using the
same initial conditions and forgetting factors as in Exam-
ple 2, with ρ1 = 10 and ρ2 = 0.1, we retrieve the global
estimates reported in Figure 4. The estimated parameters
satisfy the constraints on θn,1 and θn,3, thus proving that the
constraints on the global estimate are automatically enforced
imposing θn ∈ Cn. The local estimates for the 11-th system
(SNR11 = 10.6 dB), i.e., {θ̂11,i}3i=1, are shown in Figure 5.
As expected, the estimates satisfy the imposed constraints
and converge to the true values of the unknowns.
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Fig. 4. Global parameters. Black : true, blue : ADMM-RLS, red : bounds.
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Fig. 5. Local parameter θ11. Black : true, blue : ADMM-RLS, red : bounds

IV. CONCLUDING REMARKS AND FUTURE WORK

This paper has presented a method for collaborative least-
squares parameter estimation based on output measurements

Algorithm 2 ADMM-RLS for constrained consensus
Input: Data Xn(1), yn(1), Xn(2), yn(2), . . ., initial matri-

ces φn(0) ∈ Rnθ×nθ , initial local estimates θ̂n(0), initial
Lagrange multipliers δon,1 and δon,2, initial auxiliary variables
zn,o, forgetting factors λn, n = 1, . . . , N , initial global
estimate θ̂go , parameters ρ1, ρ2 ∈ R+.

1. iterate for t = 1, 2, . . .

Local
1.1. for n = 1, . . . , N do

1.1.1. compute X̃n(t) as in (33);
1.1.2. compute Kn(t) and φn(t) with (12) - (13);
1.1.3. compute θ̂rlsn (t) with (17);

1.2. end for;
Global

1.1. do
1.1.1. compute θ̂

admm,(k+1)
n (t) with (34), n =

1, . . . , N ;
1.1.2. compute θ̂n(t) with (15), n = 1, . . . , N ;
1.1.3. compute z(k+1)

n with (28), n = 1, . . . , N ;
1.1.4. compute θ̂g,(k+1) with (29);
1.1.5. compute δ(k+1)

n,1 with (27d), n = 1, . . . , N ;
1.1.6. compute δ(k+1)

n,2 with (27e), n = 1, . . . , N ;
1.1.7. k ← k + 1;

1.2. until a stopping criteria is satisfied (e.g. maxi-
mum number of iterations attained);

2. end.

Output: Estimated global parameters θ̂g(t), estimated local
parameters θ̂n(t), n = 1, . . . , N .

from multiple systems which can perform local computations
and are also connected to a centralized resource in the cloud.
The approach includes two stages: (i) a local step, where
estimates of the unknown parameters are obtained using the
locally available data, and (ii) a global step, performed on
the cloud, where the local estimates are fused.

Future research will address extensions of the method to
the nonlinear and multi-class consensus cases. Moreover, an
alternative solution will be studied so to replace the adopted
N2C2N transmission scheme to alleviate problems associated
with the communication latency between the cloud and the
nodes. Other solutions to further reduce the transmission
complexity and to obtain an asynchronous scheme with the
same characteristics as the one presented in this paper will
be also addressed in future research.
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