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Abstract— A hierarchical algorithm is presented for opti-
mally and automatically combining various option investments
to cost-efficiently realize a desired profit-vs.-underlying-price
profile (profit profile). The algorithm assumes that a user-
defined reference shape is defined and a set of plain vanilla
options in which long and short investment positions can
be taken are given. Within the presented framework, the
desired profit profile can be of arbitrary piecewise-affine (PWA)
shape. Depending on future underlying price predictions, it
typically represents a bearish or bullish market outlook, or
displays bi-modal shape for conditional market outlooks. The
method provides a tool for portfolio optimization that is flexible
enough to trade off different user-preferences such as exploiting
on conditional market outlooks, realizing leverage, and most
notably guaranteeing predictable worst-case losses for risk-
minimization. The framework can easily be extended to account
for different derivative contracts such as exotic options.

I. INTRODUCTION

For a financial institution the writing of an option consists
of determining option parameters (such as strike, expiration
date, etc.) and an initial price the customer must pay to
buy the option. See [1] for background on options, futures
and other derivatives. Part of the initial wealth paid by
the customer is used to create a portfolio of underlying
assets, whose composition is changed periodically during the
option life so that at expiration the value of the portfolio is
as close as possible to the payoff-value to be paid to the
customer, then referred to as dynamic option hedging. See
[2] and [3] for dynamic option hedging approaches based
on stochastic optimization. The focus of this paper is to
develop a method for how to cost-efficiently take parallel
investements in (potentially) multiple call and put options
for the tracking and realization of desired profit profiles.

The motivation for this paper is the usage of the proposed
tool in portfolio optimization. Standard Markowitz portfolio
selection as in [4] trades-off the mean and variance of the
return. For the influence of linear and fixed transaction costs
in the Markowitz framework, see [5], where additionally
shortfall risk constraints are discussed, preserving convexity
of the portfolio optimization problem, making, however,
the assumption of a jointly Gaussian distribution of asset
returns, and not guaranteeing a bound on the worst-case loss.
In practice, observed returns frequently reveal “fat tails”,
i.e., higher probabilities for high price fluctuations. This
motivates the contributors of this paper to look at portfolio
optimization in terms of desired profit profiles, most notably
guaranteeing predictable worst-case losses and profiting upon
various market evolutions. Here, we do not discuss wealth
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dynamics that render a closed-loop control system and are
characteristic for portfolio optimization. Instead, we present
a method to realize an investment in a desired profit profile
as an alternative to buying a specific stock or the purchase
of a single option type. To realize such investments, at
every portfolio rebalancing instant, static (i.e., independent
between different sampling times) optimization problems are
solved exploiting a given set of plain vanilla options.

While there exist well-known option strategies combining
multiple options (such as the bull call spread, the iron condor
and the like), see [6], [7], [8], [9], [10], [11], the novel
contribution of this paper is to present a general optimization-
based method for the cost-efficient and automated realization
of an aritrarily-shaped PWA desired profit profile given a
database of available option investments. Within the context
of portfolio optimization, the presented tool allows one to
concentrate on price predictions of the underlying asset and
the design of desired profit profiles.

This paper is organized as follows. In Section II we discuss
the four types of derivative contracts ultimately used for the
realization of the proposed algorithm, and introduce notation.
The designated problem at hand is formulated in Section III,
whereby our solution approach is presented in Section IV.
The results of numerical experiments on real-world data are
stated in Section V, before concluding with Section VI.

II. CALL AND PUT OPTIONS

A. Employing options as derivatives
In financial terms, securities refer to tradable financial

assets such as stocks, bonds and options. A derivative is
a security where the value of the derivative depends explic-
itly on the value of another so-called underlying security.
The derivatives of interest in this paper are options whose
underlying can be bought or sold, such as, e.g., a stock.
Derivatives are standardizedly traded on option exchanges,
e.g., on the Chicago Board Options Exchange (CBOE),
or over-the-counter (OTC) for tailored contracts between
investment parties.

There are two main types of vanilla options: a call/put
option gives the holder the right to buy/sell the underlying
asset at a given expiration date T in the future for a prede-
termined strike price. American-style or simply American
options allow to exercise (i.e., to buy/sell the underlying
asset) at any time before and including the expiration date. In
contrast, a European-style or simply European option allows
the exercise right only on the expiration date. More exercise
styles exist. The party who agreed to buy or sell an option is
said to be long or short, respectively. We refer to uncovered
options if the seller of an option does not holds a position
in the underlying. The opposite are covered options.
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(a) Illustration of four option investment types, see (1).
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(b) Examples of option combinations: (i) bull call spread, (ii) iron condor,
(iii) long strangle, (iv) call backspread.
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(c) Three market outlook scenarios: bearish, bi-modal and bullish. For each
scenario, two exemplary profit profiles are displayed (blue solid and dashed
lines). The (scaled) PMFs of expected underlying prices are displayed as
green bars.

Fig. 1. Illustration of various profit profiles, see Section II.

B. Four general option investment types

Let the profit equations of four general option investment
types be defined as

pBC
i (t) = max{s(t)−KBC

i , 0} − CBC
i , i = 1, . . . , NBC,

pBP
i (t) = max{KBP

i − s(t), 0} − CBP
i , i = 1, . . . , NBP,

pSC
i (t) = CSC

i −max{s(t)−KSC
i , 0}, i = 1, . . . , NSC,

pSP
i (t) = CSP

i −max{KSP
i − s(t), 0}, i = 1, . . . , NSP,

(1)
whereby the time index is indicated by t ∈ Z+, associated
with sampling time Ts such that time instances can be
described as tTs, whereby Ts may be, for example, a trading
period of one month. Superscripts BC, BP, SC and SP denote
“buy call option” (take a long position), “buy put”, “sell call”
and “sell put”. For visualization of (1), see Figure 1(a). Let
yi ∈ {0, 1, 2, 3} denote one of the four types. Profit from an
investment is indicated by p(t), e.g., pBC

i (t) denotes the profit
at time t when holding a long position in the i-th of a set
of NBC call options for a specific underlying of price s(t).
Strike prices and costs of the option are defined by Ki > 0
and Ci > 0, respectively. We interchangeably use s(t) and st
when explicitly referring to time indices. Holding multiple
option positions simultaneously then results in overall profit
p(t) =

∑NBC

i=1 n
BC
i pBC

i +
∑NBP

i=1 n
BP
i p

BP
i +

∑NSC

i=1 n
SC
i p

SC
i +∑NSP
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SP
i p

SP
i , whereby nBC

i , nBP
i , n

SC
i , n

SP
i ∈ Z+ denote the

integer-valued number of options held and we omitted time-
indices t for brevity.

C. Underlying price probability mass function

At time t − 1, predictions about the future underlying
price st can be made. We therefore describe st as a discrete

random variable (DRV) with a (discrete) probability mass
function (PMF) fst(s) ≥ 0, ∀s ∈ Sst , which may in
general be multi-modal. Here, our focus is on uni- and
bi-modal distributions. The interest in uni-modal PMFs is
natural due to bearish or bullish market outlooks. For the
interest in bi-modal PMFs, consider the situation in which
an investor is expecting a strong movement of the underlying
price dependent on an earning report to be announced soon,
but is uncertain about the movement direction. Predictions
of the underlying price typically serve as prerequisite for
the generation of a desired reference profit profile. Note,
however, that the proposed algorithm allows tracking of
arbitrary PWA profit profiles. Thus, estimated PMFs are
not limiting trackable profit profiles, but merely can help
in the design thereof. Assuming a uni-modal distribution,
we may just consider the expected underlying price, here
abbreviated by µt =

∑
s∈Sst

sfst(s). For the bi-modal case,
as an alternative to the complete PMF fst(s), we may just
consider the conditional PMF denoted by fst|zt(s|z) ≥ 0
with binary variable z ∈ {0, 1} indicating one of two
possible event outcomes, i.e., causing a decline (z = 0)
or a rise (z = 1) in the underlying price. Naturally, it
holds fst(s) =

∑
z∈{0,1} fst|zt(s|z)fzt(z). We abbreviate

µ
(z)
t =

∑
s∈Sst

sfst|zt(s|z), ∀z ∈ {0, 1}. For visualization,
see Figure 1(c).

III. HIGH-LEVEL ALGORITHM

There exist option strategies, see e.g. [6], that combine
(superimpose) multiple options to generate profit profiles, see
Figure 1(b) for illustration. Depending on the market outlook,
specific selections are preferable. Our proposed high-level
algorithm for profit profile generation and realization is
summarized in Algorithm 1. Let us discuss the first three
substeps in Sections III-A to III-C. Step 4 is treated in all of
Section IV.

Algorithm 1 Profit profile realization @t− 1

1: Input: underlying price st−1, and database D @t− 1.
2: Predict future underlying price: given past financial time-

series until t − 1, predict at least µt in case of a bearish,
bullish or neutral market outlook, or µ(0)

t and µ
(1)
t for

a conditional market outlook; ideally, predict arbitrarily
accurate the corresponding underlying price PMFs, see
Section II-C.

3: Generate desired profit profile: design a desired PWA
pref(s) according (3) by
- deciding upon a desired shape, e.g., according to Table I.
- constructing pref(s) considering Section III-C for slope,
plateau levels, and kink points selections.

4: Solve optimization problem: solve (11) for n? ∈ ZNn×1
+

according to Section IV.
5: Wait until next rebalancing time: initiate/terminate option

investment positions according to n?.
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(2)
with Nn = (NBC+NBP+NSC+NSP), where we abbreviate
D =

[
KD CD YD

]
, and where the last column indicates

one of the four types of options. Note that elements of
database D must be synchronized according to expiration
dates, which becomes relevant when mixing European and
American exercise style options.

B. Step 2
The prediction of future underlying prices is crucial when

taking any financial investment decisions. Predictions may be
based on financial accountancy or technical chart analysis.
For a method based on support vector machines, see [12].
There exists a plethora of approaches for financial times-
series prediction. They are here not not our focus. We
concentrate on profit profile designs and their optimization-
based realizations by means of option combinations.

C. Step 3
We denote a desired PWA reference profit profile by

pref(s) = ajs+ bj , s ∈ [Kj ,Kj+1], ∀Kj ∈ Kref, (3)

for all j = 0, 1, . . . , N ref, whereby the underlying price
segments are defined by the set Kref. Any arbitrary PWA
function is admissable. The design can be regarded as
engineering art and is subject to user-preferences, see Figure
1(c). Various slope rates can be achieved by adjusting the
number of options sold or bought.

Let us discuss a heuristic design of pref(s). For the realiza-
tion of different market outlooks and risk/reward demands,
we summarize typical p(s)-schemes in Table I. We remark
that some profiles exhibit plateau levels, defined by constant
p for consecutive s, and with min (p(s)) > −∞ and
max (p(s)) < +∞. In case the designated p(s) profile is
selected to have limited downside risk, i.e., min (p(s)) >
−∞, we scale pref(s) such that min

(
pref(s)

)
= 0 and

introduce an optimization slack variable responsible for
constant cost-efficient offset as later discussed in Section IV.
For simplicity, we may assign dpref(s)

ds ∈ {0, 1}, i.e., permit
only two possible slope rates. Naturally, other slope rates are
possible, too.

For uni-modal market outlooks (bullish, bearish or neu-
tral), we define pref(s) ≥ p̃t, ∀s ∈ [αµt, µt + (1− α)µt]
with parameters α ∈ (0, 1] and mt ≥ 0 such that p̃t =
mt(αµt−st−1). Figure 2 illustrates a corresponding example
in which we define mt = 1, Kref = {0,K1,K2,K3,K4} =
{0, αµt− p̃t, αµt, µt+(1−α)µt, µt+(1−α)µt+ p̃t} and

pref(s) =


0, 0 ≤ s ≤ K1 and K4 ≤ s <∞,
s−K1, K1 ≤ s ≤ K2,

p̃t, K2 ≤ s ≤ K3,

p̃t − s+K3, K3 ≤ s ≤ K4.

TABLE I. Library of typical shape designs for p(s) that may be used for
the realization of different market outlooks and risk/reward demands. For a
discussion of corresponding kink points, slopes and plateau levels selections,
see Section III-C and Figure 2.
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Fig. 2. Illustration of heuristic methods for the PWA generation of pref(s)
including plateau level and kink points selections. See Section III-C for
the exemplary discussion of the center and right subplot. We have ηt =
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t .

For conditional market outlooks, we select tuning param-
eters α(0), α(1) ∈ (0, 1]. To give an example with respect
to Figure 2, we define Kref = {0,K1,K2} = {0, (1 +

α(0))µ
(0)
t , α(1)µ

(1)
t } and

pref(s) =

K1 − s, 0 ≤ s ≤ K1,

0, K1 ≤ s ≤ K2,

s−K2, K2 ≤ s <∞.
(4)

It remains to discuss the selections of upper plateau levels
for conditional market outlooks and desired limited upside
rewards (for overall cost reduction). Saturating (4), we may,
for example, select two different plateau levels p̃

(0)
t =

α(0)µ
(0)
t , ∀0 ≤ s ≤ µ

(0)
t and p̃

(1)
t = (1 − α(1))µ

(1)
t , ∀s ≥

µ
(1)
t , thereby trading-off different likelihoods of upside or

downside market outlooks.

IV. OPTIMIZATION PROBLEM FORMULATION

A. Preparation

Vector set Kref defines all kink points (st-coordinates at
which pref(s) is continuous but with discontinuous gradient)
of pref(s). Likewise, KD describes a similar set, see Section
III-A. In a first step, we unite and sort them according
ascending st-coordinate, thereby creating the vector set

K = sort
(
KD ∪ Kref) , (5)

where we denote the number of elements by NK. Then, all
of options of (1) (each PWA with one kink point) can be cast
into general PWA form with NK kink points then common
to all, i.e.,

pi(s) =


(fi,0s+ gi,0 + ci)ni, s ∈ [0,K1],

(fi,1s+ gi,1 + ci)ni, s ∈ [K1,K2],
...
(fi,NKs+ gi,NK + ci)ni, s ∈ [KNK ,∞),



with ni ∈ Z+ the number of option i for all i = 1, 2, . . . , Nn.
Combining all options by superposition, we obtain

p(s) =



∑Nn
i=1(fi,0s+ gi,0 + ci)ni, s ∈ [0,K1],∑Nn
i=1(fi,1s+ gi,1 + ci)ni, s ∈ [K1,K2],

...∑Nn
i=1(fi,NKs+ gi,NK + ci)ni, s ∈ [KNK ,∞),

= (sfTj + gTj + cT )n, s ∈ [Kj ,Kj+1], ∀Kj ∈ K,
(6)

for all j = 0, 1, . . . , NK. Likewise, we cast pref(s) from (3)
into general PWA form with the same NK kink points, then
denoted by

pbound(s) = abnd
j s+ bbnd

j , s ∈ [Kj ,Kj+1], ∀Kj ∈ K, (7)

for all j = 0, 1, . . . , NK, and further define

b̃j = abnd
j Kj + bbnd

j , ∀Kj ∈ K, ∀j = 0, 1, . . . , NK. (8)

Proposition 1: To ensure that (7) serve as a lower bound
on the desired profit profile p(s) described in (6), it suffices
to just evaluate at the kink points and constrain

(Kjf
T
j + gTj + cT )n ≥ b̃j , (9)

fTNKn ≥ a
bnd
NK , (10)

for all Kj ∈ K and j = 0, 1, . . . , NK.
Proof: Let us abbreviate zj = (Kjf

T
j + gTj + cT )n

for all Kj ∈ K and j = 0, 1, . . . , NK. Because of all
NK + 1 segments being PWA, w.l.o.g. we can consider any
of the segments. Then, we note that any z = p(s) for
s ∈ [Kj ,Kj+1] can be described as a linear combination
z = γzj + (1− γ)zj+1 for γ ∈ [0, 1]. Assume now zj ≥ b̃j ,
zj+1 ≥ b̃j+1 and Proposition 1 as stated is wrong. The proof
is then by contradiction. Similarly as above, we can write b̃ =
γb̃j +(1−γ)b̃j+1. According to our assumption there exists
a γ ∈ [0, 1] such that γzj+(1−γ)zj+1 < γb̃j+(1−γ)b̃j+1.
This can be rewritten as γ(zj−b̃j)+(1−γ)(zj+1−b̃j+1) < 0,
which is a contradiction since all of the left-hand side is
positive. Ultimately, as a constraint on the slope, (10) is
introduced as an alternative to account for the kink point
s→∞. This concludes the proof.

With respect to the discussion in Section III-A, we re-
mark for the sign of costs (when options are purchased) or
premiums (when options are sold) that

ci =

{
+CDi , if i ∈ {1, 2, . . . , NBC +NBP},
−CDi , if i ∈ {NBC +NBP + 1, . . . , Nn}.

Thus, to summarize, we construct a vector set (i.e., a grid)
K of kink points according to (5), before organizing c ∈
RNn×1, fj ∈ RNn×1, gj ∈ RNn×1, b̃j ∈ R according to (6)
and (8) for all j = 0, 1, . . . , NK, and abnd

NK
∈ R.

B. Formulation

For the cost-efficient realization of the desired profit
profile, we propose the following optimization problem:

max
n,l,σ

λ0c
Tn− λ1‖n‖1 + λ2l − λ3σ − λ4vTn (11a)

s.t.
(
Kjf

T
j + gTj + cT

)
n ≥ b̃j − σ, (11b)

fTNKn ≥ a
bnd
NK , (11c)(

Kjf
T
j + gTj + cT

)
n ≥ l, (11d)

n ≥ 0, l ≥ lmin, σ ≥ 0, (11e)

n ∈ ZNn×1+ , l ∈ R+, σ ∈ R+, (11f)
∀Kj ∈ K, ∀j = 0, 1, . . . , NK, (11g)

where λ0, λ1, . . . , λ4 ∈ R+ denote penalty weights that
can easily trade-off or omit (by setting the corresponding
λ = 0) different objectives. The objective function (11a) is
composed of five components. The first component denotes
the maximization of accumulated fixed costs/gains for pur-
chasing/selling of available options. The second component
is introduced to encourage sparsity in the integer-valued
decision vector n ∈ ZNn×1+ with ni according to Sections IV-
A. The third component results from the introduction of slack
variable l ∈ R+ to minimize the maximal profit profile loss
(min-max problem). The fourth component penalizes another
slack variable, σ ∈ R+, introduced for softening the con-
straint on the lower bound on the desired profit profile (soft
constraint), see (11b). The fifth component indicates costs
incurred when having to cover the selling of options (e.g.,
purchase and transaction costs for buying the underlying as a
prerequisite for selling a covered call option). A sixth compo-
nent such as

∑Nµ
i=1 λ4+i

(
Kµif

T
µi + gµi + cµi

)
n with Kµi ∈

{Kj : Kj ∈ K, Kj = µi modal peaks} may additionally be
added to maximize profit for expected underlying prices (that
possibly may be multi-modal). The first inequality (11b)
describes the aforementioned soft constraint on the lower
bound on the desired profit profile. It is introduced since
a reasonbale hard lower bound on the profit profile is a
priori unknown since depending on D. The second constraint
(11c) stems from (10). The third constraint (11d) results
from the aforementioned introduction of slack variable l to
minimize the maximal profit profile loss. In (11e), lmin ∈
R+ is defined to enforce a potential hard threshold on the
maximal admissable profit profile loss. Dimensions of all
optimization variables are stated in (11f). The coverage of all
of the desired underlying price range segments is indicated
by (11g). The solution vector of (11) shall be denoted by n?
and the corresponding profit profile by p?(s).

C. Solution

For the solution of the mixed-integer optimization problem
(11), we employ the domain-specific language CVXPY for
optimization embedded in Python [13]. Note that when
relaxing n ∈ ZNn×1+ to be real-valued, (11) is a convex
problem; in fact, a linear program with an additionally added
`1-norm in the objective function. All numerical experi-
ments throughout this paper were conducted on a laptop
running Ubuntu 14.04 equipped with an Intel Core i7 CPU
@2.80GHz×8, 15.6GB of memory, and using Python 2.7.



V. NUMERICAL EXAMPLES

We consider real-world option price
data, drawn from the CBOE at
http://www.cboe.com/delayedquote/quotetable.aspx
on August 24, 2016. As underlying, we selected Alphabet
Inc. Class C (Nasdaq symbol GOOG), which was quoted
with a stock price of 772.4$ at the time of the data retrieval.
The expiration date was selected to be December 16, 2016.
For that datum, we retrieved the maximum amount of
option data available, i.e., a total of 65 different strike
prices, valued between 440$ and 1020$, for both call and
put options. To give two examples for a call and put option
with strike price 440$, respectively: GOOG1616L440-E
and GOOG1616X440-E. For CBC

i and CBP
i , and for CSC

i
and CSP

i , we considered the ask and bid prices of call and
put options on time of data retrieval, respectively. Thus,
in total we retrieved Nn = 260 unique option investment
opportunities as illustrated in Figure 3.

For all four experiments reported and according to (11), we
set (λ0, λ1, λ2, λ3, λ4) = (100, 1, 1000, 100000, 0), lmin =
−∞ and mt = 3. The experiments differ by the selection of
α, µt (or µ(0)

t and µ(1)
t for the conditional case) and desired

reference profit profiles pref(s). All results are visualized
in Figures 4, 5, 6 and 7, and quantitatively summarized
in Table II. The fixed cost (if negative) or fixed premium
(if positive) incurred at time t − 1 is indicated by cTn?.
We define percentage returns by rstock(µt) = µt−st−1

st−1
100

for a stock investment, and, for the option investments,
r(µt) =

p(µt)
−cTn? 100 if cTn? < 0 (i.e., an initial expenditure

was required) and r(µt) = ∞ if cTn? ≥ 0, i.e., an
initial premium was received. All zero-crossings of p?(s)
are indicated by sBE (break-even points). For the conditional
(bi-modal) case, if appropriate, two quantities are stated. For
simplicity, we here assumed permission to also conduct the
selling of uncovered options. This assumption is justified
when assuming a sufficient cash position to cover potential
losses, but is to be revised when trading recursively in
the context of self-financing portfolio optimization which is
subject of ongoing work. With respect to database storage,
we ordered options according to ascending strike prices, i.e.,
option identifier i = 0, 1, 2, 3 (see, e.g., the third subplot of
Figure 4) correspond to BC,SC,BP,SP for the lowest possible
strike price of 440$.

Several observations can be made. First, the terms in (11a)
associated with λ1 and λ3 are a must, i.e., for ensuring spar-
sity in the solution vector and enabling sufficient freedom in
appropriately offsetting the desired reference profit profile,
respectively. With λ0 and λ2 fine-tuning can be achieved
in accordance with Section IV-B. Second, the smaller desired
s-ranges for which p?(s) ≥ 0 are, the smaller the worst
case loss (i.e., the higher min (p?(s))). These ranges can
be controlled by selection of α. For example, selecting
α = 0.98 (instead of α = 0.95) in the third experiment
narrows the iron condor, but results in min p?(s) = −8.7 and
max p?(s) = 16.3, see Table II for contrast. Thus, as accurate
as possible predictions of underlying price evolutions are
(as expected) preferable for cost minimization. Third, using
CVXPY [13], remarkable differences could be observed
when solving (11) as the original mixed-integer problem or
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Fig. 3. Illustration of p(s) for all Nn = 260 option contracts available
at the CBOE on August 24, 2016, with underlying Alphabet Inc. Class C
(Nasdaq symbol GOOG), which then was quoted at 772.4$ as visualized
by the yellow ball.

BP

BC

SP

pref(s)

p?(s)

µt

0 200 400 600 800 1,000

−500

0

500

p
(s
)

700 750 800 850
−100
−50

0
50

100

BP BC SP

0 i 259
0

1

n
i

Fig. 4. Results of experiment 1. We selected µt = 800 and α = 0.5. The
second subplot is a zoom-in of the first one. The third subplot indicates the
number ni and type (BC, SC, BP, SP) of options contracts sold or bought.
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Fig. 5. Results of experiment 2. We selected µt = 740 and α = 1.
Note that the desired shape is here realized optimally with two put options
(typical for a bear put spread) rather than with two call options (bear call
spread) which can result in the same shape, however, here at higher initial
expenditure costs.



TABLE II. Summary of quantitative results of the experiments from
Section V. All quantities are reported in units $ with exception of r(µt)
and rstock(µt), and the computation time τcvxpy required for the solution of
(11), which is measured in milliseconds.

Expt. 1 Expt. 2 Expt. 3 Expt. 4
cTn? 8.8 -51.2 11.4 -136.6
min p(s) -236.2 -51.2 -13.6 -131.6
max p(s) ∞ 43.8 11.4 ∞
p(µt) 23.8 43.8 11.4 63.4/33.4
r(µt) ∞ 85.5% ∞ 46.4/24.5%
µt − st−1 27.6 -32.4 -5.4 -102.4/87.6
rstock(µt) 3.6% -4.2% -0.7% -13.3/11.3%
sBE 776.2 783.8 718.6/821.4 701.7/843.3
τcvxpy 109ms 106ms 124ms 105ms
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Fig. 6. Results of experiment 3. We selected µt = 767 and α = 0.95.
Note that the optimal solution to (11) returned slightly different loss levels in
case of strongly positive and strongly negative market evolutions (different
plateau levels).

a (real-valued) relaxed version thereof admitting n ∈ RNn×1+

before then rounding the solution to the nearest integer.
While the final results did only marginally (if at all) differ,
computation times frequently lasted more than 12minutes vs.
100ms. All results reported in Table II stem from the real-
valued relaxation and consequent integer-rounding solution.
Ultimately, to point out a characteristic of the investment
method via multiple options in parallel, consider experiment
1. While a stock purchase requires the initial expenditure
of the stock price (plus transaction costs), an investment
according to experiment 1 contrarily generates an initial
income, here of cTn? = 8.8$ per option contract, which
may immediately be used to undertake other investments.

VI. CONCLUSION

We proposed an optimization-based hierarchical algo-
rithm for the cost-efficient and automated realization of
desired profit profiles given a database of available option
investments. Profit profiles can be designed arbitrarily as
piecewise-affine, typically influenced by underlying price
predictions, a bullish, bearish or conditional market outlook,
and accounting for user-preferences such as a bound on max-
imum loss. Subject of ongoing research is the incorporation
of the presented framework in the context of portfolio opti-
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Fig. 7. Results of experiment 4. We selected µ(0)t = 670, µ(1)t = 860 and
α = 0.999. For interest, we now additionally changed the slope-rate from 1
to 2 in aim of stronger profit generation once the underlying price has passed
the break-even points. The resulting profit profile is slightly asymmetrical
with respect to µ(0)t and µ(1)t .

mization, and the development of corresponding investment
rebalancing strategies based on receding horizon control to
react on predicted market evolutions.
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