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Abstract— This paper presents new approaches based on lin-
ear programming (LP) and mixed-integer linear programming
(MILP) to solve the optimal exit-time control problem, that is
to maximize the first exit-time of a system from a prescribed
set. For linear discrete-time systems with known disturbance
inputs, we show that an optimal solution can be obtained
by solving an MILP and suboptimal solutions are obtained
via LP. For both the MILP and LP, an iterative scheme is
introduced that improves robustness and computation time.
In addition, feedback control strategies are formulated using
model predictive control (MPC) techniques. Two numerical
examples of a linearized van der Pol oscillator and of spacecraft
attitude control demonstrate the efficiency of the proposed
approaches in solving optimal exit-time control problems.

I. INTRODUCTION

Let the state and control input vector at time instant
t ∈ Z≥0 be xt ∈ Rn and ut ∈ Rp, respectively, and
dt ∈ Rn denote a disturbance. Let the set of admissible
control sequences {ut} be defined by

Useq = {{ut} : ut ∈ Ut for all t} , (1)

where
Ut = {u ∈ Rp : Cc,tu ≤ bc,t} . (2)

We consider the following deterministic optimal control
problem of finding an admissible sequence of control inputs
{ut} that maximizes the first exit-time from a given set

max
{ut}∈Useq

τ(x0, {ut})

subject to xt+1 = Atxt +Btut + dt, x0 ∈ G0,
(3)

where the first exit-time is defined as

τ(x0, {ut}) = inf{t ∈ Z+ : xt /∈ Gt |x0 ∈ G0,

{ut} ∈ Useq},
(4)

and
Gt = {x ∈ Rn : Cs,tx ≤ bs,t} (5)

is the set one wants the state vector to remain inside.
The optimal exit-time control problem (3) arises in many

engineering applications, for example, underactuated systems
or systems with finite resources (fuel, energy, component
life). Since the control action may be viewed as a way of
counteracting drift from disturbances or system dynamics in
order to satisfy prescribed constraints for as long as possible,
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we refer to such problems as drift counteraction optimal
control (DCOC) problems.

Problems similar to (3) were studied for continuous-time
systems in [1], [2], [3], [4], [5] and references therein. Most
of the previous research, however, considered minimizing
non-negative or discounted cost/reward functions instead of
explicitly maximizing the first exit-time. Furthermore, the
continuous-time formulation of the problem requires solving
the Hamilton-Jacobi-Bellman (HJB) equation, which is a
first-order partial differential equation (PDE) in this case.
Explicit solutions to the HJB exist only for a few special
problems. On the other hand, the discrete-time formulation
of the problem appears computationally more tractable com-
pared to solving a PDE numerically [6].

Problems of the form (3) were solved by obtaining control
policies using dynamic programming techniques in [6], [7],
[8], [9]. While these approaches are quite general and can
address the case of nonlinear systems, they suffer from the
classical curse of dimensionality of dynamic programming,
as the computational complexity increases exponentially with
the number of states. In this paper, we propose new ap-
proaches based on mathematical programming to efficiently
solve problem (3). We show that (3) is equivalent to a
mixed integer linear program (MILP). A general framework
for modeling and control using mixed integer programming
was outlined in [10] and MILP has been used for control
problems such as trajectory planning with obstacle avoidance
for spacecraft [11], minimum-time control of ground vehicles
[12], or for control of microgrids [13].

However, MILP is in the class of NP-complete problems
and the worst-case computation time increases exponentially
with the number of integer variables [10], [14], [15]. In
addition, employing MILP to solve (3) is challenging because
the optimal exit-time is unknown, which makes it difficult to
choose an appropriate time horizon for the MILP formula-
tion. We address this with an iterative scheme based on MILP
that efficiently solves (3) by reducing the number of integer
variables while adapting the time horizon. Furthermore,
we efficiently obtain good-quality suboptimal solutions by
solving a similar problem without integer variables using
standard linear programming (LP). Besides, we propose to
use the MILP and LP formulations in a model predictive
control (MPC) / receding horizon control (RHC) scheme for
improved robustness due to introducing state feedback.

The paper is structured as follows. The MILP and LP
formulations are discussed in Section II. The iterative proce-
dure for robustly solving the respective problem is outlined
in Section III. The MPC implementation is discussed in



Section IV. Section V provides two numerical examples of a
linearized van der Pol oscillator and of attitude control of an
underactuated spacecraft with two reaction wheels (RWs). A
conclusion is given in Section VI.

II. MILP AND LP FORMULATIONS

Throughout the paper we make the following assumptions
about the first exit-time and the sets Gt and Ut, which
guarantee existence of a bounded solution to (3) [16].

Assumption 1: There exists T̄ > 0 such that τ(x, {ut}) ≤
T̄ for all x ∈ G0 and {ut} ∈ Useq.

Assumption 2: Gt and Ut are compact sets (polytopes) for
all t.

A. MILP Formulation

Consider the MILP formulation

min
{xt},{ut},{δt}

N∑
t=1

δt

subject to
xt+1 = Atxt +Btut + dt

δt−1 ≤ δt, δt ∈ {0, 1} ⊂ Z
Cs,txt ≤ bs,t + 1Mδt

ut ∈ Ut,

(6)

given x0 ∈ G0, where Ut is defined in (2), N ∈ Z+, M ∈
R+, 1 denotes the n-dimensional vector of ones, and δ0 =
0 due to x0 ∈ G0. The binary variable δt is an indicator
variable for the condition xt /∈ Gt. If M is sufficiently large,
a solution to the MILP exists as stated in Lemma 1.

Lemma 1: Assume M ∈ R+ exists such that Cs,txt ≤
bs,t + 1M for all t = 0, 1, ..., N and all {xt} satisfying (6)
for any control sequence {ut} ∈ Useq. Then a solution to (6)
exists.

Proof: Since M is sufficiently large by assumption,
δt ≡ 1 is feasible for all {ut} ∈ Useq and {xt} satisfying
xt+1 = Atxt + Btut + dt, x0 ∈ G0. Since the number of
possible δt sequences is finite and a feasible solution exists
for at least one of them, the solution existence to (6) follows.

We can now state conditions under which solutions to
MILP (6) are equivalent to solutions of (3).

Theorem 1: Suppose Assumptions 1 and 2 hold. Further-
more, suppose N ≥ τ(x0, {ut}) for all {ut} ∈ Useq,
x0 ∈ G0, and M is sufficiently large as in Lemma 1. Then,
solutions to the MILP (6) and the original problem (3) are
equivalent, i.e., a solution to the MILP is also a solution to
(3) and vice versa.

Proof: A solution to problem (3) exists due to Assump-
tions 1 and 2 [16]. Suppose {u∗t } is a solution to (3) with
corresponding state trajectory {x∗t } according to the system
dynamics stated in (3). Then,

τ(x0, {u∗t }) ≥ τ(x0, {u′t}), (7)

for any {u′t} ∈ Useq with corresponding state trajectory
{x′t} according to the system dynamics in (3), where x0 =

x∗0 = x′0. Now (4), (5), the constraints in (6), and N ≥
τ(x0, {ut}) for all {ut} ∈ Useq imply that δ∗t = 1 for t =
τ(x0, {u∗t }), ..., N and δ′t = 1 for t = τ(x0, {u′t}), ..., N ,
where {δ∗t } is the solution to (6) with {xt} = {x∗t } and
{ut} = {u∗t } fixed, and {δ′t} is the solution to (6) with
{xt} = {x′t} and {ut} = {u′t} fixed. Consequently, δ∗t = 0
for t < τ(x0, {u∗t }) and δ′t = 0 for t < τ(x0, {u′t}). This
and (7) imply that

N∑
t=1

δ∗t = N − τ(x0, {u∗t }) + 1

≤ N − τ(x0, {u′t}) + 1 =

N∑
t=1

δ′t,

(8)

for all ({x′t}, {u′t}, {δ′t}) that satisfy the constraints of the
MILP. Therefore, ({x∗t }, {u∗t }) together with {δ∗t } solve the
MILP as well. For the second part of the proof we need to
show that a solution to the MILP is also a solution of (3),
where a solution to the MILP exists by Lemma 1. Suppose
that ({xMILP

t }, {uMILP
t }, {δMILP

t }) solves the MILP, i.e.,
N∑
t=1

δMILP
t ≤

N∑
t=1

δ′t, (9)

for all ({x′t}, {u′t}, {δ′t}) that satisfy the constraints in (6)
and x0 = xMILP

0 = x′0. For any given admissible {u′t}, let
{δ̄′t} be such that δ̄′t = 0 iff t < τ(x0, {u′t}), which is always
feasible with respect to (6) due to M being sufficiently large
by assumption. Hence,

τ(x0, {u′t}) = 1 +

N∑
t=1

(1− δ̄′t) = N + 1−
N∑
t=1

δ̄′t. (10)

Then, by (9),

τ(x0,{uMILP
t }) = min{t : δMILP

t = 1} = N + 1

−
N∑
t=1

δMILP
t ≥ N + 1−

N∑
t=1

δ̄′t = τ(x0, {u′t}),
(11)

for all {u′t} ∈ Useq. Consequently, {uMILP
t } solves (3).

min
{xt},{ut},{δτlb ,...,δN}

N∑
t=τlb

δt

subject to
xt+1 = Atxt +Btut + dt

δt−1 ≤ δt, δt ∈ {0, 1} ⊂ Z, t = τlb, ..., N

Cs,txt ≤ bs,t, t = 1, ..., τlb − 1

Cs,txt ≤ bs,t + 1Mδt, t = τlb, ..., N

ut ∈ Ut.

(12)

In practice, the complexity of MILP (6) can be reduced if
a lower bound τlb ∈ Z+ for the optimal exit-time is known,
i.e., τ(x0, {u∗t }) ≥ τlb, where {u∗t } is a solution of (3). In
this case we can set δt = 0 for t = 1, ..., τlb − 1 and get
MILP (12), where x0 ∈ G0. Compared to (6), MILP (12)
reduces the number of binary variables to optimize from N



to N−τlb +1. Note that τlb can be chosen as corresponding
to exit-time under any given admissible control law.

B. LP Formulation

Instead of using MILP (12) to solve (3), relaxing (12) and
obtaining a suboptimal solution based on an LP formulation
may provide a better balance between computation time and
performance of the solution. The MILP is relaxed by re-
placing the binary variables δt with non-negative continuous
variables εt, yielding the following LP

min
{xt},{ut},{ετlb ,...,εN}

N∑
t=τlb

qtεt

subject to
xt+1 = Atxt +Btut + dt

0 ≤ εt−1 ≤ εt
Cs,txt ≤ bs,t, t = 1, ..., τlb − 1

Cs,txt ≤ bs,t + 1εt, t = τlb, ..., N

ut ∈ Ut,

(13)

given x0 ∈ G0, where εt ∈ R≥0, and qt ∈ R+ are weights.
As in MILP (12), τlb ∈ Z+ is a lower bound on the optimal
exit-time and εt = 0 for t = 1, ..., τlb − 1. The solution
to (13) is only guaranteed to be optimal with respect to (3)
when the time horizon is N = τ(x0, {u∗t })− 1, where {u∗t }
is a solution to (3). In contrast to the MILP formulation,
N ≥ τ(x0, {u∗t }) does not guarantee an optimal solution
with respect to (3). Furthermore, note that (13) does not
require the upper bound M used in (12). On the other hand, if
such an M is known, under the additional constraint εt ≤M
and for qt ≡ 1/M , (13) corresponds to the LP relaxation of
(12) by setting δt = εt/M , 0 ≤ δt ≤ 1.

III. ITERATIVE SOLUTION PROCEDURE

In Theorem 1 we assume that the time horizon satisfies
N ≥ τ(x0, {ut}) for all admissible control sequences
{ut}. This condition can be further reformulated as N ≥
τ(x0, {u∗t })−1, where {u∗t } is a solution to (3). In fact, it is
straightforward to show that solutions to the MILP can only
be optimal with respect to (3) if N satisfies this condition.
However, the optimal exit-time is a priori unknown and,
consequently, it is not possible to choose N such that N ≥
τ(x0, {u∗t }) − 1 is guaranteed to hold. Moreover, choosing
N very large, i.e., N � τ(x0, {u∗t }), is prohibitive because
it increases the number of integer variables, which in turn
increases (possibly exponentially) the computation time.

A similar problem arises when solving LP (13). While
the solution to the LP is not guaranteed to be optimal with
respect to (3) for N 6= τ(x0, {u∗t }) − 1, the best solutions
appear to be obtained when N = τ(x0, {u∗t }) − 1 + γ for
some small γ ∈ Z≥0. Therefore, we propose an algorithm
that iteratively adapts N while reducing the number of
decision variables δt or εt, respectively. The algorithm for
the LP is stated first (Section III-A) because its solution is
used to initialize the algorithm for the MILP (Section III-B).

A. LP-Based Iterative Procedure

The LP-based Algorithm 1 is as follows. In Step 1, the
lower bound τlb is initialized using the zero-control solution.
Besides, the time horizon N is initialized by adding a
constant αLP ∈ Z+ to τlb at Step 2. Then LP (13) is
solved. If the solution does not exit Gt for the current time
horizon, the solution is used as a new lower bound (Step
6) and the time horizon N is increased by αLP (Step 2).
The procedure is repeated until the solution exits Gt. The
number of decision variables for each LP in Algorithm 1 is
N(n+ p) + αLP + 1, where n and p are the dimensions of
the state and control input vector, respectively.

Algorithm 1 Obtain suboptimal solution to (3) based on LP

1: τlb ← τ(x0, {0, 0, ..., 0})
2: N ← τlb + αLP, αLP ∈ Z+

3: {xLPt }, {uLPt }, {εLPτlb , ..., ε
LP
N } ← solution of (13)

4: τ ← max{t ≤ N : εLPt = 0}+ 1

5: if εLPN = 0 then
6: τlb ← τ ; go to Step 2
7: end if

B. MILP-Based Iterative Procedure

Algorithm 2 Obtain solution to (3) based on MILP

1: τlb ← output of Algorithm 1
2: N ← τlb + αMILP

3: {xMILP
t }, {uMILP

t }, {δMILP
τlb

, ..., δMILP
N } ← sol. of (12)

4: τ ← max{t ≤ N : δMILP
t = 0}+ 1

5: if δMILP
N = 0 then

6: τlb ← τ ; go to Step 2
7: end if

Algorithm 2 outlines the iterative procedure based on
MILP, which obtains an optimal solution with respect to (3).
The LP-based Algorithm 1 is used to initialize the lower
bound τlb in Step 1. The time horizon N is initialized in
Step 2 by adding a constant integer αMILP to τlb as in
Algorithm 1. Then the MILP (12) is solved and the time
horizon and lower bound are adapted until the solution exits
the set Gt. Note that this procedure can be very effective
for solving MILP because the number of binary variables at
each iteration is αMILP + 1, where αMILP can be specified
by the user.

IV. RECEDING HORIZON IMPLEMENTATION

This section describes how the MILP and LP formula-
tions can be used to implement feedback control in order
to compensate for unmodeled effects online. For both the
LP and MILP formulations, we introduce two different
MPC schemes. The first MPC implementation (Algorithm
3) employs Algorithm 1 or 2 to solve the LP or MILP,



respectively, see Step 3 of Algorithm 3. For the second MPC
implementation (Algorithm 4), we assume there exists an
upper bound τub > 0 on the optimal exit-time, which is
used to initialize the time horizon as stated at Step 2 of
Algorithm 4. Then LP (13) or MILP (12), respectively, are
solved directly without iteration (Step 5 of Algorithm 4)
and the length of the receding time horizon is reduced by
one (Step 7). Note that for both MPC schemes, the time-
varying constraints and dynamics need to be shifted over the
moving time horizon tsys, ..., tsys+N since the LP and MILP
formulations consider t ∈ {0, ..., N}. This is not shown in
Algorithms 3 and 4.

For the numerical examples in this paper (Section V), the
closed-loop simulation and the controller are based on the
same model, i.e., there are no unmodeled effects. The control
performance with unmodeled effects will be investigated in
future work. We still use the proposed MPC schemes to
investigate if the LP/MILP formulations and Algorithms 1
and 2 are suitable for MPC implementation.

Algorithm 3 MPC scheme based on Algorithm 1 or 2
1: tsys ← 0

2: x0 ← current state x(tsys)

3: {uLPt } ← output of Algorithm 1
(or {uMILP

t } ← output of Algorithm 2)
4: Apply uLP0 (or uMILP

0 ) as input u(tsys) to the system
5: tsys ← tsys + 1; go to Step 2

Algorithm 4 MPC scheme based on (12) or (13)
1: tsys ← 0

2: N ← τub

3: x0 ← current state x(tsys)

4: τlb ← τ(x0, {0, 0, ..., 0})
5: {uLPt } ← solution of (13) (or {uMILP

t } ← sol. of (12))
6: Apply uLP0 (or uMILP

0 ) as input u(tsys) to the system
7: N ← N − 1

8: tsys ← tsys + 1; go to Step 3

V. NUMERICAL EXAMPLES

Two numerical examples of a linearized van der Pol
oscillator and of spacecraft attitude control with two RWs are
considered. In both examples the objective is to maximize
the time until specified constraints are violated for the first
time according to (3). Based on the developed approaches in
Sections II to IV, we investigate the performance of several
controllers:

1) MILP-(12) / LP-(13): direct solution of MILP (12) /
LP (13) with τlb = τ(x0, {0, 0, ..., 0}) (open-loop).

2) LP-A1 / MILP-A2: solution of LP or MILP using
Algorithms 1 or 2, respectively (open-loop).

3) MILP-MPC-A3 / MILP-MPC-A4: MILP-based MPC
implementation, Algorithm 3 or 4 (closed-loop).

4) LP-MPC-A3 / LP-MPC-A4: LP-based MPC imple-
mentation, Algorithm 3 or 4 (closed-loop).

The computation times reported herein are for a laptop
with an i5-6300 processor and 8 GB RAM running MATLAB
2015a. We use the Hybrid Toolbox [17] (lpsol and milpsol
functions with default settings) for solving LPs and MILPs.
For each MILP, M = 100 and for LPs, we set qt ≡ 1.

A. Van der Pol Oscillator
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Fig. 1: Van der Pol oscillator example. Top plot: state
trajectory in r1-r2 plane. Bottom plot: control u vs. time.

We consider r̈VdP = (1 − r2VdP)ṙVdP − rVdP + u as the
continuous-time nonlinear model. Let x = (r1, r2)T be the
state vector, where r1 = rVdP and r2 = ṙVdP. Through lin-
earization about xlin = (1.5, 2)T and using Euler’s forward
method with a sampling time ∆t = 0.015 s, the discrete-time
linear model with added sinusoidal disturbance is obtained
as follows[

r1,t+1

r2,t+1

]
=

[
1 0.015

−0.105 0.9812

] [
r1,t
r2,t

]
+

[
0

0.015

]
ut +

[
0

0.05 sin(2πt∆t)

]
,

(14)

where the control input is ut ∈ [−12, 12]. The state con-
straints for the DCOC problem are given by Gt ≡ {x : r1 ∈
[1, 2], r2 ∈ [1, 3]}. An initial x0 = (1, 3)T is assumed, for
which the zero-control exit-time is 15. Table I shows the first
exit-time τ and the required computation time for the open-
loop controllers. The solution of the MILP-based iterative
procedure is always optimal and the optimal exit-time for this
example is 44. The LP-based controllers obtain a solution
faster than with MILP. However, it is not guaranteed that
the optimal exit-time is found. The direct solution of the LP,
LP-(13), yields an optimal solution when N is close to the
optimal exit-time (N = 45 and 55 in Table I). Furthermore,
both LP-(13) and MILP-(12) cannot find an optimal solution



if N < 43. In contrast, the iterative procedures (MILP-A2
and LP-A1) do not rely on guessing N sufficiently large.

Controller Parameter τ
Computation

time (ms)

MILP-(12)
N = 45
N = 55
N = 75

44
44
44

7
10
14

MILP-A2
αLP = 25

αMILP = 5
αMILP = 10
αMILP = 15

44
44
44

10
11
11

LP-(13)
N = 45
N = 55
N = 75

44
44
41

3
4
7

LP-A1
αLP = 5
αLP = 15
αLP = 25

44
44
43

7
4
7

TABLE I: Van der Pol oscillator example, open-loop control
sequences with different parameters: First exit-time τ and
computation time (worst-case over 100 samples).

The MPC implementations LP-MPC-A3 and MILP-MPC-
A3 (with αLP = 25 and αMILP = 5) both obtain the optimal
exit-time of 44. The average and worst-case computation
times over all time instants are 3 ms and 7 ms, respectively,
for LP-MPC-A3, and 4 ms and 10 ms, respectively, for
MILP-MPC-A3. For LP-MPC-A4 and MILP-MPC-A4, an
upper bound τub on the optimal exit-time is obtained with
Algorithm 2, where the initial state x0 ∈ G0 is added to the
MILP as a decision variable, yielding 46 as the largest exit-
time for x0 = (1, 1)T. Then both LP-MPC-A4 and MILP-
MPC-A4 achieve an exit-time of 44 with computation times
of 1 ms (average) and 3 ms (worst-case) for LP-MPC-A4
and 2 ms (average) and 7 ms (worst-case) for MILP-MPC-
A4. While the computation effort is slightly larger for the
MILP-based controllers, the worst-case computation times of
all feedback controllers are smaller than the sampling time
∆t = 15 ms. Thus, it is feasible to recompute the control
input at each time instant in real-time.

Figure 1 shows the state and control trajectories for the
open-loop controller MILP-A2 and the feedback controllers
MILP-MPC-A3 and LP-MPC-A3. The state and control con-
straints are indicated by black dashed lines. The trajectories
are different but each exits Gt after 44 steps. Thus, the
optimal solution is not unique in this example.

B. Spacecraft Attitude Control

The second example is the attitude control of an underac-
tuated spacecraft with body-fixed frame being a principal
frame and principal axes denoted by 1, 2, and 3. The
spacecraft is equipped with two RWs aligned with the 1-
and 3-axis, respectively, where the moment of inertia of
each wheel is Jw = 0.01 kgm2. The spacecraft principal
moments of inertia are given by J1 = J2 = 800 kgm2 and
J3 = 300 kgm2. We assume that the spacecraft orientation
is subject to drift caused by a constant external torque (e.g.,

from solar radiation pressure, where the orientation does
not significantly change) with M1 = −1.2 × 10−5 Nm,
M2 = −10−5 Nm, and M3 = 0.9× 10−5 Nm.

The state vector is x = (φ, θ, ψ, ω1, ω2, ω3, ωw1, ωw3)T,
where φ, θ, and ψ are the 3-2-1 Euler angles describing
the spacecraft orientation, ω1, ω2, and ω3 are the spacecraft
angular velocity vector projections on the principal axes, and
ωw1 and ωw3 are the respective RW spin rates. The control
input vector is u = (αw1, αw3)T comprising the angular
accelerations of the two RWs, which are constrained by
αw1, αw3 ∈ [−1, 1] rad/s2. Note that since the spacecraft
is acted on by an external torque, its angular momentum is
not conserved and the reduced order equations, obtained by
eliminating the angular velocities, cannot be used.

The objective is to maintain x within Gt ≡ {x :
φ, θ ∈ [44.995, 45.005] deg, ψ ∈ [44.95, 45.05] deg, ωw1 ∈
[10, 200] rad/s, ωw3 ∈ [−200,−10] rad/s} for as long as
possible. This set is defined by bounds on spacecraft attitude
and RW spin rates (RWs must operate below maximum
speeds and avoid zero crossing). The constraints on the ori-
entation are very tight which corresponds to precise pointing
requirements required for some missions such as Kepler [18].

The discrete-time linear model is derived from the non-
linear continuous-time model [19] by linearizing about
xlin = (0, 0, 0, 0, 0, 0, 190,−100)T and using Euler’s for-
ward method with a sampling time ∆t = 2 s, yielding (for
x and u in SI units) the following discrete-time equations

xt+1 =



1 0 0 2 0 0 0 0
0 1 0 0 2 0 0 0
0 0 1 0 0 2 0 0
0 0 0 1 0.003 0 0 0
0 0 0 −0.003 1 −0.005 0 0
0 0 0 0 0.013 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


xt+



0 0
0 0
0 0

−2.5× 10−5 0
0 0

0 −6.7× 10−5

2 0
0 2


ut +



0
0
0

−3× 10−8

−2.5× 10−8

6× 10−8

0
0


.

(15)

We improve the numerical conditioning of each LP and
MILP by normalizing the state vector according to x̂ =
Otfx + otf , where Otf ∈ R8×8 and otf ∈ R8 are such that
Gt is transformed into Ĝt ≡ {x̂ : φ̂, θ̂, ψ̂, ω̂w1, ω̂w3 ∈ [0, 1]},
ω1, ω2 = −10−4 rad/s, ω3 = −10−2 rad/s correspond to
ω̂1, ω̂2, ω̂3 = 0, and ω1, ω2 = 10−4 rad/s, ω3 = 10−2 rad/s
correspond to ω̂1, ω̂2, ω̂3 = 1.

The following results are for an initial x0 = xlin for
which the zero-control exit-time is 54. Table II shows the
first exit-time and computation time for different open-
loop controllers. The results are similar to the van der Pol
oscillator example (Section V-A). The optimal exit-time for
this example is 172, see MILP-based controllers in Table II.

As done in the previous example, an upper bound of
τub = 322 is obtained for LP-MPC-A4 and MILP-MPC-A4
by adding the initial state x0 ∈ G0 to the decision variables
of the MILP. However, compared to the optimal exit-time of
172, an upper bound of 322 is conservative and unnecessarily



increases the number of variables for every LP and MILP. In
fact, the MILP solver (MILP-MPC-A4) is not able to find a
solution at t = 11, which is mainly due to the large number
of binary variables, and the LP-based approach (LP-MPC-
A4) violates the constraints after only 74 time steps.

In contrast, the feedback controllers based on Algorithm
3, LP-MPC-A3 and MILP-MPC-A3 (with αLP = 50 and
αMILP = 5), do not rely on a tight upper bound on the opti-
mal exit-time. Consequently, they are more robust and both
controllers (LP-MPC-A3 and MILP-MPC-A3) achieve the
optimal exit-time of 172. The respective worst-case compu-
tation times of 1.14 s (LP-MPC-A3) and 1.46 s (MILP-MPC-
A3) are smaller than the sampling time (∆t = 2 s), which
allows for real-time computation. While the solution of LP-
MPC-A3 may not be optimal in general, computation times
(0.33 s on average) are smaller compared to MILP-MPC-
A3 (0.45 s on average). However, MILP-MPC-A3 should be
used if optimality of the solution must be guaranteed.

Controller Parameter τ
Computation

time (s)

MILP-(12)
N = 175
N = 200
N = 225

172
172
172

0.83
2.07
6.89

MILP-A2
αLP = 50

αMILP = 5
αMILP = 10
αMILP = 15

172
172
172

1.35
1.39
1.44

LP-(13)
N = 175
N = 200
N = 225

172
172
77

0.45
0.65
0.86

LP-A1
αLP = 25
αLP = 50
αLP = 75

172
172
172

1.2
1.02
0.83

TABLE II: Spacecraft attitude control example, open-loop
control sequences with different parameters: First exit-time
τ and computation time (worst-case over 100 samples).

time (s)
0 50 100 150 200 250 300

3
 (
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g)

44.995

45

45.005

MILP-A2
MILP-MPC-A3
LP-MPC-A3

Fig. 2: Spacecraft attitude control example. Uncontrollable
Euler angle θ vs. time.

Constraint violation occurs due to the uncontrollable Euler
angle θ reaching its prescribed limit. Figure 2 shows θ over
time for the open-loop controller MILP-A2 and the closed-
loop controllers LP-MPC-A3 and MILP-MPC-A3, where the
constraints are indicated by black dashed lines. As for the
van der Pol oscillator example, the optimal solution is not
unique here.

VI. CONCLUSION

We presented new approaches based on linear and mixed-
integer linear programming and model predictive control
(MPC) to solve optimal exit-time control problems with the
objective of maximizing the time that prescribed constraints
are satisfied. An iterative procedure was developed that
efficiently obtains a solution. Two examples of a van der
Pol oscillator and of spacecraft attitude control were treated.
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