
A Simple Effective Heuristic for Embedded
Mixed-Integer Quadratic Programming

Reza Takapoui Nicholas Moehle Stephen Boyd Alberto Bemporad

Abstract—In this paper we propose a fast optimization
algorithm for approximately minimizing convex quadratic
functions over the intersection of affine and separable con-
straints (i.e., the Cartesian product of possibly nonconvex
real sets). This problem class contains many NP-hard prob-
lems such as mixed-integer quadratic programming. Our
heuristic is based on a variation of the alternating direction
method of multipliers (ADMM), an algorithm for solving
convex optimization problems. We discuss the favorable
computational aspects of our algorithm, which allow it to
run quickly even on very modest computational platforms
such as embedded processors. We give several examples
for which an approximate solution should be found very
quickly, such as management of a hybrid-electric vehicle
drivetrain. Our numerical experiments suggest that our
method is very effective in finding a feasible point with
small objective value; indeed, we see that in many cases,
it finds the global solution.

I. INTRODUCTION

A. The problem

We consider the problem

minimize (1/2)xTPx+ qTx+ r
subject to Ax = b

x ∈ X
(1)

with decision variable x ∈ Rn. The problem parameters
are the symmetric positive semidefinite matrix P ∈
Rn×n, the matrix A ∈ Rm×n, the vectors b ∈ Rm and
q ∈ Rn, and the real number r ∈ R. The constraint
set X is the Cartesian product of (possibly nonconvex)
real, closed, nonempty sets, i.e., X = X1 × · · · × Xn,
where Xi ⊆ R are closed, nonempty subsets of R for
i = 1, . . . , n. If Xi is a convex set, we refer to variable
xi as a convex variable, and if Xi is a nonconvex set,
we call variable xi a nonconvex variable.

Many problems can be put into the form of problem
(1). For example, if some of the sets Xi are subsets
of integers, our formulation addresses mixed-integer
quadratic and mixed-integer linear programs. This in-
cludes applications such as admission control [OCP07],
economic dispatch [PF07], scheduling [CPM10], hybrid
vehicle control [MJSB12], thermal unit commitment
problems [CA06], and hybrid model predictive control
[BM99].

If X is a convex set, problem (1) is a convex op-
timization problem and can be readily solved using
standard convex optimization techniques. Otherwise, the
problem (1) can be hard in general. It trivially gen-
eralizes mixed-integer quadratic programming, an NP-
complete problem, and can therefore be used to encode
other NP-complete problems such as the traveling sales-
man problem [PS98], Boolean satisfiability [LZD04],
[Kar72], set cover [Hoc82], and set packing [Pad73].
Hence, any algorithm that guarantees finding the global
solution to (1) suffers from non-polynomial worst-case
time complexity (unless P = NP).

B. Solve techniques

There are a variety of methods for solving (1) exactly.
When all of the nonconvex sets Xi in (1) are finite, the
simplest method is brute force; enumerating through all
possible combinations of discrete variables, solving a
convex optimization problem for each possible combi-
nation, and finding the point with the smallest objective
value. Other methods such as branch-and-bound [LW66]
and branch-and-cut [SM99] are guaranteed to find the
global solution. Special purpose methods have been
introduced for some specific subclasses of (1). Unfor-
tunately, these methods have non-polynomial worst-case
runtime, and are often burdensome to use in practice,
especially for embedded optimization, where runtime,
memory limits, and code simplicity are prioritized. Also,
these methods suffer from a large variance in the algo-
rithm runtime.

On the other hand, many heuristics have been in-
troduced that can deliver a good, but suboptimal (and
possibly infeasible) point in a very short amount of
time. For example, the relax-and-round heuristic consists
of replacing each Xi by its convex hull, solving the
resulting relaxation (a convex quadratic program), and
projecting the solution onto the nonconvex constraint
sets. Another heuristic is to fix the nonconvex variables
to several reasonable guess values and solve the convex
optimization problem for convex variables. (Each of
these methods may not find a feasible point, even if
one exists.) The feasibility pump is a heuristic to find a

2016 American Control Conference (ACC)
Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

978-1-4673-8681-4/$31.00 ©2016 AACC 5619

feasible solution to a generic mixed integer program and
is discussed in [FGL05], [BFL07], [AB07]. Such heuris-
tics are often quite effective, and can be implemented on
very modest computational hardware, making them very
attractive for embedded applications (even without any
theoretical guarantees).

C. Embedded applications

We focus on embedded applications where finding
a feasible point with relatively small objective value
will often result in performance that is practically in-
distinguishable from implementing the global solution.
In embedded applications, the computational resources
are limited and a solution must be found in a small
time. Hence, methods to find the global solution are not
favorable, because their large variance in runtime cannot
be tolerated.

In an embedded application, it is often required to
solve several instances of (1), with different values of
the parameters. Here we distinguish two separate use
cases, depending on whether one or both of P or A
change. This distinction will play an important role in
solution methods. In the first use case, we solve many
instances of (1) in which any of the parameters may
change between instances. In the second use case, we
solve instances of (1) in which q, b, and X change
between instances, but P and A are constant. Although
this is more restrictive than the first use case, many
applications can be well modeled using this approach,
including linear, time-invariant model predictive control
and moving horizon estimation. Indeed, all of the three
examples we present in Section III are of this type.

D. Contributions

Our proposed algorithm is a simple and computa-
tionally efficient heuristic to find approximate solutions
to problem (1) quickly. It is based on the alternating
direction method of multipliers (ADMM), an algorithm
for solving convex optimization problems. Because the
problem class we address includes nonconvex optimiza-
tion problems, our method is not guaranteed to find the
global solution, or even converge.

Numerical experiments suggest that this heuristic is
an effective tool to find the global solution in a variety
of problem instances. Even if our method does not find
the global solution, it usually finds a feasible point
with reasonable objective value. This makes it effective
for many embedded optimization applications, where
finding a feasible point with relatively small objective
value often results in performance that is practically
indistinguishable from implementing the global solution.

An implementation of our algorithm along with
numerical examples is available at www.github.com/
cvxgrp/miqp admm.

Comparison of the runtime with commercial solvers
such as MOSEK [ApS15] and CPLEX [CPL09] show
that our method can be substantially faster than solving a
global optimization method, while having a competitive
practical performance.

E. Related work

In recent years, much research has been devoted to
solving moderately-sized convex optimization problems
quickly (i.e., in milliseconds or microseconds), possibly
on embedded platforms. Examples include the SOCP
solvers ECOS [DCB13], and FiordOs [Ull11], and the
QP solver CVXGEN [MB12]. Other algorithms have
been developed exclusively for convex optimal control
problems; see [WB10], [OSB13], [JGR+14]. In addition,
recent advances in automatic code generation for con-
vex optimization [MWB11], [CPDB13] can significantly
reduce the cost and complexity of using an embedded
solver. Some recent effort has been devoted to (globally)
solving mixed-integer convex programs very quickly; see
[Bem15], [FDM15] and references therein.

Even though ADMM was originally introduced as a
tool for convex optimization problems, it turns out to be a
powerful heuristic method even for NP-hard nonconvex
problems [BPC+11, Sections 5, 9]. Recently, this tool
has been used as a heuristic to find approximate solutions
to nonconvex problems [CW13], [FJ15], [MWMA14].
In [DBEY13], the authors study the Divide and Concur

algorithm as a special case of a message-passing version
of the ADMM, and introduce a three weight version of
this algorithm which greatly improves the performance
for some nonconvex problems such as circle packing and
the Sudoku puzzle.

II. OUR HEURISTIC

A. Algorithm

Our proposed algorithm is an extension of the alter-
nating direction method of multipliers (ADMM) for con-
strained optimization to the nonconvex setting [BPC+11,
Sections 5,9]. ADMM was originally introduced for
solving convex problems, but practical evidence suggests
that it can be an effective method to approximately
solve some nonconvex problems as well. In order to use
ADMM, we rewrite problem (1) as

minimize (1/2)xTPx+ qTx+ r + IX (z)

subject to

[

A
I

]

x−

[

0
I

]

z =

[

b
0

]

.
(2)

2

5620

Here IX denotes the indicator function of X , so that
IX (x) = 0 for x ∈ X and IX (x) = ∞ for x /∈ X . Each
iteration in the algorithm consists of the following three
steps:

xk+1/2 := argmin
x

(

(1/2)xTPx+ qTx+ r+ (3)

(ρ/2)

∥

∥

∥

∥

[

A
I

]

x−

[

0
I

]

xk −

[

b
0

]

+ uk

∥

∥

∥

∥

2

2

)

(4)

xk+1 := Π
(

xk+1/2 +
[

0 I
]

uk
)

(5)

uk+1 := uk +

[

A
I

]

xk+1/2 −

[

0
I

]

xk −

[

b
0

]

.

(6)

Here, Π denotes the projection onto X . Note that if
X is not convex, the projection onto X may not be
unique; for our purposes, we only need that Π(z) ∈
argminx∈X ∥x − z∥2 for all z ∈ Rn. Since X is
the Cartesian product of subsets of the real line,
i.e., X = X1 × · · · × Xn, we can take Π(z) =
(Π1(z1), · · · ,Πn(zn)), where Πi is a projection func-
tion onto Xi. Usually evaluating Πi(z) is inexpensive;
for example, if Xi = [α,β] is an interval, Πi(z) =
min{max{z,α},β}. If Xi is the set of integers, Πi

rounds its argument to the nearest integer. For any finite
set Xi with k elements, Πi(z) is a closest point to z
that belongs to Xi, which can be found by ⌈log2 k⌉
comparisons.

B. Convergence

If the set X is convex and problem (1) is feasible, the
algorithm is guaranteed to converge to an optimal point
[BPC+11, §3]. However, for X nonconvex, there is no
such guarantee. Indeed, because problem (1) can be NP-
hard, any algorithm that finds the global solution suffers
from nonpolynomial worst-case runtime. Our approach
is to give up the accuracy and use methods that find an
approximate solution in a small time.

Our numerical results verify that even for simple
examples, the algorithm may fail to converge, converge
to a suboptimal point, or fail to find a feasible point.
Since the objective value need not decrease monotoni-
cally (or at all), it is critical to keep track of the best
point found. That is, for a selected primal feasibility
tolerance ϵtol, we shall reject all points x such that
∥Ax−b∥ > ϵtol, and among those primal feasible points
x that ∥Ax − b∥ ≤ ϵtol, we choose the point with the
smallest objective value. Here, ϵtol is a tolerance for
accepted feasibility. We should remind the reader again,
that this point need not be the global minimum.

C. Initialization

To initialize x0, one can randomly choose a point in
CoX , where CoX denotes the convex hull of X . More
specifically, this means that we need to have access to a
subroutine that generates random points in CoX . Our
numerical results show that running the algorithm multi-
ple times with different random initializations increases
the chance of finding a feasible point with smaller
objective value. Hence, we suggest running the algorithm
multiple times initialized with random starting points and
report the best point as the approximate solution. We
always initialize u0 = 0.

D. Computational cost

In this subsection, we make a few comments about the
computational cost of each iteration. The first step in-
volves minimizing a strongly convex quadratic function
and is actually a linear operator. The point xk+1/2 can
be found by solving the following system of equations:

[

P + ρI AT

A −(1/ρ)I

] [

xk+1/2

v

]

=

[

q′

0

]

,

where q′ = −q+ ρ
(

xk +AT b−
[

AT I
]

uk
)

. Since
the matrix on the lefthand side remains constant for all
iterations, we can precompute the LDLT factorization
of this matrix once and cache the factorization for use
in subsequent iterations. When P and A are dense, the
factorization cost is O(n3), yet each subsequent iteration
costs only O(n2). (Both factorization and solve costs can
be significantly smaller if P or A is sparse.) Amortizing
the factorization step over all iterations means that the
first step is quite efficient. Also notice that the matrix on
the lefthand side is quasi-definite and hence suitable for
LDLT factorization.

In many applications, P and A do not change across
problem instances. In this case, for different problem
instances, we solve (1) for the same P and A and varying
b and q. This lets us use the same LDLT factorization,
which results in a significant saving in computation.

The second step involves projection onto X = X1 ×
· · ·× Xn and can typically be done much more quickly
than the first step. It can be done in parallel since the
projection onto X can be found by projections onto Xi

for i = 1, . . . , n. The third step is simply a dual update
and is computationally inexpensive.

E. Preconditioning

Both theoretical analysis and practical evidence sug-
gest that the precision and convergence rate of first-
order methods can be significantly improved by pre-
conditioning the problem. Here, we use diagonal scal-

3

5621

ing as preconditioning as discussed in [Bec14] and
[WN99]. Diagonal scaling can be viewed as applying
an appropriate linear transformation before running the
algorithm. When the set X is convex, the preconditioning
can substantially affect the speed of convergence and
is simply a tool to help the algorithm converge faster.
Optimal choice of preconditioners, even in the convex
case, is still an active research area [GB14a], [GB14b],
[GTSJ15], [SLY+14], [HL12], [Bol13], [DY12]. In the
nonconvex case, however, preconditioning can have a
critical role in the quality of approximate solution, as
well as the speed at which this solution is found.

Specifically, let F ∈ Rn×n, E ∈ Rm×m be diagonal
matrices with positive diagonal entries. The goal is to
choose F and E to improve the convergence of ADMM
on the preconditioned problem

minimize (1/2)xTPx+ qTx+ IX (z)

subject to

[

EA
F

]

x−

[

0
F

]

z =

[

Eb
0

]

.
(7)

The choice of E and F to minimize the effective
condition number (the ratio of the largest singular value
to the smallest non-zero singular value) of the following
matrix is recommended in [GB14a]

[

E 0
0 F

] [

A
I

]

P †
[

AT I
]

[

E 0
0 F

]

,

where P † denotes the pseudo-inverse of P . Given matrix
M ∈ Rn×n, minimizing the condition number of DMD
for diagonal D ∈ Rn×n can be cast as a semidefinite
program. However, a heuristic called matrix equilibra-

tion can be used to avoid the computational cost of
solving a semidefinite program. (See [Slu69], [Bra10]
and references therein.) Since for embedded applications
computational resources are limited, we avoid finding
P † or equilibrating completely. We instead find E to
normalize the rows of A (usually in ℓ1 or ℓ2 norm) and
set F to be the identity.

After finding E and F , preconditioned ADMM has
the following form:

xk+1/2 :=
[

I 0
]

[

P + ρF 2 ATE
EA −(1/ρ)I

]−1

[

−q + ρ
(

F 2xk +ATE2b −
[

ATE F
]

uk
)

0

]

xk+1 := Π
(

xk+1/2 +
[

0 F−1
]

uk
)

uk+1 := uk +

[

EA
F

]

xk+1/2 −

[

0
F

]

xk −

[

Eb
0

]

.

(8)

F. The overall algorithm

We use the update rules (8) for k = 1, . . . , N , where
N denotes the (fixed) maximum number of iterations.
Also, as described above, the algorithm is repeated for
M number of random initializations. The computational
cost of the algorithm consists of a factorization and MN
matrix products and projections. A description of the
overall algorithm is given in Algorithm 1, with f(x) =
(1/2)xTPx+ qTx+ r.

Algorithm 1 Approximately solving nonconvex con-
strained QP (1)

if A or P changed then

find E and F by equilibrating

[

A
I

]

P †
[

AT I
]

find LDLT factorization of

[

P + ρF 2 ATE
EA −(1/ρ)I

]

end if

xbest := ∅, f(xbest) := ∞
for random initialization 1, 2, . . . , N do

for iteration 1, 2, . . . ,M do

update x from (8)
if ∥Ax− b∥2 ≤ ϵtol and f(x) < f(xbest) then

xbest = x
end if

end for

end for
return xbest.

We mention a solution refinement technique here that
can be used to find a solution with possibly better
objective value after the algorithm stops. This technique,
sometimes known as polishing, consists of fixing the
nonconvex variable and solving the resulting convex
optimization problem. Using this technique, one may
use larger ϵtol during the N iterations and only reduce
ϵtol at the refinement step. Depending on the applica-
tion, it might be computationally sensible to solve the
resulting convex optimization problem. Another effective
technique is to introduce a notion of no-good cut during
iterations for problems with binary variables. A no-good
cut forces the vector of binary variables to change over
iterations, by appending the linear equality constraint
∑

i∈T xi −
∑

i∈F xi ≤ B − 1, to the minimization in
the first step of (6), where we have T = {i | xk

bi
= 1}

(i.e., T is the set of binary variables for which the last
iterate was 1), F = {i | xk

bi
= 0}, (i.e., F is the set of

binary variables for which the last iterate was 0), and B
is the number of elements of T . We do not use either of
these techniques in the following examples.

4

5622

III. NUMERICAL EXAMPLES

In this section, we explore the performance of our
proposed algorithm on some example problems. For each
example, ρ was chosen between 0.1 and 10 to yield good
performance; all other algorithm parameters were kept
constant. As a benchmark, we compare our results to the
commercial solver MOSEK, which can globally solve
MIQPs. All experiments were carried out on a system
with two 3.06 GHz cores with 4 GB of RAM.

The results suggest that this heuristic is effective
in finding approximate solutions for mixed integer
quadratic programs.

A. Randomly generated QP

First we demonstrate the performance of our algorithm
qualitatively for a random mixed-Boolean quadratic pro-
gram. The matrix P in (1) was chosen as P = QQT ,
where the entries of Q ∈ Rn×n, as well as those of q and
A, were drawn from a standard normal distribution. The
constant r was chosen such that the optimal value of the
unconstrained quadratic minimization is 0. The vector
b was chosen as b = Ax0, where x0 ∈ X was chosen
uniformly randomly, thus ensuring that the problem is
feasible. We used n = 200 and m = 50 with Xi = {0, 1}
for i = 1, . . . , 100, Xi = R+ for i = 101, . . . , 150, and
Xi = R for the other indices i.

We used MOSEK to find the optimal value for the
problem. After more than 16 hours MOSEK certifies that
the optimal value is equal to 2040. We ran algorithm
1 for 10 different initializations and 200 iterations for
each initialization, with step size ρ = 0.5. For a naive
implementation in MATLAB, it took 120 milliseconds
to complete all precomputations (preconditioning and
factorization), and 800 milliseconds to do all 2000
iterations. The best objective value found for the problem
was 2067 (1.3% suboptimal). Our implementation in C
enables us to solve sparse problems significantly faster.

One interesting observation is that the parameter ρ
tends to trade off feasibility and optimality: with small
values of ρ, the algorithm often fails to find a feasible
point, but feasible points found tend to have low objec-
tive value. On the other hand, with large values of ρ,
feasible points are found more quickly, but tend to have
higher objective value.

B. Hybrid vehicle control

We consider a simple hybrid electric vehicle drivetrain
(similar to that of [BV04, Exercise 4.65]), which consists
of a battery, an electric motor/generator, and a heat
engine, in a parallel configuration. We assume that the
demanded power P des

t at the times t = 0, . . . , T − 1

is known in advance. Our task is to plan out the
battery and engine power outputs P batt

t and P eng
t , for

t = 0, . . . , T − 1, so that

P batt
t + P eng

t ≥ P des
t .

(Strict inequality above corresponds to braking.)

The battery has stored energy Et at time t, which
evolves according to

Et+1 = Et − τP batt
t , t = 0, . . . , T − 1,

where τ is the length of each discretized time interval.
The battery capacity is limited, so that 0 ≤ Et ≤ Emax

for all t, and the initial energy E0 is known. We penalize
the terminal energy state of the battery according to
g(ET), where

g(E) = η(Emax − E)2,

for η ≥ 0.

At time t, the engine may be on or off, which is
modeled with binary variable zt. If the engine is on
(zt = 1), then we have 0 ≤ P eng

t ≤ Pmax, and
α(P eng

t)2 + βP eng
t + γ units of fuel are consumed, for

nonnegative constants α, β, and γ. If the engine is off
(zt = 0), it consumes no fuel, and P eng

t = 0. Because
zt ∈ {0, 1}, the power constraint can be written as
0 ≤ P eng ≤ Pmaxzt, and the fuel cost as f(P eng

t , zt),
where

f(P, z) = αP 2 + βP + γz.

Additionally, we assume that turning the engine on after
it has been off incurs a cost δ ≥ 0, i.e., at each time t,
we pay δ(zt − zt−1)+, where (·)+ denotes the positive
part.

The hybrid vehicle control problem can be formulated
as

minimize η(ET − Emax)2 +
∑T−1

t=0 f(P eng
t , zt)

+δ(zt − zt−1)+
subject to Et+1 = Et − τP batt

t

P batt
t + P eng

t ≥ P des
t

zt ∈ {0, 1},
(9)

where all constraints must hold for t = 0, . . . , T−1. The
variables are P batt

t , P eng
t , and zt for t = 0, . . . , T − 1,

and Et, for t = 1, . . . , T . In addition to the parameters
given above, we take z−1 to be a parameter denoting the
initial engine state.

We used the parameter values α = 1, β = 10,
γ = 1.5, δ = 10, η = 0.1, τ = 5, Pmax = 1,
Emax = E0 = 200, and z−1 = 0. The demanded power
trajectory P des

t is not shown, but can be obtained by

5

5623

0 10 20 30 40 50 60 70
0

100

200

0 10 20 30 40 50 60 70
-20

0

20

0 10 20 30 40 50 60 70
0

10

20

30

0 10 20 30 40 50 60 70
0

0.5

1

t

P
E
n
g

t
P

b
a
t
t

t
E

t
z
t

0 10 20 30 40 50 60 70
0

100

200

0 10 20 30 40 50 60 70
-20

0

20

0 10 20 30 40 50 60 70
0

10

20

30

0 10 20 30 40 50 60 70
0

0.5

1

t

P
E
n
g

t
P

b
a
t
t

t
E

t
z
t

Fig. 1: Engine power, battery power, battery energy, and engine on/off signals versus time. Left: the global
solution. Right: the solution found using ADMM (Algorithm 1).

summing the engine power and battery power in Figure
1. We ran the algorithm with ρ = 0.4 for 900 iterations
with primal optimality threshold ϵtol = 10−3. The global
solution found by MOSEK generates an objective value
of 139.52 and the best objective value with our algorithm
was 140.07. In Figure 1, we see that qualitatively, the op-
timal trajectory and the trajectory generated by ADMM
are very similar. Our implementation in C carries out
precomputations in 27 milliseconds. The total time for
all 900 iterations is 63 milliseconds, which gives each
iteration an average time of 70 microseconds. MOSEK
finds the first feasible point after 1 second, and it takes
about 15 seconds to find a point with the same quality
as found with our heuristic.

C. Signal decoding

We consider maximum-likelihood decoding of a mes-
sage passed through a linear multiple-input and multiple-
output (MIMO) channel. In particular, we have

y = Hx+ v,

where y ∈ Rp is the message received, H ∈ Rp×n is
the channel matrix, x ∈ Rn is the message sent, and the
elements of the noise vector v ∈ Rp are independent,
identically distributed Gaussian random variables. We
further assume that the elements of x belong to the signal

constellation {−3,−1, 1, 3}. The maximum likelihood
estimate of x is given by the solution to the problem

minimize ∥Hx̂− y∥2

subject to x̂i ∈ {− 3,−1, 1, 3}, i = 1, . . . , n,
(10)

where x̂ ∈ Rn is the variable.
We generate 1000 random problem instances with

H ∈ R2000×400 chosen from a standard normal distri-
bution. The uncorrupted signal x is chosen uniformly
randomly and the additive noise is Gaussian such that the

signal-to-noise ratio (SNR) is 8 dB. For such a problem
in embedded application, branch-and-bound methods are
not desirable due to their worst-case time complexity.
We run the heuristic with only one initialization, with
10 iterations to find xadmm. The average runtime for
each problem (including preprocessing) is 80 millisec-
onds, which is substantially faster than branch-and-
bound based methods. Our numerical experiments show
that in all test examples, the objective value found by
xadmm is no worse than the one found by xrlx. Also, we
see that in 95% of the cases, the bit error rate using our
heuristic was at least as good as the bit error rate (BER)
using relax and round.

IV. CONCLUSIONS

In this paper, we introduced an effective heuristic
for finding approximate solutions to convex quadratic
minimization problems over the intersection of affine and
nonconvex sets. Our heuristic is significantly faster than
branch-and-bound algorithms and has shown effective in
a variety of embedded problems including hybrid vehicle
control and signal decoding.

REFERENCES

[AB07] T. Achterberg and T. Berthold. Improving the Feasibility
Pump. Discrete Optimization, 4(1):77–86, 2007.

[ApS15] MOSEK ApS. TheMOSEKoptimization toolbox for
MATLAB manual. Version 7.1 (Revision 28), 2015.

[Bec14] A. Beck. Introduction to Nonlinear Optimization: The-
ory, Algorithms, and Applications with MATLAB, vol-
ume 19. SIAM, 2014.

[Bem15] A. Bemporad. Solving mixed-integer quadratic programs
via nonnegative least squares. 5th IFAC Conference on
Nonlinear Model Predictive Control, pages 73–79, 2015.

[BFL07] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility
pump heuristic for general mixed-integer problems. Dis-
crete Optimization, 4(1):63–76, 2007.

[BM99] A. Bemporad and M. Morari. Control of systems
integrating logic, dynamics, and constraints. Automatica,
35(3):407–427, 1999.

6

5624

[Bol13] D. Boley. Local linear convergence of the alternating
direction method of multipliers on quadratic or linear
programs. SIAM Journal on Optimization, 23(4):2183–
2207, 2013.

[BPC+11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein.
Distributed optimization and statistical learning via the
alternating direction method of multipliers. Foundations
and Trends in Machine Learning, 3(1):1–122, 2011.

[Bra10] A. M. Bradley. Algorithms for the Equilibration of Ma-
trices and their Application to Limited-Memory Quasi-
Newton Methods. PhD thesis, Stanford University, 2010.

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[CA06] M. Carrión and J. M. Arroyo. A computationally
efficient mixed-integer linear formulation for the thermal
unit commitment problem. IEEE Transactions on Power
Systems, 21(3):1371–1378, 2006.

[CPDB13] E. Chu, N. Parikh, A. Domahidi, and S. Boyd. Code
generation for embedded second-order cone program-
ming. In Proceedings of the 2013 European Control
Conference, pages 1547–1552, 2013.

[CPL09] IBM ILOG CPLEX. User’s manual for CPLEX. In-
ternational Business Machines Corporation, 46(53):157,
2009.

[CPM10] J. P. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes.
Scheduling of head-dependent cascaded hydro systems:
Mixed-integer quadratic programming approach. Energy
Conversion and Management, 51(3):524–530, 2010.

[CW13] R. Chartrand and B. Wohlberg. A nonconvex ADMM
algorithm for group sparsity with sparse groups. In Pro-
ceedings of IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 6009–
6013. IEEE, 2013.

[DBEY13] N. Derbinsky, J. Bento, V. Elser, and J. S. Yedidia.
An improved three-weight message-passing algorithm.
arXiv preprint arXiv:1305.1961, 2013.

[DCB13] A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP
solver for embedded systems. In Proceedings of the 12th
European Control Conference, pages 3071–3076. IEEE,
2013.

[DY12] W. Deng and W. Yin. On the global and linear con-
vergence of the generalized alternating direction method
of multipliers. Journal of Scientific Computing, pages
1–28, 2012.

[FDM15] D. Frick, A. Domahidi, and M. Morari. Embedded
optimization for mixed logical dynamical systems. Com-
puters and Chemical Engineering, 72:21–33, 2015.

[FGL05] M. Fischetti, F. Glover, and A. Lodi. The feasibil-
ity pump. Mathematical Programming, 104(1):91–104,
2005.

[FJ15] M. Fält and L. Jimbergsson. Using ADMM for hybrid
system MPC. 2015.

[GB14a] P. Giselsson and S. Boyd. Diagonal scaling in Douglas-
Rachford splitting and ADMM. In 53rd Annual IEEE
Conference on Decision and Control (CDC), pages
5033–5039, 2014.

[GB14b] P. Giselsson and S. Boyd. Preconditioning in fast dual
gradient methods. In 53rd Annual IEEE Conference on
Decision and Control (CDC), pages 5040–5045, 2014.

[GTSJ15] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson.
Optimal parameter selection for the alternating direction
method of multipliers (ADMM): Quadratic problems.
IEEE Transactions on Automatic Control, 60(3):644–
658, 2015.

[HL12] M. Hong and Z. Luo. On the linear convergence of
the alternating direction method of multipliers. arXiv
preprint arXiv:1208.3922, 2012.

[Hoc82] D. S. Hochbaum. Approximation algorithms for the set
covering and vertex cover problems. SIAM Journal on
Computing, 11(3):555–556, 1982.

[JGR+14] J. L. Jerez, P. J. Goulart, S. Richter, G. Constantinides,
E. C. Kerrigan, M. Morari, et al. Embedded online opti-
mization for model predictive control at megahertz rates.
IEEE Transactions on Automatic Control, 59(12):3238–
3251, 2014.

[Kar72] R. M. Karp. Reducibility Among Combinatorial Prob-
lems. Springer, 1972.

[LW66] E. L. Lawler and D. E. Wood. Branch-and-bound
methods: a survey. Operations Research, 14(4):699–719,
1966.

[LZD04] R. Li, D. Zhou, and D. Du. Satisfiability and integer
programming as complementary tools. In Proceedings
of the 2004 Asia and South Pacific Design Automation
Conference, pages 879–882, 2004.

[MB12] J. Mattingley and S. Boyd. CVXGEN: a code generator
for embedded convex optimization. Optimization and
Engineering, 13(1):1–27, 2012.

[MJSB12] N. Murgovski, L. Johannesson, J. Sjöberg, and B.Egardt.
Component sizing of a plug-in hybrid electric powertrain
via convex optimization. Mechatronics, 22(1):106–120,
2012.

[MWB11] J. Mattingley, Y. Wang, and S. Boyd. Receding horizon
control: Automatic generation of high-speed solvers.
IEEE Control Systems Magazine, 31(3):52–65, 2011.

[MWMA14] O. Makela, J. Warrington, M. Morari, and G. Anders-
son. Optimal transmission line switching for large-scale
power systems using the alternating direction method of
multipliers. In Power Systems Computation Conference
(PSCC), 2014, pages 1–6. IEEE, 2014.

[OCP07] D. Oulai, S. Chamberland, and S. Pierre. A new routing-
based admission control for MPLS networks. IEEE
Communications Letters, 11(2):216–218, 2007.

[OSB13] B. O’Donoghue, G. Stathopoulos, and S. Boyd. A
splitting method for optimal control. IEEE Transactions
on Control Systems Technology, 21(6):2432–2442, 2013.

[Pad73] M. W. Padberg. On the facial structure of set packing
polyhedra. Mathematical Programming, 5(1):199–215,
1973.

[PF07] L. G. Papageorgiou and E. S. Fraga. A mixed-integer
quadratic programming formulation for the economic
dispatch of generators with prohibited operating zones.
Electric Power Systems Research, 77(10):1292–1296,
2007.

[PS98] C. H. Papadimitriou and K. Steiglitz. Combinatorial
Optimization: Algorithms and Complexity. Courier Cor-
poration, 1998.

[Slu69] A. V. D. Sluis. Condition numbers and equilibration of
matrices. Numerische Mathematik, 14(1):14–23, 1969.

[SLY+14] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin. On
the linear convergence of the admm in decentralized
consensus optimization. IEEE Transactions on Signal
Processing, 62(7):1750–1761, 2014.

[SM99] R. A. Stubbs and S. Mehrotra. A branch-and-cut method
for 0-1 mixed convex programming. Mathematical
Programming, 86(3):515–532, 1999.

[Ull11] F. Ullmann. FiOrdOs: A Matlab toolbox for C-code
generation for first order methods. Master’s thesis, ETH
Zurich, 2011.

[WB10] Y. Wang and S. Boyd. Fast model predictive control
using online optimization. IEEE Transactions on Control
Systems Technology, 18(2):267–278, 2010.

[WN99] S. J. Wright and J. Nocedal. Numerical Optimization,
volume 2. Springer New York, 1999.

7

5625

