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Abstract— This paper proposes a stochastic model predictive
control (SMPC) approach to hedging derivative contracts (such
as plain vanilla and exotic options) in the presence of trans-
action costs. The methodology is based on the minimization of
a stochastic measures of the hedging error predicted for the
next trading date. Three different measures are proposed to
determine the optimal composition of the replicating portfolio.
The first measure is a combination of variance and expected
value of the hedging error, leading to a quadratic program
(QP) to solve at each trading date; the second measure is
the conditional value at risk (CVaR), a common index used
in finance quantifying the average loss over a subset of worst-
case realizations, leading to a linear programming (LP) for-
mulation; the third approach is of min-max type and attempts
at minimizing the largest possible hedging error, also leading
to a (smaller scale) linear program. The hedging performance
obtained by the three different measures is tested and compared
in simulation on a European call and a barrier option.

I. INTRODUCTION

For a financial institution, hedging a derivative contract
implies maintaining a self-financing portfolio of underlying
assets, whose quantities need to be readjusted periodically
so that at the expiration date of the contract the value of the
portfolio is as close as possible to the payoff value to be paid
to the customer.

The most common derivative contracts are plain vanilla
options: a European call (put) option gives the holder the
right to buy (sell) the underlying at a given expiration date
and at a determined strike price. A large number of other
more complex derivative contracts, called exotic options, are
nowadays traded on the market. An example of an exotic
option is the barrier option, a special kind of plain vanilla
contract whose payoff is zeroed as soon as the price of the
underlying asset reaches a certain barrier value.

Following the fundamental theoretical results of Black
and Scholes [1], an approach to dynamically rebalancing
the portfolio underlying an option that is commonly used in
practice is the so called delta hedging, according to which the
portfolio includes a quantity of stocks equal to the derivative
of the option price with respect to the price of the underlying
stock. Delta hedging makes the portfolio insensitive to the
indeterministic evolution of the stock price, under a series of
(often unrealistic) hypotheses including continuous hedging,
static volatility, and the absence of transaction costs. When
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applied in a real market context, such assumptions may lead
to intolerable hedging errors.

In [2] the hedging problem is tackled from a stochastic
model predictive control (SMPC) point of-view for a plain
vanilla option, for which a finite horizon constrained stochas-
tic control problem is formulated and iteratively solved at
each trading date as a semi-definite program for dynamic
hedging. SMPC can be seen as a suboptimal way of solving a
stochastic multi-stage dynamic programming problem: rather
than solving the problem for the whole option-life horizon, a
smaller problem is solved repeatedly from the current time-
step t up to a certain number N of time steps in the future
by suitably re-mapping the condition at the expiration date
into a value at time t+N .

In [3] and then in [4] analytic methods based on stochastic
optimization were proposed, the former to jointly determine
the option price and the optimal trading strategy that reduce
the total risk of writing the option, the latter formulating a
scenario-based stochastic control problem where an objective
function based on the expected value of a performance index
is maximized and scenarios are generated according to a
trinomial process. In [5] the hedging problem is formulated
as a linear quadratic control problem with constraints and
proposes two methods to cope with transaction costs. One
involves penalizing transaction costs in the objective func-
tion, so that the problem can be solved as an unconstrained
linear quadratic problem; the second method uses a reced-
ing horizon approach to solve a quadratic program over a
specified horizon, exploiting the LQR solution from the first
approach in the cost function.

In this paper we extend the SMPC approach to option
hedging introduced in our previous works [6], [7] to handle
proportional transaction costs. The approach is based on
a minimum variance criterion, that we show here to be
inadequate to handle transaction costs. Instead, we propose
here three different approaches, the first one based on the
scalarization of the multiobjective problem of minimizing
both the variance and the expected value of the hedging error;
the second on minimizing the Conditional Value at Risk
(CVaR), a very common index used in quantitative finance
for measuring the risk of great losses; the third one based on
the minimization of the maximum hedging error over the set
of scenarios considered in the stochastic optimization prob-
lem solved by the SMPC algorithm. The three approaches
lead to, respectively, a quadratic programming (QP), a linear
programming (LP), and a (smaller) LP problem to be solved
at each trading date. The three SMPC formulations are tested
and compared among them and to delta hedging on both
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plain vanilla and barrier exotic options.
The paper is structured as follows. In Section II we

formulate the SMPC problem for option hedging based on
enumeration of scenarios. In Section III we define transaction
costs and describe how they affect the evolution of the
portfolio. After formulating the SMPC problem, we focus on
proportional transaction costs and propose the three different
optimization objectives. Simulation tests on are reported in
Section IV for a European call and a barrier option. Some
concluding remarks are done in Section V.

II. SMPC FOR OPTION HEDGING

Consider the problem of hedging an option O defined over
n underlying assets, whose spot prices at time τ are si(τ),
i = 1, . . . , n. The simplest and most widely used model
to describe the dynamics of stock prices is the log-normal
model

dsi(τ) = (µdτ + σdzxi )si(τ) (1)

where zxi (τ) is a Wiener process, with zero mean and
variance dτ . More general models can be used to describe
price dynamics, such as Heston’s model [8]. In this paper,
we focus on the log-normal model (1), whose discrete-time
equivalent form is si(t + 1) = e(µ− 1

2σ
2)∆t+σ

√
∆tzsi (t)si(t),

where t denotes the trading instant, t = 0, 1, . . .. We denote
by s(t) = [s1(t) . . . sn(t)]′ ∈ Rn the overall vector of asset
prices.

In general, the option price p(t) of O at a generic instant t
is considered as the expected value of the payoff P(m(T )) at
expiration date in the risk-neutral measure, given the market
state m(t) at time t (m(t) = s(t) for plain vanilla options).
Denoting by T the maturity of an option O in terms of
number of sampling steps of duration ∆T , the price of
the hedged option at a generic intermediate date t∆T is
p(t) = (1 + r)t−N Ẽ [P(m(T ))|m(t)]. For European call
options the payoff is

P(m(T )) = p(T ) = max{s(T )−K, 0} (2)

while for “barrier” options

p(T ) =

{
max(s(T )−K, 0) if s(t) < su, ∀t ≤ T

0 otherwise

=

{
max(s(T )−K, 0) if s`(t) = 0

0 if s`(t) = 1
(3)

where su define the upper barrier level, and s`(t) ∈ {0, 1} is
a logic state with dynamics s`(t+1) = s`(t) OR [s(t) ≥ su],
s`(0) = 0 (in this case m(t) = {x(t), x`(t)}).

Assume that there are no transaction costs, and that the
standard self-financing condition holds, i.e., that the wealth
w(t) of the portfolio replicating option O is always totally
reinvested. Then, the dynamics of the wealth w(t) of the
portfolio is

w(t+ 1) = (1 + r)w(t) +

n∑

i=1

bi(t)ui(t) (4)

where ui(t) is the quantity of asset i held at time t and
bi(t) , si(t + 1) − (1 + r)si(t) is the excess return, i.e.

how much the asset gains (or loses) with respect to the risk-
free rate. The initial condition w(0) is set equal to the price
paid by the customer to purchase option O, w(0) = (1 +
r)−N Ẽ[p(T )|m(0)].

Dynamic hedging aims at making the final wealth w(T ) as
close as possible to p(T ) for all possible market realizations.
The hedging problem can be restated as a stochastic control
problem, where the wealth w(t) ∈ R represents the state and
output of the regulated process, the traded asset quantities
u(t) ∈ Rn are the inputs, the option price p(t) the target
reference for w(t). By defining the tracking error e(t) ,
w(t) − p(t), the objective can be restated as the one of
minimizing e(t) for all possible asset price realizations. As
shown in [6], [7], in the absence of transaction costs and
under the lack of arbitrage, a way to achieve this is to
minimize the variance of the hedging error

J(e(T )) = E
[
(e(T )− E[e(T )])2

]
(5)

by solving the one-step ahead minimum-variance problem

min
{u(t)}

Varmt+1
[w(t+ 1,mt+1)− p(t+ 1,mt+1)] (6a)

s.t. w(t+ 1,mt+1) = (1 + r)w(t)

+

n∑

i=0

bi(t,mt+1)ui(t) (6b)

at each trading date t∆T with respect to the portfolio
composition u(t). Note that expectations and variances are
conditioned to the particular market realization mt at time
t; we omit here the conditional notation for simplicity.
Furthermore, since now on we will use the notation w(t+1)
as a shortcut for the future wealth w(t + 1,mt+1). The
formulation in (6) is equivalent to a stochastic model predic-
tive control approach with prediction horizon N = 1, under
the terminal condition of perfect hedging between prediction
time t+N and expiration date T . Problem (6) can be solved
by enumerating a certain number M of scenarios, each one
corresponding to a different realization of a certain sequence
of prices, and optimize the resulting sample variance. Each
scenario j has probability πj of occurring, j = 1, . . . ,M ,
πj > 0, πj ≤ 1,

∑M
k=1 πj = 1. Scenarios can be generated

through Monte Carlo simulation [6], where πj = 1
M , or

by discretizing a given probability density function that
describes the disturbance process zi(t) [7]. Note that by
restricting the prediction horizon to N = 1, the number M of
considered scenarios can be quite large without incurring into
prohibitive computation efforts, as in multi-stage stochastic
programming appraches that typically limit M = 2 or 3.

By optimizing the sample variance of w(t+1)−p(t+1), in
the absence of transaction costs problem (6) can be rewritten
as the following least squares problem

min
u(t)

M∑

j=1

πj
(
wj(t+ 1)− pj(t+ 1)−

(
1

M

·
M∑

i=1

wi(t+ 1)− pi(t+ 1)

))2

(7)
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where wj(t + 1) = (1 + r)w(t) +
∑n
i=0 b

j
i (t)ui(t) are

the future wealths of the portfolio for each scenario j =
1, . . . ,M , and πj is the corresponding probability, πj ≥ 0,∑M
i=1 π

j = 1.
An option pricing engine is needed to compute the future

option prices p1(t + 1), . . ., pM (t + 1) over the generated
scenarios. This is the most time-consuming operation of
the entire algorithm when simple analytical formulas for
determining the option prices do not exist. In fact, numerical
pricing engines must be used, based on either Monte Carlo
simulation, or on other approximate methods such as the
method described in [9]. See [6], [7] for a comparison
of different pricing methods. In particular, [7] showed that
SMPC is superior to delta hedging when dealing with exotic
options and quite robust also to market modeling errors.

III. TRANSACTION COSTS

One often suffers transaction costs when trading as-
sets [10]. The investor pays a quantity hi(t) of wealth to
change the number of assets in the portfolio from ui(t−1) at
time t−1 to u(t) at time t, for each asset i. Such wealth hi(t)
is taken away from the overall wealth w(t) of the portfolio,
so that (4) becomes (cf. [11])

w(t+1) = (1+r)

(
w(t)−

n∑

i=1

hi(t)

)
+

n∑

i=1

bi(t)ui(t) (8)

Proposition 1: The variance of the hedging error e(t) =
w(t)− p(t) is not affected by transaction costs.

Proof: Let ω(t) =
∑n
i=1 hi(t) be the total transaction

cost paid at time t. As ω(t) is a deterministic function that
only depends on u(t) (it does not depend on s(t)), we get
E[w(t+1)−p(t+1)] = E[(1+r)w(t)+

∑n
i=1 bi(t)ui(t)−

p(t+1)−(1+r)ω(t)] = E[w0(t+1)−p(t+1)]−(1+r)ω(t),
where w0(t+1) is the wealth at time t+1 in the absence of
transaction costs. Therefore, while the expectation E[e(t+1)]
of the hedging error e(t+1) is affected by ω(t), its variance
Var[e(t+1)] is clearly not, as Var[e(t+1)] = E[(e(t+1)−
E[e(t + 1)])2] = E[(w0(t + 1) − p(t + 1) − (1 + r)ω(t) −
E[w0(t+ 1)− p(t+ 1)] + (1 + r)ω(t))2] = Var[w0(t+ 1)−
p(t+ 1)].

Proposition 1 has shown that the minimum variance crite-
rion (5) is therefore inadequate to handle transaction costs.

In the simplest case, transaction costs hi(t) are propor-
tional to the traded quantity of stock |ui(t)− ui(t− 1)|

hi(ui) = εi|ui(t)− ui(t− 1)|si(t) (9)

where the fixed quantity εi depends on commissions on
trading asset i, i = 1, . . . , n (we assume no costs are
applied on transacting the risk-free asset). Note that, from
a system theoretical viewpoint, transaction costs introduce
the additional state variable u(t− 1) ∈ Rn, whose dynamics
is simply a unit delay.

Piecewise affine transaction costs as in (9) make (8) a
hybrid dynamics, which can be expressed in piecewise affine
form [12], or in mixed logical dynamical (MLD) form [13].
To this end, introduce auxiliary variables δi(t) ∈ {0, 1}

[δi(t) = 1]↔ [ui(t)− ui(t− 1) ≥ 0] (10)

and qi(t) ∈ R

qi(t) =

{
ui(t)− ui(t− 1) if δi(t) = 1
0 otherwise (11)

By using the so-called “big-M” technique, (10) can be
translated into the mixed-integer linear inequalities

ui(t)− ui(t− 1) ≥ −Mi(1− δi(t)) (12a)
ui(t)− ui(t− 1) ≤ Miδi(t)− ε (12b)

and (11) into

qi(t) ≤ ui(t)− ui(t− 1) +Mi(1− δi(t)) (13a)
qi(t) ≥ ui(t)− ui(t− 1)−Mi(1− δi(t)) (13b)
qi(t) ≤ Miδi(t) (13c)
qi(t) ≥ −Miδi(t) (13d)

where Mi is an upperbound on |ui(t)− ui(t− 1)|, which is
the maximum allowed asset reallocation, and ε > 0 is a small
scalar (e.g., the machine precision). Eq. (8) can be therefore
rewritten in the following MLD form [13]

w(t+ 1) = (1 + r)(u0(t) +

−
n∑

i=1

(qi(t)− 2(ui(t)− ui(t− 1))))

+

n∑

i=1

si(t+ 1)ui(t) (14)

u(t− 1 + 1) = u(t) (15)
s.t. (12), (13) (16)

with states w(t), u(t−1), input u(t), auxiliary vector δ(t) =
[δ1(t) . . . δn(t)]′ ∈ {0, 1}n of binary variables, and auxiliary
vector q(t) = [q1(t) . . . qn(t)]′ ∈ Rn of continuous vari-
ables. By using the stochastic hybrid dynamical model (16),
the minimum variance problem (7) becomes a mixed-integer
quadratic programming (MIQP) problem, for which very
efficient solvers are available. When preparing the final
version of this paper, a related approach just appeared in [14].

Note that for options involving a single stock the number
n of assets is usually very small (n = 1 or n = 2), so
that the minimum variance problem with transaction costs
may be also solved by enumerating the possible 2n instances
of vector δ(t) and by solving the corresponding quadratic
programs (QP) (7) subject to ui(t) ≥ ui(t − 1) if the
corresponding δi(t) = 1, or ui(t) ≤ ui(t − 1) if δi(t) = 0,
for all i = 1, . . . , n. In the next section, we propose a more
efficient method that completely avoids introducing integer
variables.

A. Minimization of variance and expectation (QP-Var)

Let x(t), y(t) ∈ Rn two vectors whose i-th components
are nonnegative and defined as

xi(t)− yi(t) = ui(t)− ui(t− 1) (17)
xi(t) ≥ 0, yi(t) ≥ 0, ∀t = 0, . . . , T

Accordingly, the cost hi(t) for trading a quantity ui(t) −
ui(t − 1) of the i-th asset is hi(t) = εi(ui(t) − ui(t −
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1))si(t) = γi(t)(xi(t) − yi(t)), where γi(t) , εisi(t),
i = 1, . . . , n. We can therefore replace u(t) with the new
vector v(t) = [x′(t) y′(t)] ∈ R2n of decision variables

u(t) = [I − I]v(t) + u(t− 1) (18)

By (8), we express the vector of future hedging errors as


w1(t+ 1)− p1(t+ 1)

...
wM (t+ 1)− pM (t+ 1)


 = B(t)u+ (1 + r)

·







1
...
1


w(t) +



γ′(t)

...
γ′(t)


 (x− y)


−



p1(t+ 1)

...
pM (t+ 1)




= B(t)u+ Γ(t)(x− y) +D(t) (19)

where γ(t) = [γ1(t) . . . γn(t)]′, and the definition of B(t),
Γ(t), D(t) is obvious from (19). By substituting u(t) as
in (18), we get



w1(t+ 1)− p1(t+ 1)

...
wM (t+ 1)− pM (t+ 1)


 = Av(t)v(t) +Bv(t)

where Bv(t) , B(t)u(t − 1) + D(t) and Av(t) ,[
B(t) + Γ(t) −B(t)− Γ(t)

]
. The expected value of the

hedging error is therefore E[e(t+1)] = πAv(t)v(t)+πBv(t),
where π = [π1 . . . πM ], and its variance

Var[e(t+ 1)] = v′(t)H(t)v(t) + C ′(t)v(t) +D(t) (20)

where H(t), C(t), D(t) depend on π, Av(t), Bv(t) and it is
easy to verify that they do not depend on γ, in accordance
with Proposition 1.

In order to minimize both the variance and the expected
value of the one-step ahead hedging error, we optimize

min Var[e(t+ 1)] + α(E[e(t+ 1)])2 (21)
s.t. v(t) ≥ 0

where α ≥ 0 is a fixed scalar. Problem (21) is a QP problem
with 2n variables subject to nonnegativity constraints.

B. Minimization of conditional value at risk (LP-CVaR)

A drawback of the QP formulation (21) is that it re-
quires the calibration of the scalar α that best trades off
between variance (=risk) and expectation (=lack of hedging
accuracy due to transaction costs). Conditional Value at Risk
(CVaR) can be used as an alternative performance measure
to penalize the hedging error, and is defined as follows.
Let f(u, s) : Rn+k → R be a loss function associated
with the decision vector u ∈ Rn and with the random
vector s ∈ Rk. In our case u = u(t), s = m(t + 1),
f(u, s) = |e(t + 1)| (in case super-replication of the payoff
is not penalized, f(u, s) = −e(t + 1)). Let p(s) be the
probability density function of s. With respect to a given
probability β, 0 ≤ β ≤ 1, the β-VaR (Value at Risk) is
defined as the lowest value `, such that, with probability β,
the loss will not exceed `. The number β is a fixed value,

typically β = 90%, 95%, or 99%. The main drawback of
VaR is that the amount of loss occurring with probability
(1− β) is not taken into account directly. To avoid this, β-
CVaR was introduced, that is the conditional expectation of
the loss function above `, quantifying what the average loss
is when one loses more than `, with probability 1− β [15].

The probability of f(u, s) not exceeding the threshold `
is

ψ(u, `) =

∫

f(u,s)≤`
p(s)ds (22)

The β-VaR and the β-CVaR are defined, respectively, as

`β(u) = min{` ∈ R : ψ(u, `) ≥ β} (23)

and

φβ(u) = (1− β)−1

∫

f(u,s)≥`β(u)

f(u, s)p(s)ds (24)

In [15] the authors show that the β-CVaR of the loss
associated with any u can be determined by the formula

φβ(u) = min
`∈R

Fβ(u, `) (25)

where

Fβ(u, `) = `+ (1− β)−1

∫

s∈Rm
[f(u, s)− `]+p(s)ds (26)

and [·]+ denote the positive part of its argument, [f ]+ =
max{f, 0}. The integral in (26) can be approximated by
sampling the distribution of s, according to the density
function p(s). If the sampling generates a collection of
M vectors s1, . . . , sM , each of which has probability
πj of occurring, j = 1, . . . ,M , then the corresponding
approximation F̃β(u, `) is

F̃β(u, `) = `+
1

(1− β)

M∑

j=1

πj [f(u, sj)− `]+ (27)

Finally, we use CVaR to formulate the SMPC problem for
dynamic hedging:

min
u,`,{vj}Mj=1

`+
1

1− β
M∑

j=1

πjvj (28a)

s.t. vj ≥ wj(t+ 1)− pj(t+ 1)− ` (28b)
vj ≥ −wj(t+ 1) + pj(t+ 1)− ` (28c)
vj ≥ 0, j = 1, . . . ,M (28d)

where β is a fixed value, typically β = 90%, 95%, or 99%.
Problem (28) is an LP problem with M + n + 1 variables
and 3M constraints. Note that by removing constraint (28b)
onedoes not penalize super-replication of the payoff, as the
loss function becomes max{−e(t+ 1), 0}.
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C. Minimization of worst-case error (LP-MinMax)

A simpler approach than CVaR is to penalize the worst-
case loss over the set of M generated scenarios, that is the
largest absolute value |e(t + 1)| of the hedging error. The
resulting formulation is the linear program

min
u,`

` (29a)

s.t. ` ≥ wj(t+ 1)− pj(t+ 1) (29b)
` ≥ −wj(t+ 1) + pj(t+ 1) (29c)
` ≥ 0 (29d)

Note that the LP (29) is simpler than (28) as it only involves
n+ 1 variables and 2M + 1 constraints.

IV. SIMULATION RESULTS

We test the SMPC formulations for dynamic hedging of
Section II on a European plain vanilla call option and on
a barrier option. All simulations were run on a MacBook
Pro 2.66 GHz Intel Core 2 Duo processor and 4 Gb RAM
running MATLAB R2009b. The QP solver QUADPROG of
the Optimization Toolbox was used to solve QP problems,
while the solver GLPK [16] was used to solve LP problems.

We have tested the proposed three SMPC algorithms
under different scenario generation settings: M = 100 and
M = 1000 with Monte Carlo simulation (πi = 1

M , ∀i =
1, . . . ,M ), and M = 5 with πi obtained by discretizing a
Gaussian distribution of s(t + 1) as described in [7]. The
prediction horizon is N = 1, and ∆T = 1 week is the
time interval between two consecutive trading dates. The
option expires after T = 24 intervals, and ra = 4% is
the annualized continuously compounded interest rate so that
r = e0.04 1

54 − 1 = 0.00074102 is the return of the risk free
investment over ∆T .

We consider a single stock s1(t) with initial spot price
s1(0) = 100 e. For European call options (2), we consider
the strike price K = 100 e, while for barrier options, we
consider an UP-AND-OUT option with barrier xu = 120 e,
where the barrier level is checked only at trading instants.
The number of traded assets is n = 1 when only the
underlying stock is traded (when hedging the call option),
or n = 2 when also a European call option with expiration
at time T∆T and strike price s1(t)(1 + r)T−t is also traded
in the portfolio (when hedging the barrier option).

We consider the log-normal stock price model (1) with
µ = ra, dzx1 ∼ N (0, 1) and volatility σ = 0.5, and consider
only the nominal case, that is we assume the real market
generates prices according to the same model (see [7] for
hedging in the presence of market modeling errors, in the
absence of transaction costs).

A. European call option

We first test the SMPC algorithm on a European call
option, only trading the underlying stock and the risk free
asset (n = 1). The transaction cost to trade the underlying
stock is ε1 = 2.5%. The strategy is tested over Ns = 100
simulations.
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and

φβ(u) = (1 − β)−1

�

f(u,s)≥�β(u)

f(u, s)p(s)ds (26)

In [15] the authors show that the β-CVaR of the loss
associated with any u can be determined by the formula

φβ(u) = min
�∈R

Fβ(u, �) (27)

where

Fβ(u, �) = �+ (1 − β)−1

�

s∈Rm

[f(u, s) − �]+p(s)ds (28)

and [·]+ denote the positive part of its argument,

[f ]+

�
f if f ≥ 0

0 if f ≤ 0

The integral in (28) can be approximated by sampling the
distribution of s, according to the density function p(s). If the
sampling generates a collection of M vectors s1, . . . , sM ,
each of which has probability πj of occurring, j = 1, . . . ,M ,
then the corresponding approximation F̃β(u, �) is

F̃β(u, �) = �+
1

(1 − β)

M�

j=1

πj [f(u, sj) − �]+ (29)

Finally, we use CVaR to formulate the SMPC problem for
dynamic hedging:

min
u,�,{vj}M

j=1

�+
1

1 − β

M�

j=1

πjvj (30a)

s.t. vj ≥ wj(t + 1) − pj(t + 1) − � (30b)
vj ≥ −wj(t + 1) + pj(t + 1) − � (30c)
vj ≥ 0, j = 1, . . . ,M (30d)

Problem (30) is an LP problem with M + n + 1 variables
and 3M constraints. Note that by removing constraint (30b)
one does not penalize super-replication of the payoff, as the
loss function becomes max{−e(t + 1), 0}.

C. Minimization of worst-case error (LP-MinMax)

A simpler approach than CVaR is to penalize the worst-
case loss over the set of M generated scenarios, that is the
largest absolute value |e(t + 1)| of the hedging error. The
resulting formulation is the linear program

min
u,�

� (31a)

s.t. � ≥ wj(t + 1) − pj(t + 1) (31b)
� ≥ −wj(t + 1) + pj(t + 1) (31c)
� ≥ 0 (31d)

Note that the LP (31) is simpler than (30) as it only involves
n + 1 variables and 2M + 1 constraints.

IV. SIMULATION RESULTS

We tests the SMPC formulations for dynamic hedging of
Section II on a European call option and on a barrier option.
All simulations were run on a MacBook Pro 2.66 GHz Intel
Core 2 Duo processor and 4 Gb RAM running MATLAB
R2009b. The QP solver QUADPROG of the Optimization
Toolbox was used to solve QP problems, while the solver
GLPK [16] was used to solve LP problems.

We have tested the proposed three SMPC algorithms
under different scenario generation settings: M = 100 and
M = 1000 with Monte Carlo simulation (πi = 1

M , ∀i =
1, . . . ,M ), and M = 5 with πi obtained by discretizing a
Gaussian distribution of s(t + 1) as described in [3]. The
prediction horizon is N = 1, and ∆T = 1 week is the time
interval between two consecutive rebalances of the portfolio.
The option expires after T = 24 intervals, and ra = 4% is
the annualized continuously compounded interest rate so that
r = e0.04 1

54 − 1 = 0.00074102 is the return of the risk-free
investment over ∆T . The strategy was tested over Ns = 100
simulations.

We consider a single stock s1(t) with initial spot price
s1(0) = 100 e. For European call options (4), we consider
the strike price K = 100 e, while for barrier options, we
consider an UP-AND-OUT option with barrier xu = 140 e,
where the barrier level is checked only at trading instants.
The number of traded assets is n = 1 when only the
underlying stock is traded ( when hedging the call option),
or n = 2 when also a European call option with expiration
at time T∆T and strike price s1(t)(1+ r)T−t is also traded
in the portfolio (when hedging the barrier option).

We only take into account the log-normal stock price
model (1) with µ = ra, dz1 ∼ N (0, 1) and volatility
σ = 0.5, and consider only the nominal case, that is we
assume the real market generates prices according to the
same model (see [3] for hedging in the presence of market
modeling errors, in the absence of transaction costs).

A. European call option

We first test the SMPC algorithm on a European call
option, only trading the underlying stock and the risk free
asset (n = 1). The transaction cost to trade the underlying
stock is �1 = 2.5%.

1) QP-Var formulation: Consider the method based on
QP described in Section III-A, where problem (23) is solved
at Step 3. of Algorithm II.1 instead of (9). We first need
to calibrate the relative weight α between variance and
expectation of the hedging error. To this end, we run a set of
Ns simulations with three different values of M (predicted
scenarios): M = 100 (πj = 1

100 ), M = 1000 (πj = 1
1000 ),

and M = 5 (πi is obtained by sampling the Gaussian
function). Different values of α are tested to analyze the
variance and expected absolute value of the final hedging
error e(T ), see Figure 1.

It is apparent from Figure 1 that the best trade-off between
variance and expected absolute hedging error is obtained
for α ≈ 0.25. The simulation is then carried out with this
value. The results for this method are shown in the first row
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Model Monte Carlo M = 100 Monte Carlo M = 1000 discretized Gaussian M = 5

E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s)
QP-Var -2.10 2.43 -14.91 8.11 0.0247 -1.81 2.56 -12.30 10.81 0.0453 -1.64 2.69 -12.87 11.42 0.022
LP-CVaR -2.67 3.83 -7.55 16.69 0.0067 -1.14 2.38 -5.99 7.13 0.6671 -1.31 2.65 -7.009 8.68 0.001
LP-MinMax -2.67 3.83 -12.1352 16.69 0.0067 -1.02 2.42 -6.4 7.93 0.31 -1.31 2.65 -7.008 8.68 0.001

TABLE I
SMPC RESULTS FOR THE EUROPEAN CALL OPTION

Model LS M = 100 LS M = 5 LS M = 1000

E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s)
QP-Var -2.86 16.59 -44.26 470.49 0.1032 -1.38 13.59 -53.47 368.38 0.0930 1.15 8.18 -63.35 578.69 0.269
LP-CVaR -1.45 3.53 -23.30 30.92 0.084 -1.34 2.97 -23.37 22.89 0.0846 -1.50 3.64 -23.15 31.91 1.13
LP-MinMax 1.39 3.43 -23.36 30.41 0.0826 -1.34 2.97 -23.37 22.89 0.0664 -1.30 3.24 -22.20 26.69 0.5864

TABLE II
SMPC RESULTS FOR THE BARRIER OPTION
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Fig. 1. The calibration graphical phase based on the plots of the final
variance and the final expected hedging error

of Table I. We can see that by increasing the number of
scenarios in the prediction step, the maximum hedging error
[−min(e(T ))] is smaller, while the expected absolute value
[E[|e(T )|]] remains similar.

2) LP-CVaR and LP-MinMax formulations: The last two
rows of Table I highlight the performances of the two
proposed LP formulations, where either the LP (30) with
β = 0.99 or the LP (31) is solved at Step 3. of Algorithm II.1
instead of (9).

Var[e(T )]

E[e(T )]

One may first notice that the two LP formulations lead
to the same results when M = 100 scenarios generated
by Monte Carlo simulation or M = 5 scenarios obtained
by sampling the Gaussian distribution are considered. The
explanation for this is that calculating the CVaR as described
in Section III-B) on a class of 100 samples with β = 0.99
exactly corresponds to considering the worst case within the
entire group of scenarios, as in the minmax approach. When
the number of scenarios is increased to M = 1000, im-
provements of LP-CVaR compared to LP-MinMax become
more evident (in terms of both expected absolute value of

the hedging error and variance), although CPU time of LP-
CVaR is larger as expected. A plot of the final value of the
portfolio against the final option value is shown in Figure 2.
Note that, differently from the case of absence of transaction
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Fig. 2. Payoff function p(T ) and final wealth w(T ) (e) for the LP-MinMax
approach with discretization of the density function

costs, the final wealth of the portfolio, does not track exactly
the payoff function.

B. Barrier option

Since the value of a barrier option is much lower than the
corresponding call option, we have decreased the transaction
costs at 2% of the underlying price to test the SMPC
algorithms. Pricing of future option values is made by using
Longstaff-Schwartz’s (LS) approximation [9]. We have tested
the SMPC strategy with M = 100, M = 1000, and M = 5
scenarios; in the last case discretization of the Gaussian
distribution is used to compute probabilities πj’s.

We have run Ns = 50 simulations for each setting. With
M = 5 the LP-MinMax and LP-CVaR approaches provide
the same results, while the QP-Var method did not perform
satisfactorily, leading to large hedging errors (see Table II).

Longstaff-Schwartz’s method with 1000 scenarios leads to
a lower hedging error with respect to the approaches based

Model Monte Carlo M = 100 Monte Carlo M = 1000 discretized Gaussian M = 5

E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s)
QP-Var -2.10 2.43 -14.91 8.11 0.0247 -1.81 2.56 -12.30 10.81 0.0453 -1.64 2.69 -12.87 11.42 0.022
LP-CVaR -2.67 3.83 -7.55 16.69 0.0067 -1.14 2.38 -5.99 7.13 0.6671 -1.31 2.65 -7.009 8.68 0.001
LP-MinMax -2.67 3.83 -12.1352 16.69 0.0067 -1.02 2.42 -6.4 7.93 0.31 -1.31 2.65 -7.008 8.68 0.001

TABLE I
SMPC RESULTS FOR THE EUROPEAN CALL OPTION

Model LS M = 100 LS M = 5 LS M = 1000

E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s)
QP-Var -2.86 16.59 -44.26 470.49 0.1032 -1.38 13.59 -53.47 368.38 0.0930 1.15 8.18 -63.35 578.69 0.269
LP-CVaR -1.45 3.53 -23.30 30.92 0.084 -1.34 2.97 -23.37 22.89 0.0846 -1.50 3.64 -23.15 31.91 1.13
LP-MinMax 1.39 3.43 -23.36 30.41 0.0826 -1.34 2.97 -23.37 22.89 0.0664 -1.30 3.24 -22.20 26.69 0.5864

TABLE II
SMPC RESULTS FOR THE BARRIER OPTION
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Fig. 1. The calibration graphical phase based on the plots of the final
variance and the final expected hedging error

of Table I. We can see that by increasing the number of
scenarios in the prediction step, the maximum hedging error
[−min(e(T ))] is smaller, while the expected absolute value
[E[|e(T )|]] remains similar.

2) LP-CVaR and LP-MinMax formulations: The last two
rows of Table I highlight the performances of the two
proposed LP formulations, where either the LP (30) with
β = 0.99 or the LP (31) is solved at Step 3. of Algorithm II.1
instead of (9).

Var[e(T )]

E[e(T )]

One may first notice that the two LP formulations lead
to the same results when M = 100 scenarios generated
by Monte Carlo simulation or M = 5 scenarios obtained
by sampling the Gaussian distribution are considered. The
explanation for this is that calculating the CVaR as described
in Section III-B) on a class of 100 samples with β = 0.99
exactly corresponds to considering the worst case within the
entire group of scenarios, as in the minmax approach. When
the number of scenarios is increased to M = 1000, im-
provements of LP-CVaR compared to LP-MinMax become
more evident (in terms of both expected absolute value of

the hedging error and variance), although CPU time of LP-
CVaR is larger as expected. A plot of the final value of the
portfolio against the final option value is shown in Figure 2.
Note that, differently from the case of absence of transaction
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Fig. 2. Payoff function p(T ) and final wealth w(T ) (e) for the LP-MinMax
approach with discretization of the density function

costs, the final wealth of the portfolio, does not track exactly
the payoff function.

B. Barrier option

Since the value of a barrier option is much lower than the
corresponding call option, we have decreased the transaction
costs at 2% of the underlying price to test the SMPC
algorithms. Pricing of future option values is made by using
Longstaff-Schwartz’s (LS) approximation [9]. We have tested
the SMPC strategy with M = 100, M = 1000, and M = 5
scenarios; in the last case discretization of the Gaussian
distribution is used to compute probabilities πj’s.

We have run Ns = 50 simulations for each setting. With
M = 5 the LP-MinMax and LP-CVaR approaches provide
the same results, while the QP-Var method did not perform
satisfactorily, leading to large hedging errors (see Table II).

Longstaff-Schwartz’s method with 1000 scenarios leads to
a lower hedging error with respect to the approaches based

Fig. 1. Final variance Var[e(T )] and expectation E[e(T )] of the hedging
error, for calibration of parameter α in (21)

1) QP-Var formulation: Consider the method based on
QP described in Section III-A, where problem (21) is solved
instead of (7). We first need to calibrate the relative weight
α between variance and expectation of the hedging error. To
this end, we run a set of Ns simulations with three different
values of M (predicted scenarios): M = 100 (πj = 1

100 ),
M = 1000 (πj = 1

1000 ), and M = 5 (πi is obtained by
sampling the Gaussian function). Different values of α are
tested to analyze the variance and expected absolute value of
the final hedging error e(T ). It is apparent from Figure 1 that
the best trade-off between variance and expected absolute
hedging error is obtained for α ' 0.25, which is the value
selected to carry out the simulations. The results for this
method are shown in the first row of Table I. We can see
that by increasing the number of scenarios in the prediction
step, we obtain a reduction of the maximum hedging error.
The discretization leads to some minor savings of CPU time,
but the remaining performance get worse.

2) LP-CVaR and LP-MinMax formulations: The last two
rows of Table I highlight the performance of the two
proposed LP formulations, where either the LP (28) with
β = 0.99 or the LP (29) is solved instead of (7).

One may first notice that the two LP formulations lead to
the same results when M = 100 scenarios are generated
by Monte Carlo simulation, or when M = 5 scenarios
are selected by sampling the Gaussian distribution. The
explanation for this is that calculating the CVaR as described
in Section III-B) on a class of 100 samples with β = 0.99
exactly corresponds to considering the worst case within the
entire group of scenarios, as in the minmax approach. When
the number of scenarios is increased to M = 1000, im-
provements of LP-CVaR compared to LP-MinMax become
more evident (in terms of both expected absolute value of
the hedging error and variance), although CPU time of LP-
CVaR is larger (as expected). In the last row of Table I the
results obtained with delta hedging on the same option are
shown. We can see that for plain vanilla options this last
method outperforms the SMPC approach.
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Model Monte Carlo M = 100 Monte Carlo M = 1000 discretized Gaussian M = 5

E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s)
QP-Var -2.30 2.73 -14.91 12.13 0.0247 -1.81 2.56 -12.30 10.81 0.0453 -1.64 2.69 -12.87 11.42 0.022
LP-CVaR -1.34 2.58 -7.55 8.18 0.0067 -1.14 2.38 -5.99 7.13 0.6671 -1.31 2.65 -7.00 8.68 0.001
LP-MinMax -2.67 3.83 -12.13 16.69 0.0067 -1.02 2.42 -6.49 7.93 0.31 -1.31 2.65 -7.00 8.68 0.001
Delta Hedging -0.1312 1.77 -5.4 4.84 0.00012 -0.1312 1.77 -5.4 4.84 0.00012 -0.1312 1.77 -5.4 4.84 0.00012

TABLE I
SMPC RESULTS FOR THE EUROPEAN CALL OPTION

Model LS M = 100 LS M = 5 LS M = 1000

E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s) E[e(T )] E[|e(T )|] min(e(T )) Var[e(T )] CPU(s)
QP-Var -2.19 6.85 -42.76 104.78 0.09 -1.06 3.82 -11.30 25.44 0.08 -1.65 10.82 -40.14 228.19 0.2001
LP-CVaR -0.72 1.29 -12.16 7.14 0.38 -0.70 1.37 -13.63 8.55 0.08 -0.65 1.27 -11.73 6.85 0.1203
LP-MinMax -0.72 1.29 -12.16 7.14 0.38 -0.70 1.37 -13.63 8.55 0.08 -0.72 1.33 -12.44 7.40 0.1223
Delta Hedging -0.70 1.79 -16.14 13.61 0.0041 -0.70 1.79 -16.14 13.61 0.0041 -0.70 1.79 -16.14 13.61 0.0041

TABLE II
SMPC RESULTS FOR THE BARRIER OPTION

B. Barrier option

Since the value of a barrier option is much lower than the
corresponding call option, we have decreased the transaction
costs at 1.5% of the underlying price to test the SMPC
algorithms. Pricing of future option values is made by using
Longstaff-Schwartz’s (LS) approximation [9], as well as by
using Monte Carlo simulation. A number M = 100 of future
scenarios is considered in both cases, and compared to the
case of M = 5 scenarios obtained by sampling the Gaussian
distribution. In the first case the approximation method of
Longstaff and Schwartz is used to price future option values,
in the latter Monte Carlo simulation is used.

We have run Ns = 50 simulations for each setting. Since
we have carried simulation only with 100 or 5 scenarios,
the LP-MinMax and LP-CVaR approaches provide the same
results. In the case of discretized Monte Carlo, each one of
the three models exhibits an identical performance, although
CPU time is different. Longstaff-Schwartz’s method with
100 scenarios leads to a lower hedging error with respect
to the approaches based on M = 5 scenarios weighted by
the corresponding discretized probabilities, as reported in
Table II. We can see that for exotic options delta hedging
(whose performances are reported in the last row of Table II)
provides worse results than the proposed SMPC algorithm. In
conclusion, Longstaff-Schwartz’s option pricing method with
M = 100 scenarios is the best approach in terms of expected
absolute hedging error and variance, and in particular the
LP-MinMax approach, showing a comparable performances
but a lower computational effort. The largest hedging errors
happen when the stock price gets close to the barrier without
overpassing it, as hedging becomes particularly difficult
because of the discontinuity of the payoff function.

V. CONCLUSIONS

SMPC is a suitable trading strategy for replicating finan-
cial options in the presence of transaction costs. Each one of
the three proposed approaches (QP-Var, LP-CVaR, and LP-
MinMax), SMPC shows good hedging performance, but only
outperforms the traditional delta hedging technique when
applied on exotic options. When CPU time is a concern,
LP-MinMax is probably the best candidate formulation for

SMPC, as it provides acceptable performance while involv-
ing only a small number of variables, and without requiring
the calibration of the tradeoff parameter α as in QP-Var.
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