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Abstract— This paper illustrates the use of stochastic model
predictive control (SMPC) for power management in vehicles
equipped with advanced hybrid powertrains. Hybrid vehicles
use two or more distinct power sources for propulsion, and
their complex powertrain architecture requires the coordination
of all the subsystems to achieve target performances in terms
of fuel consumption, driveability, component life-time, exhaust
emissions. Many control strategies have been presented and
successfully applied, mainly based on heuristics or rules and
tuned on certain reference drive cycles. To take into account
that cycles are not exactly known a priori in driving routine,
this paper proposes a stochastic approach for the power man-
agement problem. We focus on a series hybrid electric vehicle
(HEV), which combines an internal combustion engine and an
electric motor. The power demand from the driver is modeled
as a Markov chain estimated on several driving cycles and
used to generate scenarios in the SMPC law. Simulation results
over a standard driving cycle are presented to demonstrate the
effectiveness of the proposed stochastic approach and compared
with other deterministic approaches.

I. INTRODUCTION

Increasing fuel economy and reducing greenhouse gas pol-

lution have become a clear target of national policies, as

announced in 2009 by the President of the United States.

Achieving such a target has set an urgent need for advanced

powertrain systems and for clean power sources, and a

significant increase in electrification in vehicles is expected.

Pure electric vehicles, developed for zero emissions, have

limited capabilities, mainly due to their short driving range.

Instead, Hybrid Electric Vehicles (HEVs) are a viable and

alternative choice in the near term due to their improved fuel

efficiency and lower emissions, while ensuring vehicle per-

formance and driving requirements. However, contrarily to

vehicles with a single power source, HEVs require new high-

level control strategies to optimally use two or more power

sources, dealing with complex configurations and operating

modes. The performance of HEVs is tightly dependent on

the power management strategies used to control the power

flow between the different subsystems. This paper considers

the problem of optimally splitting the power demand of

the driver among the electric power source and the internal

combustion engine (ICE) in a series HEV [1]–[4] schema-

tized in Figure 1. Recent research efforts mostly focus on

power split optimization for fuel economy, while satisfying
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Fig. 1. Series hybrid configuration

constraints such as driveability, charge sustainability, and

component reliability. Most of the existing techniques rely

on knowing the future power demand to set up deterministic

dynamic programming (DDP) problems [1], or rule-based

(RB) algorithms [2]. Even though these techniques have

been already tested in real vehicles with good results, they

suffer a few drawbacks. Both RB and DDP strongly depend

on the specific driving cycle used for their tuning, and

might be neither optimal nor charge-sustaining under other

cycles. Other approaches do not rely on the specific power

demand profile. Stochastic dynamic programming (SDP)

exploits a probabilistic distribution of the power demand

obtained from many driving cycles [5]–[7]. However due to

the large computation time needed to compute the control

law, it can never be updated to accommodate changes in

the power demand probability distribution. Instead of opti-

mizing the entire driving cycle, which is not assumed to be

known in advance, hybrid Model Predictive Control (MPC)

strategies repeatedly optimize the decision on-line over short

and receding future time horizons to coordinate powertrain

subsystems and enforce pointwise-in-time state and control

constraints [8].

This paper extends the last approach by developing a

stochastic model predictive control (SMPC) algorithm for

power management, with the goal of optimizing the way

a HEV splits its overall power demand among its power

sources, while fulfilling bounds on the state of charge of

the battery and on the power availability. The underlying

assumption of this approach is that the power requested from

the driver is represented by a Markov model. Instead of

optimizing over driving cycle known a priori, the SMPC

strategy optimizes over a distribution of future requested

power demand, given the current one, at each sample time.

SDP solves instead a single infinite-horizon optimization
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Fig. 2. Power management scheme

problem over a family of random driving cycles in an average

sense. The advantage of using SMPC with respect to SDP is

that SMPC optimization is feasible in real time [9], since it

is based on quadratic programming (QP). As a consequence,

the stochastic description of the system through a Markov

model can be constantly updated on line by measuring

driver’s power requests, using for instance the algorithms

presented in [10]. In this way the probability distribution

will relate more to the particular driver and to the real daily

use of the vehicle.

The paper is organized as follows: Section II describes

the series HEV configuration, and proposes a mathematical

model for optimization purposes. Section III illustrates the

stochastic modeling of the power demand. The stochastic

model predictive control approach is introduced in Sec-

tion IV, followed in Section V by the frozen-time (no

information about future power demand), and prescient (full

information about future power demand) MPC approaches.

Section VI presents simulation results comparing the SMPC

power management with frozen-time (FTMPC) and prescient

(PMPC) approaches. Conclusions are drawn in Section VII.

II. POWERTRAIN MODEL

A. Series hybrid vehicle

The hybrid vehicle model used in this work derives from

a simplified series hybrid vehicle model, which is part of

the QSS toolbox [11]. The topology of the powertrain under

study is the one represented in Figure 1. In the series

configuration the internal combustion engine (ICE) powers

an electric generator, which converts the mechanical power

into electrical power. The generator feeds an electrical bus,

where also the battery and the electric motor that drives the

wheels are connected. The electrical bus allows the power

flow between engine, motor and battery. Compared to the

powersplit configuration, where the power flow coupling in-

volves mechanical powers and is obtained by a planetary gear

set, the electrical bus of the series configuration has a higher

efficiency [5]. On the other hand the mechanical power must

be always converted to electrical power, with consequent

power losses. Nonetheless, the series HEV configuration is

an interesting candidate for implementation, and in particular

is well suited for plug-in and fuel cells hybrid vehicles [7].

B. Prediction model

As a prediction model for the MPC control problem, we

consider the simplified powertrain scheme represented in

Figure 2,

where Preq(k) is the total requested power that must

be generated by the powertrain at the current sample step

k, Pmec(k), Pel(k) are the mechanical and the electric

powers supplied by the ICE and the battery, respectively, and

∆P (k) = Pmec(k)−Pmec(k−1) is the step-to-step variation

of the mechanical power. The state of charge SoC(k) of the

battery is normalized with respect to the battery capacity

(SoC(k) = 1 fully charged, SoC(k) = 0 fully discharged),

and it is modeled as the integrator

SoC(k + 1) = SoC(k) −KTPel(k) , (1)

where T = 1 s is the sampling time and K > 0 is a scalar

parameter identified for a generic battery for hybrid cars. In

this model, ∆P is the only controlled variable, while Preq is

an exogenous input given by the driver (i.e., a measured dis-

turbance). The control strategy based on gradual mechanical

power variations allows for reducing the complexity of the

model and control strategy and for formulating a problem as

a QP [3]. Furthermore, this approach allows one to consider

the engine efficiency as a function of power only. In order

to improve fuel consumption we use the main advantage of

the series configuration, that is the mechanical decoupling

between the engine and the drive axle. Once the desired

mechanical power is determined, the engine operating point

in terms of engine speed and torque is selected to be the

most efficient for that desired power, i.e.

[τ(k), ω(k)] = f (Pmec(k)) ,

where f is the function that relates the mechanical power

desired with the optimal engine operating point in terms

of torque (τ) and engine speed (ω) and that account for

power losses of the gear and generator. A low level controller

regulates the engine to operate at that point. Hence the

engine operates along the optimal power curve, except for the

transients from one power level to another. However, if the

variations of the mechanical power are limited and smooth

over time, the transients are short and the engine operates

almost always along the optimal curve. Further benefits of

this strategy are the reduced power losses caused by the

inertia of the engine.

By imposing limited power variations, we can restrict our

attention to the efficiency of the engine as the optimal power

curve, hence obtaining a one-dimensional engine efficiency

map as a function of the ICE power. Linear or quadratic ap-

proximations of this map are possible, allowing the obtained

optimization problem to be feasible for real-time solution.

In this paper a quadratic approximation of the inverse of the

efficiency is used

Jη−1(Pmec) = φ(Pmec − P ∗)2 + γ , (2)

in order to minimize losses, where φ = 5.70·10−5, γ = 4.12·
10−2 and P ∗ = 15.87 kW are estimated scalar parameters

(see Figure 3). Hence the corresponding linear system is

{

x(k + 1) = Ax(k) +B1∆P (k) +B2Preq(k)
y(k) = Cx(k) +D1∆P (k) +D2Preq(k)

(3)
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Fig. 3. Quadratic approximation Jη−1 (red dashed line) of the inverted

efficiency 1

η
(blue solid line) as a function of the ICE power Pmec

where x(k) = [SoC(k) Pmec(k − 1)]′ is the state,

u(k) = [∆P (k) Preq(k)]
′ is the input, y(k) = Pel(k) is the

output, and

A =

[

1 KT

0 1

]

, B1 =

[

KT

1

]

, B2 =

[

−KT

0

]

,

C = [0 − 1] , D1 = −1 , D2 = 1 .
(4)

In (3)–(4) the electric power is defined as

Pel(k) = Preq(k)− Pmec(k), ∀k ≥ 0. (5)

This implies that the controller is always supposed to enforce

the power at wheels Pmec(k) + Pel(k) to be equal to the

requested power Preq(k). This underlying assumption is not

seen as a restriction since it is a fundamental requirement

for the powertrain operation.

In order to guarantee a prolonged battery life and to respect

electro-mechanical limitations, the state, manipulated input

and output of system (3) are subject to the constraints x(k) ∈
X, ∆P (k) ∈ U, Pel(k) ∈ Y, ∀k ≥ 0, where

X , {x : SoCmin ≤ [1 0]x ≤ SoCmax,

0 ≤ [0 1]x ≤ Pmec,max} , (6a)

U , [∆Pmin, ∆Pmax] , (6b)

Y , [Pel,min, Pel,max] . (6c)

III. STOCHASTIC MODELING OF POWER REQUEST

The power requested by the driver Preq is an input to

the SMPC controller. Roughly speaking when the driver

presses the throttle and the brake pedal these commands

are interpreted as a power demand to the controller, that

can be positive or negative. In model (3), we assume that

the evolution of the requested power Preq(k) is driven by

a discrete-time stochastic process. Unlike other approaches

as DDP that exploit the knowledge of the driving cycle and

therefore of the complete sequence of the power demand,

we model the requested power as a Markov chain [5],

[12]. This model is used to generate an estimated future

power request, which is assumed to take a finite number

of values Preq ∈ {z1, z2, . . . , zs}. A discrete set of s values

is used to approximate the actual continuum of values of

requested power. The Markov Chain is defined by a transition
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Fig. 4. Transition probability matrix

probability matrix TM ∈ R
s×s such that

tij = P[Preq(k + 1) = zj |Preq(k) = zi] , (7)

where Preq(k) is the state of the Markov chain at time k,

tij is the (i, j)-th element of TM , and P[a] indicates the

probability of the event a.

Specifying driving-cycle characteristics is equivalent to

specifying the transition probabilities tij . Transition prob-

abilities can be estimated from known cycles, such as past

driving records and standard driving cycles. In this paper we

estimate the number of states s, the transition probabilities

tij , and the power values zi from standard driving cycles

selected to represent mixed city, suburban, and highway

driving. From the speed profile, Preq is calculated through

the quasi-static vehicle model. Transition probabilities are

simply estimated by means of frequency analysis, where the

observation data are counted as tij =
mij

mi
, where mij is

the number of occurrences of the transition from zi to zj
and mi =

∑s

j=1 mij , is total number of times that zi has

occurred. The number s = 16 is selected to trade-off between

the quality of the approximation and the complexity of

the Markov chain. The estimated transition probabilities are

shown in Figure 4, where it is evident a diagonal dominance.

However, as shown later, modeling a non zero probability to

change the power demand in prediction allows to improve

the overall performance compared to a purely deterministic

approach.

IV. STOCHASTIC MODEL PREDICTIVE CONTROL DESIGN

Model predictive control (MPC) is a popular strategy

which has been widely adopted in industry as an effective

means of dealing with multivariable constrained control

problems [13]. The idea behind MPC is to obtain the control

signal by solving at each sampling time an open-loop finite-

horizon optimal control problem based on a given prediction

model of the process, by using the current state of the

process as the prediction initial state. The control inputs are

implemented in accordance with a receding horizon scheme.

Classical MPC formulations do not provide a systematic way
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to deal with model uncertainties and disturbances, which are

often completely neglected in the prediction model. Robust

MPC schemes that deal with the presence of disturbances

are mostly based on the min-max approach, where the per-

formance index to be minimized is computed over the worst

possible disturbance realization [14]. However, on one hand

nominal controllers which neglect the effect of disturbance

may lead to poor performances when implemented in real

processes, on the other hand, robust controllers provide a

control law which is often too conservative.

In recent years stochastic MPC (SMPC) control schemes

were formulated, where the available statistical information

on the disturbance is exploited in order to minimize the

expected value of the performance index [15]–[20]. In this

paper, we adopt the SMPC approach of [21] based on

scenario enumeration, which exploits ideas from multi-stage

stochastic optimization. The knowledge of the disturbance

model (i.e., the Markov chain described in Section III) is

used by SMPC to possibly improve the closed-loop perfor-

mance of the controlled system with respect to a standard

deterministic MPC algorithm.

A. SMPC approach

The SMPC problem formulation is based on a maximum

likelihood approach, where at every time-step an optimiza-

tion tree is built using the updated information on the system

state and on the Markov chain. Each node of the tree

represents a predicted state which is taken into account in

the optimization problem. Starting from the root node, which

is defined by the current available measurements x(k) and

Preq(k), a list of candidate nodes is generated by consid-

ering all the possible future Markov states Preq(k + 1|k),
together with their realization probability. Then, the node

with maximum probability is added to the tree. This proce-

dure is repeated iteratively, by generating at every step new

candidates as children nodes of the last node added to the

tree, until a desired number of nodes nmax is reached.

Hence, every node is identified by a different realization of

the Markov chain (i.e., a scenario of power requests), and by

a different input sequence. Causality of the resulting control

law is enforced by allowing only one control move for every

node, except leaf nodes (i.e., nodes with no successor) that

have no associated control move. The reader is referred

to [21] for further details on the tree design algorithm.

B. Problem formulation

In order to define the stochastic finite-time optimal control

problem, let us introduce the following quantities:

• T = {T1, T2, . . . , Tn}: the set of the tree nodes. Nodes

are indexed progressively as they are added to the tree

(i.e., T1 is the root node and Tn is the last node added

to the tree).

• xN , ∆PN , Pel,N , Preq,N : the state, the input, the

output, the estimated power request associated with

node N , respectively.

• pre(N ): the predecessor of node N .

• succ(N , j): the successor of node N with state value

zj of the Markov Chain, j ∈ {1, 2, . . . , s}.

• πN : the probability of reaching node N from T1. πN is

computed by means of the transition probability matrix

TM , i.e., πsucc(N ,j) = tijπN , if Preq,N = zi.

• S ⊂ T : the set of the leaf nodes, defined as S , {Ti ∈
T : succ(Ti, j) 6∈ T , j ∈ {1, 2, . . . , s}}.

In Figure 5 an illustrative optimization tree is shown

to exemplify the notation. We present a control problem

formulation where the objective function to be minimized

relies on an approximation of the expected value of the

closed-loop performance, evaluated as a quadratic function

of the state and the input. This approximation can be made

arbitrarily accurate by increasing the number of nodes nmax,

at the expense of a higher computational load.

With a slight abuse of notation, in the following the

abbreviate forms xi, ∆Pi, Pel,i, Preq,i, πi, pre(i), will be

used to denote xTi
, ∆PTi

, Pel,Ti
, Preq,Ti

, πTi
, pre(Ti),

respectively. The SMPC problem at time k is formulated as

min
{∆Pi}

∑

i∈T \{T1}

πi(xi − xref )
′
[

QSoC 0
0 φQJ

]

(xi − xref ) +

+
∑

j∈T \S

πjQP∆P 2
j (8a)

s.t. x1 = x(k), (8b)

Preq,1 = Preq(k), (8c)

xi = Axpre(i) +B1∆Ppre(i) +B2Preq,pre(i),

∀i ∈ T \{T1}, (8d)

Pel,i = Cxi +D1∆Pi +D2Preq,i,

∀i ∈ T \S, (8e)

xi ∈ X, ∀i ∈ T \{T1}, (8f)

∆Pi ∈ U, ∀i ∈ T \S, (8g)

Pel,i ∈ Y, ∀i ∈ T \S, (8h)

where xref = [SoCref Pmec,ref ]
′, QSoC , QJ , QP are non-

negative scalar weights, and φ is defined as in (2). Note

that by imposing Pmec,ref = P ∗ we have a term in the

cost function to maximize an approximation of the engine

efficiency η. The cost function (8a) is constrained by (8b)–

(8h), where (8b) defines the initial state of the system.

Equation (8c) constrains the input Preq,1 of the first node

of the optimization tree to be the current requested power.

The power demands associated with the nodes, Preq,i, i > 1,

T1 S

pre(Ti)

Ti

succ(Ti, j)

Fig. 5. Optimization tree diagram
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are obtained from the Markov chain model. In other words,

only the future power requests are quantized. Equations (8d)-

(8h) are related to the evolution of the dynamical system

(3) and to the electro-mechanical constraints defined in (6).

Problem (8) can be cast as a standard quadratic programming

problem (QP).

V. FROZEN-TIME AND PRESCIENT MPC

In this section we introduce two deterministic control ap-

proaches based on the receding-horizon philosophy, namely

the frozen-time MPC (FTMPC), and the prescient MPC

(PMPC), that we will later compare to SMPC. FTMPC

has no information the future, PMPC exploits an a priori

knowledge of the requested power demand for a given future

horizon window. In the FTMPC approach, no information on

the Markov model is exploited, and the actual power demand

value Preq(k) is assumed constant along the whole prediction

horizon. In other words, the FTMPC can be seen as a special

case of the SMPC where the Markov Chain transition matrix

is an identity matrix, TM = Is, and the predicted state values

are Preq(k + i|k) = Preq(k|k), ∀i, k.

In the PMPC approach, instead, the complete knowledge

of the driving cycle is exploited: At time k, the PMPC solves

an optimal control problem over a finite horizon of nmax−1
steps by knowing the future evolution of the requested

power Preq(k + j|k) in advance (j = 0, . . . , nmax − 1).

The PMPC is optimal if nmax has the same length of the

entire driving cycle, otherwise the solution is in general

sub-optimal. FTMPC and PMPC can be seen as the upper

and lower limits to SMPC, which instead uses a stochastic

information to predict the future values of Preq .

VI. SIMULATION RESULTS

A. Simulation model

SMPC, FTMPC, and PMPC are simulated to validate their

performance, using a nonlinear simulation model of the HEV.

The nonlinear model is quasi-static and combines equations

of different vehicle components. The HEV considered here

derives from the series hybrid vehicle contained in the QSS

toolbox [11]. The model has been modified to take into

account the transients that affects the computation of fuel

consumption. The quasi-static approach has been applied to

various powertrain systems in [4]. The main drawback of

such an approach formulation is that some dynamical effects

are disregarded, and the physical causality is inverted. There-

fore the driving cycle has to be known and the requested

power needs always to be satisfied.

B. Simulation results

The SMPC has been tested on several cycles by using the

aforementioned nonlinear model. Although the performance

of a HEV is usually evaluated on a standard pre-determined

cycle, the Markov chain generating the requested power Preq

is estimated off-line with data from several cycles, to be able

to emulate diverse scenarios. We simulate the series hybrid

vehicle model on the New European Driving Cycle (NEDC),

which defines a vehicle speed reference profile to be tracked

TABLE I

Closed-loop results. Fuel consumption is expressed as the percentage

improvement with respect to the deterministic FTMPC controller

||∆P || fuel cons. [kg] fuel improv. [%]
FTMPC 5.7906 0.281 -
SMPC 3.1236 0.243 13.5
PMPC 0.8581 0.197 29.8

for a duration of around 20 minutes. The requested power

profile for our case study is derived from the velocity profile

prescribed by the NEDC.

The initial conditions are SoC(0) = 0.5, Preq(0) = 0, and

the following values for constraints (6) are used in simula-

tion: SoCmin = 0.45, SoCmax = 0.55, Pmec,max = 20 kW,

∆Pmax = −∆Pmin = 5 kW, Pel,max = −Pel,min = 40
kW. The constraints on the SoC are set tight around the

50% of charge to preserve battery life-time. The weights

in (8a) are QSoC = 500, QJ = 0.2, QP = 0.4. The

optimization tree which defines the optimal control problem

is built with nmax = 100 nodes and the state references

in (8a) are SoCref = 0.5 and Pmec,ref = P ∗ = 15.87 kW.

The simulation was run in SIMULINKr, and a comparison

of performance is reported in Table I, where

‖∆P‖ =

(

Tsim
∑

k=1

∆P (k)2

)

1

2

is the norm of the mechanical power variation along the

whole simulation interval Tsim = 1220 time steps. Figures

6–7 depict the trajectories obtained with the three proposed

MPC controllers.

In Figure 6(a) one notices that fuel consumption of SMPC

is better than FTMPC over the NEDC cycle, despite the

fact that fuel consumption is not modeled in (3) and is not

directly minimized. Indeed, fuel is indirectly minimized by

(i) penalizing ∆P , as fast variations of requested engine

power represent one of the most fuel consuming phases, (ii)

using the ICE as close as possible to its maximum efficiency

point (see Figure 6(b)), and (iii) using the electric power to

mitigate transients (see Figure 7(a)). The PMPC approach

used here still provides a suboptimal solution, as the horizon

is 100 seconds over the 1220 of the entire driving cycle. By

exploiting the a priori knowledge of the cycle, PMPC can

anticipate future power demand enough to maintain a high

ICE efficiency and a smooth trajectory of the mechanical and

the electric power, therefore providing a good benchmark for

performance comparisons.

VII. CONCLUSIONS

This paper has proposed a design method for the power

management algorithm based on Markov chain modeling and

stochastic model predictive control techniques. The driver

power demand is modeled as a Markov chain to represent

the future driver power request under different driving con-

ditions. Contrary to PMPC, which is anticipative, the SMPC

solution governs the engine, motor, and battery operations

in a causal, time-invariant, state-feedback way. Simulation
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Fig. 6. Closed-loop trajectories: Fuel consumption and engine efficiency

results indicate that the SMPC control strategy achieves

improved performance compared with deterministic receding

horizon techniques, close to the prescient approach, even if

no exact knowledge of future power request is exploited.

Future research efforts will involve testing the proposed ap-

proach on more realistic models of the HEV comparing with

the globally optimal solution given by DP, and estimating

online the Markov chain to adapt the controller to the driver’s

style and actual drive cycle.
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Zürich. Zürich, 2005.
[12] I. Kolmanovsky, I. Siverguina, and B. Lygoe, “Optimization of pow-

ertrain operating policy for feasibility assessment and calibration:
Stochastic dynamic programming approach,” in Proc. American Contr.

Conf., Anchorage, AK, 2002, pp. 1425–1430.
[13] D. Mayne and J. Rawlings, Model Predictive Control: Theory and

Design. Madison,WI: Nob Hill Publishing, LCC, 2009.
[14] P. Scokaert and D. Mayne, “Min-max feedback model predictive con-

trol for constrained linear systems,” IEEE Trans. Automatic Control,
vol. 43, pp. 1136–1142, 1998.

[15] A. Schwarm and M. Nikolaou, “Chance-constrained model predictive
control,” AIChE Journal, vol. 45, no. 8, pp. 1743–1752, 1999.

[16] D. van Hessem and O. Bosgra, “A conic reformulation of model
predictive control including bounded and stochastic disturbances under
state and input constraints,” in Proc. 41th IEEE Conf. on Decision and

Control, Las Vegas, NV, 2002, pp. 4643–4648.
[17] I. Batina, A. Stoorvogel, and S. Weiland, “Optimal control of linear,

stochastic systems with state and input constraints,” in Proc. 41th IEEE

Conf. on Decision and Control, vol. 2, 2002.
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