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Abstract— In this paper, we study the stability of Networked
Control Systems (NCSs) that are subject to time-varying trans-
mission intervals, time-varying transmission delays, packet-
dropouts and communication constraints. Communication con-
straints impose that, per transmission, only one sensor or
actuator node can access the network and send its information.
Which node is given access to the network at a transmission
time is orchestrated by a so-called network protocol. This
paper considers NCSs, in which the transmission intervals
and transmission delays are described by a random process,
having a continuous probability density function (PDF). By
focussing on linear plants and controllers and periodic and
quadratic protocols, we present a modelling framework for
NCSs based on stochastic discrete-time switched linear systems.
Stability (in the mean-square) of these systems is analysed using
convex overapproximations and a finite number of linear matrix
inequalities. On a benchmark example of a batch reactor, we
illustrated the effectiveness of the developed theory.

I. INTRODUCTION

Modelling, analysis, and controller design of networked
control systems (NCSs) has recently received considerable
attention in literature. The main reason for this attention
is the advantages that NCSs offer, such as low installation
and maintenance costs, reduced system wiring and increased
flexibility of the system. A drawback of networking the
control system, however, is that it is no longer possible
to assume, that delays are constant or perhaps negligible,
that sampling occurs equidistantly in time, and that all
sensor and actuator signals are available at all times. As a
result, a deep understanding of the effects of time-varying
delays, time-varying transmission intervals, and constrained
communication, (i.e., not all sensor and actuator signals
being transmitted at every transmission), on the stability
and performance of the control system is needed. Most
of the literature studies the effects of only some of the
phenomena, while ignoring the others. Clearly, it is important
to consider the combined presence of time-varying delays
and time-varying transmission intervals, and communication
constraints, as in any practical NCS they will be present
simultaneously.

Stability of NCSs subject to time-varying transmission
intervals and communication constraints has been considered
in [1], [2] and time-varying transmission intervals, time-
varying delays and communication constraints in [3]–[5].
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Given a protocol, such as the well-known Round-Robin (RR)
and Try-Once-Discard (TOD) protocol, which orchestrates
when a certain communication node is given access to the
network, the mentioned papers provide criteria for computing
the so-called Maximum Allowable Transmission Interval
(MATI) and Maximum Allowable Delay (MAD). Stability
is guaranteed as long as the actual transmission intervals
and delays are always smaller than the MATI and MAD,
respectively.

A common feature of the aforecited references is that
conditions for stability are derived, given hard deterministic
bounds on the various network phenomena. In many situ-
ations, however, transmission intervals and delays are mod-
elled as random phenomena that are described by probability
distributions. Unfortunately, less results are available that
provide conditions for stability when the transmission inter-
vals and delays are random processes. A common approach
found in literature, see, e.g., [6]–[9], is to take a finite or
countable set of possible transmission intervals and delays
and attribute probabilities to each element of the set. In
this way, the NCS can be effectively modelled as a Markov
jump system [10]. It is however not possible to make any
statements about stability when the number of elements in
the set are not finite or countable.

In this paper, we focus on linear plants and linear con-
trollers and study the stability (in the mean-square) of NCSs,
in the presence time-varying transmission intervals and time-
varying delays, which are described by random processes,
and communication constraints. Contrary to [6]–[9], we
allow for continuous probability density functions, which
can, possibly, be defined on an unbounded domain, like in
[11], [12]. In particular, the techniques we provide are appli-
cable to more general probability distributions, including the
exponential probability distribution that was studied in [11]
as a special case. Contrary to [12], we can consider both
quadratic and periodic protocols, as introduced in [4]. These
classes of protocols includes the well-known Try-Once-
Discard (TOD) protocol and Round-Robin (RR) protocol as
special cases. For reasons of space, however, in this paper
we restrict our attention to the analysis for the quadratic
protocol. The main difference between between [11], [12]
and the work presented in this paper is that [11], [12] use
a continuous-time modelling paradigm, while we apply a
discrete-time modelling framework that leads to a switched
linear system model, which is stochastically time-varying.
Using a convex overapproximation and newly developed
Linear Matrix Inequalities (LMIs), the stability (in the mean-
square) of the NCS with the transmission intervals and delays
satisfying a continuous probability density function (PDF)
can be analysed. We will show the effectiveness of the
presented approach on the benchmark example of a batch
reactor as also used in [1]–[4], [11].
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Fig. 1: Illustration of a typical evolution of y and ŷ.

A. Nomenclature
The following notational conventions will be used.

diag(A1, . . . , AN ) denotes a block-diagonal matrix with the
entries A1, . . . , AN on the diagonal and A> ∈ Rm×n de-
notes the transposed of matrix A ∈ Rn×m. For a vector x ∈
Rn, we denote by xi the i-th component and ‖x‖ :=

√
x>x

its Euclidean norm. We denote by ‖A‖ :=
√
λmax(A>A)

the spectral norm of a matrix A, which is the square-root of
the maximum eigenvalue of the matrix A>A. We sometimes
write symmetric matrices of the form

[
A B

B> C

]
, as

[
A B
? C

]
.

The convex hull and interior of a set A are denoted by coA
and intA, respectively. A probability density function on Rn
is a Lebesgue-integrable function p : Rn → R+, where R+

denotes the set of nonnegative real numbers, that satisfies∫
Rn p(x)dx = 1. The expected value of the random variable
x ∈ Rn is defined as E(x) :=

∫
Rn xp(x)dx.

II. NCS MODEL AND PROBLEM STATEMENT

In this section, we present the model describing the Net-
worked Control Systems (NCSs), subject to communication
constraints, time-varying transmission intervals and delays.
Let us consider the linear time-invariant (LTI) continuous-
time plant given by{

d
dtx

p(t) = Apxp(t) +Bpû(t)
y(t) = Cpxp(t),

(1)

where xp ∈ Rnp denotes the state of the plant, û ∈ Rnu
the most recently received control variable, y ∈ Rny the
(measured) output of the plant and t ∈ R+ the time. The
controller, also an LTI system, is assumed to be given by{

d
dtx

c(t) = Acxc(t) +Bcŷ(t)
u(t) = Ccxc(t) +Dcŷ(t).

(2)

In this description, xc ∈ Rnc denotes the state of the
controller, ŷ ∈ Rny the most recently received output of
the plant and u ∈ Rnu denotes the controller output. At
transmission instant tk, k ∈ N, (parts of) the outputs of
the plant y(tk) and controller u(tk) are sampled and are
transmitted over the network. We assume that they arrive
after a delay τk at instant rk := tk + τk, called the arrival
instant, see Fig. 1.

Let us now explain in more detail the functioning of the
network and define these ‘most recently received’ ŷ and û
exactly. The plant is equipped with sensors and actuators
that are grouped into N nodes. At each transmission instant
tk, k ∈ N, one node, denoted by σk ∈ {1, . . . , N}, gets
access to the network and transmits its corresponding values.
These transmitted values are received and implemented on

the controller and/or the plant at arrival instant rk. As in [3], a
transmission only occurs after the previous transmission has
arrived, i.e., tk+1 > rk > tk, for all k ∈ N. In other words,
we consider the delays to be smaller than the transmission
interval. After each transmission and reception, the values
in ŷ and û are updated, while the other values in ŷ and û
remain the same. This leads to the constrained data exchange
expressed as{

ŷ(t) = Γyσky(tk) + (I − Γyσk)ŷ(tk)
û(t) = Γuσku(tk) + (I − Γuσk)û(tk)

(3)

for all t ∈ (rk, rk+1], where Γσk := diag(Γyσk ,Γ
u
σk

) is a
diagonal matrix, given by

Γi = diag(γi,1, . . . , γi,ny+nu), (4)

when σk = i. In (4), the elements γi,j , with i ∈ {1, . . . , N}
and j ∈ {1, . . . , ny}, are equal to one, if plant output yj
is in node i, elements γi,j+ny , with i ∈ {1, . . . , N} and
j ∈ {1, . . . , nu}, are equal to one, if controller output uj is
in node i, and are zero elsewhere.

The value of σk ∈ {1, . . . , N} in (3) indicates which
node is given access to the network at transmission instant
tk, k ∈ N. Indeed, (3) reflects that the values in û and ŷ
corresponding to node σk are updated just after rk, with
the corresponding transmitted values at time tk, while the
others remain the same. A scheduling protocol determines
the sequence (σ0, σ1, . . .) and a particular class of protocols
will be made explicit later.

The transmission instants tk, as well as the arrival instants
rk, k ∈ N are not necessarily distributed equidistantly in
time. Hence, both the transmission intervals hk := tk+1 −
tk > 0, k ∈ N and the transmission delays τk := rk −
tk > 0, k ∈ N, are varying in time, as is also illustrated
in Fig. 1. Furthermore, since tk+1 > rk, for all k ∈ N, we
have that τk < hk. We assume that the transmission intervals
and transmission delays are described by an Independent and
Identically Distributed (IID) random process, characterised
by a probability density function (PDF) p : R2 → R+. The
assumptions made above can described by making explicit
assumptions on the PDF.

Assumption II.1 For each k ∈ N, the transmission interval
hk and the transmission delay τk are described by an IID
random process, characterised by a PDF p : R2 → R+, with
p(h, τ) = 0 for all (h, τ) 6∈ Θ, where

Θ =
{

(h, τ) ∈ R2 | h > 0 ∧ 0 6 τ < h
}
. (5)

A. The NCS as a time-varying switched system
To analyse the stability of the NCS described above, we

transform it into a discrete-time model. In this framework,
we need a discrete-time equivalent of (1) and also of (2)
because a continuous-time controller is used. To arrive at
this description, let us first define the network-induced error
as {

ey(t) := ŷ(t)− y(t)
eu(t) := û(t)− u(t).

(6)

The stochastically time-varying discrete-time switched sys-
tem can now be obtained by describing the evolution of the
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x̄k+1 =
[

Ahk + EhkBDC EhkBD − Ehk−τkBΓσk
C(I −Ahk − EhkBDC) I −D−1Γσk + C(Ehk−τkBΓσk − EhkBD)

]
︸ ︷︷ ︸

=:Ãσk,hk,τk

x̄k (11)

states between tk and tk+1 = tk +hk. In order to do so, we
define xpk := xp(tk), uk := u(tk), ûk := limt↓rk û(t) and
euk := eu(tk). Since û, as in (3), is a left-continuous piece-
wise constant signal, we can write ûk−1 = limt↓rk−1 û(t) =
û(rk) = û(tk). As (3) and (6) yield ûk−1 = uk + euk and
ûk−1− ûk = Γuσke

u
k , we can write the exact discretisation of

(1) as follows:

xpk+1 = eA
phkxpk +

∫ hk
0

eA
psdsBp(uk + euk)

−
∫ hk−τk

0
eA

psdsBpΓuσke
u
k . (7)

A discretised equivalent of (2) is obtained in a similar fashion
by defining xck := xc(tk), yk := y(tk), eyk := ey(tk), ŷk :=
limt↓rk ŷ(t), and observing ŷk−1 = ŷ(tk), and is given by

xck+1 = eA
chkxck +

∫ hk
0

eA
csdsBc(yk + eyk)

−
∫ hk−τk

0
eA

csdsBcΓyσke
y
k. (8)

We now present two different models each describing a
particular NCS. The first covers the situation where both
the plant and the controller outputs are transmitted over the
network and the second where only the plant outputs y are
transmitted over the network and the controller outputs u
are sent continuously via an ideal nonnetworked connection.
We include this particular case, because it is often used in
examples in NCS literature (see, e.g., the benchmark example
in [1]–[4], [11]) and it allows us to compare our methodology
to the existing ones.

1) The NCS model when both y and u are transmitted:
For an NCS having controller (2), the complete NCS model
is obtained by combining (3), (6), (7), and (8) and defining

x̄k :=
[
xp>k xc>k ey>k eu>k

]>
. (9)

This results in the discrete-time model (11), as shown on
the top of this page, in which Ãσk,hk,τk ∈ Rn×n, with n =
np + nc + ny + nu, and

Ahk := diag(eA
phk , eA

chk), B :=
[

0 Bp

Bc 0

]
, (11a)

C := diag(Cp, Cc), D :=
[
I 0
Dc I

]
, (11b)

Eρ := diag(
∫ ρ

0
eA

psds,
∫ ρ

0
eA

csds), ρ ∈ R. (11c)

2) The NCS model when only y is transmitted: In this case
we assume that only the outputs of the plant are transmitted
over the network and the controller communicates its values
continuously and without delay. We therefore have that
u(t) = û(t), for all t ∈ R+, which allows us to combine
(1) and (2), yielding[

ẋp(t)
ẋc(t)

]
=
[
Ap BpCc

0 Ac

] [
xp(t)
xc(t)

]
+
[
BpDc

Bc

]
ŷ(t). (12)

Since ŷ is still updated according to (3), we can describe the
evolution of the states between tk and tk+1 = tk + hk in a
similar fashion as in (7). In this case, (9) reduces to

x̄k :=
[
xp>k xc>k ey>k

]>
, (13)

resulting in (11), in which

Ahk := e

[
Ap BpCc

0 Ac

]
hk , B :=

[
BpDc

Bc

]
, (14a)

C :=
[
Cp 0

]
, D := I, (14b)

Eρ :=
∫ ρ

0
e

[
Ap BpCc

0 Ac

]
s
ds, ρ ∈ R. (14c)

B. The Quadratic Protocol as a Switching Function

Based on the previous modelling steps, the NCS is formu-
lated as a stochastically time-varying discrete-time switched
system (11). In this framework, protocols are considered
as the switching function determining σk. We consider
quadratic protocols, as introduced in [4].

A quadratic protocol is a protocol, for which the switching
function can be written as

σk = arg min
i=1,...,N

x̄>k Pix̄k, (15)

where Pi, i ∈ {1, . . . , N}, are certain given matrices. In fact,
the well-known TOD protocol, see, e.g., [1]–[3], sometimes
also called Maximum Error First (MEF) protocol, belongs to
this class of protocols. In the TOD protocol, the node that has
the largest network-induced error, i.e., the largest difference
between the latest transmitted values and the current values
of the signals corresponding to the node, is granted access to
the network. The TOD protocol can be modelled as in (15)
by adopting the following structure in the Pi matrices:

Pi = P̄ − diag(0,Γi), (16)

in which Γi, i ∈ {1, . . . , N}, is given by (4) and P̄ some
arbitrary matrix. Indeed, if we define ẽik := Γiek, where
ek := [ey>k , eu>k ]>, (15) becomes

σk = arg min
{
−e>k Γ1ek, . . . ,−e>k ΓNek

}
= arg max

{
‖ẽ1
k‖, . . . , ‖ẽNk ‖

}
, (17)

which is the TOD protocol. In case two nodes have the same
maximal values, one of them can be chosen arbitrarily.

Remark II.2 Although the work presented in this paper
considers analysis of NCSs with continuous-time controllers
and quadratic protocols only, extensions are possible towards
discrete-time controllers and other protocols, such as periodic
protocols.
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C. Stability of the NCS
The problem studied in this paper is to analyse stability of

the stochastically time-varying discrete-time switched linear
system (11) with protocol (15), and the transmission intervals
and transmission delays by a random process satisfying
Assumption II.1. Let us now formally define stability for
the NCS.

Definition II.3 System (11) with switching sequences sat-
isfying (15) is said to be Uniformly Globally Mean-Square
Exponentially Stable (UGMSES) if there exist c > 0 and
0 6 λ < 1, such that for any initial condition x̄0 ∈ Rn, and
all k ∈ N, it holds that

E
(
‖x̄k‖2

)
6 c‖x̄0‖2λk. (18)

III. OBTAINING A CONVEX OVERAPPROXIMATION

In the previous section, we obtained an NCS model in the
form of a stochastically time-varying discrete-time switched
linear system. In the stability conditions developed in the
next section, we will employ techniques originally developed
for the situation in which the time-varying transmission inter-
vals and delays lie in some bounded set Θ̄, i.e., (hk, τk) ∈ Θ̄
for all k ∈ N, as discussed in [4]. As in [4], Ãσk,hk,τk
depends nonlinearly on the uncertain parameters hk and
τk. To make the system amenable for analysis, a procedure
was proposed to overapproximate Ãσk,hk,τk by a polytopic
system with norm-bounded additive uncertainty, i.e.,

x̄k+1 =
M∑
l=1

αlk
(
Āσk,l + B̄l∆kC̄σk

)
x̄k, (19)

where Āσ,l ∈ Rn×n, B̄l ∈ Rn×q , C̄σ ∈ Rq×n, for σ ∈
{1, . . . , N} and l ∈ {1, . . . ,M}, with M the number of
vertices of the polytope. The vector αk = [α1

k . . . α
M
k ]> ∈

A, k ∈ N, is time varying with

A =
{
α ∈ RM

∣∣∑M
l=1 α

l = 1 and αl > 0

for l ∈ {1, . . . ,M}
}

(20)

and ∆k ∈ ∆, where ∆ is a norm-bounded set of matrices
in Rm×m that describes the additive uncertainty. Equation
(19) is an overapproximation of (11), in the sense that for
all σ ∈ {1, . . . , N}, it holds that{

Ãσ,h,τ | (h, τ) ∈ Θ̄
}

⊆
{∑M

l=1 α
l
(
Āσ,l + B̄l∆C̄σ

)
|α ∈ A,∆ ∈∆

}
. (21)

Contrary to [4], we will not exactly pursue a description
satisfying (21), as this would remove all information about
the PDF of (hk, τk). As in [4], we partition Θ into triangles
Sm, m ∈ {1, . . . , S}, but we make individual overapprox-
imations of Ãσk,hk,τk for each triangle Sm, instead. This
allows us to assign a probability p̄m =

∫∫
Sm p(h, τ)dhdτ to

each triangle and adopt this information in the subsequent
stability analysis. Roughly speaking, the continuous PDF
p(h, τ) is approximated by a discrete probability distribution
that assigns probabilities to (h, τ) in each triangle Sm in the
partitioning of Θ. Since it is typically not possible to achieve

a partitioning ∪Sm=1Sm = Θ, (as we use a finite number of
bounded triangles Sm, m ∈ {1, . . . , S}, and Θ can be an
unbounded set), we will propose a method to deal with the
‘remainder’, i.e., with Θc := Θ\(∪Sm=1Sm), and select it to
be small in the sense that

∫
Θc
p(h, τ)dhdτ < ε for some

suitably chosen ε > 0.
The proposed overapproximation is such that for each Sm,

m ∈ {1, . . . , S}, and for all σ ∈ {1, . . . , N}, it holds that{
Ãσ,h,τ | (h, τ) ∈ Sm

}
⊆
{∑3

l=1 α
lĀσ,m,l + B̄m∆C̄σ |α ∈ A,∆ ∈∆

}
, (22)

where Āσ,m,l ∈ Rn×n, B̄m ∈ Rn×q and the procedure to
obtain this convex overapproximation is given below.

Procedure III.1
• Select triangles Sm ⊆ Θ, m ∈ {1, . . . , S}, satisfying

Sm = co{(h̃m,1, τ̃m,1), (h̃m,2, τ̃m,2), (h̃m,3, τ̃m,3)} (23)

where (h̃m,l, τ̃m,l), l ∈ {1, 2, 3} denote the vertices of
the triangle Sm. Moreover, for all m, p ∈ {1, . . . , S}
and p 6= m, intSp ∩ intSm = ∅, intSm 6= ∅, and∫

Θ\(∪Sm=1Sm)
p(h, τ)dhdτ < ε, for some small ε > 0.

• Define
Āσ,m,l := Ãσ,h̃m,l,τ̃m,l . (24)

• To bound the approximation error, first construct the
matrix Λ̄, that, depending on the NCS model defined in
Section II-A, is given by

Λ̄ =


diag(Ap, Ac), if (11) is as in Section II-A.1,[
Ap BpCc

0 Ac

]
, if (11) is as in Section II-A.2.

(25)
Write the matrix Λ̄ in its real Jordan form [13], i.e.
Λ̄ := TΛT−1, where T is an invertible matrix and

Λ = diag(Λ1, . . . ,ΛL) (26)

with Λi ∈ Rni×ni , i ∈ {1, . . . , L}, the i-th real Jordan
block of Λ̄.

• Compute for each real Jordan block Λi, i ∈ {1, . . . , L}
the worst case approximation error, i.e.

δAi,m = sup∑3
l=1 α

l = 1,

αl > 0

∥∥∥eΛi
∑3
l=1 α

lh̃m,l −
3∑
l=1

αleΛih̃m,l
∥∥∥,

(27a)

δEhi,m = sup∑3
l=1 α

l = 1,

αl > 0

∥∥∥ 3∑
l=1

αl
∫ ∑3

l=1 α
lh̃m,l

h̃m,l

eΛisds
∥∥∥,

(27b)

δ
Eh−τ
i,m = sup∑3

l=1 α
l = 1,

αl > 0

∥∥∥ 3∑
l=1

αl
∫ ∑3

l=1 α
l(h̃m,l−τ̃m,l)

h̃m,l−τ̃m,l
eΛisds

∥∥∥.
(27c)

For a detailed explanation of the origin of the approxi-
mation error bounds, the reader is referred to [4].
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• Finally, define

C̄σ :=

 T−1 0
T−1BDC T−1BD

0 −T−1BΓσ

 (28)

and

B̄m :=
[

T T T
−CT −CT −CT

]
· Um, (29)

in which

Um = diag(δA1,mI1, . . . , δ
A
L,mIL, δ

Eh
1,mI1, . . . ,

δEhL,mIL, δ
Eh−τ
1,m I1, . . . , δ

Eh−τ
L,m IL), (30)

with Ii the identity matrix of size ni, complying with
the i-th real Jordan Block. The additive uncertainty set
∆ ⊆ R3(np+nc)×3(np+nc) is now given by

∆ =
{

diag(∆1, . . . ,∆3L) | ∆i+jL ∈ Rni×ni ,
‖∆i+jL‖ 6 1, i ∈ {1, . . . , L}, j ∈ {0, 1, 2}

}
. (31)

Remark III.2 In the special case that there exist hnom or
τnom such that p(h, τ) = 0, either for all h 6= hnom or
for all τ 6= τnom, i.e., the transmission interval or delay is
constant, Procedure III.1 has to be modified slightly. This
is because we proposed to form triangles Sm ⊆ Θ ⊂ R2,
m ∈ {1, . . . , S}, having the property that intSm 6= ∅, which
is not useful in this case. In this case, we propose to form
line-segments Sm, m ∈ {1, . . . , S} instead, such that for
each Sm, m ∈ {1, . . . , S}, it holds that

Sm = co{(h̃m,1, τ̃m,1), (h̃m,2, τ̃m,2)}, (32)

where (h̃m,l, τ̃m,l), l ∈ {1, 2}, now denote the vertices of the
line segment Sm. All other properties of Sm, m ∈ {1, . . . , S}
still hold and the remainder of the procedure can be applied
mutatis mutandis.

IV. STABILITY OF NCS WITH STOCHASTIC
UNCERTAINTY

In section II, we discussed the NCS model and in Section
III, we proposed a way to overapproximate it by a switched
polytopic system with a norm-bounded uncertainty. A spe-
cific feature of this overapproximation is that an individual
overapproximation is made for each triangle Sm ⊆ Θ, m ∈
{1, . . . , S} which enables us to preserve the characteristics of
the PDF. In this section we will use this overapproximation to
develop conditions to verify stability of the NCS model (11)
with transmission intervals and delays (hk, τk), characterised
by an IID random process satisfying Assumption II.1.

Stability of the class of quadratic protocols given by (15),
of which the TOD protocol is a special case, can be analysed
using the ideas in [14], in which only switched linear systems
without any form of uncertainty are considered. To analyse
the stability of (11) having this switching function, we
introduce the non-quadratic Lyapunov function

V (x̄k) = min
i=1,...,N

x̄>k Pix̄k, (33)

Furthermore, we introduce the sets

M :=
{

Π ∈ RN×N
∣∣ N∑
j=1

πji = 1 for i ∈ {1, . . . , N}

and πji > 0 for i, j ∈ {1, . . . , N}
}

(34)

and

R = {diag(r1I1, . . . , rLIL, rL+1I1, . . . , r3LIL)

∈ R3(np+nc)×3(np+nc) | ri > 0}, (35)

where Ii is an identity matrix of size ni. The main result of
this section is presented next.

Theorem IV.1 Suppose there exist triangles Sm, m ∈
{1, . . . , S} and a convex overapproximation as in (19)
satisfying (22), for all σ ∈ {1, . . . , N}, a matrix Π =
{πji} ∈ M, a positive scalar µ, a positive definite matrices
Pi satisfying Pi ≺ µI , matrices Ui,m, and matrices Ri,m,l ∈
R, i ∈ {1, . . . , N}, m ∈ {1, . . . , S}, and l ∈ {1, 2, 3},
satisfying

Ui,m 0 p̄mĀ
>
i,m,l

∑N
j=1 πjiPj C>i Ri,m,l

? Ri,m,l p̄mB̄
>
m

∑N
j=1 πjiPj 0

? ? p̄m
∑N
j=1 πjiPj 0

? ? ? Ri,m,l

�0

(36)
for all i ∈ {1, . . . , N}, m ∈ {1, . . . , S}, l ∈ {1, 2, 3}, in
which p̄m :=

∫∫
Sm p(h, τ)dhdτ , and satisfying

Pi−
S∑

m=1

Ui,m−µ
∫∫

Θ\(∪Sm=1Sm)

‖Ãi,h,τ‖2p(h, τ)dhdτI�0,

(37)
for all i ∈ {1, . . . , N}. Then, the switching law (15) renders
the system (11) UGMSES.

We can now briefly comment on the conditions presented
in Theorem IV.1: Firstly, the stability of (11) is guaran-
teed for h and τ satisfying a continuous PDF, because
the PDF is also ‘overapproximated’ by assigning p̄m :=∫∫
Sm p(h, τ)dhdτ to each triangle Sm, m ∈ {1, . . . , S}. To

be more precise, the probability p̄m is the probability that
the pair (h, τ) ∈ Sm. Secondly, in case the triangles can
be chosen such that Θ\(∪Sm=1Sm) = ∅, the conditions in
(37) simplify as the integral in the left-hand side of (37)
vanishes. This is possible, if there exists some h̃ > 0, such
that p(h, τ) = 0 for all h > h̃. In other cases, condition (37)
can be satisfied by finding an upper bound on the integral in
(37). Since ‖Ãi,h,τ‖2 can bounded by ‖Ãi,h,τ‖2 6 ceλh, for
some constant c > 0 and a constant λ that depends on the
eigenvalues of Λ̄>+Λ̄>, with Λ̄ as in (25). The satisfaction of
(37) requires the existence of the integral in its left-hand side,
which is satisfied when the PDF p(h, τ) decays exponentially
faster than the bound ceλh, when the transmission intervals
approach infinity. Hence, p(h, τ) 6 c̃e−λ̃h for some λ̃ > λ
guarantees finiteness of the integral in (37). The fact that the
PDF decays exponentially fast also allows us to bound the
expected value of the evolution of (1) and (2) in between
two subsequent transmissions, i.e., the so-called intersample

3688



i
i

“tempimage˙temp” — 2010/2/11 — 14:37 — page 1 — #1 i
i

i
i

i
i

0 0.05 0.1 0.15 0.2 0.25

Gamma Distribution with a = 10 and b = 0.006
Uniform Distribution with a = 0 and b = 0.11

P
ro

ba
bi

lit
y

p
(h

)

Transmission Interval h

Fig. 2: Illustration of the considered PDFs.

behaviour. As a consequence, UGMSES of the discrete-
time NCS model (11) with switching function (15) also
implies mean-square exponential stability of the underlying
continuous-time NCS given by (1), (2), (3) and (6), with
protocol (15).

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the presented theory using a
well-known benchmark example in the NCS literature [1]–
[4], [11], consisting of a model of a batch reactor. The details
of the linearised model of the batch reactor model used in
this example and the continuous-time controller can be found
in the aforementioned references.

We will analyse the NCS as was done in [1]–[4], [11],
where it is assumed that the controller is directly connected
to the actuator, i.e., only the two outputs are transmitted via
the network. Furthermore, we consider the TOD protocol and
assume for simplicity that delays are absent, i.e., p(hk, τk) =
0 for all τk 6= 0, k ∈ N. In this example, we consider two
different PDFs, namely a uniform distribution

p(h, τ) =
{

1
b−a for a 6 h 6 b and τ = 0

0 elsewhere
(38)

with a = 10−5 and b = 0.11 and the Gamma distribution

p(h, τ) =
{

1
dcΓ(c)h

c−1e−
h
d for h > 0 and τ = 0

0 elsewhere
(39)

with c = 10 and d = 0.006, in which Γ(c) denotes the
Gamma function, [15]. The resulting PDFs are shown in
Fig. 2.

In order to assess the bounds on the allowable transmission
intervals, we first define our NCS model as in Section II-
A.2. This model appropriately describes the situation as
discussed in this example, where only the plant outputs y
are transmitted over the network and the controller outputs
u are sent continuously via a nonnetworked connection.
Then, we derive the uncertain polytopic system (19), using
Procedure III.1. For the uniform distribution, we construct
80 line segments, as discussed in Remark III.2, Sm =
[( 0.11

79 (m− 1), 0), ( 0.11
79 m, 0)], for m ∈ {1, . . . , 80}. For the

Gamma distribution, we construct 40 line segments Sm =
[( 0.3

39 (m−1), 0), ( 0.3
39 m, 0)], m ∈ {1, . . . , 30}. We now check

the matrix inequalities of Theorem IV.1, using the structure
of the Pi-matrices as in (16). Using this procedure we obtain
a feasible solution of LMIs of Theorem IV.1, on the basis
of which we conclude that the TOD protocol stabilises the
NCS when the transmission intervals are given by an IID

random process satisfying the aforementioned PDFs. In [4],
we obtained a hard deterministic maximum allowable trans-
mission interval of 0.066, which includes all PDFs for which
holds that p(h, τ) = 0 for all h > 0.066 and all τ 6= 0, and
we can therefore conclude that incorporating probabilistic
information on the distribution of the transmission intervals
can prove stability for situations not covered by earlier results
in the literature.

VI. CONCLUSIONS

In this paper, we studied the stability of Networked
Control Systems (NCSs) that are subject to communication
constraints, time-varying transmission intervals and time-
varying delays. We analysed the stability of the NCS when
the transmission intervals and transmission delays are de-
scribed by a random process, having a continuous proba-
bility density function, and the communication sequence is
determined by a quadratic protocol. This analysis was based
on a stochastically time-varying discrete-time switched linear
system of the NCS. We provided conditions for stability (in
the mean-square) using a convex overapproximation and a
finite number of linear matrix inequalities. On a benchmark
example, we illustrated the effectiveness of the developed
theory. Although the work presented in this paper consid-
ers analysis of NCSs with continuous-time controllers and
quadratic protocols only, extensions are possible towards
discrete-time controllers and other protocols, such as periodic
protocols.
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