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Abstract— Magnetically actuated mass-spring-damper sys-
tems are common in automotive systems as components of
various actuation mechanisms. They are characterized by non-
linear dynamics, tight performance specifications and physical
constraints. Due to these reasons, model predictive control
(MPC) is an appealing control framework for such systems. In
this paper we describe different MPC approaches to control the
magnetically actuated mass-spring-damper system. The MPC
controller based on the complete system model achieves very
good performance, yet it may be too complex to be implemented
in standard automotive microcontrollers. Hence, we consider
the possibility of decoupling the electromagnetic subsystem
from the mechanical subsystem, assuming that the electro-
magnetic dynamics, controlled by an inner-loop controller, are
much faster than the mechanical dynamics. Based on a previous
feasibility study, we implement a control architecture in which
the MPC optimizes only the dynamics of the mechanical
subsystem, and we test it in closed-loop simulations with the
nonlinear system. The resulting control system achieves lower
performance, but it is simple enough to be implemented in an
automotive microcontroller.

I. INTRODUCTION

During the last few years major advances in automotive

applications have been enabled by “smart” electronic devices

that monitor and control the mechanical components. Cars

have become complex systems in which electronic and

mechanical subsystems are tightly connected and interact

to achieve optimal performance. Automotive actuators, in

particular, have become examples of such mechatronic sys-

tems [1]–[3]. Their dynamics can be very nonlinear and there

are tight operating requirements on their precision, power

consumption and performance.

The model predictive control (MPC) [4], [5] provides an

attractive approach for systematic design and deployment

of controllers to meet stringent performance requirements

and the physical constraints in such automotive actuation

systems. The solution of the optimization problem can be

pre-computed off-line obtaining an explicit form of the

model predictive controller [6], that allows the application

of MPC even in the case of stringent computing time and

hardware cost requirements.

In this paper we consider a magnetically actuated mass-

spring-damper system with input and state constraints, which

embodies many of the challenges encountered in controlling
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real automotive actuators based on electromagnetic tech-

nology [1]–[3]. In this system the mechanical mass-spring-

damper subsystem interacts with an electromagnetic subsys-

tem, which provides the force for controlling the mechanical

subsystem. The mass position has to track as fast as possible

an external reference with a small control effort. Many differ-

ent constraints must be enforced on both the electromagnetic

and the mechanical subsystems. In particular, it is assumed

that the electromagnet can only attract but not repel the

mass, that the mass is moving within a limited space, that

the velocity must be bounded, and that the control input is

limited.

In a recent work [7], the authors have analyzed the

feasibility of applying MPC techniques, supposing that an

inner-outer control architecture can be implemented. In this

approach, called decoupled MPC, the MPC algorithm uses a

prediction model based on the mechanical subsystem only,

and generates a force profile that optimizes the tracking of the

external reference. An inner-loop controller is supposed to be

able to provide such a force by acting on the voltage of the

power electronics. The MPC does not take into account the

current dynamics and, as a consequence, it cannot optimize

the behavior of the entire system, nor enforce constraints on

the voltage.

This paper extends the previous work in two main di-

rections. After presenting the full electromechanical system

model and the operating constraints in Section II, an MPC

controller based on the complete system model is presented

in Section III. Such a controller exploits for prediction an

approximated hybrid system model of the complete dynamics

and it is able to optimize both, the electrical and the mechan-

ical subsystems. This approach achieves good performance,

however, it may be too complex to implement in standard

automotive microcontrollers. Thus, the second contribution

of this paper is the implementation of the controller archi-

tecture proposed in [7], and the validation of the controller

in closed-loop with the nonlinear dynamics, in Section IV.

Finally, the key conclusions are summarized in Section V.

II. PHYSICAL MODEL AND CONSTRAINTS

The magnetically actuated mass-spring-damper system,

with the schematics shown in Figure 1, is a heterogenous

system composed of a mechanical subsystem and of an

electromagnetic subsystem which influence each other. The

Proceedings of the 2007 American Control Conference
Marriott Marquis Hotel at Times Square
New York City, USA, July 11-13, 2007

FrB06.1

1-4244-0989-6/07/$25.00 ©2007 IEEE. 5082



i
kdkd

c

k

F

x

z

m

Fig. 1. The schematics of a magnetically actuated mass spring damper
system.

equations that define the complete system are

mẍ = F − cẋ − kx, (1a)

V = Ri + λ̇, (1b)

λ =
2kai

kb + z
, (1c)

F =
kai2

(z + kb)2
=

λ2

4ka

, (1d)

z = kd − x. (1e)

Equation (1a) represents the dynamics of the mass under the

effects of an external force F , of a spring with stiffness k,

and of a damper with coefficient c. Equation (1b) represents

a resistive circuit with resistance R, in which the effects of

magnetic flux variations are considered. The relation between

magnetic flux (λ) and current (i) is defined by (1c), where ka,

kb are constants, while Equation (1d) defines the force either

as a function of the current or as a function of the magnetic

flux. Equation (1e) defines the relation between position

coordinates in the mechanical (x) and in the electromagnetic

(z) subsystem. The first has the origin at the neutral position

of the spring, while the second at the position at which the

mass is in contact with the coil. Moreover, since x takes its

maximum value at the contact position, and kd = 4·10−3 [m]

is the distance between the contact position and the spring

neutral position, z ≥ 0, and if i is bounded, the force is

always bounded. The physical model (1), expressed as a

dynamical system by taking λ, x, ẋ as state variables, is

ẍ =
1

4kam
λ2 −

k

m
x −

c

m
ẋ, (2a)

λ̇ = −
R(kb + kd)

2ka

λ +
R

2ka

λx + V , (2b)

which is clearly nonlinear.

Such a system is subject to several constraints related to

physical limits and performance. The position constraint

−kd ≤ x ≤ kd [m] (3)

enforces the physical limits of the mass movement, avoiding

the mass penetration into the coil or into the stop on the

other end. The “soft landing” constraint

−v̄ + Gx ≤ ẋ ≤ v̄ − Gx [m/s], (4)

where v̄ and G are constants, is enforced to reduce the

noise and wear associated with high velocity collisions due

to external disturbances, and to reduce the noise in the

electromagnetic subsystem, caused by rapid movements of

the mass near the coil. For the mass-spring-damper system

we consider here, v̄ and G are chosen so that for x = 0 mm,

ẋ ∈ [−10.2, 10.2] m/s, i.e., the constraint is essentially

inactive, while for x = 4 mm, ẋ ∈ [−0.2, 0.2] m/s, i.e.,

the constraint is quite tight and difficult to meet. The current

in the circuit must be positive and, as a consequence of (1d),

the magnetic force is able to only attract the mass so that

i ≥ 0 [A] (5a)

F ≥ 0 [N] (5b)

A constraint on the maximum voltage is considered

0 ≤ V ≤ Vmax [V], (6)

enforcing the physical limits and the safety of the electrical

circuit.

A. Hybridization of nonlinear functions

Optimal control problems for constrained nonlinear sys-

tems are hard to solve, because they are in general noncon-

vex. A common strategy is to find an approximation of the

system dynamics. For highly nonlinear dynamics a linear

approximation may not be satisfactorily, while it is often

possible to find an adequate piecewise linear approximation,

resulting in a piecewise affine (PWA) system [8]. In order

to design a MPC controller for a nonlinear system, the

following approach is applied: (1) The nonlinear dynamics

are piecewise linearized, (2) the PWA system is transformed

into an equivalent mixed logical dynamical (MLD) sys-

tem [9], (3) the MLD is used as a prediction model for

the hybrid MPC algorithm which is solved by mixed-integer

programming (MIP). The universal approximation property

of PWA systems [8] ensures that a satisfactory piecewise

affine approximating model will eventually be found.

We consider here the simple case of hybridization of one-

dimensional functions. Let g : R → R be a nonlinear func-

tion, we approximate g(·) by a (continuous) piecewise affine

function f(χ) = riχ + qi, if χ ∈ [χ̄i, χ̄i+1), i = 0 . . . ℓ− 1,

where χ̄i < χ̄i+1 and {χ̄i}
ℓ−1
i=1 are the function breakpoints.

Next, we introduce ℓ−1 binary variables δ1, . . . δℓ−1 ∈ {0, 1}
defined by the logical conditions

[δi = 1] ↔ [χ ≤ χ̄i],
i = 1, . . . , ℓ − 1,

(7)

and ℓ − 1 continuous variables z1, . . . , zℓ−1 ∈ R defined by

zi =

{

(ri−1 − ri)χ + (qi−1 − qi) if δi = 1
0 otherwise

i = 1, . . . ℓ − 2, (8a)

zℓ−1 =

{

rℓ−2χ + qℓ−2 if δℓ−1 = 1
rℓ−1χ + qℓ−1 otherwise

(8b)

Then, the piecewise affine approximation of g(χ) is

f(χ) =

ℓ−1
∑

i=1

zi. (9)
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Equations (7), (8), and (9), together with other linear equa-

tions that defines the system, can be modelled in HYS-

DEL [10] and automatically translated by the Hybrid Tool-

box [11] into the MLD form [12]

x(k + 1) = Ax(k) + B1u(k) + B2δ(k) + B3z(k), (10a)

y(k) = Cx(k) + D1u(k) + D2δ(k) + D3z(k), (10b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5. (10c)

The additional discrete variables in (7) are the δ vector,

while the additional continuous variables in (8) are the z

vector. Equation (9) is embedded either in (10a) or in (10c),

depending if it is static or dynamic, respectively. Once the

system dynamics has been expressed in the MLD form, one

can use it to formulate optimal control problem as mixed-

integer programming problems [13].

B. Performance evaluation and complexity assessment

For performance evaluation we use the cumulative squared

tracking error E =
∑Nsteps

k=0 (x(k) − r(k))2, where Nsteps

is the number of simulation steps, x is the mass position

and r is the external reference, both expressed in mm. The

simulations duration is 0.125 s, with a sampling period Ts =
0.5 ms, hence Nsteps = 250. While considering automotive

actuators with stringent hardware and timing constraint,

the explicit solution of the MPC must be considered for

controller complexity evaluation. While the performance of

the explicit MPC is identical to the one of the implicit MPC,

the explicit controller is pre-computed offline and stored in

a lookup table as a set of PWA controllers. A good measure

of the explicit controller complexity is the number of regions

that constitute the PWA controller, since this number relates

to the storage space required required by the controller, and

to the number of operations to be performed at each time

step.

III. COUPLED MODEL PREDICTIVE CONTROL

The MPC strategy is an optimization-based closed-loop

control strategy. Given the measured or estimated state

x(t) at time t, a finite horizon constrained optimal control

problem is solved obtaining the optimal input profile U∗ =
{u∗

0, u
∗
1, . . . u

∗
N−1}. The control input u(t) = u∗

0 is applied to

the system. At t + 1, the system state is measured/estimated

again and a new optimization problem is solved. MPC

schemes differ depending on the system model which is

used in the optimal control problem. In the case of a linear

system, the optimization problem is a linear program (LP)

or a quadratic program (QP), depending on the cost function

used. In case of a hybrid system, in which some variables are

integer-valued, the optimization problem is a mixed-integer

program (MIP) [13].

A. System model

The nonlinear dynamics (2) cannot be used as prediction

model for linear/hybrid MPC. We apply the approach of

Section II-A to find a piecewise affine approximation of (2).

To this end, consider (2b) and the following change of

variables, Λ = ln λ
λ0

, where λ0 = 1 [V·s] is used to make

the argument of the logarithm non-dimensional. Since Λ̇ =
λ−1λ̇, Equation (2b) becomes

Λ̇ =
R

2ka

x + u −
R(kb + kd)

2ka

, (11)

where u = V
λ

= V
λ0eΛ [s−1] is the input. Thus, taking x and

Λ as state variables, system (1) is described by

ẍ = −
c

m
ẋ −

k

m
x +

F

m
, (12a)

Λ̇ =
R

2ka

x + u −
R(kb + kd)

2ka

, (12b)

F =
λ2

0e
2Λ

4ka

, (12c)

u =
V

λ0eΛ
≤

Vmax

λ0eΛ
, (12d)

which consists of two affine dynamical equations, modelling

the mechanical and electromagnetic subsystems, respectively,

and of two nonlinear static equations that act as interfaces.

In order to obtain a piecewise affine model of such a

system, a piecewise affine approximation of static equations

(12c), (12d) as functions of Λ is needed. Equation (12d)

enforces constraint (6) where Vmax = 350 V, and results in

a piecewise affine constraint on u.

Remark 1: From a mathematical point of view the non-

linear change of variables Λ = ln λ
λ0

is valid only in the

interval λ ∈ (0,∞). Constraint (5a) enforces i ≥ 0, so

that we have to discuss only the case i = 0. Such an error

can be considered as a modelling error, since model (12) is

used only for prediction by the MPC controller, and it can

be arbitrarily small by leaving Λ unbounded from below.

However, in order to maintain the possibility of having a

force exactly null, in the piecewise linearization we can

impose F = 0 for Λ ≤ Λ̂, where Λ̂ is a negative number. As

a consequence the modelling error occurs for 0 < λ ≤ λ0e
Λ̂,

while for λ = 0 the approximation is exact.

First a discrete-time version of (12a), (12b) with sam-

pling period Ts = 0.5 ms is obtained, then the piecewise

linearization of Equations (12c) and (12d) is performed with

the approach described in Section II-A, where χ = Λ.

An approximation with four segments for each function is

considered,

fj(Λ), j = 1, 2, (13)

where j = 1, 2 indicates the approximation of (12c)

and (12d), respectively. Hence, ℓj = 4, j = 1, 2, and in total

6 discrete auxiliary variables (7) and 6 continuous auxiliary

variables (8) have been introduced. However, because of the

additional constraints, only 7 discrete variables combinations

are feasible. In particular we have approximated (12c) so that

[δ1 = 1] → [F = 0] and [δ1 = 1] ↔ [Λ ≤ Λ̂], in order to

have an exact approximation of the force when i = 0. In

order to enforce constraints (3) and (4) as output constraints,

an output equation

y(k) = Cx(k), C =
[ 1 0 0

G 1 0
−G 1 0

]

, (14)
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Fig. 2. Coupled hybrid model predictive control results.

is defined, where the first output is the mass position, while

the second and the third outputs are useful for defining the

soft landing constraint (4) as an output constraint.

Equations (12a), (12b) discretized in time, the lineariza-

tion (13) of (12c) and (12d), and equation (14) are modelled

in HYSDEL and automatically converted into an MLD system

with state vector x1 = [x ẋ Λ]T ∈ R
3, input u ∈ R, output

y ∈ R
3, and 12 (6 + 6) auxiliary variables used for the

piecewise linear approximations.

B. Coupled controller simulations

The hybrid MPC optimization problem is formulated as

min
{uk}

N−1
k=0

(x(N) − rx)T QN (x(N) − rx)+

N−1
∑

k=0

(x(k) − rx)T Qx(x(k) − rx) + u(k)Quu(k) (15a)

subject to MLD dynamics (10), (15b)

ymin ≤ y(k) ≤ ymax, k = 1 . . . N, (15c)

umin ≤ u(k) ≤ umax, k = 0 . . . N − 1 , (15d)

where (15b) is the MLD system computed in Section III-

A that approximates (12), (15c) models (3) and (4), and

(15d) denotes the range of u. For this hybrid MPC controller,

the prediction horizon is N = 3, the cost matrices and the

input/output bounds are

Qx = QN =
[

2·1010 0 0
0 5 0
0 0 1

]

, Qu = 10−8,

ymin =

[

−4·10−3

−∞
−10.2

]

, ymax =
[

4·10−3

10.2
+∞

]

,

umin = −∞, umax = ∞.

Note that the input constraint (6), does not need to be

explicitly enforced in (15), since it is already enforced as

a hard constraint embedded in the MLD model by the

piecewise affine approximation of (12d). Output Constraints

are enforced as soft constraints2. The vector rx is the

reference vector that the state trajectory shall track. The first

1We use the same symbol (x) for the state vector and the position of the
mass. The meaning of such symbol is always clear from the context.

2In this paper the constraint Aw ≤ b is softened as Aw ≤ b+ε1, where
1 is the vector consisting of all 1. The constraint violation penalty ρ · ε2,
is added in the cost function where the weight ρ is to be two orders of
magnitude higher than the higher weight in the objective function.

component is the external reference mass trajectory, while

the second component, for the mass velocity, is constantly 0.

The third components is constantly set to Λ0, so that Λ−Λ0

is weighted in the cost function. By setting Λ0 = Λ̂ a null

cost is associated with the situation in which the force in the

approximated model is null.

Figure 2 reports the nominal results obtained for the cou-

pled MPC approach. The tracking performance (EcMPC =
149.4) and the mechanical subsystem trajectories are re-

ported in Figure 2(a), while Figure 2(b) shows the trajectories

of the electromagnetic subsystem and the input profile. The

higher performance with respect to the one obtained in [7] is

due to the fact that the whole system is optimized. The peaks

of the input signal u occur when Λ reaches large negative

values. This depends on the fact that u ≤ V
λ0eΛ and for

Λ → −∞, u becomes unbounded. In Figure 2(c) the phase

plane behavior of the mechanical subsystem is illustrated.

The soft landing constraints (4) are slightly violated (they

are soft constraints). This occurs mainly because of the delay

between the actuation of a command and the effects of the

command on the state variables, that is comparable with the

prediction horizon. However, the violation is small, because

of the large cost associated with the soft constraint violations.

In our preliminary tests, the explicit solution of the cou-

pled MPC controller has about 11000 regions, while the

hybrid controller evaluated in [7] has about 650 regions.

As a consequence, even if the performance obtained is

substantially higher, it may be too computationally expensive

to implement such a controller.

IV. DECOUPLED MODEL PREDICTIVE CONTROL

Due to the high complexity of the approach proposed in

Section III, that may render it unfeasible for implementation

in standard automotive microcontrollers, we consider here

the implementation of the decoupled MPC strategy, based on

the feasibility study in [7]. We consider an inner-outer control

strategy in which the electrical subsystem is controlled by an

inner-loop controller. If the inner-loop closed-loop dynamics

are much faster than the mechanical subsystem dynamics,

the MPC controller can be designed based on the reduced

system model,

ẍ = −
c

m
ẋ −

k

m
x +

F

m
, (16)
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F

V

i

r

subsystem

subsystem

controller

controller

Fig. 3. Controller architecture for the decoupled MPC design

along with constraints (3), (4), (5b) and

F ≤ ka

i2max

(kd + kb − x)2
, (17)

which defines an upper bound on the available force, related

to the maximum available current. The value imax is com-

puted from equation (1b) in static conditions, considering the

maximum voltage Vmax in (6). Note that (17) is non-convex,

being the hypograph of a convex function.

We consider the control system whose architecture is

reported in Figure 3, structured as follows.

- The MPC receives measurements from the mechanical

subsystem (16), and generates the force profile rF for

optimally tracking the mass position reference r.

- rF is converted into a reference current profile (ri),

which is sent as a reference to the electromagnetic

subsystem in closed-loop with the inner-loop controller.

- The inner-loop controller actuates the voltage V to make

the electromagnetic subsystem track ri.

- The closed-loop electromagnetic subsystem tracks ri

generating the desired current i.

- The current generates the force F that tracks rF , and

that makes the mass track r.

In the block diagram depicted in Figure 3, the white blocks

represent the dynamical subsystems, and the dark grey blocks

represent the controllers. The light gray blocks represent the

static blocks which act as interfaces. The rF → ri block

converts the force reference into the current reference by

inverting Equation (1d). The i → F block represents the

transduction of the current into the magnetic force acting on

the mass computed by Equation (1d).

In the decoupled approach the MPC controller acts as

a reference governor for the inner-loop controller, which

has the aim of actuating the force indicated by the MPC.

Obviously, there is a tracking error related to the inner-loop

controller dynamics, because of the time required to reach the

desired value of i. If the electrical dynamics imposed by the

inner-loop controller are fast with respect to the mechanical

dynamics, the effect of such an error is limited and the

performance is only slightly degraded with respect to the

nominal MPC behavior.

A. Inner-loop controller

The current dynamics, defined by (1b) and (1c), are

di

dt
=

kb + z

2ka

V −
kb + z

2ka

Ri +
1

kb + z
i
dz

dt
. (18)

The simplest way to control such nonlinear dynamics is

to design an inner-loop controller V = g
(

i, z, dz
dt

, ri

)

via

feedback linearization. Let di
dt

= f(i, z, dz
dt

, V ), we impose

that di
dt

= f(i, z, dz
dt

, g
(

i, z, dz
dt

, ri)
)

= −βi + γri, β, γ > 0.

When in closed-loop with the feedback linearization con-

troller, the current dynamics are first-order with a stable pole

pi = −β and steady-state gain γ
β

.

For the current dynamics (18), the feedback linearization

controller is defined by the law

V =
2ka

kb + z

[

kb + z

2ka

Ri −
1

kb + z
i
dz

dt
− βi + γri

]

, (19)

where the reference ri is obtained from the force reference

rF , produced by the MPC controller, by inverting Equa-

tion (1d). In the decoupled MPC design, the effects of the

mass position and velocity on the electromagnetic subsystem

are treated as disturbances, thus, they must be much slower

than the electromagnetic subsystem dynamics. Moreover, if

the dynamics imposed by the feedback linearization con-

troller are too slow, large constraint violations and instability

may occur.

A drawback of the feedback linearization controller is that

the voltage command can take large values and vary rapidly,

and that small modelling errors can cause loss of stability

or performance degradation. The main concerns here are

the properties of the decoupled MPC design, hence we use

controller (19) for simplicity, while noting that alternatives,

more robust design can be used.

B. Hybrid decoupled MPC

In this model predictive controller the electrical dynamics

are disregarded, but the force is limited by the maximum

available current through force constraint (17). The state

vector is x = [ x1
x2

] ∈ R
2, where x1 and x2 are the position

and the velocity of the mass, respectively, and the input

u ∈ R is the applied force. Constraint (17) is nonlinear and

defines a nonconvex set, the hypograph of a convex function.

The hybridization technique described in Section II-A can be

applied to obtain a piecewise affine approximation of such a

constraint, and it ensures that (17) is satisfied without being

excessively conservative.

We have considered a piecewise affine approximation with

three segments (ℓ = 3), and as a consequence, 2 Boolean

and 2 real auxiliary variables have been introduced. After

applying the technique described in Section II-A, the force

constraint (17) is defined as

u ≤ z1 + z2, (20)

where z1 and z2 are defined by (7) and (8) with χ = x1 and

ℓ = 3. Clearly, f(x1) = z1 + z2 is the function that approx-

imates the right-hand side of (17). Model (16) with (7), (8),

(20), and the output equation y(k) =
[

1 G −G
0 1 1

]T
x(k) can
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Fig. 4. Decoupled hybrid MPC of the mass-spring-damper system.

be modelled in HYSDEL, and the equivalent Mixed Logical

Dynamical (MLD) hybrid model corresponding to the sat-

urated magnetic actuator is obtained. Using this model for

prediction, the hybrid MPC optimization problem (15) can be

formulated, where now x ∈ R
2 and Qx = QN =

[

2·106 0
0 0

]

,

Qu = 10−7, N = 3. Output constraints, where ymin and

ymax are the same as for problem (15), and input constraints,

where umin = 0 and umax = +∞, are enforced as soft

constraints, while the approximation of (17) is enforced as a

hard constraint, and embedded into the MLD model.

C. Simulation of the decoupled MPC

We have tested the decoupled linear/hybrid MPC ap-

proach, and we have compared the results with the ones

obtained in the ideal case, in which the dynamics of the

electromagnetic subsystem are infinitely fast.

We have designed the inner-loop controller (19) with

β = γ = 1.5 · 105. Since the mechanical subsystem is a

second order system with damped resonance ωr = 950 rad/s

and 3db-bandwidth BW3 = 3 · 103 rad/s, the feedback

linearization controller imposes current dynamics (BW3 =
1.5·105 rad/s) much faster than the mechanical ones. The de-

coupled controller architecture and the nonlinear system (1)

have been implemented in SIMULINK. The position reference

is a square wave between the critical value 4 mm and 0 mm

and frequency 10 Hz, the same used in Section III-B. The

initial state is x0 = [0 0]T .

Figure 4 reports the results obtained with the decoupled

hybrid MPC controller, with (19) as inner-loop controller.

In Figure 4(a) the mass trajectory (solid) when tracking the

reference (dashed) is shown, and EdhMPC = 237. Figure 4(b)

reports the difference dy(t) = y1(t) − y
(MPC)
1 (t), where y1

is the position obtained by the decoupled hybrid MPC, in

which the current dynamics are imposed by the feedback

linearization controller, while y
(MPC)
1 is the nominal MPC

position, assuming infinitely fast current dynamics. The

difference is very small, because of the fast response of the

controlled current dynamics. Note that the constraints are

slightly violated: this is mainly due to the current dynamics

and only for a limited amount due to the soft constraints in

the optimization problem.

The average CPU time on a Pentium-M 2 GHz with 1 GB

RAM, Cplex 9 and MATLAB 7 for simulating the implicit

decoupled hybrid MPC in closed-loop with the nonlinear

system (2) and the inner-loop controller (19) is 6.5 sec.

In the same computer, the execution cycle of the C-code

implementation of the explicit hybrid decoupled MPC takes

0.025 ms in average, and 0.3 ms in the worst case.

V. CONCLUSIONS

We have presented different MPC strategies to control

magnetic actuators which are common components of au-

tomotive systems. First, a strategy based on the complete

system model has been presented. Then, we have imple-

mented a controller architecture where the controllers for the

mechanical and electromagnetic subsystems are decoupled,

and the MPC controller optimizes only the mechanical sub-

system behavior. The performance of the decoupled control

scheme is lower, but still satisfactory, and the complexity of

the controller is reduced.
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