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Abstract— Feedback min-max model predictive control based
on a quadratic cost function is addressed in this paper. The main
contribution is an algorithm for solving the min-max quadratic
MPC problem with an arbitrary degree of approximation. The
paper also introduces the “recourse horizon”, which allows one
to obtain a trade-off between computational complexity and
performance of the control law. The results are illustrated by
means of a simulation of a quadruple-tank process.
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I. INTRODUCTION

Most control strategies are based on a mathematical model
of the process to be controlled. Using this model, the
controller obtains the control input in such a way that a given
cost criterion is minimized. This means that a controller’s
efficiency depends greatly on how precisely the mathematical
model represents the real behavior of the system. This is even
more critical in the case of model predictive control (MPC)
where the control decision is taken on the base of the future
predicted evolution of the system which is obtained using a
model of the system assumed to be perfect in most cases [1].

One way to deal with uncertainties in MPC is to consider
a worst case approach [2]. This approach is denoted min-
max [3], [4], [5]. Recent works deal with feedback MPC [6],
[7]. Feedback min-max MPC obtains a sequence of feed-
back control laws that minimizes the worst case cost while
assuring robust constraint handling. It requires the solution
of a very high dimensional problem that makes its practical
implementation very hard.

For problems based on a cost function that can be eval-
uated with a linear programm (LP), the explicit solution
has been obtained [8], [9], [10]. Lately, an efficient online
algorithm was proposed by the authors in [11]. There are
not any equivalent results in the literature for quadratic cost
functions although several approximate solutions have been
given (see [5], [6], [12], [13]).

In this paper, the algorithm presented in [11] is extended to
deal with quadratic cost functions. The main contribution is
that the modified version of the algorithm provides a feasible
solution with an arbitrary degree of approximation. To the
best knowledge of the authors there is no equivalent result
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in the literature. The algorithm is based on the structure
and the convexity properties of the quadratic cost function.
It applies a nested decomposition procedure to solve the
min-max problems via a sequence of low order quadratic
programs. This idea was first introduced by Benders in [14]
for solving mixed integer problems.

However, the computational burden of the algorithm still
grows exponentially with the length of the prediction hori-
zon. In order to arbitrarily limit the possible combinatorial
explosion, in this paper it is proposed to consider that the
disturbance only acts on a “recourse horizon”, which can be
shorter than the prediction horizon. This idea is motivated
by the engineering sense of not taking into account possible
model uncertainties for long predictions because the MPC
controller is implemented in a receding horizon way. This
idea is related to the “control horizon” concept, which is
generally used to keep manageable the number of free
variables of the optimization problem.

II. PROBLEM FORMULATION

Consider the discrete time linear system

x(t + 1) = φ(x(t), u(t), w(t)), (1)

with
φ(x, u, w) = A(w)x + B(w)u + D(w),

subject to constraints

Gxx(t) + Guu(t) ≤ g, (2)

where x(t) ∈ Rnx is the state vector, u(t) ∈ Rnu is the
input vector and w(t) ∈ Rnw is the uncertainty vector that
is supposed to be bounded, namely w(t) ∈ W where W is a
closed polyhedron. The system matrices are defined by the
uncertainty as

A(w) = A0 +
nw∑
k=1

eT
k wAk,

B(w) = B0 +
nw∑
k=1

eT
k wBk,

D(w) =
nw∑
k=1

eT
k wDk,

(3)

where ek is the k-th column of the identity matrix of
size nw. This is a general description of uncertainty for
linear systems and includes both parametric and additive
uncertainties (see [5], [8]).

In general the complexity of Feedback min-max MPC [6],
[7] grows in an exponential manner with the prediction
horizon. In order to improve the relation between compu-
tational complexity and performance, we propose to assume
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that the disturbance only acts for a finite time Nr ≤ N
denoted recourse horizon, where N is the overall prediction
horizon. This choice has two different motivations. First,
from an engineering viewpoint it makes sense not to take
into account possible model uncertainties after a certain
prediction time, as the control law is implemented in a
receding horizon scheme. Second, by fixing Nr < N the
complexity of the problem (in terms of optimization variables
and constraints) will only grow linearly with N , which is
clearly advantageous from a computational viewpoint. Note
that this idea is equivalent to using as a terminal cost, the
optimal cost function of a nominal MPC controller.

The feedback min-max optimal control problem with a
recourse horizon is defined by the following problem which
optimum value is denoted J∗(x),

min
u(0),x(0)

{L(u(0), x(0)) + max
w(0)

{ min
u(1),x(1)

{L(u(1), x(1))+

max
w(1)

{. . . { min
u(Nr−1),x(Nr−1)

{L(u(Nr − 1), x(Nr − 1))+

max
w(Nr−1)

{ min
u(t),x(t),t≥Nr

{
N−1∑
t=Nr

L(x(t), u(t)) + F (x(N))} . . .}

(4)
subject to

x(0) = x,
x(t + 1) = φ(x(t), u(t), w(t)), t = 0, . . . , Nr − 1,
x(t + 1) = φ(x(t), u(t), 0̄), t = Nr, . . . , N − 1,
Gxx(t) + Guu(t) ≤ g, t = 0, . . . , N, ∀w(t) ∈ W,

where L(x, u) and F (x) are the stage and terminal cost
functions respectively and are given by

L(x, u) = xT Qx + uT Ru,
F (x) = xT Px,

with Q, R and P positive definite matrices.
The control law is applied in a receding horizon scheme.

At each sampling time the problem is solved for the current
state x and J∗(x) is obtained. The controller applies the
optimal control input for the first time step which is de-
noted u(0)∗. Note that this optimization problem is of very
high complexity.

A. Worst Case Scenario Tree

In order to solve the min-max problem, not all possible
values of the uncertainty (which leads to an infinite dimen-
sional problem) have to be taken into account, but only
the extreme realizations (i.e. the vertices of W). This is a
well known result (see [7], [11]). In this way, in order to
keep the sequence of decision-uncertainty realization, the
extreme realizations of the uncertainty can be represented
in a “scenario tree” as in [7]. This tree is used to solve
the min-max problem as a finite dimensional deterministic
problem. The root node of the tree represents the initial time
step j = 0 and each new level of the tree stands for a new
time step so each node has q children, one for each vertex
of W . Each node is then defined by an uncertainty vector
wi ∈ vert(W) which characterizes the uncertainty realization
from the parent node. Note that the uncertainty is only taken
into account in the recourse horizon. This means, that the
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Fig. 1. Scenario tree with Nr = 2 and q = 2

scenario tree is made of Nr levels, and that each leaf node,
has the information of the predictions along the rest of the
prediction horizon.

All the nodes of the tree are numbered, starting from the
root node (node 0) to the leaf nodes, stage by stage (so the
enumeration of the nodes of a given stage is lower than their
children nodes). M is the total number of nodes. Each node i
has a set of children I(i) and a parent node p(i). The set of
children is empty for the leafs nodes and the root node has
no parent.

Figure 1 shows an example scenario tree with Nr = 2 and
two possible uncertainties realizations (wi ∈ {−1, 1}). The
children sets I and the the parent nodes p(i) are given by:⎧⎨⎩

I(0) = {1, 2}
I(1) = {3, 4}
I(2) = {5, 6}

,

⎧⎨⎩
p(1) = p(2) = 0
p(3) = p(4) = 1
p(5) = p(6) = 2

.

The scenario tree is used to define an optimization problem
that is equivalent to the min-max problem proposed in the
previous section. To each node of the tree is assigned a set of
variables and a cost to go function defined by the following
optimization problem

V̂i(xp(i), up(i)) = min
xi,ui

L(xi, ui) + max
j∈I(i)

V̂j(xi, ui)

s.t. xi = φ(xp(i), up(i), wi),
Gxxi + Guui ≤ g.

(5)
The index of the variables denotes node enumeration. The
cost function V̂i depends on the previous decision variables,
i.e. the variables of the father node xp(i), up(i) and on the
cost function of its children.

To obtain the control input, the cost function of the root
node is minimized for a given initial state x, i.e. the following
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optimization problem is solved:

V̂0(x) = min
x0,u0

L(x0, u0) + max
j∈I(0)

V̂j(x0, u0)

s.t. x0 = x,
Gxx0 + Guu0 ≤ g.

The definition of V̂0(x) takes into account that the state of
the root node is given by the measured state of the system.

The leafs node (nodes such that I(i) is empty) are defined
by the cost function of a nominal MPC control law. The
cost to go V̂i(xp(i), up(i)) of each leaf node i is given by the
following problem

min
ui(t),xi(t),t≥Nr

N−1∑
t=Nr

L(xi(t), ui(t)) + F (xi(N))

subject to

xi(Nr) = φ(xp(i), up(i), wi),
xi(t + 1) = φ(xi(t), ui(t), 0̄), t = Nr, . . . , N − 1,
Gxxi(t) + Guui(t) ≤ g, t = Nr, . . . , N.

This problem optimizes the cost of the nominal trajectory
from Nr to N as in standard MPC.

The most important difference between problems (4)
and (5), is that in (5) all the parameters are deterministic.
That is, each node has a corresponding known realization
of the uncertainty and the maximization is done over the
corresponding cost functions of the children nodes (which is
a finite set). It is a multi-stage min-max quadratic program.
In the following sections this kind of problems are introduced
and an algorithm that exploits the problem structure is
presented.

III. MULTI STAGE MIN-MAX QUADRATIC

PROGRAMMING

In this section the multi-stage min-max quadratic program
in standard form is presented. Problem (5) can be formulated
as a multi-stage min-max quadratic program. To pose it
in standard form, auxiliary and slack variables have to be
introduced as in linear programming (see [15]).

The multi-stage min-max quadratic problem in standard
form is defined as

V ∗
i (zp(i)) = min

zi

zT
i Hizi + max

j∈I(i)
V ∗

j (zi) (6a)

s.t. Wizi = hi − Aizp(i), (6b)

zi ≥ 0. (6c)

with Hi > 0.
This kind of problems are defined by a scenario tree as

the one introduced in the previous section. Each node i has a
set of children I(i) and a parent node p(i). Note that this set
is empty for the leafs nodes and the root node has no parent.
Each node i is defined by matrices and vectors Hi, Wi, hi

and Ai. All these parameters are deterministic and can be
different for each node. In the feedback min-max MPC case,
the matrices and vectors Hi, Wi, hi and Ai depend on the
system, the cost function, the constraints and on the value of
the uncertainty from the parent node to the node i (what in

the previous section was defined as wi). The initial state of
the system defines the constraints in the root node which does
not depends on any previous decision, namely h0 depends
on x. The objective is to minimize V ∗

0 , the cost function
in the root node. The boundary conditions are given by the
problem solved at each leaf node.

The set of variables zi corresponding to each node in-
cludes the state, the input, and the slack variables needed to
represent the feedback min-max problem in standard form.
Note that because of the recourse horizon, the variables zi of
the leafs nodes are of a higher dimension than the rest of the
nodes. Note also, that as the set I is empty for these nodes,
the cost is defined as a deterministic quadratic programming
(QP) problem.

IV. NESTED DECOMPOSITION ALGORITHM

The general idea of decomposition algorithms was first
introduced by Benders in [14] for solving mixed integer
problems and has been successfully applied to stochas-
tic programming [16], [17]. In this section the algorithm
for solving multi-stage min-max linear programs based on
Benders decomposition presented by the authors in [11] is
extended to deal with the quadratic case.

At each step, the algorithm obtains a feasible set of
variables for the original problem. These variables might not
be optimal, but a bound on the error is given. This bound
decreases at each iteration.

In order to obtain the feasible set of variables, at each step
m, a subproblem is solved for each node. These subproblems
have the same constraints on zi, but additional variables and
linear constraints are added to evaluate the maximization and
approximate the functions V ∗

j (zi) by an outer linearization,
i.e. a lower bound that can be evaluated using a linear
problem. These lower bounds are improved at each iteration
and converge to the real values of V ∗

j (zi).
The lower bounds are denoted by V m

i (zp(i)) and are
defined as follows (problems Pm

i )

min
zi,θi,θi,j

zT
i Hizi + θi (7a)

s.t. Wizi = hi − Aizp(i), (7b)

zi ≥ 0, (7c)

Dk
i,jzi + θi,j ≥ dk

i,j , ∀j ∈ I(i), k ≤ rm
i,j , (7d)

θi ≥ θi,j , ∀j ∈ I(i), (7e)

θi ≥ 0, θi,j ≥ 0, ∀j ∈ I(i). (7f)

Constraints (7b) and (7c) are the constraints (6b) and (6c) of
the original problem. The rest of the constraints evaluate the
maximization and the lower bounds on V m

j (zi). Note that
these constraints do not limit the feasible set of zi.

Each θi,j is a lower bound on the value of V m
j (zi),

that is, the value of the cost function of the children. This
value is obtained evaluating an outer linearization, namely
constraints (7d). In this way, the following inequalities hold

V ∗
j (zi) ≥ V m

j (zi) ≥ θi,j , ∀j ∈ I(i).

At the first iteration r1
ij = 0 for all nodes i = 0, . . .M .

This means that for the first iteration, the value of θi,j of

1577



the children of each node i is considered to be zero (recall
that θi,j ≥ 0). Each time a new optimality cut is added (rm

i,j

increases), the approximation of V m
j (zi) becomes tighter.

The following theorem shows how to define con-
straints (7d) in order to evaluate a lower bound of V m

j (zi).
Theorem 1 (c.f. [15]): Define Di = λT

i Ai and di =
λT

i Aizp(i) + V m
i (zp(i)), where λi are the dual variables of

the equality constraints (7b) for a given zp(i) and V m
i (zp(i))

is the optimal value of the cost function. Then it holds that
for all z,

V m
i (z) ≥ di − Diz. (8)

Proof: The dual problem Dm
i is defined as (note that

strong duality holds):

V m
i (zp(i)) = max

λi,si,μ
k
i,j ,μj

g(zp(i), λi, si, μ
k
i,j , μj)

s.t. 1 −
∑

j∈I(i)

μj ≥ 0,

μj −
rm

ij∑
k=1

μk
ij ≥ 0, ∀j ∈ I(i),

si, μj , μ
k
i,j ≥ 0.

(9)
where λi, si, μ

k
i,j , μj are the dual variables corresponding

to constraints (7b), (7c), (7d) and (7e) respectively and
g(z, λi, si, μ

k
i,j , μj) is the dual function for a given value

of zp(i) = z defined as

− 1
2fT H−1

i f + (hi − Aiz)T λi +
∑

j∈I(i)

rm
ij∑

k=1

dk
ijμ

k
ij

with

f = WT
i λi +

∑
j∈I(i)

rm
ij∑

k=1

DkT
ij μk

ij + si.

The parameter zp(i) does not affect the constraints of the
dual problem so given the set of optimal dual variables
λi, si, μ

k
i,j , μj for zp(i), the following inequality holds for

all z

Vi(z) ≥ g(z, λi, si, μ
k
i,j , μj),

because the set of dual variables is feasible for (9) in z. Then
taking into account this inequality, that

g(z, λi, si, μ
k
i,j , μj) − g(zp(i), λi, si, μ

k
i,j , μj),

is equal to λT
i Aizp(i)−λT

i Aiz, that g(zp(i), λi, si, μ
k
i,j , μj) =

Vi(zp(i)) and the definition of di and Di, it is proved that (8)
holds.

These optimality cuts are obtained from feasible solutions
to the dual problem of Pm

i . Note that as the number of
optimality cuts rm

ij is increased at each step m for each
children node j, the set of dual constraints of a previous
optimum solution may not be optimal, but still remains
feasible if new zero variables μk

ij of the new optimality cuts
are added. This way, although problems Pm

i may differ on
each iteration, the lower bounds on the optimal value remain
valid.

Constraints (7e) evaluate the maximization over all the
children of node i using an epigraph approach.

As in the previous section, when solving the root node,
constraints (7b) are replaced by W0z0 = h0, because the root
node has no parent. For the feedback min-max problem, h0

depends on the initial state of the system x.
When solving a leaf node, variables θi,j and con-

straints (7d) are omitted because these nodes do not have
children. Note that this means that by definition, V m

i (z) =
V ∗

i (z) for each leaf node and every algorithm iteration m.
The algorithm solves problems with relative complete

recourse [16], i.e. feasibility of the root problem P 1
0 assures

feasibility of all the problems of the nodes of the scenario
tree for all steps m. For general problems, feasibility cuts
can be added to the algorithm as in stochastic linear pro-
gramming [16], [17]. Note that feedback min-max can be
formulated to have relatively complete recourse (see [8],
[11]).

Summing up, the general idea is to approximate the cost
function of each node with an outer linearization from the
leaf nodes, up to the root node. At each iteration, if the error
on a node is greater than a given value, the algorithm adds a
new optimality cut. The bound of the error is evaluated from
the leaf nodes to the root node in a recursive way, taking into
account that no approximation is done at the leaf nodes. As
both problems are subject to the same constraints on zi, a
feasible solution of V m

i , is a feasible solution for the original
multi-stage min max problem.

The proposed algorithm is the following:
Algorithm 1: Proposed algorithm.
• m = 0, r0

ij = 0, i = 1, . . . , M − 1, j ∈ I(i).
• if P0 is unfeasible

– Multi-stage min-max problem is unfeasible.
– End of the algorithm.

• do
– (V m

0 , z0, λ0, e0) = solvep (0,-).
– m = m + 1.

• while e0 > ε.
with solvep a recursive function that obtains for a given

node i and a given father variable zp(i), the value of the
cost function V m

i , the variable zi, the dual variables of
the equality constraints λi and a bound on the error ei for
iteration m. Note that for the root node (node 0), there is no
parent. This function is defined as follows:

(V m
i , zi, λi, ei) = solvep (i,zp(i))

• Solve Pm
i using zp(i) and obtain V m

i , zi, θi,j and λi.
• for j ∈ I(i)

– (V m
j , zj , λj , ej) = solvep (j,zi)

– if V m
j (zi) − θi,j > 0.

rm+1
i,j = rm

i,j + 1.

D
r

m+1
i,j

i,j = λT
j Aj .

d
r

m+1
i,j

i,j = λT
j Ajzi + V m

j (zi).
– else

rm+1
i,j = rm

i,j .
• end for.
• ei = −θi + max

j∈I(i)
V m

j (zi) + ej .
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Theorem 2: The solution obtained applying Algorithm 1,
denoted z∗0 , is a feasible suboptimal solution of (6) and the
following inequalities hold

V m
0 ≤ V ∗

0 ≤ V m
0 + e0.

Proof: Feasibility of the solution is assured because both
sets of problems are subject to the same constraints on zi

(recall constraints (6b)-(6c) and (7b)-(7c)).
In order to proof that the error is bounded by e0, a lower

and an upper bound of the optimal cost function are obtained.
First we derive the lower bound.

Taking into account Theorem 1, the following inequality
holds for all iteration m and node j

V m
j (z) ≥ max

k=1,...,rm
p(j),j

dk
p(j),j − Dk

p(j),jz. (10)

For the leafs nodes, I(i) is empty so it holds that V m
i (z)

= V ∗
i (z) because in this case (6) and (7) are equal. Taking

this into account and applying (10) backwards from the leaf
nodes, it holds for all iteration m and node i

V m
i (z) ≤ V ∗

i (z). (11)

The upper bound is obtained in a recursive way. Suppose
that for a given node i and a given variable zi

V ∗
j (zi) ≤ V m

j (zi) + ej , (12)

for all j ∈ I(i). Then, the following expressions hold

V m
i (zp(i)) = zT

i Hizi + θi,
V ∗

i (zp(i)) ≤ zT
i Hizi + max

j∈I(i)
V ∗

j (zi),

zT
i Hzi + max

j∈I(i)
V ∗

j (zi) ≤ zT
i Hizi + max

j∈I(i)
V m

j (zi) + ej ,

so taking into account the definition of ei, the following
inequality holds

V ∗
i (zp(i)) ≤ V m

i (zp(i)) + ei. (13)

For the leafs nodes, (12) holds for ej = 0. Applying (12)
backwards to the root node, it is easy to see that

V ∗
0 ≤ V m

0 + e0.

Convergence of the algorithm is not proved in this paper.
Future works will tackle this issue.

V. QUADRUPLE-TANK PROCESS

In this example, feedback min-max MPC is applied to a
quadruple-tank process like the one presented in [18]. This
plant has four connected tanks. See Figure 2 for a layout
of the plant. The plant is made of 0.6m2 section tanks with
normalized damping factors of 8.7932e − 4m2. The 3-way
valves have factors γ1 = 0.3 and γ2 = 0.4. (see [18] for a
complete description of the dynamics)1 .

The nonlinear model is linearized in the equilibrium point
given by the following heights ([m]) and flows ([m3/h]):

h0 =
[
0.22 0.43 0.20 0.45

]T
, q0 =

[
1.5 1.7

]T
.

1This model belongs to a real quadruple tank process of the University
of Seville.

TABLE I

COMPUTATIONAL TIMES [S] FOR DIFFERENT RECOURSE HORIZONS FOR

THE QUADRUPLE-TANK PROCESS.

N = Nr 2 3 4 5 6 7
0.094 0.496 1.75 6.93 27.4 +2min

TABLE II

COMPUTATIONAL TIMES [S] FOR DIFFERENT RECOURSE AND

PREDICTION HORIZONS FOR THE QUADRUPLE-TANK PROCESS.

N /Nr 2 3 4 5
5 0.11 0.51 1.90 6.93

10 0.14 0.61 2.56 9.19
15 0.16 0.71 3.20 13.86
20 0.19 0.85 3.80 16.84

and the following linear discrete time model with a sampling
time 10s is obtained

xk+1 =

⎡⎢⎢⎣
0.8541 0 0.1032 0

0 0.9100 0 0.0503
0 0 0.8883 0
0 0 0 0.9473

⎤⎥⎥⎦xk

+

⎡⎢⎢⎣
0.0129 0.0015
0.0008 0.0177

0 0.0262
0.0316 0

⎤⎥⎥⎦uk +

⎡⎢⎢⎣
1 0
0 1
−1 0
0 −1

⎤⎥⎥⎦wk.

(14)

The state and the input are the error from the equilibrium
point. The system has flow constrains 1.2 ≤ (q0 + u) ≤ 2
and state constraints

0 ≤ ‖h0 + x‖∞ ≤ 1.

The uncertainty is restricted to the set W = {w : ‖w‖∞ ≤
0.01}. The weighting matrices are Q = P = 10I, R = I .
Note that the complexity of the feedback formulation grows
with 4Nr because nw = 2, rendering the computation of this
control law a very hard problem.

The proposed algorithm is applied to implement a feed-
back min-max controller for this system2. Tables I and II
show the mean computation time over a hundred different
initial states of the proposed algorithm for different predic-
tion and recursive horizon. The bound of the error is set to
ε = 10−3. It can be seen that the computation time grows
exponentially with the recourse horizon but not with the
prediction horizon. As the sampling time is 10s, a min-max
controller with a recursion horizon of up to 5 and a prediction
horizon of 10 can be applied. Note that a feasible solution
with a bound on the error is available at any iteration.

A simulation is shown in figure V. The simulation lasts 40
time steps.The dashed lines represent the reference, while
the full lines represent the simulated trajectories. Note that
around time step 16, h1 goes beyond the reference and the
control law changes.

2The simulations have been done with MATLAB 6.3 in an Athlon 2800
using CPLEX 9.1 as QP solver.
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Fig. 2. Quadruple-tanks process.
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q1 q2

γ1 γ2

Fig. 3. Simulation results for the quadruple-tank process with a feedback
min-max MPC with Nr = 5 and N = 10.
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VI. CONCLUSIONS

Min-max MPC approaches are used to increase the ro-
bustness properties of a controller. However, most worst case
approaches, have a great computational burden in common,
specially in the case of feedback MPC. The algorithm
presented in this paper along with the notion of the “recourse
horizon” makes possible to implement for real plants an
approximated feedback min-max control law based on a
quadratic cost function. The approximation error bound is
computed at each step of the algorithm and can be made
arbitrarily small increasing the number of iterations.

It is important to remark that to the best knowledge of the
authors, this is one of the few results available to implement
the feedback min-max MPC controller presented. The com-
putational times, although grow in an exponential manner,
are manageable at least for the system under consideration.

Future works include the proof of the algorithm conver-
gence, and an application to the real quadruple tank process.

REFERENCES
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