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_Abstract—In this paper we investigate the stability of is a desirable property from a practical point of view as well.
discrete-time PWA systems in closed-loop with quadratic cost This is due to the fact that if attractivity alone is ensured,
based Model Predictive Controllers (MPC) and we derivea o iy principle, an arbitrarily small perturbation from the

priori sufficient conditions for Lyapunov asymptotic stability. S
We prove that Lyapunov stability can be achieved for the equilibrium may cause the state of the closed-loop system

closed-loop system even though the considered Lyapunov to drift far away by a fixed distance before converging back
function and the system dynamics may be discontinuous. to the origin.

The stabilization conditions are derived using a terminal For PWA systems in closed-loop with hybrid MPC based
cost and constraint set method. Ans-procedure technique o, o adratic costs, the stabilization conditions translate into
is employed to reduce conservativeness of the stabilization . - o .

conditions and a linear matrix inequalities set-up is developed L'ne‘?r Matrix Inequa“t'es_(LMl)' as shown in [6], [8]. A

in order to calculate the terminal cost. A new algorithm for ~ terminal cost and constraint set method [9] has been used
computing piecewise polyhedrabositively invariant sets for in [6] to guarantee attractivity for PWA systems in closed-
PWA systems is also presented. In this manner, the on-line |oop with MPC controllers. The terminal weight is cal-
optimization problem associated with MPC leads to a mixed . |5teq using semi-definite programming and the terminal

i i i I hich I . . " . .
g‘;ﬁ;g;ﬁfg'ﬁnﬂ;ﬁ%ﬁ? trgg;g problem, which can be solved state is constrained to @olyhedralpositively invariant set.

Index Terms—Hybrid systems, Lyapunov stability, Piece- Another option to guarantee attractivity for hybrid MPC

wise affine systems, Model predictive control. based on quadratic costs is to imposéeeminal equality
constraint as done in [1]. However, this method has the
. INTRODUCTION disadvantage that the predicted state must be brought to the

. . e origin in finite time. This requires that the PWA system
Hybrid systems provide a unified framework for mod-. ) S L :
. . . is, controllable, while stabilizability should be sufficient in
eling complex processes that include both continuous and - .

. X . . eneral. Moreover, a longer prediction horizon may be
discrete dynamics. Several modeling formalisms have been

developed for describing hybrid systems, such as Mixe'&eeded for ensuring feasibility of the MPC optimization

Logical Dynamical (MLD) systems [1] or Piecewise Affine problem, which increases the computational complexity.
(PWA) systems [2], and several control strategies hav(éontrollers with reduced complexity are proposed for this
Y ’ 9 se in [8], although convergence can only be established

been proposed for relevant classes of hybrid systems. PV}ZR

systems in particular have become popular due to their, 22 posteriorianalysis.
Y ; P . L Pop .In this paper we extend the work of [6], [8] based
accessible mathematical description on one hand, and their . )
. . on a terminal cost and constraint set method [9]. We
ability to model a broad class of hybrid systems [3] on, . . e i . o
: derivea priori sufficient conditions for asymptotic stability
the other. Many of the control schemes for hybrid system : o "
including next to attractivity, also Lyapunov stability) of

are based on Model Predictive Control (MPC), e.g., as tr\1ybrid MPC with costs expressed as quadratic forms. We

(r)]neg in [1], [4], [5], [6] Th(_a .|mplementat|o.n of MPC for show that Lyapunov stability can be achieved even though

ybrid ;ystems face; two difficult problems. how to reduc?he MPC value function and the system dynamics may be
the on-line computational complexity and, how to guarantegiscontinuous We employ afi-procedure technique [10]
closed-loop stability. In this paper we focus on the Iatte{ '

: S . " o reduce the conservativeness of the stabilization condi-
problem and we aim at deriving sufficient conditions tha ions with respect to [6], [8] (the example illustrates the
guarantee asymptotic stability in the Lyapunov sense [7] foI[n rovements? and we cievelo an LMI Zet-u in order to
hybrid MPC based on quadratic performance indices. Notg P P P

that many of the hybrid MPC schemes, such as [1], [4], [5]calculate the terminal cost. A new algorithm for calculating

. .. _‘piecewise polyhedral positively invariant sets (needed as
[6], only guarantee attractivity, although Lyapunov stablllt>}t5he terminal set) for PWA systems is also developed. As
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S C R™, we denote by)S the boundary of5, by int(S) its  Consider the following constrained optimization problem.
interior, and bycl(S) its closure. Consider the time-invariant

discrete-time autonomous nonlinear system described byProblem Ill.2 At time k > 0 let z; € X, the target set
Xr C X andN > 1 be given. Minimize the cost function

Tk41 = G(l‘k), (1) N—1
whereG : R” — R™ is an arbitrary nonlinear function. T(wp ) £ 2l v Plapen)eein + Y 2y Qurss
=0
Definition 1.1 Let 0 < X\ < 1 be given. A setP C R" is +up Rugs; (4

called aA-contractive seffor system (1) if for allz € P 5yer all input sequences;, € Uy (z1,), whereP(zy, ) =

it holds that_(_;’(x) € )\7?_. For A = 1 a A-contractive set is P; whenzy, y € XrNQ; and (w4, up;) satisfy (2) for
called apositively invariant set i=0..  N_—1.

A polyhedron is a convex set obtained as the intersectiqiere, N denotes the prediction horizon a®, Q and R
of a finite number of open and/or closed half-spacegre assumed to be positive definite matrices. We call an
Moreover, a convex and compact seffift that contains the jnjtial state z;, € X feasibleif Uy (x) # 0. Similarly,
origin in its interior is called a C-set. piecewise polyhedral proplem I11.2 is said to be feasible (solvabld for z; € X
setis a finite union of polyhedral sets. Thenorm of & if 14y (x;) # 0. Let X;(N) denote the set deasibleinitial

vectorz € R" is defined as: statesz;, with respect to Problem 111.2 and let
2l £ V]z1[? + .+ [zaf?, Vipe s Xp(N) = Ry, Vapc(oe) = inf - J (@, ue)
Ug N(Zk
wherez;, i = 1,...,n is thei-th component oft. For a . _ (5)
positive definite matrixZ, A\min(Z) and Amax(Z) denote the denote the value function corresponding to (4). Throughout
smallest and the largest eigenvaluefrespectively. the paper we assume that there exists an optimal sequence of
controls calculated by solving Problem 111.2 for statg €
Il. PROBLEM STATEMENT Xy(N), i.e.up = (up,up ..., up y_1). Hence, the
Consider the time-invariant discrete-time PWA systenmfimum in (5) is a minimum and/uec(zx) = J(zk, uj).
described by equations of the form [2] The following stability analysis is not affected by the

possible non-unigueness of the optimal control sequence,
i.e. all results apply irrespective of which optimal sequence
wherez), € X C R” is the state andi, € U C R™ is the is selected. Letj (v, uy) = (5 ,,,...,25, y) denote
control input at the discrete-time instant- 0. A; € R"*", the state sequence generated by system (2) from initial
B; € R™m, f, e R", j € S with S := {1,2,...,s} a statexy € X¢(N) and by applying the optimal sequence
finite setof indices ands denoting the number of discrete of controlsuj. Let uj(1) denote the first element af;.
modes. Heref; € R™ denotes a fixed offset vector for all According to the receding horizon strategy, MEC control

j € S. The setsX andU are assumed to be polyhedral C-law is defined as

sets. The collectiof(2; | j € S} defines a pgrtitiqn oK, uMPC — i (1); keN. 6)
meaning that);csQ; = X andQ;NQ; = @ for i # j. Each

Q; is assumed to be a polyhedron (not necessarily closed) precise problem formulation can now be stated as follows.
LetSy:={jeS|0e€cl()}andletS; :=={j €S|0¢
cl(2;)}, so thatS = Sy US;. We assume that the origin is
an equilibrium state for (2) withu = 0 and we require that

Tpy1 = Ajl‘k + Bjuk + fj when XL € Qj, (2)

Problem 111.3 Let a desired set of initial state€§, C X,
system (2) and the matric&g, R be given. Determine the
terminal weightsP;, the terminal constraint set; and the
fy=0forall jeS. (3) prediction horizonN such that system (2) in closed-loop

The class of hybrid systems described by (2)-(3) contair]\l_g;?pmivl\ﬂszgsgo;:gl é6)Xf’( ]\a};:ymptotlcally stable in the
0 = .

PWA systems whictmay be discontinuous over the bound-
aries and which are Piecewise Linear (PWL), instead oMoreover, it is desirable that a solution to the above
PWA, in the state space regiafcs,(2;. For afixedV € N,  problem should be such that Problem 111.2 leads to an MIQP
N > 1, letxy(x, ug) := (Xg41,. .., 2p+n) denote a state problem, which can be solved by standard optimization
sequence generated by system (2) from initial stat@and tools [11].
by applying the input sequeneg, := (u, ..., up+nN—1) € Note that many of the hybrid MPC schemes only guaran-
UY. Furthermore, letts C X denote a desired target settee attractivity, e.g., see [1], [5], and not Lyapunov stability
that contains the origin. [7], which is an important property in practice. This is due to
the fact that if attractivity alone is ensured, then in principle,
Definition 1ll.1 The class ofadmissible input sequencesan arbitrarily small perturbation from the equilibrium may
defined with respect t&’r and stater;, € X is Uy (x) := cause the state of the closed-loop system to drift far away
{u, € UN | xp (2, up) € XN, 24y € X7} by a fixed distance before converging back to the origin.



IV. MAIN RESULTS

sequence, and by optimality it follows that (e.g., see [12]

In this section we derive a priori sufficient conditions thafor details):

guarantee asymptotic stability in the Lyapunov sense for
the closed-loop hybrid system (2)-(6). Consider an auxiliary

local PWL control law of the form

a, & Kjzy, € Q,k e NJK; e R™" € 8. (7)

Vwpc(zr) < maxa) Pixy < max Amaxd(Pj)||lzel3,  (13)
J€So )

for all x, € X7r. Hence,Vpc is a decrescenfunction [7]
on X7 (note thatXr contains the origin in its interior).
In [9] it is proven that if Viypc satisfies the conditions

Let &y := Ujes, {z € ©Q; | Kjz € U} denote the safe set (11.(12).(13), and ifiiypc is continuous then asymptotic
with respect testate and inputonstraints for this controller. stability in the Lyapunov sense is guaranteed. We prove
Let Xr C &y C Ujes,{Y; denote the terminal constraint i [12] that the conditions (11)-(12)-(13) are sufficient for

set from Problem II1.2. LeQ;; := {z € Q; | Ju € U :
Aj{E + Bju + fj S QZ}, (]72) € Sy x Sy and letS,y =

asymptotic stability in the Lyapunov sense, even though the
Vmpec is discontinuous The reader is referred to [12] for

{(4,9) € So x So | Qji # 0}. The set of pairs of indices etails, due to space limitations.

Sio can be easily determined off-line by solvisg linear
programs, wherg is the number of elements of,. Let
Xp(zg,ug) = (T,
generated by system (2) from initial statg € X¢(/V) and
by applying the optimal sequence of contrals.

Theorem IV.1 [12] Consider system (2) and suppose X1 C
Ay is a closed positively invariant set for the closed-loop
system (2)-(7) that contains the origin in its interior. Assume
that there exists N > 1 such that Xo C X;(N) and that

=T ~ T T ~T e
Tp 1 Pip1 — xp Py, + 2 Qg + 1y, Ry, <0

®)
for all zj, € Xp NQy, (4,1) € Sy, where

{i‘k+1 £ Ajay, + Bjty, + f

- when xz € X1 N Qj.
Uk = szk

)
Then, the origin of the PWA system (2) in closed-loop
with the MPC control (6) is asymptotically stable in the
Lyapunov sense in X;(N), while satisfying the state and
input constraints.

Proof: Let AVMpc(l'k) = VMPC(xk+1) — VMpc(xk).
Consider the shifted sequence of contralg,; :=

(Uyqs -
for all x, € Xr(N)

AVWwpc(zr) < J(Tpg1, Upt1) — J(Tr,up) =
= —a; Quy,

* T * * T * ~T ~
— Ty NPTy n + 25 NQTp 4y + Uy n Rl n. (10)

*T * ~T =~
—uy Rup + & Ny Py N1 —

Sincex, y € X7, from the hypothesis (8) it follows that

AVupc(wr) < —z Qi < Amin(Q)||x]3. (11)

., @}, ) denote the state sequenceg 54

LUy N1, Uk N ). By optimality, we observe that

Hence, from (11)-(12)-(13) and [12] it follows that the
PWA system (2) in closed-loop with the MPC control (6)
ymptotically stable in the Lyapunov sensefp(V).

]

Remark V.2 The results of [9] regarding stability of MPC
rely on the fact thatjypc is continuous (e.g., see Section 3.2
of [9]). Theorem IV.1 shows that Lyapunov stability can be
achieved in quadratic forms based hybrid MPC, even though
Vmpc may be discontinuous (with the exceptionaot= 0).
Note thatVypc is always continuous in: = 0, since by
(13) we have thalimeoo Vmpe = Vmpc(O) =0.

A. Computation of the terminal weights and control gains

Under the assumption that the closed-loop system (9) ad-
mits a common quadratic or a Piecewise Quadratic (PWQ)
Lyapunov function, a solution to inequality (8) can be found
via semi-definite programming, as it has been shown in
[6] (see also [8] for an alternative LMI set-up). In the
sequel we employ af-procedure technique with respect to
inequality (8) in order to reduce the conservativeness of the
stabilization conditions (as done in [10]), i.e. we consider
the matrix inequality

P; — (A; + B;K;) " P(A; + B;K;) — Q
— [(IRI(7 — EJ—EU”E” > ( for all (],Z) € Sio (14)

in the unknowns(P;, K, U;;), where the matrice®; are
the terminal weights employed in cost (4), the matritgs
have all entries non-negative and the matriggsdefine the
conesCj;, which are such that;; := {x € R" | Ej;z > 0}
and Qﬂ - Cji for all (], ’L) € Si0. Note that If(PJ, Kj, Uji)
with P; > 0 and Uj; with all entries non-negative for all

Then, it follows thatViec has a negative definite forward (J: 1) € Swo satisfy (14), then it follows that

difference [7]. From (4) it follows that

Virc(wk) > o0 Qi > Amin(Q) ||z1]|3,

for all z;, € X;(N). Hence,Vuec is apositive definiteand
radially unboundedunction [7].

Let ik(xk,ﬁk) =
sequence generated by system (9) from initial statec

(12)

x' (P; — (Aj + B;K;)" Pi(A; + B;K;) — Q

wheneverz € Q;; C Cj;, (4,4) € Swpo. Hence, (8) is
satisfied and conservativeness is reduced when comparing

(Zk+1,---,Trn) denote the state g ihe corresponding nonlinear matrix inequality, i.e.

Xr. Sincex;, € XF, (8) holds for all elements of the P; — (4, + B;K;)" P,(A; + B;K;) — Q — K] RK; > 0.



Next, we develop a method for finding a solution to thesimilar explicit form ofV; can be specified also in the three
matrix inequality (14). This method is based on solving @imensional case, by using two angles, i, and 6;.
sequence of LMIs that is obtained by fixing a suitable basidowever, these expressions get more complicated in higher
of the state space and successively selecting tuning parand@nensional spaces.
ters. Consider an eigenvalue decomposition of the terminal . _ .
weight matrices from cost (4), i.62; = V;=,V;T, j € S B. Computation of the terminal constraint set

where ¥; = diag(o1j,...,00;), 015 > ... > o,y and In the sequel we develop a method for calculating a
v, = Vj’l. In the sequel we assume that the orthonormakrminal constraint set; C X} that satisfies the hypothesis
matricesV; are known and lel’; := diag(yij,...,7;), of Theorem IV.1 and solves Problem I11.3.
j € 8 denote an arbitrary diagonal matrix. Consider now Consider system (9) with the feedback gains calculated
the following LMI: as in Section IV-A. From the hypothesis of Theorem V.1
A0, (Gui) € S, (16) it follows that
with o' (Aj + BjK;) Pi(A; + B Kj)z—
ijj‘/}—r -Q- E;I;UﬂEJ2 % % — ;ETP]'LE < *)\min(Q)HSC”g <0 (20)
Aji = V. (4; + B;K;) Ly (11 ; for all z € Xp \ {0}, (j,i) € Sw. Then, it can be
K; 0 R proven along the lines of the proof of Theorem IV.1 that
in the unknowns (o1, ... 0n;), (Y1is - - -+ Vi) K Usis the poss.ibly di;continuous functidni(z) := xTP?-x when
(j,i) € Sio. In addition to (16) we require that the linear® € €;, j € So is a local PWQ Lyapunov function for the
scalar inequalities closed-loop system (9). Let

01j 2 ... 2 Opj > 0, Ynj = -- 2 V15 > 0, (l?a) &= UjGSOgj with gj = {ZL’ EXyn Qj | V(:L') < C}7

1 0;; >0, e;j—m; =0, I=1,...,n, (17b) wherec > 0, j € Sy, be a (piecewise ellipsoidal) sublevel
€lj set of V. From (20) it follows that there exists € (0,1)
with ¢;; fixed constants (tuning factors) i, 1], are satis- Such that the sef is a-contractive.
fied for all j € Sy and that
Theorem V.4 Consider system (9) and assume that it ad-
mits a PWQ Lyapunov function V(z) = x' P;x when
Note that the tuning factors;; € (0,1] are fixed in (17) 2 € £;,J € So. Let € C Xy be a sublevel set of V' and let
and that condition (18) can be easily written as an LMI¢ € (0, 1) be such that € is a-contractive. Now assume that
Hence, the conditions (16)-(17)-(18) are in the LMI form. there exist polyhedral sets P; that satisfy a&; C P; C &; for
all j € Sy. Then the piecewise polyhedral set P := Ujcs,P;
Theorem IV.3 Choose the orthonormal matrices V; and the 18 @ positively invariant set for system (9) and P C Ay.
tuning factors ¢;; € (0,1],1 = 1,...,n, j € S such
that the LMI (16)-(17)-(18) is feasible. Let (01, ...,0n;),
(’Ylia R 7'777,2')’ Kj, Uji, (]72) € S;o be a solution. Then
(Pj7Kj, Uﬂ) with Pj = ij diag(alj, . ,O'nj)‘/j—r > 0is
a solution of the matrix inequality (14).

Uj; has all entries non-negative ¥(j,:) € Sio.  (18)

Proof: Froma&; C P; C &; for all j € Sy we have
thata& C P C £. Thus,P C Ay. Let x € P. Hence,
there existsj € Sy such thatr € P; C Q;. Take~; > 1
such thaty;z € 9¢;. Then, it follows thatA¢' (v;z) € of.
Then, because of positive homogeneity of PWL dynamics,
The proof of Theorem IV.3 is given in the Appendix.it follows that A5z € =& C of. Sincea& C P, P is a
Solving the LMI (16)-(17)-(18) hinges on the fact that thepositively invariant set for system (9). [ ]
orthonormal matriced’; and the scaling factors;; must The approach of Theorem IV.4 amounts to solving the
be chosen a priori. This is not a problem with respect tproblem of fitting a polyhedron in between two closed
the tuning factors, which can be chosen arbitrarily smalkllipsoidal sets where one is contained in the interior of the
However, when it comes to fixing the matricés, it is other. A possible way to solve this problem has been re-
interesting to find out how they should be chosen suckently developed in [13] in the context of DC programming
that by varying oy;,...,0,; a sufficiently wide range (difference of convex functions). Here, a polyhedral set is
of P, matrices is covered. An answer to this questioonstructed by treating the ellipsoidal sets as sublevel sets
can be obtained for the two dimensional case, where &f suitable quadratic functions, and by exploiting upper and
orthonormal matrices can be parameterized according tolower piecewise affine bounds on such functions. Giving

Csind  cosf. additional structure to the_algori_th_m of [13] such that it
V= ( COSG? sin 9?) , (19) generates a polyhedron with a finite number of facets for
J J each regiorf2;, a piecewise polyhedral positively invariant
where0 < 6; < 7. In this way, multiple solutions of set is obtained for system (9). This set can be used as the
the LMI (16)-(17)-(18) can be obtained by varyilg. A terminal constraint set in Problem 111.2.



Note that this method yields a terminal set which is a
union of at mostsy polyhedral sets. Another option to
obtain the terminal constraint set is to employ the algorithm
developed in [14]. This algorithm computes the maximal ,
positively invariant set for a PWA system, but this set might
be a union of more than, sets. If this is the case, then .| N
one has to introduce additional Boolean variables in order
to formulate Problem 111.2 as an MIQP problem. 8 or

C. How to determine the prediction horizon i \

In the case of the quadratic forms cost (4), Problem 1.2 _,|
with the terminal constraint set calculated as in Theo-
rem IV.4 leads to an MIQP problem. The minimum value -s
of N needed to ensure feasibility of this problem for a
desired set of initial condition¥, C X (i.e. the minimum 4, S - o o 1 2 3 "
N for which Xy € X}(N)) can be calculated using the x1
expconfunction of the Hybrid Toolbox [11]. The function
expconcomputes the explicit MPC control law and return
the feasible state-space regiaf(V). Thus, one can check
if Xo C Xf(N) for a fixed N.

) The .computat|onr?1l complexity of the. on—hng MPC OP-5rthonormal matrice¥, V, defined as in (19) fof, = 2.4
timization problem increases exponentially with both theandGQ —009:

length of the prediction horizon and the number of Boolean e

variables. Hence, one has to make a trade-off in Choosing 12.9707 10.9974 7.9915 —5.5898
between a smaller terminal set, but which has a simple’s = [10.9974 14.9026} , Py = [5‘5898 53833 } ;
representation (e.g., a piecewise polyhedral set obtained % P p_p

in Theorem V.4 or a polyhedral set obtained as in [6]), 2 ~1* "4~ %
and a larger terminal set, but possibly with a complexi1 = [-0.7757 —1.0299], K, = [0.6788 —0.4302],

giig. 1. State-feedback: State trajectories - r&gh - blue polyhedraxy
- yellow and blue polyhedra.

representation (e.g., as the set obtained in [14]). Ks =K, K4= Ky,
U - [04596 1.9626] . 0.4545 20034
V. EXAMPLE 117119626 0.0198]° 7127 [2.0034 0.0250|°
Consider the following open-loop unstable system: Ui — 0.0542 0.0841 Uy — 0.0599 0.0914
_ 217 10.0841 0.0506) " “*  |0.0914 0.0565] ’
Arzy + Buy, it By, >0 o1 = 24.9765, 09 = 2.8969, 019 = 12.4273,
gy = A2k T Bui AT Eari 200 o0y 0.9475, quy = 00395, a1 = 0.2954,
Aszi+ Bup 1T Byzy >0 12 = 0.0791, 725 — 0.9675. 22)
A4l‘k + Buyg if FEyxp, >0

A piecewise polyhedrgbositively invariant set has been
computed for system (21) in closed-loop with (7) (with
the feedbacks given in (22)) using the approach of The-

0.5 0.61 —0.92 0.644 1 orem V.4 and the algorithm of [13] for the sublevel set
Ay = {0,9 1,345} A2 = [0.758 0,71} B = {0] ) &€ with ¢ = 14, which satisfies€ C Aj. In this case
£ is a contractive forae = 0.9286. The trajectories of
As = A; and Ay = A,. The state-space partition of thehe closed-loop system (21)-(7) (with; given in (22))

subject to the constraints, € X = [—10, 10] x [—10, 10],
ug € U= [-1,1], where

system is given by with the vertices ofX; as initial conditions are plotted
11 11 in Figure 1 together with a plot of the safe s&;. The
E,=—-FE3= [1 1] By = —FE, = [ 1 J ) simulation results illustrate the positive invariance of the
terminal constraint set.
The tuning parameters of the MPC algorithm ape = The state trajectory of system (21) with initial state
10~*I, andR = 103, For system (21) the LMIs of [6], [8] 2o = [-5 — 3.8]T and in closed-loop with the MPC

turn out to be infeasible. With th&-procedure approach of control (6) calculated fo’v = 4 (obtained using the Hybrid
subsection IV-A we have obtained the following solutionToolbox [11] as in subsection IV-C) is plotted in Figure 2.
by solving the LMI (16)-(17)-(18) for the tuning factors The MPC controller successfully stabilizes the open-loop
€11 = 0.04,e21 = 0.3,e10 = 0.08,e20 = 1 and for the unstable system (21) while satisfying the constraints.



Fig. 2.

MPC: State trajectory - redt'r - blue polyhedra.

VI. CONCLUSIONS

In this paper we have derived sufficieat priori con-
ditions for Lyapunov asymptotic stability of hybrid MPC

based on quadratic costs. The stabilization conditions hav
been obtained using a terminal cost and constraint set
method. We have shown that Laypunov stability can bd?l
achieved even if the considered Lyapunov function and

the system dynamics are discontinuous. Afprocedure

technique has been employed in order to reduce conser-
vativeness with respect to earlier work [6], [8] and an LMI (4]
set-up has been developed for calculating the terminal cost.
A new procedure for computing positively invariant sets for

PWA systems has also been presented. As such, the M

optimization problem leads to an MIQP problem, which can

be solved by standard optimization tools.
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APPENDIX
A. Proof of Theorem IV.3
Since(alja ) O'nj), (’717;7 R 77717;)’ Kja U]Zl (.]5 Z) € Sto

satisfy the LMI (16)-(17)-(18) we can apply the Schu
complement to (16), which yields

Vi, Vi" = (Aj + B;K;) "ViT, 'V (A + BjK;)
- Q- K] RK; — E/,Uj;E;; > 0.

By adding and subtracting4; + B;K;)"V;%;V;" (A, +
B, Kj;) in the above inequality we obtain the equivalent

Vi VT — (A + B K;) VsV, (A; + B K;)—

T3]

- Q- K/ RK; — E;Uj;Ej; >
> (Aj + BjEK;) "VilT 'V, (A + BjK;)—
— (Aj + BjK;)TVisi Vi (A; + BjK).

From (17b) we have that—o;;v,; > 0foralll =1,...
and allj € Sp. Then, the inequality

1—v1i014 0
Y1i
ry'-% = >0
1—Ynioni
0 Tni

holds for alli € Sy and from (23) it follows that the
inequality

Vis; V' — (A; + B K;) VsV, (A; + B, K;)

— Q- K/ RK; — E};Uj;Ej; >0

is satisfied for all(j,7) € S;o. The matrix inequality (14)
is obtained by letting?; = V;%;V;" > 0 for all j € Sy in
the above inequality.
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