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Abstract

In this paper we propose an efficient algorithm for com-
puting the solution to the finite time optimal control
problem for discrete time linear hybrid systems with
a quadratic performance criterion. The algorithm is
based on a dynamic programming recursion and a mul-
tiparametric quadratic programming solver.

1 Introduction

Different methods for the analysis and design of con-
trollers for hybrid systems have emerged over the last
few years [16, 9, 13, 4]. Among them, the class of opti-
mal controllers is one of the most studied. Most of the
literature deals with optimal control of continuous-time
hybrid systems and is focused on the study of necessary
conditions for a trajectory to be optimal [17, 15], and
on the computation of optimal or sub-optimal solutions
by means of Dynamic Programming or the Maximum
Principle [10, 8]. Although some techniques for deter-
mining feedback control laws seem to be very promis-
ing, many suffer from the “curse of dimensionality”
arising from the discretization of the state space nec-
essary in order to solve the corresponding Hamilton-
Jacobi-Bellman or Euler-Lagrange differential equa-
tions.

In this paper we study how to compute the solution to
optimal control problems for linear discrete time hybrid
systems. Interesting mathematical phenomena occur-
ring in hybrid systems such as Zeno behaviors [12] do
not exist in discrete time. The advantage of the discrete
time formulation is, however, that one can character-
ize and compute the optimal control law without grid-
ding the state space. In [1] we proposed a procedure
for synthesizing piecewise affine optimal controllers for
discrete time linear hybrid systems. It is based on mul-
tiparametric programming and determines the state-
feedback solution to finite-time optimal control prob-
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lems with performance criteria based on linear (1 or ∞)
norms. Sometimes the use of linear norms has practical
disadvantages. A satisfactory performance may be only
achieved with long time-horizons, with a consequent
increase of complexity. Also, generally, the closed-loop
performance does not depend smoothly on the weights
used in the performance index, i.e., slight changes of
the weights can lead to very different closed-loop tra-
jectories, so that the tuning of the controller becomes
difficult.

In his plenary presentation [14] at the European Con-
trol Conference David Mayne presented an intuitively
appealing characterization of the state-feedback solu-
tion to optimal control problems for linear hybrid sys-
tems with performance criteria based on quadratic and
linear norms. The detailed exposition [2] by the au-
thors follows a similar line of argumentation and shows
that the state-feedback solution to the finite time opti-
mal control problem is a time-varying piecewise affine
feedback control law, possibly defined over non con-
vex regions. The proposed procedures are construc-
tive, but based on the enumeration of all the possible
switching sequences of the hybrid system, the number
of which grows exponentially with the time horizon.
Although the computation is performed off-line (the
on-line complexity is the one associated with the eval-
uation of the piecewise (PWA) control law), more effi-
cient methods than enumeration are desirable. In this
paper we present an algorithm to efficiently compute
the state-feedback optimal control law. The algorithm
is based on a dynamic programming recursion and a
multiparametric quadratic solver [5].

The infinite horizon optimal controller can be approx-
imated by implementing in a receding horizon fashion
a finite-time optimal control law. The implementation,
as a consequence of the results presented here on finite-
time optimal control, requires only the evaluation of
a piecewise affine function. This opens up the route
to use receding horizon techniques to control hybrid
systems characterized by fast sampling and relatively
small size.



2 Definitions

We give the following definitions:

Definition 1 (Polyhedron) A set Θ ⊆ R
s presented

in the form Θ = {x | Hx ≤ k} for some H ∈ R
m×s,

k ∈ R
m is called polyhedron.

Definition 2 A collection of sets R1, . . ., RN is a par-
tition of a set Θ if (i)

⋃N

i=1 Ri = Θ, (ii) Ri ∩ Rj = ∅,
∀i 6= j. Moreover R1, . . ., RN is a polyhedral partition
of a polyhedral set Θ if R1, . . ., RN is a partition of Θ
and the R̄i’s are polyhedral sets, where R̄i denotes the
closure of the set Ri.

Definition 3 A function h : Θ → R
k, where Θ ⊆

R
s, is piecewise affine (PWA) if there exists a partition

R1,. . . ,RN of Θ and h(θ) = H iθ + ki, ∀θ ∈ Ri, i =
1, . . . , N .

Definition 4 A function h : Θ → R
k, where Θ ⊆

R
s, is PWA on polyhedrons (PPWA) if there exists a

polyhedral partition R1,. . . ,RN of Θ and h(θ) = H iθ+
ki, ∀θ ∈ Ri, i = 1, . . . , N .

Piecewise quadratic functions (PWQ) and piecewise
quadratic functions on polyhedra (PPWQ) are defined
analogously.

Definition 5 A function q : Θ → R, where Θ ⊆ R
s,

is a multiple quadratic function of multiplicity d ∈ N
+

if q(θ) = min{q1(θ) , θ′Q1θ + l1θ + c1, . . . , qd(θ) ,

θ′Qdθ + ldθ + cd} and Θ is a convex polyhedron.

Definition 6 A function q : Θ → R, where Θ ⊆ R
s, is

a multiple PWQ on polyhedrons (multiple PPWQ) if
there exists a polyhedral partition R1,. . . ,RN of Θ and
q(θ) = min{q1

i θ , θ′Q1
i θ + l1i θ + c1

i , . . . , q
di

i , θ′Qdi

i θ +

ldi

i θ + cdi

i }, ∀θ ∈ Ri, i = 1, . . . , N . We define di to be
the multiplicity of the function q in the polyhedron Ri

and d =
∑N

i=1 di to be the multiplicity of the function
q. (Note that Θ in not necessary convex.)

3 Hybrid Systems

Several modeling frameworks have been introduced for
discrete time hybrid systems. Among them, piecewise
affine (PWA) systems [16] are defined by partitioning
the state space into polyhedral regions, and associating
with each region a different linear state-update equa-
tion

x(t + 1) = Aix(t) + Biu(t) + fi

if
[

x(t)
u(t)

]

∈ Pi
(1)

where x ∈ R
nc×{0, 1}n`, u ∈ R

mc×{0, 1}m`, {Pi}s
i=1 is

a polyhedral partition of the sets of state+input space
R

n+m, n , nc + n`, m , mc + m`.

PWA systems can model a large number of physical
processes, such as systems with static nonlinearities,
and can approximate nonlinear dynamics via multiple
linearizations at different operating points.

Furthermore, we mention here linear complementar-
ity (LC) systems and extended linear complemen-
tarity (ELC) systems, max-min-plus-scaling (MMPS)
systems, and mixed logical dynamical (MLD) sys-
tems, which are equivalent in their discrete time ver-
sion [11, 3]. Thus, the theoretical properties and tools
can be easily transferred from one class to another. In
particular, the optimal control synthesis technique de-
veloped in this paper for PWA systems can be imme-
diately adopted for any of the former classes of hybrid
systems.

4 Finite-Time Constrained Optimal Control:
Problem Formulation

Consider the PWA system (1) subject to input and
state constraints

Ecx(t) + Lcu(t) ≤ Mc (2)

for t ≥ 0, and denote by constrained PWA system
(CPWA) the restriction of the PWA system (1) over
the set of states and inputs defined by (2),

x(t + 1) = Aix(t) + Biu(t) + fi

if
[

x(t)
u(t)

]

∈ P̃i
(3)

where {P̃i}s
i=1 is the new polyhedral partition of the

sets of state+input space R
n+m obtained by intersect-

ing the polyhedrons Pi in (1) with the polyhedron de-
scribed by (2). Let P̃ , ∪s

i=1{P̃i}. In the following we
will substitute the CPWA system equations (3) with
the shorter form

x(k + 1) = f̃PWA(x(k), u(k)) (4)

where f̃PWA : P̃ 7→ R
n and f̃PWA(x, u) = Aix+Biu+

fi if [ x
u ] ∈ P̃i, i = 1, . . . , s.

Define the following cost function

J(UT−1
0 , x(0)) , ‖Px(T )‖2

2 +
T−1
∑

k=0

‖Qx(k)‖2
2 + ‖Ru(k)‖2

2

(5)
and consider the finite-time constrained optimal con-
trol problem (FTCOC)

J∗(x(0)) , min
U

T−1

0

J(UT−1
0 , x(0)) (6)

s.t.

{

x(t + 1) = f̃PWA(x(t), u(t))
x(T ) ∈ X f (7)



where the column vector UT−1
0 , [u′(0), . . . , u(T −

1)′]′ ∈ R
mT , is the optimization vector, T is the

time horizon and X f is the terminal region. In (5),
‖Qx‖2

2 = x′Qx and R = R′ � 0, Q = Q′, P = P ′ � 0.
We denote by X 0 ⊆ R

n the set of initial states x(0)
for which the optimal control problem (5)-(7) is fea-
sible. Similarly X k denotes the set of feasible states
x(k), k = 1, . . . , N at time k for the optimal control
problem (5)-(7). See [7] for more details on the differ-
ence between minimization formulation (5) and math-
ematically correct infimum formulation.

In the following we recall the main property enjoyed by
the solution of problem (5)-(7).

Theorem 1 The solution to the optimal control prob-
lem (5)-(7) is a PWA state feedback control law of the
form

u∗(x(k)) = F k
i x(k) + Gk

i if x(k) ∈ Rk
i (8)

where Rk
i , i = 1, . . . , Ni is a partition of the set X k of

feasible states x(k) and the closure R̄k
i of the sets Ri

k

has the following form:

R̄k
i ,

{

x | x(k)′L(j)k
i x(k) + M(j)k

i x(k) ≤ N(j)k
i

}

(9)

where j = 1, . . . , nk
i , k = 0, . . . , T − 1.

Proof: The piecewise linearity of the solution was
first mentioned by Sontag in [16]. In [14] Mayne
sketched a proof. More details can be found in [6, 2].
2

In general the optimizer u∗(x(k)) and the value func-
tion J∗(x(k)) are discontinuous, X k may be non con-
vex, disconnected and partitioned into convex and non
convex sets Rk

i , i = 1, . . . , Ni.

Despite the fact that the proof of Theorem 1 is con-
structive, it is based on the enumeration of all the possi-
ble switching sequences of the hybrid system, the num-
ber of which grows exponentially with the time hori-
zon. Although the computation is performed off line
(the on-line complexity is the one associated with the
evaluation of the PWA control law (8)), more efficient
methods than enumeration are desirable. In [6] it was
also shown that under more restrictive assumptions on
the objective function J(UT−1

0 , x(0)) and on the PWA
system (3) the optimal control law (8) can assume a
PPWA form. We will not impose such restrictions on
optimal control problem (5)-(7) here. In the next sec-
tion we propose an algorithm that efficiently compute
the optimal control law (8).

5 Preliminaries and Basic Steps

Denote with fPPWA(x) and fPPWQ(x) a generic
PPWA and PPWQ function of x, respectively.

Multiparametric Quadratic Programming:
The following quadratic program

V (x) = 1
2x′Y x+ min

u

1
2u′Hu + x′FU

subj. to Gu ≤ W + Ex

(10)

can be solved for all x by using an Multiparamet-
ric Quadratic Programming solver (mp-QP) described
in [5]. The solution to the parametric program (10) is a
PPWA law u∗(x) = fPPWA(x) and the value function
is PPWQ, V (x) = fPPWQ(x).

Procedure Intersect and Compare: Con-
sider the PWA map ζ(x)

ζ : x 7→ Fix + Gi if x ∈ Ri i = 1, . . . , NR (11)

where Ri, i = 1, . . . , NR are sets of the x−space. If
there exist l, m ∈ {1, . . . , NR} such that for x ∈ Rl ∩
Rm, Flx + Gl 6= Fmx + Gm the map ζ(x) (11) is not
single valued.

Definition 7 Given a PWA map (11) we define the
function fPWA(x) = ζo(x) as the ordered region single-
valued function associated with (11) when ζo(x) =
Fjx + Gj , j ∈ {1, . . . , NR}|x ∈ Rj and ∀i < j x /∈ Ri.

Note that given a PWA map (11) the corresponding
ordered region single-valued function changes if the or-
der used to store the regions Ri and the corresponding
affine gains changes.

In the following we assume that the sets Rk
i in the

optimal solution (8) can overlap. When we refer to
the PWA function u∗(x(k)) in (8) we will implicitly
mean the ordered region single-valued function associ-
ated with the mapping (8).

Theorem 2 Let J∗
1 : R1 → R and J∗

2 : R2 → R

be two quadratic functions, J∗
1 (x) , x′L1x + M1x +

N1 and J∗
2 (x) , x′L2x + M2x + N2, where R1 and

R2 are convex polyhedron and J∗

i (x) = +∞ if x /∈ Ri.
Consider the nontrivial case R1 ∩ R2 , R3 6= ∅ and
the expressions

J∗(x) = min{J∗
1 (x), J∗

2 (x)} (12)

u∗(x) =

{

u∗
1(x) if J∗

1 (x) ≤ J∗
2 (x)

u∗
2(x) if J∗

1 (x) > J∗
2 (x)

(13)

Define λ(x) , x′(L2−L1)x+(M2 −M1)x+(N2−N1).
Then, corresponding to the three following cases



1. J∗
1 (x) ≤ J∗

2 (x) ∀x ∈ R3

2. J∗
1 (x) ≥ J∗

2 (x) ∀x ∈ R3

3. ∃x1, x2 ∈ R3 |J∗
1 (x1) < J∗

2 (x1) & J∗
1 (x2) > J∗

2 (x2)

the expressions (12) and (13) can be written equiva-
lently as:

1.

J
∗(x) =

{

J∗
1 (x) if x ∈ R1

J∗
2 (x) if x ∈ R2

(14)

u
∗(x) =

{

u∗
1(x) if x ∈ R1

u∗
2(x) if x ∈ R2

(15)

2. as in (14) and (15) by switching the indices 1 and 2

3.

J
∗(x) =







min{J∗
1 (x), J∗

2 (x)} if x ∈ R3

J∗
1 (x) if x ∈ R1

J∗
2 (x) if x ∈ R2

(16)

u
∗(x) =















u∗
1(x) if x ∈ R3 & λ(x) ≥ 0

u∗
2(x) if x ∈ R3 & λ(x) ≤ 0

u∗
1(x) if x ∈ R1

u∗
2(x) if x ∈ R2

(17)

where (14), (15), (16), and (17) have to be considered
as PWA and PPWQ functions in the ordered region
sense.

Proof: Straightforward. 2

The results of Theorem 2 allow one

• to avoid the storage of the intersections of two
polyhedra in case 1 and 2

• to avoid the storage of possibly non convex re-
gions R3 \ R1 and R3 \ R2

• to work with multiple quadratic functions instead
of quadratic functions defined over non-convex
and non-polyhedral regions.

The three point listed above will be the three basic in-
gredients for storing and simplifying the optimal con-
trol law (8). Next we will show how to compute it.

Remark 1 To distinguish between cases 1, 2 and 3 of
Theorem 2 one needs to solve an indefinite quadratic
program. In our approach if one fails to distinguish be-
tween the three cases (e.g. if one solves a relaxed prob-
lem instead of the indefinite quadratic program) then
the form (17) corresponding to the third case, will be
used. The only drawback is that the form (17) could be
a non-minimal representation of the value function and
could therefore increase the computational complexity
of on-line the algorithm for computing the optimal con-
trol action (8).

Basic Parametric Programming: Consider
the multiparametric program

J∗(x)) , minu l(x, u) + q(f(x, u)) (18)

s.t. f(x, u) ∈ R (19)

where R ⊆ R
n, f : R

n × R
m → R

n, q : R → R, and
l : R

n × R
m → R is a quadratic function of x and

u. We aim at determining the region X of variables
x such that the program (18)–(19) is feasible and the
optimum J∗(x) is finite, and at finding the expression
of the optimizer u∗(x).

We establish following results (for proofs see [7])

1. one to one problem: f(x, u) is linear in x and u,
q(x) is quadratic in x, and R is a convex polyhe-
dron. Problem is solved with one mp-QP.

2. one to one problem of multiplicity d : f(x, u) lin-
ear in x and u, q(x) is a multiple quadratic func-
tion of x of multiplicity d. Problem is solved with
d mp-QP.

3. one to r problem: f(x, u) is linear in x and u, q(x)
is a PPWQ function of x defined over r polyhe-
dral regions. Problem is solved with r mp-QP’s

4. one to r problem of multiplicity d: f(x, u) is linear
in x and u and q(x) is a multiple PPWQ function
of x of multiplicity d, defined over r polyhedral
regions. Problem is solved with rd mp-QP’s.

If the function f is PPWA defined over s regions then
we have a s to X problem where X can belong to any
of the combination listed above, i.e., we have a s to r
problem of multiplicity d if f(x, u) is PPWA in x and
u defined over s regions and q(x) is a multiple PPWQ
function of x of multiplicity d, defined over r polyhedral
regions. Such a problem can be decomposed into s one
to r problem of multiplicity d, and consequently it may
be solved with srd mp-QP’s.

6 Efficient Dynamic Program for the
Computation of the Solution

The PWA solution (8) to the FTCOC (5)-(7) can be
computed efficiently in the following way.

Consider the dynamic programming solution to the
FTCOC (5)-(7)

J∗

j (xj) , min
uj

‖Qxj‖
2
2 + ‖Ruj‖

2
2 + J∗

j+1(xj+1)

s.t. xj+1 , f̃PWA(xj , uj) ∈ X j+1 (20)

for j = T − 1, . . . , 0, with boundary conditions

X T = X f (21)

J∗

T (x) = ‖Px‖2
2 (22)



where X j is the set of all initial states for which prob-
lem (20) is feasible:

X j = {x ∈ R
n| ∃u, f̃PWA(x, u) ∈ X j+1} (23)

The dynamic program (22) can be solved backwards
in time by using a multiparametric quadratic program-
ming solver and the results of the previous Section.
In the following we will assume assume that the con-
straints in (20) define a closed set. The procedure can
be immediately extended in case of discontinuous PWA
systems [6].

Consider the first step of the dynamic program (22)

J∗

T−1(xT−1) , min
uT−1

‖QxT−1‖
2
2 + ‖RuT−1‖

2
2 + J∗

T (xT )

s.t. xT , f̃PWA(xT−1, uT−1) ∈ X f (24)

The cost to go function J∗

T (x) in (24) is quadratic, the
terminal region X f is a polyhedron and the constraints
are piecewise affine. Problem (24) is a s to one problem
that can be solved by solving s mp-QP’s.

From the second step j = T − 2 to the last one j = 0
the cost to go function J∗

j+1(x) is a PPWQ with a cer-

tain multiplicity dj+1, the terminal region X j+1 is a
polyhedron (not necessary convex) and the constraints
are piecewise affine. Therefore, problem (22) is a s to
Nr

j+1 problem with multiplicity dj+1 (where Nr
j+1 is the

number of polyhedra of the cost to go function J∗

j+1),
that can be solved by solving sN r

j+1dj+1 mp-QP’s. The
resulting optimal solution will have the form (8) con-
sidered in the ordered region sense.

7 Examples

We reconsider here the problem of controlling a piece-
wise linear system to the origin reported in [4, Exam-
ples 5.1 and 6.1]. The problem was solved by expressing
the PWL dynamics in MLD form and by using on-line
mixed-integer quadratic optimization. We show here
below that exactly the same behavior can be obtained
by synthesizing an optimal control law according to the
multiparametric technique developed in the previous
sections.

Finite Time Optimal Control: Consider the
problem of steering to a small region around the origin
in three steps the piecewise affine system

x(t + 1) = 0.8

[

cos α(t) − sin α(t)
sin α(t) cos α(t)

]

x(t) +

[

0
1

]

u(t)

y(t) = [1 0]x(t)

α(t) =

{

π

3
if [1 0]x(t) ≥ 0

−π

3
if [1 0]x(t) < 0

x(t) ∈ [−10, 10] × [−10, 10]
u(t) ∈ [−1, 1]

(25)

while minimizing the cost function (5). The finite-
time constrained optimal control problem (5)-(7) is
solved with N = 3, Q = [ 1 0

0 1 ], R = 1, P = [ 1 0
0 1 ],

and X f = [−0.01 0.01] × [−0.01 0.01]. The solu-
tion was computed in less than 1 minute by using
Matlab 5.3 on a Pentium II-500 MH. The polyhedral
regions corresponding to the state feedback solution
u∗(x(k)), k = 0, . . . , 2 in (8) are depicted in Fig. 1.
The resulting optimal trajectories for the initial state
x(0) = [−1 1]′ are shown in Fig. 2.

Figure 1: State space partition corresponding to the
state-feedback finite time optimal control law
u∗(x(k)) of system (25).

Figure 2: Finite time optimal control of system (25).

As explained in Section 5 the optimal control law is
stored in a special data structure where:

1. The ordering of the regions is important.

2. The polyhedra can overlap.

3. The polyhedra can have an associated value func-
tion of multiplicity d larger than one. Thus, d
quadratic functions have to be compared on-line
in order to compute the optimal control action.



Receding Horizon Control: Consider the
problem of regulating to the origin the piecewise affine
system (25). The finite-time constrained optimal con-
trol (5)-(7) is solved with N = 3, Q = [ 1 0

0 1 ], R = 1,
P = [ 1 0

0 1 ], X f = R
2 and its state feedback solution (8)

at time 0 u∗(x(0)) = f∗
0 (x(0)) is implemented in a re-

ceding horizon fashion, i.e. u(x(k)) = f∗
0 (x(k)). The

state feedback control law consists of 48 polyhedral re-
gions, and none of them has multiplicity higher than 2
(note that the enumeration of all possible switching se-
quences could lead to a multiplicity of 23 in all regions).
In Fig. 3 we show the corresponding closed loop trajec-
tories starting from the initial state x(0) = [−1 1]′.

Figure 3: Receding horizon control of system (25)

8 Conclusions

For discrete-time linear hybrid systems, we have de-
scribed an off-line procedure to synthesize optimal con-
trol laws based on the minimization of a quadratic
performance index subject to linear constraints on in-
puts and states. The procedure is based on a combi-
nation of dynamic programming and multiparametric
quadratic programming. Compared to the approach
of [4], where the control law is implicitly defined as
the result of a mixed-integer quadratic program which
depends on the state vector, we have explicitly charac-
terized the piecewise affine structure of the control law.
This opens the use of hybrid quadratic optimal control
to those applications where on-line optimization can-
not be afforded because of limitations on the available
CPU power and/or complexity of the control code.
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