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Abstract
The nonlinear L2 anti-windup framework introduced by
Teel and Kapoor (1997) reduces the anti-windup syn-
thesis problem to a state feedback synthesis problem for
linear systems with input saturation and input matched
L2 disturbances. In this paper, such a state feedback is
synthesized using receding horizon optimal control tech-
niques, and its equivalent piecewise affine closed-form is
computed using the techniques of Bemporad et al. (2002).
The properties of the resulting anti-windup compensation
scheme are analyzed in the paper, and its performance is
investigated through a simulation example.

1 Introduction
Actuator saturation is an ubiquitous nonlinearity in con-
trol systems. One of the control problems that arises
when actuator saturation is present is the anti-windup
synthesis problem. In this problem, a linear compensator
is prespecified and the overall control system must:
1) preserve the given linear closed-loop behavior when
the signals in the control loop are small enough not to
activate actuator saturation, and
2) avoid undesired (and unpredictable) behavior in the
presence of large signals, and guarantee that the linear
performance degrades gracefully as signals in the control
loop become large.
It was not until the end of the 1980’s that the anti-windup
problem started to receive significant attention from the
scientific research community (see, e.g., [8, 10] for sur-
veys of early anti-windup techniques). In recent years,
a broad number of anti-windup designs with formal sta-
bility (and, to a certain extent, performance) guarantees
have been proposed, thus lifting the anti-windup setting
from a merely experimental and industrial discipline into
a theoretical research topic associated with precise math-
ematical formulations and formal stability/performance
requirements (see, e.g., [1, 5–7,12, 13, 17, 19, 22]).
Based on the two requirements above, anti-windup can be
seen as an “augmentation problem,” where a linear con-
trol system (including a linear plant and a linear nom-
inal controller) constitutes the fixed parameters of the
anti-windup design, and the anti-windup compensator (or
anti-windup augmentation) action is the free parameter
to be designed in such a way as to meet those two re-
quirements.
The nonlinear L2 anti-windup framework introduced in
[19] reduced the anti-windup synthesis problem to a state
feedback synthesis problem for linear systems with in-
put saturation and input matched L2 disturbances. Op-
timal synthesis of these feedbacks is an open problem,
but many suboptimal approaches were proposed recently

1Author partially supported by MIUR through project “Robust
Control” and European Community through project IST-CC.
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(see, e.g., [11, 21]). In this paper we adopt the explicit
Receding Horizon optimal Control (RHC) synthesis tech-
niques of [2] within the L2 anti-windup framework.
Receding horizon optimal control, often referred to as
“model predictive control” (MPC), is a widely used
technique in the process industries for designing con-
trollers that handle complex constrained multivariable
problems [14, 15]. Here, at each sampling instant, an
open-loop optimal control problem is solved over a finite
horizon, starting at the current state. At the next sam-
pling instant, the computation is repeated starting from
the new state and over a shifted horizon, leading to a re-
ceding horizon policy. The solution relies on a linear dy-
namic model, respects all input and output constraints,
and optimizes a quadratic performance index. The main
historical drawback of MPC is its relatively formidable
on-line computational effort, which has limited its appli-
cability to relatively slow processes. Recently, [2] showed
that the MPC control law is a piecewise affine function
of the state, and that it can be computed off-line by
employing techniques of multiparametric quadratic pro-
gramming [2, 20], so that the on-line complexity of MPC
(RHC) reduces to the evaluation of such a piecewise affine
map.
Within the L2 anti-windup framework of this paper,
we will show that RHC provides a piecewise affine
state-feedback law which is geared toward minimizing a
quadratic cost over a finite time interval. Despite the
fact that RHC is not, in general, L2 optimal because of
the receding horizon mechanism, it provides high perfor-
mance anti-windup compensation, for instance when the
windup problem is induced by large and abrupt changes
of the reference to the control system, as we will show
through an example in Section 4.
One may argue that using a combination of both RHC
and anti-windup techniques for control of saturated sys-
tems is a mere redundancy, and that RHC alone would be
enough. There are at least two main reasons against this
argument. One is a very practical one: very often con-
trol engineers are not willing to replace an existing con-
troller that has a successful history of usage (even if for
small signals) with a new RHC controller, that requires a
complete tuning and testing. A second argument is that
even if RHC is put on top of the existing controller, most
likely it will completely change the closed-loop response,
as it does not attempt at recovering the nominal (un-
constrained) performance after saturation occurs, and it
even modifies the poles of the unconstrained closed-loop
system, whose frequency response (and, therefore, noise
rejection) properties may be very different from the nom-
inal ones. On the other hand, unlike RHC, the attempt
of a pure anti-windup scheme at recovering the uncon-
strained behavior is usually not driven by an optimality
criterion, thus the combination of the two techniques pro-
vides an appealing solution to the anti-windup problem.
RHC strategies have been previously employed success-
fully in the context of anti-windup schemes in the Ref-
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erence Governor (RG) proposed in [1, 6], a device that
smooths out the reference signal to a given nominal
closed-loop system whenever this is needed to enforce the
fulfillment of the constraints. Among other things, one
important difference between RG and the scheme pro-
posed in this paper is that RG only recovers the nominal
trajectory after a finite time, typically when the system
has reached its steady-state, while here we attempt at re-
covering it also during the transient. Moreover, RG only
employed modifications to the nominal scheme acting at
the reference input, while our approach admits modifica-
tions acting within the feedback loop, thus possessing ex-
tra degrees of freedom for stabilization and performance
improvement. Finally, arbitrarily large external distur-
bances are allowed in our approach, while they are not in
RG schemes.
The main technical challenges in proving that the con-
trol laws from [2] provide a suboptimal solution to the
nonlinear L2 anti-windup problem revolve around com-
bining the discrete-time RHC algorithm of [2] with the
continuous-time controller/plant interconnection that is
prone to windup in the presence of input saturation.
When using a discrete-time anti-windup algorithm, the
dynamics that characterize the mismatch between the
nominal closed-loop behavior and the saturated closed-
loop behavior is a sampled-data nonlinear system whose
L2 stability needs to be established. Results on L2 (in
fact, Lp) stability for linear sampled-data systems can
be found in [3] for the time-invariant case, and in [9] for
the time-varying case. To the best of our knowledge, the
literature does not contain any results that are general
enough to cover the problem we encounter here. For this
reason, we will also spend some time developing results
sufficient for establishing the L2 stability of the sampled-
data system that arises in our anti-windup problem.
1.1 Notation
We use

�
≥k (respectively, � ≥α ) to denote the set of in-

tegers (respectively, reals) greater than or equal to the
integer k (respectively, to the real α). For a function
v : � ≥0 → � m , we define

||v(·)||L2
:=

(∫ ∞

0

|v(τ)|2dτ

)1/2

,

and for a function ξ :
�

≥0 → � n , we define

||ξ(·)||`2 :=




∑

k≥0

|ξ(k)|2




1/2

.

When ||v(·)||L2
< ∞, respectively ||ξ(·)||`2 < ∞, we say

that v(·) ∈ L2, respectively, ξ(·) ∈ `2. Given a matrix
Q, Q′ denotes the transpose of Q and, if Q is square,
Q � 0 means that Q is positive definite, while λmin(Q),
λMAX (Q) denote the eigenvalues of Q whose modulus is
minimum and maximum, respectively.

2 L2 Anti-Windup
Consider a linear plant whose state-space representation
is

ẋ = A x + B u + Bd d
z = Cz x + Dz u + Ddz d
y = Cy x + Dy u + Ddy d,

(1)

where x ∈ � n is the state, y ∈ � ny is the measured
output, z ∈ � nz is the performance output, u ∈ � nu is
the control input and d is a disturbance input.
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Figure 1: The L2 anti-windup scheme.

Assume that a linear controller has been designed for sys-
tem (1) following a linear design technique1 and that its
state-space representation is

ẋc = Ac xc + Bcu uc + Bcr r
yc = Cc xc + Dcu uc + Dcr r, (2)

where xc ∈ � nc is the controller state, uc ∈ � ny and yc ∈
� nu are the controller input and output, respectively, and
r ∈ � nz is the reference input.
By referring to Figure 1, the dynamical system (2) will
be denoted as the nominal controller henceforth. The
system corresponding to the feedback connection of the
linear plant (1) with the nominal controller (2) via the
nominal interconnection equations

u = yc, uc = y, (3)

will be referred to as the nominal closed-loop system, and
we will suppose it satisfies the following assumption:

Assumption 1 The nominal closed-loop system (1),
(2), (3) is well-posed and internally stable.

If saturation is present at the input u of the linear plant
(1), the nominal interconnection (3) is replaced by the
saturated interconnection

u = sat(yc), uc = y, (4)

and the linearity of the closed-loop system is lost. In
this paper, we will consider the decentralized saturation
function, as detailed in the following assumption:

Assumption 2 The input nonlinearity sat(·) : � m →
� m is the standard decentralized saturation function,
namely

sat(u) := [sati(ui), . . . , satm(um)]T ,

where

sati(ui) :=

{
u+

i if ui ≥ u+

i
u−

i if ui ≤ u−
i

ui otherwise,

and where u−
i < 0 < u+

i for all i = 1, . . .m.

The closed-loop system (1), (2), (4), which we will call the
saturated closed-loop system henceforth, often exhibits
unpredictable behavior and, typically, performance and
stability loss. This phenomenon is often referred to in the
literature as “windup”. Roughly speaking, anti-windup

1In general, the controller (2) does not need to be linear for the
anti-windup construction to be applicable. However, in this paper
we will assume it to be linear, to keep the discussion simple.
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schemes attempt, in the presence of saturation, at recov-
ering the nominal (unconstrained) performance as much
as possible.

In [19], the goals of anti-windup construction for satu-
rated linear systems have been formalized in an L2 set-
ting, where the objective is to ensure that the trajectories
of the saturated closed-loop, with anti-windup compen-
sation, converge in an L2 sense to the trajectories of the
nominal closed-loop system and to, perhaps, minimize
the L2 error. Moreover, in [19], a model-based solution
to the L2 anti-windup problem is proposed that guaran-
tees stability of the arising closed-loop system by means
of additional dynamics. These dynamics modify the con-
trol scheme upon activation of the saturation. The com-
pensation scheme, represented in Figure 1, can be gen-
eralized to the case where sampled-data feedbacks are
used to synthesize the anti-windup compensator block.
We propose here a sampled-data anti-windup compensa-
tion scheme that solves the L2 anti-windup problem for
asymptotically stable linear plants (1). The particular
sampled-data structure that we adopt is the one detailed
in Figure 2. The structure contains two principal blocks:
a continuous-time one, reproducing the dynamics of the
plant, driven by the difference between the plant input
and the controller output, and a discrete-time one, driven
by sampled versions of the state of the previous block and
of an averaged version of the reference input. Note that,
in Figure 2, two time scales are represented: the continu-
ous time t and the sampled time ts(t), which are related
as depicted in Figure 3. Note also that, for the sake of
generality, t = 0 is not necessarily a sampling instant.
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Figure 2: The sampled-data anti-windup compensator.
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Figure 3: The solution to the sampled-data compensator (5)
with indications of its initial conditions.

In formulas, the continuous-time block in Figure 2 is de-
scribed by the equations (the dependence on t has been
omitted)

ẋaw = A xaw + B
(
sat(yc + v1) − yc

)

v2 = −Cy xaw − Dy

(
sat(yc + v1) − yc

)
,

(5a)

while the discrete-time block is represented by the static
function (to be defined later)

v1(t) = κ(xaw(ts(t)), ra(ts(t))), (5b)

and these blocks are interconnected to the linear plant (1)
and to the nominal controller (2) through the anti-windup
interconnection

uc = y + v2, u = yc + v1. (6)

The sampling instants ts(t) are related to the continuous
time t by

ts(t) = bt + σ̃cT − σ̃ , σ̃ ∈ � (7)

where T denotes the sampling period, bscT := T bs/T c,
and bqc := max{χ ∈

�
, χ ≤ q}, for all q ∈ � . The value

σ := σ̃ − bσ̃cT = −ts(0) = −t−1 is the time elapsed be-
tween the initial time t = 0 and the most recent sampling
instant, denoted by t−1. The signal ra(ts(·)) is a piece-
wise constant average of the exogenous reference signal r
and is defined as

ra(ts(t)) =
1

T

∫ tk

tk−1

r(τ)dτ, ∀t ∈ [tk, tk+1),

tk = ts((k + 1)T ) = (k + 1)T + ts(0),

(8)

for all k ≥ 0, where the values tk represent the sam-
pling instants associated with the sampled-data block.
As shown in Figure 3, the information xaw(0), xaw(ts(0))
(where ts(0) = −σ), ra(ts(0)), r(t), ∀t ∈ [t−1, 0), is a
minimal representation of the initial conditions of (5).
In our simulations, we will use the initial conditions
(xaw(0), xaw(ts(0)), ra(ts(0))) = (0, 0, 0), r(t) = r(0),
∀t ∈ [−σ, 0).
In the special case when the plant is asymptotically sta-
ble and the anti-windup compensator is a sampled-data
system, the L2 anti-windup problem defined in [19] can
be captured with the following two definitions:

Definition 1 A constant reference r◦ is said to be feasi-
ble if the response of the nominal closed-loop (1), (2), (3)
to the input (r, d) = (r◦, 0) is such that the steady-state
value yc,∞ of the controller output satisfies

yc,∞ = sat(yc,∞). (9)

Definition 2 Let z` represent the performance output
and u` represent the plant input for the nominal closed-
loop system (1), (2), (3).

The performance response z(·) of the anti-windup closed-
loop system (1), (2), (5), (6) satisfies:

1. if xaw(0) = 0, xaw(ts(0)) = 0 and u`(·) ≡
sat(u`(·)), then z(·) ≡ z`(·);

2. if d(·) ∈ L2 and there exists a feasible reference r◦
such that r(·) − r◦ ∈ L2, then

(z` − z)(·) ∈ L2.

Definition 2 formalizes the two peculiar goals of anti-
windup designs, formulated from an intuitive viewpoint in
Section 1. As a matter of fact, item 1 imposes that when-
ever the initial conditions and external inputs are such
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that the arising trajectory would not exceed the satura-
tion limits, then the anti-windup compensator must not
enforce any modification to the linear closed-loop trans-
fer function. Furthermore, item 2 formalizes the require-
ment that, whenever saturation is activated (thus making
the desired linear trajectory unfeasible for the saturated
plant), the performance output must at least converge (in
an L2 sense) to the linear (equivalently, nominal) perfor-
mance output. Evidently, the smaller the deviation z`−z
between the nominal performance and the actual one, the
better the anti-windup goal has been accomplished. For
this reason, among all of the anti-windup compensators
that solve this problem, we are interested in ones that are
effective at making ‖(z` − z)(·)‖L2

small.

In this work, the synthesis of the static function κ(·, ·) in
Figure 2 will be based on the discrete-time model

ξ(k + 1) = Adξ(k) + Bd

(
sat(yc,∞ + ν(k)) − yc,∞

)
,(10)

where r◦ is a generic feasible reference, the matrices Ad
and Bd are defined as

Ad := eAT , Bd := eAT

(∫ T

0

e−Aτdτ

)
B , (11)

and, by abuse of notation, yc,∞(r◦) represents the steady-
state input value associated with (r, d) = (r◦, 0), accord-
ing to Definition 1. The sampled-data feedback will have
the form

ν(k) = κ(ξ(k), r◦) , (12)

and (in the next section) we will design a function κ(·, ·)
that satisfies the following property:

Property 1 The function κ(·, ·) is such that

1. it is globally Lipschitz,

2. sat(yc,∞(r◦) + κ(ξ, r◦)) = yc,∞(r◦) + κ(ξ, r◦),
∀ξ ∈ � n , r◦ feasible

3. the origin of

ξ(k + 1) = Ad ξ(k) + Bd κ(ξ(k), r◦), (13)

is globally exponentially stable.

From a performance perspective, one great advantage
residing in the L2 anti-windup compensation scheme is
that, based on the linearity of the plant, the anti-windup
performance can be measured in terms of the output

zaw := Cz xaw + Dz

(
sat(yc + v1) − yc

)
,

= z − z`,
(14)

which is shown in [19] to coincide with the difference be-
tween the nominal performance output (namely, the out-
put z` corresponding to the unsaturated trajectory) and
the actual performance output (namely, the output z of
the anti-windup closed-loop system). We can now state
the following main result, whose proof is omitted due to
space constraints.

Theorem 1 Under Assumptions 1 and 2, if the func-
tion κ(·, ·) satisfies Property 1, the anti-windup closed-
loop system (1), (2), (5), (6) solves the L2 anti-windup
problem of Definition 2.

Remark 1 We emphasize that Theorem 1 establishes a
result for system (5) where the second argument of κ(·, ·)
is time-varying, yet assumes properties for κ(·, ·) only
when its second argument is a constant, feasible refer-
ence. ◦

In the next section, we will introduce an RHC-based de-
sign strategy for the synthesis of a feedback function κ(·, ·)
that satisfies Property 1 (thus solving the L2 anti-windup
problem by way of Theorem 1) while keeping small the
`2 norm of the discrete-time signal

ζaw(k) := Cz ξ(k) + Dz

(
sat(yc,∞ + ν(k)) − yc,∞

)

= Cz ξ(k) + Dzν(k),
(15)

where by virtue of item 2 of Property 1 and (12), the
equality in equation (15) necessarily holds, and where
ξ(k) is the trajectory of (10). This is especially effec-
tive at providing a good solution to the L2 anti-windup
problem when the sampling period is small and yc(·) is
similar to an impulse function (for instance, as shown in
the third plot of Figure 6, where the saturation limits
are inactive for sufficiently long time intervals so that the
nominal performance can be indeed recovered). When
this is the case, yc(·) can be thought of as inducing an
initial condition ξ(0) = xaw(t0) and thereafter satisfying
yc(t) ≈ yc,∞(r◦) so that the real problem is very close to
the problem for which the RHC strategy was designed.

3 Anti-Windup Synthesis via Explicit
RHC Techniques

The goal of this section is to synthesize a control law

ν(k) = κ(ξ(k), r◦) =: κ̄(ξ(k), yc,∞(r◦)) (16)

that satisfies Property 1, and attempts at minimizing the
`2 norm of the output ζaw of the following system:

ξ(k + 1) = Ad ξ(k) + Bd ν(k),
ζaw(k) = Cz ξ(k) + Dzν(k).

(17)

Note that satisfying item 2 of Property 1 exactly corre-
sponds to generating ν(k) so that

u− ≤ yc,∞(r◦) + ν(k) ≤ u+ . (18)

For simplicity, we will use the notation yc,∞ to denote
yc,∞(r◦) hereafter. The design of κ(·, ·) is based on the
result of a finite horizon optimization problem:

κ̄(ξ, yc,∞) := ν∗
0 , (19)

where, given a finite number of steps N , ν∗
0 is the first

element of the minimizer V∗ of the following optimization
problem:

J∗(ξ, yc,∞) := (20a)

min
V

{
J(V , ξ, yc,∞) = η′

NPηN +

N∑

i=0

(
|ζi|

2 + ν′
iRνi

)
}

s.t.






η0 = ξ
u− − yc,∞ ≤ νi ≤ u+ − yc,∞,
ηi+1 = Adηi + Bdνi,
ζi = Czηi + Dzνi, i = 0, . . . , N − 1,

(20b)

where R = R′ � 0, P is the solution to the Lyapunov
equation P = A′

dPAd + C ′
zCz � 0, and | · | denotes the
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standard Euclidean norm. Moreover, η0 is the current
state and η1, . . . , ηN are the predicted states for the future
N sampling instants; V := {ν0, ν1, . . . , νN−1} denotes
the set of free moves and V∗ := {ν∗

0 , ν∗
1 , . . . , ν∗

N−1} is
the minimizer (the dependence on ξ and yc,∞ is omitted
for simplicity).

One great advantage in selecting (19)–(20) for the
sampled-data feedback (16) resides in the fact that, based
on the results of [2, 20], (19)–(20) can be computed ana-
lytically as the following globally Lipschitz and piecewise
affine control law:

κ̄(ξ, yc,∞) = F iξ + Giyc,∞ + ai, (21)

if H iξ + Kiyc,∞ ≤ bi, i = 1, . . . , nr, where F i, Gi, ai,
H i, Ki and bi, i = 1, . . . , nr, are matrices of suitable
dimensions, whose values can be determined explicitly
by following the construction in [2, 20]. This result, to-
gether with the suitability of the proposed control law as
a candidate for the solution of the anti-windup problem
described in the previous section, are formalized in the
following lemmas (the proofs are omitted).

Lemma 1 The piecewise affine control law (21) is glob-
ally Lipschitz and coincides with the control law (19), de-
fined by the optimization problem (20).

Lemma 2 Let Ad be a strictly Hurwitz matrix and P
be the solution to P = A′

dPAd + C ′
zCz. Then, for all

r◦ satisfying Definition 1, the RHC law defined by (19)–
(20) globally exponentially stabilizes (17) while fulfilling
the constraint (18) at all sampling steps k.

Finally, based on Lemmas 1 and 2, we can prove that the
piecewise affine function (21) satisfies Property 1 and,
based on Theorem 1, solves the L2 anti-windup problem
of Definition 2.

Theorem 2 Under Assumptions 1 and 2, if A is Hur-
witz, the anti-windup closed-loop system (1), (2), (5), (6)
with the selection (21) solves the L2 anti-windup problem
of Definition 2.

Proof: By Theorem 1, it is sufficient to prove that
equation (21) satisfies Property 1. Item 1 follows from
Lemma 1 and from the fact that, by linearity, the map
r◦ 7→ yc,∞(r◦) is globally Lipschitz. To show items 2
and 3, first note that, since A is Hurwitz, then by equa-
tion (11), Ad is asymptotically stable. Hence, based on
Lemma 2, items 2 and 3 follow.

Remark 2 In this paper we have chosen P in (20a) as
the solution to a Lyapunov equation. An alternative ap-
proach, as suggested in [2,4,16,18], is to choose P as the
solution to the Riccati equation P = (Ad +BdK)′P (Ad +
BdK)+K ′RK +C ′

zCz, where K = −(R+B′
dPBd)

−1B−
B′

dPAd is the LQR gain. By choosing a sufficiently large
finite number N of free moves, which can be computed
for any compact set as suggested in [2, 4], the receding
horizon controller (19)–(20) solves the constrained linear
quadratic regulation problem with output weight I , in-
put weight R, and limits (18), i.e., we can achieve stabil-
ity and `2-optimality, but only semi-globally. In fact, for
certain initial states outside the given compact set, not
only optimality, but even convergence to the origin is not
guaranteed. On the other hand, by setting P as the solu-
tion to the Lyapunov equation we proved global stability.

Moreover, even if `2-optimality is not achieved, it can be
arbitrarily approximated by increasing the number N of
free moves, although this usually increases the number nr
of cells in the polyhedral partition of the piecewise affine
control law (21). ◦

4 Simulation example
To illustrate the performance of the anti-windup con-
struction proposed in Sections 2 and 3, consider a damped
mass-spring system. Its equations of motion are given by

ẋ =
[

0 1
−k/m −f/m

]
x +

[
0

1/m

]
(u + d)

z = y = [ 1 0 ] x,
(22)

where x := [q q̇]T represents position and speed of the
body connected to the spring, m is the mass of the body,
k is the elastic constant of the spring, f is the damping
coefficient, u represents a force exerted on the mass and d
represents a disturbance at the plant’s input. We choose
the following values for the parameters: m0 = 0.1 kg,
k0 = 1 kg/s2, f0 = 0.005 kg/s.
Assume that r ∈ � is a reference input corresponding to
the desired mass position and that the following linear
controller

yc = Cfb(s)
(
Cff (s) r − uc

)
,

Cfb(s) = 500
(s + 15)2

s (s + 80)
, Cff (s) =

5

2s + 5
,

(23)

has been determined with the aim of guaranteeing a fast
response with zero steady-state error to step reference
changes, robust to parametric uncertainties.
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Figure 4: Time responses of the saturated (dashed), nomi-
nal or unsaturated (solid) and IMC anti-windup (dash-dotted)
compensated systems to a double pulse reference.

For all of our simulations, the disturbance d is chosen as
band-limited white noise of power 0.0002 passed through
a zero order holder with sampling instant 0.001 s. The
response of the nominal closed-loop system (22), (23),
(3), starting from the rest position and with the reference
switching between ±0.9 meters every 5 seconds and go-
ing back to zero permanently after 15 seconds, is shown
by the solid curve in Figure 4. If the force exerted at
the plant’s input u is limited between ±1 Kg ·m/s2, the
saturated response corresponds to the dotted curve in
Figure 4, which converges to a limit cycle where the out-
put persistently oscillates between positive and negative
peaks qPEAK ≈ 260 m. The windup effect shown by this
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saturated response is associated with a challenging com-
pensation problem. Indeed, the following attempts for
anti-windup design lead to unacceptable results:
1. IMC/model-based anti-windup leads to very large os-
cillations decaying at a very slow rate (corresponding to
the slow modes of the open-loop plant dynamics) and is
represented by the dash-dotted curve in Figure 4;
2. optimal static linear anti-windup compensation (pro-
posed in [13]) is unfeasible for this particular example.

We synthesize the RHC control law κ̄(ξ, yc,∞) by setting
R = 10−8, N = 2, Nc = 2, and P solving the Lyapunov
equation. The piecewise affine controller is computed in
about 1.32 s on a Pentium III 650Mhz running Matlab
5.3 by using the algorithm of [20]. The corresponding
partition projected on the ξ coordinates for yc,∞ = 0 has
7 regions and is reported in Figure 5.
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Figure 5: The partition associated with the RHC law, pro-
jected on the ξ coordinates for yc,∞ = 0.
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Figure 6: Time responses of nominal or unsaturated (solid),
RHC-based anti-windup (bold) and nonlinear L2 anti-windup
(dashed) compensated systems to a double pulse reference.

As already shown in [21], nonlinear L2 anti-windup pro-
vides a very effective solution to the windup problem
associated with this mass-spring system. The RHC-
based construction proposed in this paper, which at-
tempts at approximating `2-optimality, produces what
can be viewed as better performance. This is shown in
Figure 6 where it is seen that the bold curve converges
to the nominal (solid) curve at a faster rate. To correctly
simulate the sampled-data system, the quantity σ indi-
cated in Figure 3 has been selected as σ = 0.08. so that
(according to a reasonable situation) the reference does
not change exactly at the sampling instants.
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