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Abstract
Mass-produced systems are constructed and calibrated to be nominally the same, and they usually
have similar goals. When several of these systems can share information with the cloud, one can
exploit their similarities to improve the design of individual control policies. In this framework, we
aim to exploit these similarities and the connection to the cloud to solve a sharing-based control pol-
icy optimization problem, leveraging on information provided by trustworthy agents. In this paper,
we propose to combine the optimal policy search method introduced in (Ferrarotti and Bemporad,
2019) with the Alternating Direction Method of Multipliers, by relying on a weighted surrogate of
the experiences of each device shared within the cloud. A preliminary example shows the effective-
ness of the proposed sharing-based method, which results in improved performance with respect
to the ones attained when neglecting the similarities among devices and when enforcing consensus
among their policies.
Keywords: Reinforcement Learning control, Sharing, Control over networks.

1. Introduction

In a world where the complexity of processes to be controlled is always increasing, along with the
availability of large datasets, data-driven techniques allow one to use data to obtain control actions
directly. This enables the designer to bypass the identification step characterizing model-based
control strategies, that is known to be time consuming and usually aimed at finding models whose
accuracy and complexity might be excessive with respect to the control task at hand. However, many
data-driven control methods, see e.g., (Campi et al., 2002; Hjalmarsson, 2002; Karimi et al., 2004),
rely on reference models that shape the desired closed-loop response of the system and that have to
be blindly selected before-hand. This might be a rather challenging task and only few methods have
been proposed in the literature to automatize such choice, see (Selvi et al., 2018; Campestrini et al.,
2011; Kergus et al., 2019).

By sticking to the principles of model-based predictive control, several approaches have been
recently proposed that rely on behavioral system theory to avoid an explicit identification step (Coul-
son et al., 2019, 2020). Alternatively, model-free Reinforcement Learning (RL) approaches are often
used for control design, where the actions are determined so as to maximize a predefined reward
(Recht, 2019; Konda and Tsitsiklis, 2003; Watkins and Dayan, 1992; Grondman, 2015). All these
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methods mainly focus on the design of policies for one plant only, thus usually requiring rather long
and expensive experimental campaigns to obtain informative data.

The advances in cloud computing allow designers to overcome this limitation, by leveraging on
the increasing connectivity between devices to gather more information when searching for control
policies for systems that share similar dynamics and related individual tasks. This is indeed quite
common, particularly for mass produced devices, that are by construction and calibration nomi-
nally the same. Shared information can thus be exploited to improve exploration and, ultimately,
to retrieve better individual policies. As a motivating example, consider N vehicles that aim at
performing path following tasks that are similar in nature, but somehow different in their individual
realizations. By sharing either their experiences or surrogate of the latter, more insights on how
to handle the considered task are likely available for the design of the local policies. The sharing
process is enabled among modern connected vehicles, that maintain a constant Vehicle-to-Cloud
bi-directional connection with sufficient data bandwidth for different monitoring, maintenance, and
updating services.

Sharing-based principles have already been exploited for policy search purposes, in scenarios
where all agents are cooperating in the same environment towards the achievement of the same
goal, see e.g., (Dimakopoulou et al., 2018), or to steer all local policies to the same value, under
the assumption that they lie in the same space, e.g., as in (Nair et al., 2015; Khan et al., 2018).
In (Breschi et al., 2020), as well, agents characterized by similar, yet unknown, dynamics and by
similar goals are driven to “agree” on a global consensus, while working in diverse environments
and having different local tasks. Differently from (Dimakopoulou et al., 2018), the agents are not
required to share the same goal and to operate within the same environment. Unlike (Khan et al.,
2018), the approach proposed in (Breschi et al., 2020) does not require the agents to share their
private states, but surrogate of their experiences only.

Considering the same setup of (Breschi et al., 2020), in this work we present a policy search
method that explicitly exploits the analogies between the plants and their connection to the cloud.
Similarly to (Breschi et al., 2020), we propose to embed the policy search method described in
(Ferrarotti and Bemporad, 2019) within a scheme based on the Alternating Direction Method of
Multipliers (ADMM) (Boyd et al., 2010), that allows the agents to share surrogate of their expe-
riences, while privately retaining their states, actions and rewards. Nonetheless, here the shared
information is not used to impose hard constraints on the policy of each agent as in (Breschi et al.,
2020), but we rather exploit them to softy steer the agents to follow the ones evaluated as the most
“trustworthy” based on local performances or other factors of interest, leading to the formulation of
a sharing problem. As in (Breschi et al., 2020), the method preliminarily presented in this paper, is
suited for an ideal setting, in which there are negligible latencies in the back and forth communica-
tions between the systems and the cloud.

The paper is organized as follows. The cloud-based policy search problem over groups of similar
agents is formalized in Section 2, while the proposed strategy to tackle it is described in Section 3.
Section 4 is focused on the application of the presented policy search approach to the output-tracking
problem, whose effectiveness is assessed via the results of a preliminary simulation example shown
in Section 5. Conclusions and directions for future research are finally outlined in Section 6.

Notation Let N and Rn denote the set of natural numbers and the one of n-dimensional real
vectors, respectively. Let I be the identity matrix. Given A ∈ Rn×m, we denote its transpose
as A′ ∈ Rm×n. Given a vector x ∈ Rn, its Euclidean norm is denoted as ‖x‖2, while ‖x‖2Q =
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x′Qx with Q ∈ Rn×n. The uniform distribution over the interval [a, b] is denoted as U[a,b], while
N (µ, σ2) indicates the Gaussian distribution with mean µ and variance σ2.

2. Setting and goal

ConsiderN dynamical systems (also referred to as agents) connected to the cloud and characterized
by the same, yet unknown, nominal dynamics. Under this assumption, let the interaction of the each
agent with the environment it operates in be described via a Markovian signal sn(t) ∈ Rns , for
n = 1, . . . , N , with t ∈ N. Each sn(t) evolves over time according to the (unknown) model

sn(t+ 1) = h(sn(t), un(t), pn(t), dn(t)), n = 1, . . . , N, (1)

where un(t) ∈ Rnu is a vector of local decision variables, while pn(t) ∈ Rnp and dn(t) ∈ Rnd

comprise exogenous signals and unmeasured disturbances acting on the n-th system, respectively.
Note that, due to the similarities between the N agents, the function h : Rns ×Rnu ×Rnp ×Rnd →
Rns is shared by all systems.

Suppose that the N agents have to accomplish different local tasks that are similar in nature,
e.g., they all seek to perfectly track their own step-like set points. In this paper, our aim is to exploit
the analogies between the systems and their connection to the cloud in order to retrieve N local
parametric and deterministic policies πn : Rns × Rnp → Rnu , for n = 1, . . . , N , for each system
to optimally attain its own control task. Since the agents have the same nominal dynamics and
similar control objectives, we impose the local policies to share the same structure, i.e.,

un(t) = πn(sn(t), pn(t)) = π(sn(t), pn(t),Kn), n = 1, . . . , N, (2)

where each local inputs is shaped by an individual set of parameters Kn.
The optimality of the local policies is characterized, as in (Ferrarotti and Bemporad, 2019),

through a task-dependent stage cost ρ : Rns × Rnp × Rnu → R, indicating the cost of applying
the policies at a time instant t ∈ N, assumed to be common to all agents due to the similarity of
their tasks. Given an initial state sn(0) and a sequence {pn(l), dn(l)}∞l=0 of exogenous signals and
disturbances, the cost of each local policy over an infinite horizon is thus defined, for n = 1, . . . , N ,
as

J∞n (sn(0), {pn(l), dn(l)}∞l=0,Kn) =
∞∑
l=0

ρ(sn(l), pn(l), π(sn(l), pn(l),Kn)), (3)

with sn(l) evolving according to (1). Not to restrict ourselves to a single realization of the initial
state, the exogenous signals and unmeasurable disturbances, we consider the average performance
of each local policy, namely

J∞n (Kn) = E
Sn(0)

{Pn(l),Dn(l)}∞l=0

[J∞n (sn(0), {pn(l), dn(l)}∞l=0,Kn)] , n = 1, . . . , N, (4)

where Sn(0), {Pn(l), Dn(l)}∞l=0 are random vectors, whose realizations are initial states, exogenous
signals and disturbances acting on the n-th system, respectively.

Although accounting for the similarities between the agents, the cost in (4) does not exploit the
connection of the systems to the cloud, that enables them to share his experiences or surrogates of
the latter with the other agents. Based on the intuition that this shared information can improve the
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local policies and that the analogies between the systems are likely to lead to similar values for the
parameters {Kn}Nn=1 in (2), we formulate our problem as

{K∗n}Nn=1 = argmin
{Kn}Nn=1

N∑
n=1

J∞n (Kn) +
λ

2

∥∥∥∥Kn −
N∑

m=1

wmKm

∥∥∥∥2

2

, (5)

where the local cost J∞n (·) of each agent is augmented by an additional term, weighted by a tunable
parameter λ > 0, that can in principle be different for each agent. The additional term introduced
in (5) can be seen as a softened version of a constraint steering each set of local parameters to
the weighted average over the policies of the N agents. The positive-definite weights {wn}Nn=1,
wn ≥ 0,

∑N
n=1wn = 1 are customizable by the user and they should be chosen so as to be

approximate indicators of the “level of trust” on the policy of each agent. If the policies are updated
at each time step, time-varying weights can be chosen so to account for up-to-date information on
the local policy. Analogously, λ can vary in time to account for either individual or common actual
needs to exploit the shared information.

As in (Breschi et al., 2020), the proposed formulation allows us to explicitly account for the
similarities between the N agents in the computation of the local policies. At the same time, with
respect to the collaborative strategy proposed in (Breschi et al., 2020), problem (5) enables one to
explicitly account for the performance of each agent through the weights {wn}Nn=1, so as to steer
the fleet of systems towards the behavior of the better ones.

3. Policy search strategy: a sharing-based approach

Despite its generality, the abstract policy learning problem formulated in (5) cannot be solved in
practice. As in (Ferrarotti and Bemporad, 2019; Breschi et al., 2020), by restricting our search over
a finite horizon of tunable length L > 0, we consider the following approximation of (3)

JL
n (Kn) = E

Sn(0)

{Pn(l),Dn(l)}L−1
l=0

[
J L
n (sn(0), {pn(l), dn(l)}L−1

l=0 ,Kn)
]
, n = 1, . . . , N, (6a)

where J L
n (sn(0), {pn(l), dn(l)}L−1

l=0 ,Kn)=

L−1∑
l=0

ρ(sn(l), pn(l), π(sn(l), pn(l),Kn)). (6b)

This allows us to compute the policies, with the parameters

{K?
n}Nn=1 = argmin

{Kn}Nn=1

N∑
n=1

JL
n (Kn) +

λ

2

∥∥∥∥Kn −
N∑

m=1

wmKm

∥∥∥∥2

2

, (7)

being sub-optimal with respect to the ones retrieved according to (5). Even though this approxi-
mated learning problem can be tackled in practice, the cost in (7) is not separable over the agents.
To bypass this limitation, we propose an ADMM-based scheme to learn the local policies, that al-
lows us to fully exploit the computational power of the cloud and the resources available either on
board of the single agents or individually allocated on the cloud for each system. Let us reformulate
the problem in (7) as follows

min
{Kn}Nn=1

N∑
n=1

[
JL
n (Kn) +

λ

2

∥∥∥∥Kn −
N∑

m=1

Zm

∥∥∥∥2

2

]
s.t. Zm = wmKm, m = 1, . . . , N, (8)
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where the auxiliary variables {Zn}Nn=1 are introduced to decouple the original problem. The asso-
ciated Lagrangian (in scaled form) is given by:

L
(
{Kn, Zn, υn}Nn=1

)
=

N∑
n=1

[
JL
n (Kn) +

λ

2

∥∥∥∥Kn−
N∑

m=1

Zm

∥∥∥∥2

2

+
β

2

∥∥∥∥wnKn − Zn + υn

∥∥∥∥2

2

]
,

where β > 0 is a tunable penalty parameter and {υn}Nn=1 are the normalized Lagrange multipliers
associated with (8). Accordingly, the ADMM steps needed to solve the considered policy search
problem are:

Ki+1
n ← argmin

Kn

L
(
{Kn, Z

i
n, υ

i
n}Nn=1

)
, n = 1, . . . , N, (9a)

{
Zi+1
n

}
← argmin
{Zn}Nn=1

N∑
n=1

[
λ

2

∥∥∥∥Ki+1
n −

N∑
m=1

Zm

∥∥∥∥2

2

+
β

2

∥∥∥∥wnK
i+1
n − Zn + υin

∥∥∥∥2

2

]
, (9b)

υi+1
n ← υin +

(
wnK

i+1
n − Zi+1

n

)
, n = 1, . . . , N, (9c)

where i ∈ N denotes the ADMM iteration. As it can be seen by looking at (9a), the local parameters
can be computed separately. Instead, the auxiliary variables have all to be retrieved at once (see
(9b)). Let us then focus on the second ADMM step. Problem (9b) can be recast as:

min
{Zn}Nn=1,Z̄

N∑
n=1

[
λ

2

∥∥∥∥Ki+1
n − Z̄

∥∥∥∥2

2

+
β

2

∥∥∥∥wnK
i+1
n − Zn + υin

∥∥∥∥2

2

]
s.t. Z̄ =

N∑
m=1

Zm. (10)

As in (Boyd et al., 2010), by fixing Z̄ it can be easily proven that:

Zn = wnK
i+1
n + υin, n = 1, . . . , N. (11a)

This further implies that

Z̄ =
N∑

n=1

Zn = K̄i+1
w +Nῡi, where K̄i+1

w =
N∑

n=1

wnK
i+1
n , ῡi =

1

N

N∑
n=1

υin. (11b)

By exploiting (11b), the constrained problem in (10) is equivalent to the following unconstrained
one on the variable Z̄:

min
Z̄

N∑
n=1

[
λ

2

∥∥∥∥Ki+1
n − Z̄

∥∥∥∥2

2

]
+
β

2

∥∥∥∥ 1

N

(
K̄i+1

w − Z̄
)

+ ῡi
∥∥∥∥2

2

. (12)

We can thus reduce the number of auxiliary variables, directly searching for Z̄. Once Z̄i+1 has
been computed via (12), this shift implies that we have also to change the update of the Lagrange
multipliers, using the equalities in (11), as ῡi+1 ← ῡi + 1

N

(
K̄i+1

w − Z̄i+1
)
. This allows us to solely

consider ῡ and it is easy to prove that the original ADMM-based scheme in (9) reduces to

Ki+1
n ← argmin

Kn

JL
n (Kn)+

λ

2

∥∥∥∥Kn− Z̄i

∥∥∥∥2

2

+
β

2

∥∥∥∥wn(Kn−Ki
n)+

1

N

(
K̄i

w−Z̄i
)
+ ῡi

∥∥∥∥2

2

∀n, (13a)

Z̄i+1 ← argmin
Z̄

N∑
n=1

[
λ

2

∥∥∥∥Ki+1
n − Z̄

∥∥∥∥2

2

]
+
β

2

∥∥∥∥ 1

N

(
K̄i+1

w − Z̄
)

+ ῡi
∥∥∥∥2

2

, (13b)

ῡi+1 ← ῡi +
1

N

(
K̄i+1

w − Z̄i+1
)
. (13c)

5



THE BENEFITS OF SHARING

#1 · · · #N

Central Unit

Ki
1 Ki

N

K
i+

1

1

, w
1 K

i+
1

N
, w

NZ̄
i, K̄

iw , ῡ
i Z̄

i , K̄
i w
, ῡ
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Figure 1: Transmission scheme over an ADMM iteration i.

The problem in (13b) can be explicitly solved, with the closed-form expression for Z̄ given by:

Z̄i+1 =
λN

λN2 + β

N∑
n=1

Ki+1
n +

β

λN2 + β

(
K̄i+1

w + ῡi
)
. (14)

As it can be noticed, the parameters of the local policies can now be computed separately according
to (13a). This operation can be either performed on board of each agent, if the computational power
available locally is sufficient, or on resources allocated for each agent on the cloud. Then, the
agents have to share with a central processing unit their parameters and local weights to update
the auxiliary variable Z̄ as in (13b) and the Lagrange multiplier (see (13c)), whose values are then
broadcast back to the agents, along with the weighted average of the local policies. Note that this
communication strategy, summarized in Figure 1, allows the systems to retain private information,
such as their states, actions and rewards, while communicate to the central unit a surrogate of their
experiences.

On the update of the local parameters Inspired by (Ferrarotti and Bemporad, 2019), the local
policy search problem in (13a) is solved via M iterations of mini-batch stochastic gradient descent
(SGD) (Robbins and Monro, 1951), with the dimension of the batches M being a customizable
parameter. At the i-th ADMM iteration, given an initial estimate Ki,0

n , the parameters of the n-th
policy are thus updated following a descent direction Dn with positive learning rates {αm

n }Mm=1, as

Ki,m+1
n = Ki,m

n + αm+1
n Dn(Ki,m

n ), m = 0, . . . ,M − 1,

Based on the characteristics of the cost to be optimized, the descent direction Dn(Kn) at the i-th
ADMM iteration can be explicitly computed as follows:∑Nb

k=1∇KnJ L
n (ωk,Kn)

Nb
+λ(Kn−Z̄i−1)+βwn

(
wn(Kn−Ki−1

n )+

(
K̄i−1

w −Z̄i−1
)

N
+ῡi−1

)
, (15)

where {ωk = (skn(0), {pkn(l), dkn(l)}L−1
l=0 )}Nb

k=1 is a sampled mini-batch of admissible initial states,
exogenous signals and disturbances at each SGD run. This implies the need for a tailored sampling
strategy. Due to the dependence of J L

n (·) in (15) on the Markovian signal sn(t), the descent di-
rection relies on the dynamics in (1) to be explicitly computed. However, the latter is assumed to
be unknown. As proposed in (Ferrarotti and Bemporad, 2019), we bypass this problem by learning
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simple linear models from data, approximating the behavior of the system around its current operat-
ing point. This choice allows us to keep the complexity of the recursive identification problem low,
such that they are likely manageable on board of each agent, which is seldom the case if one has to
retrieve a more general model for the systems. At the same time, it leads to an approximation in the
computation of the descent direction.

4. A case study: the output-tracking problem

Let us focus now on the specific case in which the N agents aim at perfectly tracking the output
reference signals rn(t) ∈ Rny over time t ∈ N, for n = 1, . . . , N . Denote as qn(t) ∈ Rny

the integral on the tracking error at time t of the n-th agent, whose evolution is dictated by the
difference equation qn(t+ 1) = qn(t) + (yn(t)− rn(t)), where yn(t) ∈ Rny is the measured output
at time t. As in (Ferrarotti and Bemporad, 2019), to achieve steady-state offset free tracking we
define

sn(t) =

[
xn(t)
qn(t)

]
, pn(t) = rn(t), t ∈ N, (16a)

where xn(t) ∈ Rnx denotes the state of the n-th plant. Especially in data-driven settings, this signal
might not be fully measured. Nonetheless, one can find a (possibly non-minimal) realization of the
plant state by collecting a finite set of input/output samples, i.e.,

xn(t) =
[
yn(t)′ yn(t− 1)′ · · · yn(t− na)′ un(t− 1)′ · · · un(t− nb)′

]′
, (16b)

with na, nb ∈ N fixed by the user, possibly according to some priors on the order of the system.
Within this setting, the stage cost in (6b) can be chosen as

ρ(sn(l), rn(l), π(sn(l), rn(l),Kn))=‖Cxn(l)− rn(l)‖2Qy
+ ‖∆un(l)‖2R + ‖qn(l)‖2Qq

, (17)

where ∆un(l) = un(l)− un(l − 1) is the input increment, C ∈ Rny×nx depends on the definition
of the state and is common to all agents, while Qy, Qq and R are customizable positive definite
symmetric matrices weighting the tracking performance and the control effort.

As pointed out in Section 3, the computation of the descent direction (see (15)) requires one to
retrieve an approximate model for the dynamics in (1). Since the dynamics of qn(t) is known, one
can exploit a Kalman filter (Kalman, 1960) to recursively update the parameters Θn characterizing
the dynamics of xn(t), such that

Θn(t) = Θn(t− 1) + ξn(t), yn(t+ 1) = Θn(t)

[
xn(t)
un(t)

]
+ dn(t),

where ξn(t) and dn(t) being zero-mean Gaussian white noises with covariance matrices QK
n and

RK
n , respectively. The covariances QK

n and RK
n are here regarded as tuning parameters. The use

of the Kalman filter allows us to approximate the evolution of the state (16a), using Θn(t), with
parameters held constant over the horizon of length L. Note that, the simple computations needed
for the update the local models can usually be performed on board of each plant. The reader is
referred to (Ferrarotti and Bemporad, 2019) for further details on this scenario.

To compute the descent direction as in (15) at the i-th ADMM iteration and m-th mini-batch
SGD run, one further needs a tailored sampling strategy. Within the considered framework , one can
exploit the one already proposed in (Ferrarotti and Bemporad, 2019), summarized in Algorithm 1.
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Algorithm 1: Sampling strategy of agent n at time t, at each SGD run

Input: States history Xn(t); number of states, tracking integral, exogenous signals and distur-
bances samples Nx, Nq, Np, Nd; exploration parameters rmin

n , rmax
n , σ2

v , σ2
q , dmax

n ; horizon L.

1. for k = 1, . . . , Nx do
1.1. randomly draw uniformly τkn ∈ 1, . . . , t;

1.2. get xn(τkn) from Xn(t) and the associated local model Θn(τkn);

1.3. sample vkn ∼ N (0, σ2
v) and build xkn(0) = xn(τkn) + vkn;

1.4. for z = 1, . . . , Nq do
1.4.1. sample qzn(0) ∼ N (0, σ2

q ) and build sk,zn (0) =
[
xkn(0)′ qzn(0)′

]′;
1.4.2. for j = 1, . . . , Np do

1.4.2.1. sample rjn ∼ U[rmin
n ,rmax

n ], and assign pjn(l) = rjn ∀ l = 0, . . . , L− 1;
1.4.2.2. for h = 1, . . . , Nd do
1.4.2.3. for l = 0, . . . , L− 1 sample dhn(l) ∼ N (0, σ2

d);

1.4.2.4. built and collect ω(k, z, j, h) = (sk,zn (0), {pjn(l), dhn(l)}L−1
l=0 )

Output: {ω(k, z, j, h)}k,z,j,h sampled mini-batch of Nb = NxNqNpNd elements.

Table 1: Numerical example: chosen parameters.
na nb QK

n RK
n L Nx Nr Nq Nd σv σq [rmin

n , rmax
n ] σd M β

3 3 10−3 I 0.1 10 50 1 10 1 106 1 [−103, 103] 0.01 1 1010

The latter relies on the use of the states history Xt
n = {xn(0), . . . , xn(t)}, comprising the real-

izations of the states computed with the available input/output pairs up to time t. Therefore, this
sampling strategy requires the memorization of all the input/output samples collected up to time
t by each agent and the corresponding approximate local models (see step 1.2). This might be
challenging if the local storage space is limited. Nonetheless, when dedicated processing units are
available on the cloud, it might be reasonable to exploit them and compute the descent direction on
these private resources.

Remark 1 The parameters rmin
n , rmax

n , σ2
v , σ2

q , σ2
d in Algorithm 1 dictate the degree of exploration

of the state, references and disturbance spaces over sampling. While rmin
n and rmax

n can be chosen
according to the ranges of set points one is interested in tracking, σ2

v and σ2
q should be selected

accounting for the limited validity of the local models gathered at step 1.2. �

5. Numerical example

Consider a group of N = 12 linear single-input single-output systems connected to the cloud, with
dynamics described by xn(t+ 1) = Axn(t) + B un, yn(t) = C xn(t), with

A =

−0.669 0.378 0.233
−0.288 −0.147 −0.638
−0.377 0.589 0.043

 , B =

−0.295
−0.325
−0.026

 , C =
[
−1.139 0.319 − 0.571

]
. (18)

These systems are treated as “black box” sources of inputs and measured outputs, subject to additive
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Table 2: Average local results - convergence and tracking cost
single-agent setup consensus setup sharing setup

average final distance from Kopt 3.7219 1.5014 0.4393

average local tracking cost 19606.6 9185.4 1924.6

Gaussian white noise with standard deviation σ = 0.01.
We aim at finding optimal local policies in real-time for each system to track individual piece-

wise constant reference signals over an horizon of T = 500 steps, while actively exploiting their
connection to the cloud. To this end, the stage cost weights in (17) are set to Qy = 1, Qq = 1 and
R = 0.1, and we consider a linear parameterization of the policies, i.e.,

π(sn(t), pn(t),Kn) = −Kn

[
sn(t)
pn(t)

]
.

As per Section 4, the optimal solution can be computed explicitly thanks to the linearity of the
dynamics in (18) and it is Kopt = [−0.116, 0.219, 0.653, 0.898, 0.050, 1.141, −3.337]′. Ac-
cordingly, the optimal policy search problem also requires that the parameters of all local policies
converge to Kopt. We remark that the optimal policy Kopt is not exploited for any computation, but
it is just regarded as ground truth to assess the performance of the proposed approach.

We apply the proposed method to the described problem using λ = 1010/N , by using the
parameters reported in Table 1. In our tests, we have used time-varying weights wt

n in (5), based
on the local performance of each agent on its tracking task and on the distance of each local policy
from Z̄t. The weights are updated at every time instant according to

wt
n =

1

2(N − 1)

(
2− CT t

n

ΣmCT t
m

− dtn
Σmdtm

)
, with CT t

n =
ctn

Σmctm
/

ttn
Σmttm

,

where dtn =‖ Kt
n − Z̄t ‖22, ctn is the sum of the last nw = 10 stage costs, and ttn is defined as

ttn =‖ rn(t− nw + 1)− yn(t− nw + 1) ‖22 +
t∑

j=t−nw+2

‖ rn(j)− rn(j − 1) ‖22 .

The index ctn describes the quality of the local performance of the n-th agent over a time window of
nw steps, while ttn indicates how difficult is the local task associated to the same agent and window
of time1. We remark that this is one possible definition of the weights, while alternative choices will
be explored in future works.

We compare the local policies Kt
n obtained via the proposed sharing strategy with the ones

resulting from the application of the single-agent approach presented in (Ferrarotti and Bemporad,
2019), denoted as Kt

(n), and also with the ones synthesized by applying the multi-agent consensus
method introduced in (Breschi et al., 2020), denoted as Kt

C,n . For all the methods, we initialize
all the local policies as K0

n = 1 and all the initial states (16b) as xn(0) = 0. We update the local
policies using a faster variant of SGD, AMSGrad (Reddi et al., 2019), reinitializing it after few
initial steps to avoid the spreading of negative effects due to the initial lack of information. Table 2
shows that the average convergence to the optimal policy is faster for the proposed method than the

1. We assign weight zero to agents whose local policy is unstable over the last nw steps and to the agents that are
“outliers” with respect to the majority, i.e., agents such that dtn ≥ 5

N

∑
m dtm or CT t

n ≥ 5
N

∑
m CT t

m. Such agents
are also disregarded in the normalization of ctn, ttn, dtn.

9
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others, benefiting from the shared information provided by Z̄t. The improvement of Z̄t, compared
with the global consensus policy Kt

G retrieved forcing consensus can be seen in Figure 2 (left plot).
The faster convergence to Kopt further improves the average cost of performing the local tracking
tasks (see Table 2).
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Figure 2: Convergence to the optimal policyKopt of Z̄t andKt
G (left) and of the local policiesKt

(n)

(green), Kt
C,n (blue) and Kt

n (red) of agent n = 2 (center) and n = 6 (right).

By looking at Figure 2, we also observe that the sharing-based approach is more resilient, as
compared to the other frameworks, against the loss of convergence that might result from the ran-
domness of sampling, the non-convexity of the cost function with respect to the policy parameters,
or from the error in approximating J∞n in (6b). Indeed, the center and right plots of Figure 2 show
the evolution of the local parameters of agents 2 and 6 respectively, as an example of such phe-
nomenon. In the center plot, agent 2 is subject to mistakes in the choice of the update direction
when the parameters are optimized in the single-agent framework, while in the right plot the same
thing happens to the evolution of the parameters in the consensus framework. In this last setup, the
contribution of such agents might slow down the convergence of the global policy Kt

G to Kopt, and,
hence, deteriorate the performance of the other agents too. This is avoided when using the proposed
sharing-based approach, where low quality control laws are not propagated by assigning them low
weights.

6. Conclusions

In this paper, we have extended the policy search approach proposed in (Ferrarotti and Bemporad,
2019) so as to exploit the similarities between a group of systems sharing the same nominal dynam-
ics, that are all connected to the cloud. To this end, we augment the performance-oriented cost with
a sharing-based term, that softly enforces the local policies to be as close as possible to the better-
performing agents. The benefits of the chosen strategy to exploit the similarities between systems
and their connection to the cloud is shown via a preliminary simulation example.

Future works will be devoted to extend the approach for it to handle more challenging scenarios,
in which linear policies might not suffice to attain the local goals and the communications between
the agents and the central units might be asynchronous.
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