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Abstract—In this paper we present control strategies for
solving the problems of risk-averse bidding on the electricity
markets, focusing on the Day-Ahead and Ancillary Services
market, and of optimal real-time power dispatch from the point of
view of a market participant, or Balance Responsible Party (BRP).
For what concerns the bidding problem, the proposed algorithms
are based on two-stage stochastic programming and are aimed
at finding the optimal allocation of production between the day-
ahead exchange market and the ancillary services market. For
the real-time power dispatch problem, we devised a two–level
hierarchical control strategy, where the upper–level computes
economically optimal power set-points for the generators, and
the lower level tracks them while considering constraints and
dynamical models of the plant. Simulation results based on
realistic data modeling the Dutch transmission network are
shown to evaluate the effectiveness of the approach.

Index Terms—Distributed power generation, Optimization,
Power generation planning, Predictive control, Smart grids

I. INTRODUCTION

Liberalization and deregulation of electricity markets have
led to a competitive environment consisting of market par-
ticipants, termed as Balance Responsible Parties (BRPs), that
are legally entitled to trade electricity on the various markets
in order to satisfy their loads and ensure safe and reliable
operation of the national grid.

On the other hand, adoption levels of renewable resources
are continuously increasing due to the need for a decrease
of production costs and greenhouse emissions from electricity
generation by conventional fossil-fueled power plants (e.g.,
coal, gas, etc.). Efficient integration of intermittent generation
into the existing power grid is a major bottleneck due to
high variability and low predictability of renewable resources,
especially wind [1].

In this paper we summarize the control schemes for op-
timal bidding on the Day-Ahead markets and efficient real-
time operation of BRPs, developed within the activities of
the EU project “E–Price: Price-based Control of Electrical
Power Systems”. The concept of E–Price is to devise efficient
algorithms, market architectures and ICT interfaces in order
to increase BRPs responsibility for the reliability of the power
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system while allowing flexibility and efficiency of the markets.
In particular, BRPs are provided economical incentives to
guarantee the correct and safe operation on the grid.

Although market structures vary with respect to each coun-
try, they share some common characteristics. Specifically, in
the market considered here, participant BRPs place their bids
on the Day-Ahead (DA) energy market and the Ancillary
Services (AS) market regarding energy delivery and capacity
availability for each Program Time Unit (PTU) of the follow-
ing day. At the end of the day-ahead auction, the Transmission
System Operator (TSO) selects the accepted and rejected bids
according to some clearing mechanism [2] and publishes the
future prices and volumes, for each PTU of the following
day. Subsequently, each BRP receives its Energy Program
(E-Program) from the TSO. The E-Program describes the
amount of energy supplied or consumed by the BRP at every
hour of the following day. Moreover, due to uncertainties in
power demand and generation, a imbalance market (or real-
time market) operated by the TSO helps counteract real-time
global energy imbalances [3]. Due to unforeseen fluctuations
of renewable sources or time-varying loads, the TSO can
activate the bids previously placed on the AS market and, as a
consequence, the BRP which submitted that specific bid must
adjust its E-Program in real time accordingly.

For what concerns optimal bidding on the DA time scale,
in Section II we formulate scenario-based control problems
based on two-stage stochastic optimization. The most relevant
difference in the DA market design with respect to current
market structure is the presence of a double-sided AS mar-
ket, by which BRPs can also submit request values, thus
giving an estimate of their possible deviation from the E–
Program, and giving the market the possibility to arrange the
required reserves in advance, avoiding large imbalance. For
the economically optimal management of real-time operations
of BRPs, in Section III we propose a hierarchical MPC
algorithm based on a temporal decomposition of the problem
in two time scales (energy and power). The proposed control
strategies are tested in simulation with realistic data modeling
the Dutch transmission network. Finally, conclusions are given
in Section IV.



II. OPTIMAL BIDDING ON ENERGY MARKETS

A BRP has several ways to sell the energy it produces. The
most common option nowadays is to stipulate long-term bi-
lateral contracts with external retail or distribution companies,
where the price of energy is determined in advance. BRPs
can also offer the produced energy to the spot market. To that
purpose, a BRP must submit portfolio-based, daily bid curves
in which they define the price at which they are willing to
sell as a function of the produced energy for each hour of
the following day. Furthermore, a BRP can address part of
the capacity not sold at the day-ahead market to the reserve
capacity market, which will be used by the TSO in real-time
for regulation purposes (we neglect other markets such as the
intra-day market for clarity).

Bidding curves are formulated as non-decreasing piecewise
constant curves functions, and defined by a set of couples
{(x1, λ1), . . . , (xK , λK)}, where λi is the minimum price
requested to deliver the amount of energy xi, i = 1, . . . ,K.
One day before the delivery, the TSO collects bid curves from
all BRPs and operates the clearing of the market by crossing
the aggregated day-ahead bid curve with the aggregated load
profile (which is usually price-unelastic). The clearing price
and volume for the spot market are detected by the intersection
of the two curves. The clearing price is then applied to every
transaction on the market. In the E–Price framework, the
day-ahead and the ancillary services sessions are assumed to
be executed one after another, so that coupling between the
problems of bidding on the day-ahead and on the ancillary
markets can be neglected [4].

The architecture of ancillary services markets differ from
country to country. For instance, the AS market can be pay-
as-bid, that is, payments are executed as indicated by the bid
curve. One of the innovative aspects considered in E–Price is
to take into account double-sided AS markets. Each BRP gives
an estimation of the possible deviation from the E-Program
(due to uncertain events like wind production or elastic load)
so that the market can be prepared and store the necessary
reserve capacity. Deviations from the E-Program can be partly
covered internally, by activating their spare regulating capacity,
or they can be solved on the market. The part of regulating
capacity that the BRP deems not economically convenient to
cover for internally is included in the bidding curve under the
form of request curves.

Therefore, each BRP submits supply energy curves S and
request curves R. In particular, the supply S indicates the
residual capacity a BRP wants to sell and be paid for by
the TSO. It implies a positive cash flow. In particular, with
S+ we denote positive supply (the BRP is paid for additional
production), and with S− we denote negative supply (the BRP
is paid for additional absorption). Request curves, on the other
hand, imply a negative cash flow, i.e., the BRP is paying
money to the TSO. In particular, with R+ we denote positive
request (BRP expects to be “long” and is willing to pay for
additional injection), and with R− we denote negative request
(BRP expects to be “short” and is willing to pay for additional
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Fig. 1. Power flow directions and price signs for double-sided AS markets

absorption).
Based on the collected bids, which can be submitted up

to one hour before delivery, the TSO operates the clearing
mechanism similarly as for the day-ahead market, intersecting
the aggregated supply and request curves. From this process,
a BRP can result as either a supplier or as a requestor,
depending if the cleared capacity is positive or negative,
respectively. Namely, we denote with EAS+(k) ∈ R the up-
regulating cleared capacity, i.e., BRP power surplus injected
into the grid, and with EAS−(k) ∈ R the down-regulating
cleared capacity, i.e., BRP power shortage absorbed from the
grid, at the PTU k ∈ Z+. Moreover, let λAS+(k) ≥ 0 be the
price for up-regulating energy, and λAS−(k) ≤ 0 the price for
down-regulating energy, in e/MWh (see Figure 1).

After clearing, awarded BRPs are obliged to reserve the as-
signed capacity for real-time purposes, and payments to/from
the BRPs for allocating capacity reserves are proportional to
the corresponding AS price. Therefore, the BRP daily revenue
for reserve capacity allocation is given by

RCA , a

NPTU∑
k=1

(λAS+(k)EAS+(k)+λAS−(k)EAS−(k)) (1)

where NPTU is the number of PTUs in one day (we assume a
PTU of 15 min, hence NPTU = 96), and the coefficient a > 0
is a market design parameter. Choosing it too small will reduce
the incentive of a BRP for bidding to supply AS, and choosing
it too large will reduce the incentive of a BRP for bidding
to request AS. An optimal value of a exists, which yields
the largest liquidity in the cleared volumes. A large liquidity
means, in general, more efficiency and therefore lower prices.

During real-time operations and with a sampling time TP,
the TSO can activate the bids and send to the BRP a request for
increasing or decreasing its power set–point. These requests
are defined by an AGC signal δp(t) ∈ R, and derive from
real-time fluctuations of power generation and consumption.
The AGC signal is distributed among BRPs based on their
cleared capacity. The resulting daily revenue for the BRP on



the AS market is

RAS ,
N∑
t=1

(λAS+(t)[δp(t)]+ − λAS−(t)[−δp(t)]+) (2)

where N is the number of TP intervals in a day and [x]+ ,
max{x, 0} is the positive part of x. BRPs deviating from
their scheduled E-Program more than their requested capacity
have to pay the excess deviation at a price λIM = φλAS+ in
up-regulating mode, and λIM = φλAS− in down-regulating
mode, where φ ≥ 1 is a market parameter. Hence, by design,
creating imbalance in a double-sided AS market is more
expensive than in traditional single-sided markets. Regulating
capacity is in most cases overpaid, as far as the regulating
power requested by the TSO is within the cleared capacity.

A. Day-Ahead bidding strategy for BRPs

BRPs can be thought as aggregated companies producing
and consuming energy, satisfying a certain amount of internal
loads, and maximizing their own profit while taking into
account risks due uncertain market behavior. BRP profit is
given by the revenues due to bilateral contracts and trading
on the DA exchange and AS markets, minus costs due to
energy generation and imbalance. Therefore, optimal bidding
strategies are needed to support the decision making process
that leads to the DA energy production planning. It includes
the following tasks:

1) Submit bid curves to the DA exchange market,
2) Plan an approximate production profiles for each gener-

ator by calculating the unit commitment,
3) Submit bid curves to the AS market.

When submitting the DA energy exchange bid curve, a BRP
must take into account the uncertainty deriving from renewable
production, loads, and AS prices (which are not disclosed yet).
Since energy cannot be stored, in fact, energy offered on the
DA exchange is no more available for trading on AS market.

For the formulation of optimal bids curves for the DA
exchange and the AS market we propose a control approach
based on numerical optimization, and in particular on the
formulation of two-stage stochastic optimization problems
where constraints on minimum and maximum power set–
points of generators are taken into account, and a risk measure
called Conditional Value at Risk (CVaR) is minimized to
ensure that profits are maximized while risks of economical
losses, depending on the realization of a stochastic param-
eter, are taken into account. In the DA exchange problem,
the stochastic parameter models uncertainty on AS prices,
that have not been disclosed yet. In the AS problem, the
stochastic parameter represents uncertain load and generation
for renewables. These optimization problems are formulated
as linear programming problems (LP) and are suitable for
real-time implementation. Detailed mathematical formulation
of the proposed optimization problems is not shown here for
space reasons.

B. Simulation results

The proposed day-ahead bidding strategy has been tested
in a simulation environment reproducing a national power
system. The environment includes 7 BRPs with different
production portfolios and risk attitudes, a TSO and a set of pro-
sumers with elastic demand. Generators consist of gas turbines
and wind farms. Data about installed capacities, historical
prices, observed wind production and load have been provided
by TenneT, the Dutch TSO and KEMA (omitted here for
brevity). The double-sided architecture has been compared to
the current single-sided structure for reserve markets, where no
request bids can be submitted and imbalances are completely
solved on the market based on a bid ladder. Comparisons are
made in terms of net profit, generation cost, and profit deriving
from AS trade. Robustness with respect to wind uncertainty
has been tested by running simulations over 8 data sets, each
with different wind forecasts (perfect and imperfect) and wind
generation capacity (medium and large). The market parameter
in (1) is set as a = 0.05, and the imbalance penalty is φ = 0.1.
Numerical results over a time interval of one day (96 PTUs)
are reported in Table I. Notice that in the simulations the
imperfect wind forecasts imply that more wind than expected
blows in the system. For this reason production costs are lower
in imperfect forecast conditions: underestimation of renewable
production leads to lower day-ahead programs. On the other
hand, in real-time BRPs decrease the power set-points of their
plants and save production costs. As a consequence, also net
profits are higher in imperfect forecast conditions, due to the
avoided production costs and to the higher liquidity of the AS
trade. This effect is caused by the day-ahead forecast errors,
which BRPs exploit to their advantage by selling downward
regulating capacity at a high price. Consistently with our
hypothesis, imbalance costs are lower in case of perfect
forecast because in general the proper amount of energy has
been allocated beforehand. In each setting the double-sided
architecture shows better performance with respect to profit
and imbalance costs. By construction, AS prices are higher in
the double-sided market and this encourages BRPs to allocate
resources in a more efficient way. BRPs providing regulating
capacity are more rewarded, thus increasing the social welfare.
To give an idea of the regulating capacity actually activated in
real time we refer to Figure 2. The red line is the aggregated
AGC signal sent by the TSO to BRPs for regulating power.
The trend of the signal is basically the same in the two
settings, but in the double-sided case (Figure 2(b)) it is for
most part included between the two green lines delimiting the
cleared AS capacity. As far as the signal keeps between the
two green lines, the system is prepared to react by delivering
the previously allocated power. In case there is no sufficient
cleared AS capacity, the TSO must resort to the un-cleared
bids. If not even this capacity suffices, the TSO must ask the
help of neighboring countries.

III. REAL-TIME OPERATIONS OF MARKET PARTIES

In real time a BRP must fulfill its E-Program in order
to avoid internal imbalance and imbalance costs, and it has



TABLE I
ECONOMIC PERFORMANCE METRICS IN SIMULATED CASE STUDIES

Market type Wind production Wind forecast Production cost (e) AS profit (e) Imbalance costs (e)
#1 Single-sided medium perfect 1,821,846 285,294 36,602
#2 Double-sided medium perfect 1,824,743 366,895 16,899
#3 Single-sided large perfect 1,639,333 329,327 84,365
#4 Double-sided large perfect 1,631,739 617,481 66,597
#5 Single-sided medium imperfect 1,749,858 347,151 105,577
#6 Double-sided medium imperfect 1,750,263 452,491 98,024
#7 Single-sided large imperfect 1,595,605 903,332 706,271
#8 Double-sided large imperfect 1,594,743 902,984 438,066
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Fig. 2. AGC signal and allocated upward/downward capacity with medium
wind production and imperfect forecast

to cope with uncertainties induced by intermittent generation
from renewable sources, time-varying loads and imbalance
prices, as well as perturbations of its E-Program due to AS
bids activated by the TSO. If the TSO calls for a specific AS
bid, the BRP responsible for this bid is asked to deliver the

requested energy by adjusting its E-Program accordingly. In
addition, imbalance prices are characterized by large volatility
and can also be negative, i.e., incentives for the BRP to deviate
from the E-Program to compensate possible energy surplus or
shortfall in the grid [5]. The real-time BRP control problem
is further complicated by the coupling of energy between
consecutive PTUs, due to the bounds on the rate of change of
the power set–points of the generators (ramp-rate constraints).

In this section we present an algorithm for efficient and
reliable real-time operation of a BRP, based on hierarchical
Model Predictive Control (MPC). MPC has emerged in the
last decades as the leading technology for advanced control
of highly complex and multivariable processes. Its success is
mainly due to its ability to handle constraints on the system
(e.g., bounds on selected variables and their rates of change)
while taking into account the system dynamics and optimizing
a given objective function (e.g., minimizing costs and risks).
The system model, constraints, and objective function define
an optimal control problem over a finite time-horizon in the
future, that is solved on-line to obtain an optimal sequence of
future control moves. Only the first of the moves is applied
to the process, as at the next time step a new optimal control
problem is solved, to exploit the information coming from
fresh new measurements. In this way, an open-loop design
methodology is transformed into a feedback one [6].

The overall goal of the controller presented here is to
determine power set–points for the controllable generators
so as to minimize generation costs by utilizing intermittent
resources as much as possible, and economically track the
E-Program assigned by the TSO, meaning that it may be
profitable to deviate either upwards or downwards from the
E-Program, depending on the current imbalance prices. In
the proposed two-level hierarchical control architecture, the
upper–level MPC operates on the energy time scale, whose
sampling period is typically in the minutes range, and com-
putes power and energy set–points based on predictions of
the uncertain exogenous inputs (AS bids activated by TSO,
imbalance prices, intermittent generation and load) by min-
imizing BRP costs. The lower–level MPC operates on the
power time scale, whose sampling period is typically in the
seconds range, and tries to track the set–points received by
upper level by taking into account the detailed dynamics of the
generators. The main advantages of the proposed scheme are
the real-time calculation of economically optimal set–points



that allow to exploit possible favorable imbalance prices,
the effective energy set–points tracking and the ramp-rate
constraints handling that enable smooth transitions between
PTUs.

A. Basic setup and notation

We consider a BRP consisting of np controllable genera-
tors, nr uncontrollable generators and uncontrollable load. To
simplify the presentation, in the following we assume that all
controllable generators of the BRP are always turned on, and
that no plant trips occur. The proposed strategies are easily
extended to the case where generators can be switched on and
turned off in real-time [7].

Before presenting the proposed control scheme we need to
introduce some notation. The length of a PTU is denoted by
TPTU [s], while TE [s] is the sampling time of the energy time
scale and TP [s] is the sampling time of the power time scale.
We assume that TPTU ≥ TE ≥ TP and that rET , TPTU

TE
,

rPE , TE

TP
, and rPT , TPTU

TP
, are positive integers. We use

symbols n, k and t ∈ Z+ to index time in the PTU, energy and
power time scale respectively. Let κET(k) ,

⌊
k
rET

⌋
denote the

PTU active at time k in the energy time scale. Similarly, we
define κPE(t) ,

⌊
t
rPE

⌋
, κPT(t) ,

⌊
t
rPT

⌋
. Consider now the

PTU n ∈ Z+. Then, the intervals on the energy time scale that
are active along n are k ∈ N[kmin(n),kmax(n)], where kmin(n) ,
rETn, kmax(n) , rET(n + 1) − 1. Similarly, for k ∈ Z+ in
the energy time scale, the set of intervals on the power time
scale that are active along k are t ∈ N[tmin(k),tmax(k)], where
tmin(k) , rPEk, tmax(k) , rPE(k + 1)− 1.

The trajectories of controllable power injections, uncontrol-
lable power injections and load on the power time scale are
denoted by pi(t), i = 1, . . . , np, ri(t), i = 1, . . . , nr, and
d(t), respectively. Furthermore, let p(t) , (p1(t) · · · pnp(t)),
r(t) , (r1(t) · · · rnr(t)). Let p̄i(k) denote the average con-
trollable power injection as a variable at some future energy
time interval k. Similarly, let r̄i(k), d̄(k) denote the predicted
values of the average uncontrollable power injections and load,
respectively, at some future energy time interval k. We define
p̄(k) , (p̄1(k), . . . , p̄np(k)), r̄(k) , (r̄1(k) · · · r̄nr(k)).

Now we need to introduce some quantities related to energy
production and forecast on the energy and the power time
scales. For k ∈ Z+ and t ∈ N[tmin(k),tmax(k)+1], let ep

k(t)
and erd

k (t) denote the accumulated actual energy produced by
controllable generators, and by uncontrollable generators and
load, respectively, along energy time interval k and up to time
instant tTP, based on the actual power injections of the BRP on
the power time scale. For k ∈ Z+, ep

k , ep
k(tmax(k) + 1) and

erd
k , erd

k (tmax(k) + 1) are the corresponding accumulated
energy produced within the energy time interval k. Accord-
ingly, for n ∈ Z+ and k ∈ N[kmin(n),kmax(n)+1], let ep(n; k)
and erd(n; k) denote the accumulated actual energy produced
by controllable generators, and by uncontrollable generators
and load, respectively, along PTU n, up to time instant kTE,
based on the real power injections of the BRP. We denote with
ēp(n; k), ērd(n; k) the predicted values of ep(n; k), erd(n; k),

respectively. For n ∈ Z+, ep(n) , ep(n; kmax(n) + 1) and
erd(n) , erd(n; kmax(n) + 1) denote the accumulated energy
produced by controllable generators, and by uncontrollable
generators and load, respectively, along PTU n, and ēp(n),
ērd(n), denote the predictions of the corresponding quantities.
All energy quantities are expressed in MWh, while powers are
in MW.

B. MPC on the energy time scale

Given the E-program assigned by the TSO and the set of
activated AS bids, the upper–level MPC performs economic
optimization deciding the power and energy set–points for
the lower–level MPC, based on predictions of the uncertain
load, uncontrollable generation and activated AS bids, so
as to minimize production and imbalance costs. Models for
generation and imbalance costs and the upper–level MPC
problem are presented next.

1) Generation costs: It is assumed that individual genera-
tion costs of controllable generators are modeled by convex
quadratic functions, i.e., `pi (p̄i) , ai(p̄

i)2 + bip̄
i + ci, ai ≥ 0,

i ∈ N[1,np]. The total generation cost `p(p̄) of the BRP consists
of the sum of production costs related to the controllable
generators, i.e., `p(p̄) ,

∑np

i=1 `
p
i (p̄i).

2) Imbalance costs: For n ∈ Z+, eprog(n) is the energy
that the BRP is commited to supply to (or absorb from)
the TSO at PTU n, according to its E-Program, determined
on the day ahead. On the power time scale (usually 4 s),
the TSO sends to each BRP actively participating in the
secondary control arrangements a delta power signal δp(t) ∈ R
corresponding to the AS bids activated by the TSO, which the
BRP has to realize by changing the power set–point of the
selected units. Then, the BRP E-Program is offset with the
requested energy resulting in the final E-Program efinal(n):

efinal(n) , eprog(n) +
∑
{t∈Z+|κPT(t)=n}δp(t). (3)

We also define the energy due for secondary control in the
current interval of the energy time scale as

esc(k) , TP

3600

∑tmax(k)
t=tmin(k)δp(t), (4)

and denote with ēsc(k) its prediction. Moreover, the imbalance
∆e(n) of the BRP at PTU n is the difference between the
actual energy produced by the BRP at PTU n and efinal(n),
i.e., ∆e(n) , e(n)− efinal(n).

If the BRP has a surplus of energy (∆e(n) > 0), then the
TSO buys this energy at the surplus imbalance price λ+

IM(n).
The price λ+

IM(n) can be negative, in which case the BRP
is the one who pays the TSO. On the contrary, if the BRP
has a shortfall of energy (∆e(n) < 0), then it buys energy
from the TSO at the shortfall imbalance price λ−IM(n). The
price λ−IM(n) can be negative, in which case the TSO is the
one who pays the BRP. Therefore, the imbalance cost for the
BRP is defined as `IM(∆e) , −λ+

IM[∆e]+ + λ−IM[−∆e]+.
Since [x]+ = 1

2 (|x|+ x), we have

`IM(∆e) =
1

2
(λ−IM − λ

+
IM)|∆e| − 1

2
(λ−IM + λ+

IM)∆e. (5)



Here, we assume that λ−IM ≥ λ
+
IM. The assumption is substan-

tiated by historical data1 regarding on year of imbalance prices
obtained by TenneT, the Dutch TSO, where only 0.008% of
the PTUs have λ−IM < λ+

IM. Under this assumption, `IM is a
convex piecewise–affine (PWA) function.

3) Upper–level MPC formulation: According to the MPC
philosophy, at every time instant k ∈ Z+ on the energy time
scale we formulate and solve a finite–horizon optimal control
problem, where the goal is find a sequence of power and
energy set–points for the generators so as to minimize the
expected costs along the energy prediction horizon NE. The
problem is stated in (6) and described next.

min

k+NE−1∑
j=k

`p(p̄(j)) +

n(k)−1∑
n=n(k)

`IM(ēp(n) + ērd(n)− ēfinal(n))

+ `IM(sNE
k (ēp(n(k)) + ērd(n(k)))− ēfinal(n(k))) (6a)

s.t. p̄(k − 1) = TP
TE

tmax(k−1)∑
t=tmin(k−1)

p(t), ēp(n(k)) = ep(n(k); k), (6b)

ērd(n(k)) = erd(n(k); k), ēfinal(n(k)) = efinal(n(k)), (6c)

p̄imin ≤ p̄i(j) ≤ p̄imax, i ∈ I, j ∈ J , (6d)

TE
60

∆pimin ≤
p̄i(j)

p̄i(j − 1)
− 1 ≤ TE

60
∆pimax, i ∈ I, j ∈ J , (6e)

ēp(n(k)) = ēp(n(k)) + TE
3600

kmax(n(k))∑
j=k

np∑
i=1

p̄i(j), (6f)

ērd(n(k)) = ērd(n(k)) + TE
3600

kmax(n(k))∑
j=k

nr∑
i=1

(r̄i(j)− d̄(j)), (6g)

ēp(n) = TE
3600

kmax(n)∑
j=kmin(n)

np∑
i=1

p̄i(j), n ∈ N , (6h)

ērd(n) = TE
3600

kmax(n)∑
j=kmin(n)

nr∑
i=1

(r̄i(j)− d̄(j)), n ∈ N , (6i)

ēp(n(k)) = TE
3600

k+NE−1∑
j=kmin(n(k))

np∑
i=1

p̄i(j), (6j)

ērd(n(k)) = TE
3600

k+NE−1∑
j=kmin(n(k))

nr∑
i=1

(r̄i(j)− d̄(j)), (6k)

ēfinal(n(k)) = ēfinal(n(k)) +

kmax(n(k))∑
j=k

ēsc(j), (6l)

ēfinal(n) = ēprog(n) +

kmax(n)∑
j=kmin(n)

ēsc(j), n ∈ N , (6m)

ēfinal(n(k)) = ēprog(n(k)) +

k+NE−1∑
j=kmin(n(k))

ēsc(j), (6n)

I , N[1,np], J , N[k,k+NE−1], N , N[n(k)+1,n(k)−1]. (6o)

The objective function (6a) allows to minimize the expected
generation and imbalance costs along the prediction horizon.

1Available at http://www.tennet.org/english/operational management

Notice that the PTUs that are active during the energy pre-
diction horizon and starting from the time instant k are n ∈
N[n(k),n(k)], where n(k) , κET(k), n(k) , κET(k+NE−1).

Equations (6b) and (6c) provide the initial conditions on
power and energy for the MPC problem. Bounds on the power
output of each controllable generator are imposed by (6d).
The power profiles are also subject to downward and upward
ramping limits ∆pmin and ∆pmax [%/min]. Satisfaction of
such ramp–rate constraints is enforced by (6e). Finally, (6f)–
(6k) model the energy balances inside each PTU of the
prediction horizon, and (6l)–(6n) define the energy set–point
given by the deviated E-Program.

Problem (6) is a convex quadratic program, that can be
solved efficiently with off-the-shelf software tools.

C. MPC on the power time scale

The lower–level MPC acts on the power time scale and
tracks the reference power and energy signals obtained by the
upper–level MPC by taking into account detailed generators
dynamics. The models of controllable generators and the
lower-level problem formulation are described next.

1) Dynamics of controllable generators: Generators are
modeled using the model developed in [8]. It consists of two
parts: the first describes the fast power changes of primary
reserve activation, and the second concerns the relatively slow
variations that take place in secondary reserve activation. The
fast model consists of a low and a high pass filter connected
in series:

pifast(s) =
τ iHs

τ iHs+ 1

Ki

τ iLs+ 1
piprim(s), (7)

where piprim is the power for primary control. The slow model
is given by

pisl(s) =
e−T

i
delays

τ is+ 1
(ui(s) + piprim(s)), (8)

where ui is the power set–point of the generator. The primary
control of the i–th generator is described by

piprim(s) = −100pimax

fnomcidr
δf (s), (9)

where δf is the change in frequency with respect to the
nominal frequency fnom (50 Hz), and cidr is the droop [%].
The power output of the i–th generator is given by

pi(s) = pifast(s) + pisl(s). (10)

Using a first–order Padé approximation for the time delay
and a ZOH discretization with sampling time TP, (7)–(10)
are represented in state–space as

xi(t+ 1) = Aixi(t) +Biui(t) + Eiδf (t), (11a)

yi(t) = Cixi(t), (11b)

where x(t)i ∈ R4, u(t)i ∈ R, and yi(t) = [pi(t) pisl(t)]
′ are

the i–th generator’s state, input (i.e., the power set–point) and
output vectors. By collecting the models (11) for all generators



i = 1, 2, . . . , np, the aggregated dynamics of the BRP are
written in the compact form

x(t+ 1) = Ax(t) +Bu(t) + Eδf (t), (12a)
y(t) = Cx(t). (12b)

2) Lower–level MPC formulation: At every t ∈ Z+ on the
power time scale, the lower level MPC tries to track the power
and energy reference signals p̄, ēp obtained from the upper
level, along the power prediction horizon NP. The problem is
stated in (13), where we use the notation ēp

k, pij , xj , δf,j to
denote predictions for ep

k, pi(j), x(j), δf (j).

min

t+NP∑
j=t

||pj − p̄(κPE(j))||2 +

k(t)∑
k=k(t)

qk(∆ek)2 (13a)

s.t. pt = p(t), δf,t = δf (t), xt = x̂(t), (13b)
xj+1 = Axj +Buj + Eδf,j , j ∈ J , (13c)
pj = C1xj , psl,j = C2xj , j ∈ J , (13d)

pimin ≤ ui
j ≤ pimax, i ∈ I, j ∈ J , (13e)

TP
60

∆pimin ≤
ui
j

ui
j−1

− 1 ≤ TP
60

∆pimax, i ∈ I, j ∈ J , (13f)

pimin ≤ pisl,j ≤ pimax, i ∈ I, j ∈ J , (13g)

TP
60

∆pimin ≤
pisl,j
pisl,j−1

− 1 ≤ TP
60

∆pimax, i ∈ I, j ∈ J , (13h)

ēp
k(t) = ep

k(t)(t) + TP
3600

tmax(k(t))∑
j=t

np∑
i=1

pij , (13i)

ēpk = TP
3600

tmax(k)∑
j=tmin(k)

np∑
i=1

pij , k ∈ K, (13j)

ēp
k(t)

= TP
3600

t+NP−1∑
j=tmin(k(t))

np∑
i=1

pij , (13k)

∆ek = ēp
k − ē

p(κET(k); k + 1), k ∈ K, (13l)

∆ek(t) = ēp

k(t)
− sNP

t ēp(κET(k(t)); k(t) + 1), (13m)

I , N[1,np], J , N[t,t+NP−1], K , N[k(t),k(t)−1]. (13n)

The cost function (13a) penalizes deviations from the power
and energy set–points. The coefficients qk > 0 can be set to
decrease with k, in order to put more emphasis on the current
PTU and take advantage of good short term predictions. It is
however important to penalize the energy tracking error also
for future PTUs, in order to compute optimal power profiles
that respect ramp–rate constraints. Notice that the energy time
intervals that are active during the prediction horizon and
starting from the power time interval t are k ∈ N[k(t),k(t)],
where k(t) , κPE(t) and k(t) , κPE(t+NP).

Equations (13b) provides the initial conditions of the prob-
lem, that is, current power injections, frequency deviations and
estimated states of the generators. In fact, since a full state
measurement is not available, we use an estimation x̂(t) of
the true state vector x(t), obtained through an observer such
as a Kalman filter.

TABLE II
COMPARISON OF HMPC AND SPT FOR REAL-TIME POWER DISPATCH

Controller Generation cost (e) Imbalance cost (e) Total cost (e)
HMPC 578,674 -49,057 529,617
SPT 549,257 -3,285 545,973

Equations (13c)–(13d) model the dynamics of the control-
lable generators, while (13e)–(13f) and (13g)–(13h) impose
bounds and ramp-rate constraints on the power set–points
and on the slow powers, respectively. Moreover, (13i)–(13k)
describe the energy balances in the power time scale. Finally,
(13l)–(13m) define the tracking error on the energy reference
trajectory provided by the upper level controller, where sNP

t ,
mod ( (t+NP+1)TP

TE
)/TE.

By solving problem (13) we obtain the power set–points
ui(t) = uit, i ∈ N[1,np], which are applied to the generators at
every time t ∈ Z+ on the power time scale. Similarly to (6),
problem (13) is a convex quadratic program and is suitable
for efficient real-time implementation.

D. Case study

The proposed Hierarchical MPC (HMPC) scheme is tested
in simulation on a BRP consisting of a set of 10 controllable
generators, most of which are Combined Cycle Gas Turbines
(CCGT), and one uncontrollable generator representing a wind
farm. The considered generators include small, medium and
large-sized plants, with maximum output power ranging from
53 MW to 1675 MW, maximum efficiency between 38% and
59%, and maximum allowed ramp rate between 1.5%/min and
5%/min, emulating a typical BRP in the Dutch power system.
Realistic data for wind generation, wind forecast, E-Program,
imbalance prices, frequency deviation, volume of AS bids
activated in real-time were obtained from KEMA and TenneT
(detailed data are omitted here due to space limitations).

Simulation were carried out for 16 PTUs, where the length
of one PTU is 15 minutes. The energy sampling time is
TE = 60 s, while the power sampling time is TP = 4 s.
The prediction horizons for the upper and lower level MPCs
are NE = 16 and NP = 10, respectively. The proposed
HSMC scheme was compared against a more basic control
policy which is supposed to reflect, to some extent, the current
practice. In this algorithm, power set–points for the generators
for each PTU are computed on the day-ahead in an open-loop
fashion, while the real-time controller tries to reach the set–
points along the current PTU in a static way, without taking
into account plants dynamics. We call this algorithm Static
set–point Tracking (SPT).

The two schemes are compared in terms of generation costs,
imbalance costs, and total costs along the 16 PTUs. Numerical
results are shown in Table II. HMPC exhibits clearly superior
performance with respect to SPT, and this is mainly due to
its capability of exploiting favorable imbalance prices, taking
into account uncontrollable generation forecasts, and handling
ramp-rate constraints safely. Figures 3 and 4 depict the power
profiles of the generators for HMPC and SPT, respectively.



The abrupt changes on the power profiles in Fig. 3 clearly
shows SPT inability to handle ramp-rate constraints and allow
smooth transitions between PTUs. On the other hand, due
to explicit ramp-rate constraint handling and energy integral
action, HMPC exhibits smooth transitions between PTUs, as
shown in Fig. 4.
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Fig. 3. Power profile of BRP plants obtained with SPT.
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Fig. 4. Power profile of BRP plants obtained with HMPC.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we summarized the control approaches de-
veloped within the E–Price project for solving the problems
of optimal bidding on the energy markets and optimal real-
time power dispatch, from the point of view of a market
participants, or BRP. For what concerns the bidding problem,
the proposed algorithms are based on two-stage stochastic
programming and are aimed at finding the optimal allocation
of production between the day-ahead exchange market and
the ancillary services market. For the real-time power dispatch
problem, we devised a two–level hierarchical control strategy,
where the upper–level computes economically optimal power
set-points for the generators, and the lower level tracks them
while considering constraints and dynamical models of the

plant. Simulation results based on realistic data modeling the
Dutch transmission network show that the approach provides
a reliable and valid solution for integration of renewable
energy sources, solving their most crucial problems related
to intermittence and forecast errors, by computing in real-time
economically optimal set–points based on accurate predictions.

Ongoing research work aims at extending the proposed algo-
rithms to a broader stochastic framework, using results of [9],
so as to further improve both performance and robustness of
the controller, as well as incorporating price-elastic prosumers
into the BRP model [10].
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