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Abstract

These notes describe a computational framework for modeling, controlling, and analyz-
ing hybrid systems in discrete-time. We describe three classes of hybrid models in detail:
discrete hybrid automata (DHA), piecewise affine (PWA) systems, and mixed logical dy-
namical (MLD) systems. We show the relations among such model classes and other
existing model paradigms, such as (extended) linear complementarity ((E)LC) systems
and min-max-plus-scaling (MMPS) systems. We present the language HYSDEL (HYbrid
Systems DEscription Language), a high level modeling language for describing discrete-
time hybrid systems, and a set of tools for translating DHA into any of the former hybrid
models.

We describe controller synthesis strategies based on the receding horizon solution to
finite-time optimal control problems via mixed-integer programming and via multipara-
metric programming, by extending to hybrid systems ideas and results that exist for
Model Predictive Control (MPC) of linear systems.

We also present a methodology for computing the set of states that a discrete-time
affine hybrid system can reach by starting from a given set of initial conditions and
under the effect of exogenous inputs to the system, such as disturbances, within a
prescribed range. We show how to use reachability analysis to assess robust stability,
safety, and liveness properties of the hybrid system, and how the reach-set computa-
tion machinery can be embedded in an optimization procedure to determine solve quite
general hybrid optimal control problems.

Finally, we present a complete automotive case study showing the modeling capa-
bilities of HYSDEL and how the different models allow to use several computational
tools.

c©2003 by A. Bemporad, University of Siena

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author.
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Chapter 1

Introduction

The mathematical model of a system is traditionally associated with differential or dif-
ference equations, typically derived from physical laws governing the dynamics of the
system under consideration. Consequently, most of the control theory and tools have
been developed for such systems, in particular for systems whose evolution is described
by smooth linear or nonlinear state transition functions. On the other hand, in many
applications the system to be controlled is also constituted by parts described by logic,
such as for instance on/off switches or valves, gears or speed selectors, and evolutions
dependent on if-then-else rules. Often, the control of these systems is left to schemes
based on heuristic rules inferred from practical plant operation.

Recent technological innovations have caused a considerable interest in the study of
dynamical processes of a heterogeneous continuous and discrete nature, denoted as hy-
brid systems. The peculiarity of hybrid systems is the interaction between continuous-
time dynamics (governed by differential or difference equations), and discrete dynamics
and logic rules (described by temporal logic, finite state machines, if-then-else condi-
tions, discrete events, etc.) and discrete components (on/off switches, selectors, digital
circuitry, software code, etc.).

Hybrid systems switch among many operating modes, where each mode is governed
by its own characteristic dynamical laws. Mode transitions are triggered by variables
crossing specific thresholds (state events), by the elapse of certain time periods (time
events), or by external inputs (input events) [4]. A typical example of hybrid systems are
embedded systems, constituted by dynamical components governed by logical/discrete
decision components. Complex systems organized in hierachical way, where for in-
stance discrete planning algorithms at the higher level interact with continuous con-
trol algorithms and processes at the lower level, are another example of hybrid sys-
tems. In these systems, a hierarchical organization helps managing the complexity of
the system, as higher levels in the hierarchy require less detailed models (=abstrac-
tions) of the functioning of the lower levels. Two main categories of hybrid systems
were successfully adopted for analysis and synthesis purposes [44]: hybrid control sys-
tems [3,5,31,101,103], which consist of the interaction between continuous dynamical
systems and discrete/logic automata (Fig. 1.1), and switched systems [45,93,128,138],
where the state-space is partitioned into regions, each one being associated with a dif-
ferent continuous dynamics (Fig. 1.2).

Hybrid systems arise in a large number of application areas and are attracting in-
creasing attention in both academic theory-oriented circles as well as in industry, for
instance the automotive industry [9,10,14,23,94]. Moreover, many physical phenomena
admit a natural hybrid description, like circuits integrating relays or diodes, biomolec-
ular networks [2], and TCP/IP networks in [90].

As an example of hybrid control problem consider the design of a cruise control sys-
tem that commands the gear shift, the engine torque, and the braking force in order to
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Figure 1.1: Hybrid systems. Logic-based discrete dynamics and continuous dynamics
interact through events and mode switches

track a desired vehicle speed while minimizing fuel consumption and emissions. Design-
ing a control law that optimally selects both the discrete inputs (gears) and continuous
inputs (torque and brakes) requires a hybrid model that includes the continuous dy-
namics of the power train, the discrete logic of the gearbox, and consumption/emission
maps [14]. A simplified version of this problem will be dealt with in Chapter 5.

A gasoline engine has also a natural hybrid representation: the power train, gas flow,
and thermal dynamics are continuous processes, while the pistons have four modes
of operation which can be described as a discrete event process or a finite state ma-
chine [10]. These two heterogeneous processes interact tightly, as the timing of the
transitions between two phases of the pistons is determined by the continuous dynam-
ics of the power train, which, in turn, depends on the torque produced by each piston.

In most cases, the synthesis of control schemes for systems having a discrete and
continuous dynamical nature is still approached with heuristic rules, usually driven
by engineering insight and experience, with a consequently long design and verification
process. The interest of the control community is motivated by several clearly dis-
cernible trends in industry which point toward an extended need for new tools to design
control/supervisory schemes for hybrid systems and to analyze their stability, safety,
and performance.

In the theory of hybrid systems, several problems are investigated, such as: definition
and computation of trajectories, stability and safety analysis, control, state estimation,
etc.

The definition of trajectories is usually associated with a simulator, a tool able to com-
pute the time evolution of the variables of the system. This may seem straightforward
at first, however some hybrid formalisms introduce extra behavior like Zeno effects [95],
that complicate the definition of trajectories. Although simulation allows to probe the
model, it certainly does not permit structural properties of the model to be assessed.
In fact any analysis based on simulation is likely to miss the subtle phenomena that a
model may generate, especially in the case of hybrid models.

Tools like reachability analysis and piecewise quadratic Lyapunov stability are be-
coming a standard in analysis of hybrid systems. Reachability analysis (or safety anal-
ysis or formal verification), which will be the topic of Chapter 4, aims at detecting if a
hybrid model will eventually reach an unsafe state configuration or satisfy a temporal
logic formula [3]. Reachability analysis relies on a reach set computation algorithm,
which is strongly related to the mathematical model of the system [127].

Piecewise quadratic Lyapunov stability [69, 93], is a deductive way to prove the sta-
bility of an equilibrium point of a subclass of hybrid systems (piecewise linear systems),
the computational burden is usually low, at the price of a convex relaxation of the prob-
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Figure 1.2: Piecewise affine systems. Mode switches are triggered by threshold events

lem which leads to conservative results. While for pure linear systems there exists a
complete theory for the identification of unknown system parameters, the extension to
general hybrid systems is still under investigation.

Controlling a model (and therefore a process) means choosing the input such that
the output tracks some desired reference. The control (or scheduling) problem can be
tackled in several ways, according to the model type and control objective. Most of
the control approaches are based on optimal control ideas [139]. The dual problem
of control is state estimation, which amounts to compute the value of unmeasurable
state variables based on the measurements of output variables. The main applicative
relevance of state estimation is for control, when direct measurements of the state vector
are not possible, and for problems of monitoring and fault detection.

After the seminal work [137], where a class of hybrid-state continuous-time dynami-
cal systems was formulated and an optimal control problem examined, several modelling
frameworks for hybrid systems have appeared in the literature, we refer the interested
reader to [4,44,51,102] and references therein. Each class is usually tailored to solve a
particular problem, and many of them look largely dissimilar, at least at first sight.

Timed automata and hybrid automata have proved to be a successful modeling
framework for formal verification (see [127] and the references contained therein) and
have been widely used in the literature. The starting point for both models is a finite
state machine equipped with continuous dynamics. In the theory of timed automata, the
dynamic part is the continuous-time flow ẋ = 1. Efficient computational tools complete
the theory of timed automata and allow one to perform verification and scheduling of
such models. Timed automata were extended to linear hybrid automata [3], where the
dynamics is modeled by the differential inclusion a ≤ ẋ ≤ b. Specific tools allow one to
verify such models against safety and liveness requirements. Linear hybrid automata
were further extended to hybrid automata where the continuous dynamics is governed
by differential equations. Tools exist to model and analyze those systems, either directly
or by approximating the model with timed automata or linear hybrid automata [127].

In these notes we will focus on discrete-time hybrid systems, that we will call dis-
crete hybrid automata (DHA), whose continuous dynamics is described by linear differ-
ence equations and whose discrete dynamics is described by finite state machines, both
synchronized by the same clock. This will be the topic of Chapter 2.
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A particular case of DHA is the popular class of piecewise affine (PWA) systems first
introduced by Sontag [128]. Essentially, PWA are switched affine systems whose mode
only depends on the current location of the state vector. More precisely, the state space
is partitioned into polyhedral regions, as depicted in Figure 1.2, and each region is
associated with a different affine state-update equation (more generally, the partition
is defined in the combined space of state and input vectors). We will actually show
that DHA and PWA systems are equivalent model classes, and hence, in particular, that
generic DHA systems can be converted to equivalent PWA systems.

Another popular class of hybrid systems is the class of linear complementarity (LC)
systems [53,87,88,126,134]. LC systems were mainly investigated in continuous-time,
and applications include constrained mechanical systems, electrical networks with ideal
diodes or other dynamical systems with piecewise linear relations, variable structure
systems, constrained optimal control problems, projected dynamical systems and so
on [87, Ch. 2]. Issues related to modeling, well-posedness (existence and uniqueness of
solution trajectories), simulation and discretization have been of particular interest.

In Chapter 2 we will show that DHA models are a mathematical abstraction of the
features provided by other computational oriented and domain specific hybrid frame-
works: Mixed logical dynamical (MLD) models [31], the aforementioned piecewise affine
(PWA) systems [128] and linear complementarity (LC), extended linear complementarity
(ELC) systems [62, 63], and max-min-plus-scaling (MMPS) systems [65]. In particular,
as shown in [86] all those modeling frameworks are equivalent (possibly under some
hypothesis) and it is possible to represent the same system with models of each class.

As we already mentioned, we will work with discrete-time hybrid models. Despite the
fact that the effects of sampling can be neglected in most applications, we note, however,
that interesting mathematical phenomena occurring in hybrid systems, such as Zeno
behaviors [95] do not exist in discrete-time. On the other hand, most of these phenom-
ena are usually a consequence of the continuous-time switching model, rather than the
real natural behavior. Our main motivation for concentrating on discrete-time models
stems from the need to analyze these systems and to solve optimization problems, such
as optimal control or scheduling problems, for which the continuous-time counterpart
would not be easily computable. Although it is possible to consider hybrid automata
in continuous-time, several computational tools profit from the discretization of time1.
As anticipated DHA generalize many computational oriented models for hybrid systems
and therefore represent the starting point for solving complex analysis and synthesis
problems for hybrid systems.

In particular the MLD and PWA frameworks allow one to recast reachability/observability
analysis, optimal control, and estimation as mathematical programming problems. Reach-
ability analysis algorithms were developed in [37] for stability and performance analysis
of hybrid PWA systems. In [25, 132] the authors also presented a novel approach for
solving scheduling problems using combined reachability analysis and quadratic opti-
mization for MLD and PWA models. For feedback control, in [31] the authors propose a
model predictive control scheme which is able to stabilize MLD systems on desired ref-
erence trajectories while fulfilling operating constraints, and possibly take into account
previous qualitative knowledge in the form of heuristic rules. This will be the topic of
Chapter 3. Similarly, the dual problem of state estimation admits a receding horizon
solution scheme [30,71,107].

Several authors focused on the problem of solving optimal control problems for hy-
brid systems. For continuous-time hybrid systems, most of the literature either studied
necessary conditions for a trajectory to be optimal [116, 129], or focused on the com-
putation of optimal/suboptimal solutions by means of dynamic programming or the
maximum principle [46,47,82,85,100,121,138,139].

The hybrid optimal control problem becomes less complex when the dynamics is

1Also some tools for continuous-time hybrid models perform internally a time discretization of the model
in order to execute the computations [127].
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Figure 1.3: Design flow: The process is modeled in HYSDEL. The model is automatically
translated into MLD and PWA form, and used for analysis/synthesis

expressed in discrete-time, as the main source of complexity becomes the combinato-
rial (yet finite) number of possible switching sequences. In particular, in [16, 31, 131]
the authors have solved optimal control problems for discrete-time hybrid systems by
transforming the hybrid model into a set of linear equalities and inequalities involving
both real and (0-1) variables, so that the optimal control problem can be solved by a
mixed-integer programming (MIP) solver.

In these notes we will refer to the tool HYSDEL (HYbrid Systems DEscription Lan-
guage), a high level language for modeling and simulating DHA, and for automatically
translating DHA into MLD and PWA models. The idea is to model hybrid systems as
DHA using HYSDEL, then use MLD and PWA models as a computationally convenient
model — defined by a collection of equalities and inequalities and therefore often hard
to determine by hand – for analysis and synthesis purposes. The idea is depicted in
Figure 1.3/

Finally, we mention that identification techniques for piecewise affine systems were
recently developed [20, 34, 72, 97], that allow one to derive models (or parts of models)
from input/output data.
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Chapter 2

Modeling

In this chapter we introduce the basic discrete time hybrid models considered in this
notes: piecewise affine (PWA) models, mixed logical dynamical (MLD) models, and dis-
crete hybrid automata (DHA).

After introducing PWA systems, we will go through the steps needed for modeling a
system as a DHA. We will first detail the process of translating propositional logic in-
volving Boolean variables and linear threshold events over continuous variables into
mixed-integer linear inequalities, generalizing several results available in the litera-
ture [31, 119, 136], in order to get an equivalent MLD form of a DHA system. We will
also recall the key equivalence results among several classes of discrete-time hybrid
systems, so that existing analysis and synthesis tools developed for a particular class
can be easily transferred to the other classes.

We will present the tool HYSDEL (=HYbrid Systems DEscription Language), that al-
lows describing the hybrid dynamics in a textual form, and a related compiler which
provides different model representations of the given hybrid dynamics. The HYSDEL
compiler is available at http://control.ee.ethz.ch/~hybrid/hysdel.

A complete automotive case study is reported in Chapter 5, where we will derive
a model of the car engine and power train, and, using that model, solve a controller
synthesis and a safety analysis problem.

2.1 Piecewise Affine (PWA) Systems

PWA systems [86, 128] are defined by partitioning the space of states and inputs into
polyhedral regions (cf. Figure 1.2) and associating with each region a different linear
state-update equation

x′(k) = Ai(k)x(k) +Bi(k)u(k) + fi(k) (2.1a)

y(k) = Ci(k)x(k) +Di(k)u(k) + gi(k) (2.1b)

i(k) such that

Hi(k)x(k) + Ji(k)u(k) ≤ Ki(k), (2.1c)

H̃i(k)x(k) + J̃i(k)u(k) < K̃i(k), (2.1d)

where x ∈ X ⊆ R
n, u ∈ U ⊆ R

m, y ∈ Y ⊆ R
p, the matrices Ai(k), Bi(k), fi(k), Ci(k), Di(k),

gi(k), Hi(k), Ji(k), Ki(k), H̃i(k), J̃i(k), K̃i(k) are constant and have suitable dimensions, x′(k)
denotes the successor x(k + 1) of x(k), i(k) ∈ Is � {1, . . . , s}, the inequalities in (2.1c) and
(2.1d) should be interpreted component-wise and the constraints (2.1c) and (2.1d) define
a polyhedral partition {Pi}i=1,...,s of the set X × U . In the sequel, we denote by Xi(k) the
subset of X ×U defined by (2.1c)–(2.1d). When only numerical aspects are of interest, we
can consider all the inequalities in (2.1c)–(2.1d) to be non strict, as discussed in [131].

11
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Figure 2.1: A discrete hybrid automaton (DHA) is the connection of a finite state machine
(FSM) and a switched affine system (SAS), through a mode selector (MS) and an event
generator (EG). The output signals are omitted for clarity

Note that the multiple definition of the state-update function over common boundaries
of sets Xi (the boundaries will also be referred to as guardlines) is a technical issue that
arises only when the PWA mapping is discontinuous.

PWA systems can model a large number of physical processes, such as systems with
static nonlinearities, and can approximate nonlinear dynamics via multiple lineariza-
tions at different operating points.

For PWA systems, well-posedness is defined as follows

Definition 1 A PWA system is well-posed on (X , U , Y), if for all initial conditions x(0) = X
and for all inputs u(k) ∈ U , for all k ∈ N, the state trajectory x(k) ∈ X and the output
trajectory y(k) ∈ Y are uniquely defined.

When the mode i(k) is an exogenous variable, the condition in (2.1c)–(2.1d) disap-
pears and we refer to (2.1) as a switched affine system (SAS).

2.2 Discrete Hybrid Automata

A discrete hybrid automaton [131] is formed by generating the mode i(k) of a switched
affine system through a mode selector function that depends on (1) the discrete state of
a finite state machine, (2) discrete events generated by the continuous variables of the
SAS over-passing given linear-thresholds (hyperplanes), (3) exogenous discrete inputs,
and (4) time events ( see Fig. 2.1).

In the following we will use the fact that any discrete variable α ∈ {α1, . . . , αj}, admits
a Boolean encoding a ∈ {0, 1}d(j), where d(j) is the number of bits used to represent α1,
. . . , αj. From now on we will refer to either the variable or its encoding with the same
name.
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2.2.1 Switched Affine System (SAS)

A switched affine system is a collection of linear affine systems:

x′r(k) = Ai(k)xr(k) +Bi(k)ur(k) + fi(k), (2.2a)

yr(k) = Ci(k)xr(k) +Di(k)ur(k) + gi(k), (2.2b)

where k ∈ Z
+ is the time indicator, ′ denotes the successor operator (x′r(k) = xr(k + 1)),

xr ∈ Xr ⊆ R
nr is the continuous state vector, ur ∈ Ur ⊆ R

mr is the exogenous continuous
input vector, yr ∈ Yr ⊆ R

pr is the continuous output vector, {Ai, Bi, fi, Ci, Di, gi}i∈I is a
collection of matrices of opportune dimensions, and the mode i(k) ∈ I � {1, . . . , s} is an
input signal that chooses the affine state update dynamics. A SAS of the form (2.2) pre-
serves the value of the state when a switch occurs, however it is possible to implement
reset maps on a SAS, as shown in [131]. A SAS can be rewritten as the combination of
linear terms and if-then-else rules: The state-update equation (2.2a) is equivalent to

z1(k) =
{
A1xr(k) +B1ur(k) + f1, if (i(k) = 1),
0, otherwise, (2.3a)

...

zs(k) =
{
Asxr(k) +Bsur(k) + fs, if (i(k) = s),
0, otherwise, (2.3b)

x′r(k) =
s∑

i=1

zi(k), (2.3c)

where zi(k) ∈ R
nr , i = 1, . . . , s, and (2.2b) admits a similar transformation.

2.2.2 Event Generator (EG)

An event generator is a mathematical object that generates a logic signal according to
the satisfaction of a linear (or affine) constraint:

δe(k) = fH(xr(k), ur(k), k), (2.4)

where fH : Xr × Ur × Z≥0 → D ⊆ {0, 1}ne is a vector of descriptive functions of a linear
hyperplane, and Z≥0 � {0, 1, . . .} is the set of nonnegative integers. In particular, time
events are modeled as: [δi

e(k) = 1]↔ [kTs ≥ t0], where Ts is the sampling time and t0 is a
given time, while threshold events are modeled as: [δi

e(k) = 1] ↔ [aTxr(k) + bTur(k) ≤ c],
where i denotes the i-th component of a vector.

2.2.3 Finite State Machine (FSM )

A finite state machine1 (or automaton) is a discrete dynamic process that evolves ac-
cording to a logic state update function:

x′b(k) = fB(xb(k), ub(k), δe(k)), (2.5a)

where xb ∈ Xb ⊆ {0, 1}nb is the Boolean state, ub ∈ Ub ⊆ {0, 1}mb is the exogenous Boolean
input, δe(k) is the endogenous input coming from the EG, and fB : Xb × Ub ×D → Xb is a
deterministic logic function. A FSM can be conveniently represented using an oriented
graph. A FSM may also have an associated Boolean output

yb(k) = gB(xb(k), ub(k), δe(k)), (2.5b)

1In this notes we will only refer to synchronous finite state machines, where the transitions may happen
only at sampling times. The adjective synchronous will be omitted for brevity.
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¬δ3

δ1 ∧ ub2

δ1 ∧ ¬ub2

δ2

δ3 ∧ ub1

¬δ1

¬ub1 ∧ δ3 ¬δ2

Red

Green Blue

Figure 2.2: Example of finite state machine

where yb ∈ Yb ⊆ {0, 1}pb and gb : Xr × Ur ×D 	→ Yb. The idea of transforming a well-posed
FSM into a set of Boolean equalities was already presented in [115] where the authors
performed model checking using (mixed) integer optimization on an equivalent set of
integer inequalities.

Example 2.2.1 Figure 2.2 shows a finite state machine where ub = [ub1 ub2]T is the input
vector, and δ = [δ1 . . . δ3]T is a vector of signals coming from the event generator. The logic
state update function or state transition function is:

x′b(k) =




Red if ((xb(k) = Green) ∧ ¬δ3)∨
((xb(k) = Red) ∧ ¬δ1),

Green if ((xb(k) = Red) ∧ δ1 ∧ ub2)∨
((xb(k) = Blue) ∧ δ2)∨
((xb(k) = Green) ∧ ¬ub1 ∧ δ3),

Blue if ((xb(k) = Red) ∧ δ1 ∧ ¬ub2)∨
((xb(k) = Green) ∧ (δ3 ∧ ub1))∨
((xb(k) = Blue) ∧ ¬δ2)).

(2.6)

By associating a Boolean vector xb = [ xb1
xb2 ] to each state (Red = [ 0

0 ], Green = [ 0
1 ], and

Blue = [ 1
0 ]), one can rewrite (2.6) as:

x′b1 = (¬xb1 ∧ ¬xb2 ∧ δ1 ∧ ¬ub2) ∨
(xb1 ∧ ¬δ2) ∨ (xb2 ∧ δ3 ∧ ub1),

x′b2 = (¬xb1 ∧ ¬xb2 ∧ δ1 ∧ ub2) ∨
(xb1 ∧ δ2) ∨ (xb2 ∧ δ3 ∧ ¬ub1),

where the time index (k) was omitted for brevity.

�
Note that since the logic state update function is deterministic, for each state the

conditions associated to all the outgoing arcs are mutually exclusive.
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2.2.4 Mode Selector (MS)

The logic state xb(k), the Boolean inputs ub(k), and the events δe(k) select the dynamic
mode i(k) of the SAS through a Boolean function fM : Xb×Ub×D → I, which is therefore
called mode selector. The output of this function

i(k) = fM(xb(k), ub(k), δe(k)) (2.7)

is called active mode. We say that a mode switch occurs at step k if i(k) �= i(k − 1). Note
that, in contrast to continuous-time hybrid models, where switches can occur at any
time, in our discrete-time setting a mode switch can only occur at sampling instants.

2.2.5 DHA Trajectories

For a given initial condition
[

xr(0)
xb(0)

]
∈ Xr × Xb, and input

[
ur(k)
ub(k)

]
∈ Ur × Ub, k ∈ Z≥0, the

state trajectory x(k), k ∈ Z≥0 of the system is recursively computed as follows:

1. Initialization: x(0) =
[

xr(0)
xb(0)

]
;

2. Recursion:

(a) δe(k) = fH(xr(k), ur(k), k);

(b) i(k) = fM(xb(k), ub(k), δe(k));

(c) yr(k) = Ci(k)xr(k) +Di(k)ur(k) + gi(k);

(d) yb(k) = gB(xb(k), ub(k), δe(k));

(e) x′r(k) = Ai(k)xr(k) +Bi(k)ur(k) + fi(k);

(f) x′b(k) = fB(xb(k), ub(k), δe(k)).

Definition 2 A DHA is well-posed on Xr × Xb, Ur × Ub, Yr × Yb, if for all initial conditions

x(0) =
[

xr(0)
xb(0)

]
∈ Xr × Xb, and for all inputs u(k) =

[
ur(k)
ub(k)

]
∈ Ur × Ub, for all k ∈ Z≥0, the

state trajectory x(k) ∈ Xr × Xb and output trajectory y(k) =
[

yr(k)
yb(k)

]
∈ Yr × Yb are uniquely

defined.

Definition 2 will be used for other types of hybrid models that we will introduce later.
In general a hybrid model may not be well-posed, either because the trajectories stop
after a finite time (for instance, the state vector leaves the set Xr×Xb) or because of non-
determinism (the successor x′r(k), x

′
b(k) may be multiply defined). Note that trajectories

of DHA are deterministic.
DHA modes are a subclass of Hybrid Automata (HA) [3], the main difference is in

the time model, DHA admit time in the natural numbers, while in HA the time is a
real number. Moreover DHA models do not allow instantaneous transitions, and are
deterministic, opposed to HA where any enabled transition may occur in zero time.
This has two consequences (i) DHA do not admit live-locks (infinite switches in zero
time), (ii) DHA do not admit Zeno behaviors (infinite switches in finite time). Finally
in DHA models, guards, reset maps and continuous dynamics are limited to linear (or
affine) functions. However, working with discrete-time models allows the development
of several analysis and synthesis tools, as later reported in Chapters 3 and 4.
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2.3 Discrete Hybrid Automata and Piecewise Affine Sys-
tems

This section highlights the relationships between the classes of DHA and PWA systems
introduced in the previous sections.

Definition 3 Let Σ1, Σ2 be hybrid models, whose inputs are u1(k) ∈ U1 ⊆ U , u2(k) ∈ U2 ⊆ U
and outputs y1(k) ∈ Y1 ⊆ Y, y2(k) ∈ Y2 ⊆ Y, k ∈ Z≥0. Let x1(k) ∈ X1 ⊆ X be the state of Σ1

and x2(k) ∈ X2 ⊆ X the state of Σ2, k ∈ Z≥0. The hybrid models Σ1 and Σ2 are equivalent
on X̄ , Ū , Ȳ, X̄ ⊆ X1∩X2, Ū ⊆ U1∩U2, Ȳ ⊆ Y1∩Y2 if for all initial conditions x1(0) = x2(0) ∈ X̄ ,
and for all u1(k) = u2(k) ∈ Ū , the output trajectories coincides, i.e. y1(k) = y2(k) and
x2(k) = x1(k) at all steps k ∈ Z≥0.

Lemma 1 Let ΣPWA be a well-posed PWA model defined on a set of states X ⊆ R
n, a set

of inputs U ⊆ R
m, and a set of outputs Y ⊆ R

p. Then it can be rewritten as an equivalent
well-posed DHA model ΣDHA on U ,X ,Y.

Proof. Equations (2.1a)–(2.1b) are the modes of the SAS, the constraints Hix + Jiu ≤ Ki,
i = 1, . . . , s are the defining hyperplanes fH(·) of the EG, and the MS is defined by (2.1c),
namely if all the events associated to the hyperplanes of Hjx + Jju ≤ Kj are satisfied
then i(k) = j. �

2.4 Logic and Mixed-Integer Inequalities

Despite the fact that DHA are rich of expressiveness and are therefore quite suitable
for modeling and simulating hybrid dynamical systems, they are not directly suitable
for solving synthesis and analysis problems, due to their heterogeneous discrete and
continuous nature. In this section we want to describe how DHA can be translated into
different hybrid models that are more suitable for computations. We highlight the main
techniques of the translation process, by generalizing several results appeared in the
literature [31,52,54,81,91,109,112,119,133,135,136].

2.4.1 Logical Functions

Boolean functions can be equivalently expressed by inequalities [54].
In order to introduce our notation, we recall here some basic definitions of Boolean

algebra. A variable X is a Boolean variable if X ∈ {0, 1}. A Boolean expression is induc-
tively defined2 by the grammar

φ ::= X |¬φ1|φ1 ∨ φ2|φ1 ⊕ φ2|φ1 ∧ φ2|
φ1 ← φ2|φ1 → φ2|φ1 ↔ φ2|(φ1),

(2.8)

where X is a Boolean variable, and the logic operators ¬ (not), ∨ (or), ∧ (and), ← (implied
by),→ (implies),↔ (iff) have the usual semantics. A Boolean expression is in conjunctive
normal form (CNF) or product of sums if it can be written according to the following
grammar:

φ ::= ψ|φ ∧ ψ, (2.9)

ψ ::= ψ1 ∨ ψ2|¬X |X, (2.10)

where ψ are called terms of the product, and X are the terms of the sum ψ. A CNF
is minimal if it has the minimum number of terms of product and each term has the

2For the sake of simplicity, we are neglecting precedence.
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Relation Logic (In)equalities

L1 AND (∧) X1 ∧X2 d1 = 1, d2 = 1 or d1 + d2 ≥ 2
L2 OR (∨) X1 ∨X2 d1 + d2 ≥ 1
L3 NOT (¬) ¬X1 d1 = 0
L4 XOR (⊕) X1 ⊕X2 d1 + d2 = 1
L5 IMPLY (→) X1 → X2 d1 − d2 ≤ 0
L6 IFF (↔) X1 ↔ X2 d1 − d2 = 0

X3 = X1 ∧X2 d1 + (1 − d3) ≥ 1
L7 ASSIGNMENT d2 + (1 − d3) ≥ 1

(=, ↔) X3 ↔ X1 ∧X2 (1 − d1) + (1− d2) + d3 ≥ 1

Table 2.1: Basic conversion of logic relations into mixed-integer inequalities. Relations
involving the inverted literals ¬X can be obtained by substituting (1 − d) for d in the
corresponding inequalities. More conversions are reported in [107], or can be derived
by (2.13)–(2.14)

minimum number of terms of sum. Every Boolean expression can be rewritten as a
minimal CNF.

A Boolean expression f will be also called Boolean function when is used to define a
literal Xn as a function of X1, . . . , Xn−1:

Xn = f(X1, X2, . . . , Xn−1). (2.11)

In general, we can define relations among Boolean variables X1, . . . , Xn through a Boolean
formula

F (X1, . . . , Xn) = 1, (2.12)

where Xi ∈ {0, 1}, i = 1, . . . , n. Note that each Boolean function is also a Boolean formula,
but not vice versa. Boolean formulas can be equivalently translated into a set of integer
linear inequalities. For instance, X1 ∨X2 = 1 is equivalent to X1 + X2 ≥ 1 [136]. Some
recurrent equivalences are reported in Table 2.1.

The translation can be performed automatically either using an symbolical method
or a geometrical method, that we describe here below.

Symbolical Method

The symbolical method consists of first converting (2.11) or (2.12) into CNF, a task
that can be performed automatically by using one of the several standard techniques
available [54,55]. Let the CNF have the form

(CNF)
m∧

j=1


∨

i∈Pj

Xi

∨
i∈Nj

¬Xi


 (2.13)

Nj , Pj ⊆ {1, . . . , n}, ∀j = 1, . . . ,m.

Then, the corresponding set of integer linear inequalities is


1 ≤
∑

i∈P1
Xi +

∑
i∈N1

(1 −Xi),
...
1 ≤

∑
i∈Pm

Xi +
∑

i∈Nm
(1−Xi).

(2.14)

With these inequalities we can define the set PCNF for any Boolean formula F as:

PCNF = {x ∈ [0, 1]n : (2.14) are satisfied
with x = [X1, . . . , Xn]T }. (2.15)

An alternative symbolical method is described in [54].
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Geometrical Method

The geometrical method consists of two steps (see e.g. [111]). First, the set of points in
[0, 1]n satisfying (2.11) or (2.12) is computed (for this reason, the method was also called
truth table method in [111]). Each row of the truth table is associated with a vertex of
the hypercube {0, 1}n. The vertices are collected in a set V of valid points, all the other
points {0, 1}n \ V are called invalid. The inequalities representing the Boolean formula
are obtained by computing the convex hull of V , for which several tools are available
(see e.g. [77]). We therefore define

PCH = {x ∈ [0, 1]n : x ∈ conv(V )}. (2.16)

Although PCH and PCNF contain the same integer points, i.e. (PCH ∩ {0, 1}n) = (PCNF ∩
{0, 1}n), in general the set PCH ⊆ PCNF, since conv(V ) is the smallest set containing all
integer feasible points. However, there exist Boolean formulas, for which PCH �= PCNF

3.
Conditions for which PCH = PCNF are currently a topic of research.

2.4.2 Continuous-Logic Interfaces

Events of the form (2.4) can be equivalently expressed as

f i
H(xr(k), ur(k), k) ≤M i(1− δi

e), (2.17a)

f i
H(xr(k), ur(k), k) > miδi

e, i = 1, . . . , ne, (2.17b)

where M i, mi are upper and lower bounds, respectively, on fi
H(xr(k), ur(k), k). As we

will point out in Section 2.5, sometimes from a computational point of view, it may be
convenient to have a system of inequalities without strict inequalities. In this case we
will follow the common practice [136] to replace the strict inequality (2.17b) as

f i
H(xr(k), ur(k), k) ≥ ε+ (mi − ε)δi

e, (2.17c)

where ε is a small positive scalar, e.g., the machine precision, although the equivalence
does not hold for 0 < f i

H(xr(k), ur(k), k) < ε, i.e., for the numbers in the interval (0, ε) that
cannot be represented in a computer.

The most common logic to continuous interface is the if-then-else construct

IF δ THEN z = a′1x+ b′1u+ f1 ELSE z = a′2x+ b′2u+ f2, (2.18)

where δ ∈ {0, 1}, z ∈ R, x ∈ R
n, u ∈ R

m, and a1, b1, f1, a2, b2, f2 are constants of suitable
dimensions. The if-then-else construct (2.18) can be translated into [37]

(m2 −M1)δ + z ≤ a′2x+ b′2u+ f2, (2.19a)

(m1 −M2)δ − z ≤ −a′2x− b′2u− f2, (2.19b)

(m1 −M2)(1− δ) + z ≤ a′1x+ b′1u+ f1, (2.19c)

(m2 −M1)(1− δ)− z ≤ −a′1x− b′1u− f1, (2.19d)

where Mi, mi are upper and lower bounds on aix + biu + fi, i = 1, 2. Note that when
a2 = 0, b2 = 0, f2 = 0, relations (2.18)–(2.19) model the real product z = δ · (a′1x + b′1u+ f)
described in [136].

2.5 Mixed Logical Dynamical Systems

Mixed logical dynamical (MLD) systems are computationally oriented representations
of hybrid systems that consist of a collection of linear difference equations involving

3For example (X1 ∨X2) ∧ (X1 ∨X3) ∧ (X2 ∨X3).
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both real and (0-1) variables, subject to a set of linear inequalities [31]. Typically, MLD
models are obtained by starting with a DHA representation of a given hybrid process,
according to the techniques described in the previous section.

An MLD system is described by the following relations:

x′(k) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) +B5, (2.20a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) +D5, (2.20b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5, (2.20c)

E2δ(k) + E3z(k) = E1u(k) + E4x(k) + E5. (2.20d)

where x ∈ R
nr×{0, 1}nb is a vector of continuous and binary states, u ∈ R

mr×{0, 1}mb are
the inputs, y ∈ R

pr × {0, 1}pb the outputs, δ ∈ {0, 1}rb, z ∈ R
rr represent auxiliary binary

and continuous variables, respectively, and A, B1, B2, B3, C, D1, D2, D3, E1,. . . ,E5 and
E1,. . . ,E5 are matrices of suitable dimensions. Given the current state x(k) and input
u(k), the time-evolution of (2.20) is determined by solving δ(k) and z(k) from (2.20c)–
(2.20d), and then updating x′(k) and y(k) from (2.20a)–(2.20b).

We assume that system (2.20) is completely well-posed [31], which means that for
all x(k), u(k) within a given bounded set the variables δ(k), z(k) are defined by (2.20c)–
(2.20d) in a unique way4. This allows assuming that x(k + 1) and y(k) are uniquely
defined once x(k), u(k) are given, and therefore that x- and y-trajectories exist and are
uniquely determined by the initial state x(0) and input signal u(0), u(1), . . .. It is clear
that the well-posedness assumption stated above is usually guaranteed by the proce-
dure used to generate the linear inequalities (2.20c), and therefore this hypothesis is
typically fulfilled by MLD relations derived from modeling real-world plants. Neverthe-
less, a numerical test for well-posedness is reported in [31, Appendix 1].

The equations and inequalities obtained with the methods presented in Sections 2.4.1
and 2.4.2 typically contribute to defining the MLD model (2.20). Since the problems of
synthesis and analysis of MLD models are tackled by optimization techniques, we have
replaced strict inequalities as in (2.17b) by non-strict inequalities as in (2.17c)5. As
observed before, indeed strict inequalities of the form a′x > b can be approximated by
a′x ≥ b+ ε where ε is a small positive scalar, e.g., the machine precision (which depends
on the number of bits used for representing real numbers), although the equivalence
does not hold for 0 < a′x− b < ε, that is for the numbers in the interval (0, ε) that cannot
be represented in the machine).

Note that the constraints (2.20c) allow one to specify additional linear constraints on
continuous variables (e.g., constraints over physical variables of the system), and logic
constraints over Boolean variables. The ability to include constraints, constraint priori-
tization, and heuristics adds to the expressiveness and generality of the MLD framework.
Note also that despite the fact that the description (2.20) seems to be linear, clearly the
nonlinearity is concentrated in the integrality constraints over binary variables. The
following simple example illustrates the technique.

Example 2.5.1 Consider the following simple switched scalar system [31]

x(k + 1) =
{

0.8x(k) + u(k) if x(k) ≥ 0
−0.8x(k) + u(k) if x(k) < 0 (2.21)

where x(k) ∈ [−10, 10], and u(k) ∈ [−1, 1]. The condition x(k) ≥ 0 can be associated to a
binary variable δ(k) such that

[δ(k) = 1] ↔ [x(k) ≥ 0] . (2.22)

4For a more general definition of well-posedness, see [31].
5One may also explicitly include in (2.20) strict inequality constraints Ẽ2δ(k) + Ẽ3z(k) < Ẽ1u(k) + Ẽ4x(k) +

Ẽ5.
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By using the transformations (2.17a)–(2.17c), equation (2.22) can be expressed by the
inequalities

−mδ(k) ≤ x(k)−m (2.23a)

−(M + ε)δ(k) ≤ −x(k)− ε (2.23b)

where M = −m = 10, and ε is a small positive scalar. Then (2.21) can be rewritten as

x(t+ 1) = 1.6δ(k)x(k)− 0.8x(k) + u(k). (2.24)

By defining a new variable z(k) = δ(k)x(k) which, by (2.18)–(2.19) can be expressed as

z(k) ≤ Mδ(k) (2.25a)

z(k) ≥ mδ(k) (2.25b)

z(k) ≤ x(k)−m(1− δ(k)) (2.25c)

z(k) ≥ x(k)−M(1− δ(k)), (2.25d)

the evolution of system (2.21) is ruled by the linear equation

x(t+ 1) = 1.6z(k)− 0.8x(k) + u(k)

subject to the linear constraints (2.23) and (2.25).

Lemma 2 Let ΣDHA be a well-posed DHA model defined on a set of states X ⊆ R
n, a set

of inputs U ⊆ R
m, and a set of outputs Y ⊆ R

p. Then for any bounded X̄ , Ū , there exists a
well posed MLD model ΣMLD equivalent to ΣDHA on X̄ , Ū , Y.

Proof. Directly follows from Sections 2.4.1, 2.4.2, (2.3). �
Finally we recall that the MLD model is similar to the model presented in [67] for

verification of safety properties as they both aim at translating a hybrid system in a set
of mixed integer linear equalities and inequalities using similar techniques.

2.6 Other Computational Models and Further Equiva-
lences

In the previous section we showed the equivalence relations between DHA, PWA and
MLD systems. In this section, we review other existing models of linear hybrid systems
and show further relationships with DHA.

2.6.1 Linear Complementarity Systems

Linear complementarity (LC) systems are given in discrete-time by the equations

x′(k) = Ax(k) +B1u(k) +B2w(k), (2.26a)

y(k) = Cx(k) +D1u(k) +D2w(k), (2.26b)

v(k) = E1x(k) + E2u(k) + E3w(k) + E4, (2.26c)

0 ≤ v(k) ⊥ w(k) ≥ 0, (2.26d)

with v(k), w(k) ∈ R
q and where ⊥ denotes the orthogonality of vectors (i.e. v(k)⊥w(k)

means that vT (k)w(k) = 0). We call v(k) and w(k) the complementarity variables. A, Bi,
C, Di and Ei are real matrices [53,87,88,126,134].
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2.6.2 Extended Linear Complementarity (ELC) Systems

In [62,63,65] it has been shown that several types of hybrid systems can be modeled as
extended linear complementarity (ELC) systems:

x(k + 1) = Ax(k) +B1u(k) +B2w(k) (2.27a)

y(k) = Cx(k) +D1u(k) +D2w(k) (2.27b)

E1x(k) + E2u(k) + E3w(k) � g4 (2.27c)
p∑

i=1

∏
j∈φi

(
g4 − E1x(k)− E2u(k)− E3w(k)

)
j

= 0, (2.27d)

where w(k) ∈ R
r is a vector of auxiliary variables. Condition (2.27d) is equivalent to

∏
j∈φi

(
g4 − E1x(k)− E2u(k)− E3w(k)

)
j

= 0
∀i ∈ {1, 2, . . . , p} (2.28)

due to the inequality conditions (2.27c). This implies that (2.27c)–(2.27d) can be con-
sidered as a system of linear inequalities (i.e. (2.27c)), where there are p groups of linear
inequalities (one group for each index set φi) such that in each group at least one in-
equality should hold with equality. Note that LC systems are a particular case of ELC
systems.

2.6.3 Max-Min-Plus-Scaling (MMPS) Systems

In [65] a class of discrete event systems has been introduced that can be modelled using
the operations maximization, minimization, addition and scalar multiplication. Expres-
sions that are built using these operations are called max-min-plus-scaling (MMPS)
expressions.

Definition 4 (Max-min-plus-scaling expression) A max-min-plus-scaling expression f
of the variables x1, . . . , xn is defined by the grammar6

f := xi|α|max(fk, fl)|min(fk, fl)|fk + fl|βfk (2.29)

with i ∈ {1, 2, . . . , n}, α, β ∈ R, and where fk, fl are again MMPS expressions.

A MMPS expression is e.g. 2x1 +4x2−3, min(max(−x1, 2x2), 3x2 +x3). Note that the min op-
eration is in fact not explicitly needed in (2.29) since we have min(fk, fl) = −max(−fk,−fl).

MMPS systems are defined by the relations

x(k + 1) =Mx(x(k), u(k), w(k)) (2.30a)

y(k) =My(x(k), u(k), w(k)) (2.30b)

Mc(x(k), u(k), w(k)) � c, (2.30c)

where Mx, My and Mc are MMPS expressions in terms of the components of x(k), the
input u(k) and the auxiliary variables w(k), which are all real-valued.

Despite the fact that MMPS functions are continuous, discontinuous functions can
be modeled through MMPS inequalities. For instance, wi(k) ∈ {0, 1} can be represented
by the two inequalities max(wi(k)− 1,−wi(k)) ≥ 0, −max(wi(k)− 1,−wi(k)) ≥ 0. Similarly,
in LC models it can be represented by wi(k)(1 − wi(k)) ≤ 0, wi(k) ≥ 0, 1− wi(k) ≥ 0.

6The symbol | stands for OR and the definition is recursive.
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Figure 2.3: Graphical representation of the links between different classes of discrete-
time hybrid systems. An arrow going from class A to class B means that A is a subset
of B. Arrows with a star (�) require conditions to establish the indicated inclusion.

2.6.4 Equivalence Results

In [13,18,86] equivalence relationships among the model classes mentioned above were
proved. We summarize here below the main result.

Fact 1 PWA, MLD, LC, ELC, and MMPS models are equivalent classes of hybrid models
(certain equivalences require assumptions on the boundedness of input, state, and auxil-
iary variables or on well-posedness).

Proof. See [86] for full details on assumptions, relationships, and a constructive proof.
�
In [131] Fact 1 was extended to also include DHA models, to obtain the relationships
depicted in Figure 2.3.

Theorem 1 Let X , U , Y be sets of states, inputs, and outputs respectively, and assume
that X , U are bounded. Then DHA, PWA, MLD, LC, ELC, and MMPS well-posed models
are equivalent to each other on X , U , Y.

Proof. Mutual equivalences among PWA, MLD, LC, ELC, and MMPS on bounded X , U ,
Y follows from Fact 1. By Lemma 1, any PWA model ΣPWA can be rewritten as an
equivalent DHA model ΣDHA, while any ΣDHA can be rewritten as an MLD model ΣMLD

by Lemma 2. Therefore, any equivalence relation can be stated for any ordered pairs of
models. �

While there is no difference in modeling capability among the models, the same task
can be solved substantially more efficiently by picking the proper model.

Each modeling framework has its advantages. For instance, stability criteria were
formulated for PWA systems [93, 108]. In [87, 134] (linear) complementarity systems
in continuous time have been studied. Applications include constrained mechanical
systems, electrical networks with ideal diodes or other dynamical systems with piece-
wise linear relations, variable structure systems, constrained optimal control problems,
projected dynamical systems and so on [87, Ch. 2]. Issues related to modeling, well-
posedness (existence and uniqueness of solution trajectories), simulation and discretiza-
tion have been of particular interest. Table 2.2 summarizes the advised model for several
typical engineering tasks, according to the authors’ knowledge of the state of the art.
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Table 2.2: Advised model for each task
Task Model
Modeling DHA
Simulation DHA
Control MLD,PWA,MMPS
Stability PWA
Verification PWA
Identification PWA
Fault Detection MLD
Estimation MLD

2.7 HYSDEL Models

A modeling language was proposed in [131] to describe DHA models, called HYbrid Sys-
tem DEscription Language (HYSDEL). The HYSDEL description of a DHA is an abstract
modeling step. The associated HYSDEL compiler then translates the description into
several computational models, in particular into a MLD using the technique presented
in Section 2.4, and PWA form using either the direct approach of [79] or the indirect
approach that translates the MLD into a PWA of [13]. HYSDEL can generate also a
simulator that runs as a function in Matlab.

In this section we show how a DHA system can be modeled in HYSDEL by illustrating
the HYSDEL description of the following DHA system:

SAS: x′r(k) =




xr(k) + ur(k)− 1, if i(k) = 1,
2xr(k), if i(k) = 2,
2, if i(k) = 3,

(2.31a)

EG:
{
δe(k) = [xr(k) ≥ 0],
δf (k) = [xr(k) + ur(k)− 1 ≥ 0], (2.31b)

MS: i(k) =




1, if
[

δe(k)
δf (k)

]
= [ 0

0 ] ,
2, if δe(k) = 1,
3, if

[
δe(k)
δf (k)

]
= [ 0

1 ] .
(2.31c)

A complete description of the syntax of HYSDEL is available in the manual accompany-
ing the compiler [130], and an example of realistic size is presented in Section 5.1.

Consider the HYSDEL list of Table 2.3. As any HYSDEL list, it is composed of two
parts. The first one, called INTERFACE, contains the declaration of all variables and
parameters, so that it is possible to make the proper type checks. The second part,
IMPLEMENTATION, is composed of specialized sections where the relations among the
variables are described. These sections are described next.
AUX SECTION The HYSDEL section AUX contains the declaration of the auxiliary vari-
ables used in the model. These variables will become the δ and z variables in the MLD
model (2.20).
AD SECTION The HYSDEL section AD allows one to define Boolean variables from con-
tinuous ones, and is based exactly on the same semantics of the event generator (EG)
described earlier. HYSDEL does not provide explicit access to the time instance, how-
ever this limitation can be easily overcome by adding a continuous state variable t such
that t′ = t+ Ts, where Ts is the sampling time.
LOGIC SECTION The section LOGIC allows one to specify arbitrary functions of Boolean
variables: In particular the mode selector is a Boolean function and therefore it can be
modeled in this section.
DA SECTION The HYSDEL section DA defines continuous variables according to if-then-
else conditions on Boolean variables. This section models part of the switched affine



24 CHAPTER 2. MODELING

Table 2.3: Sample HYSDEL list of system (2.31)

SYSTEM sample {
INTERFACE {
STATE {

REAL xr [-10, 10]; }
INPUT {

REAL ur [-2, 2]; }
}
IMPLEMENTATION {
AUX {

REAL z1, z2, z3;
BOOL de, df, d1, d2, d3; }

AD {
de = xr >= 0;
df = xr + ur - 1 >= 0; }

LOGIC {
d1 = ~de & ~df;
d2 = de;
d3 = ~de & df; }

DA {
z1 = {IF d1 THEN xr + ur - 1 };
z2 = {IF d2 THEN 2 * xr };
z3 = {IF (~de & df) THEN 2 }; }

CONTINUOUS {
xr = z1 + z2 + z3; }

}}

system (SAS), namely the variables zi defined in (2.3a)–(2.3b). Note that, as the defi-
nition of z3 suggests, HYSDEL can handle compound logic formulas in the DA section,
therefore there is no need to explicitly define a Boolean variable for each mode.
CONTINUOUS SECTION The CONTINUOUS section describes the linear dynamics, ex-
pressed as difference equations. This section models (2.3c).

An HYSDEL description may have additional sections that are not part of the sample
code of Table 2.3, that we describe below. For examples and the detailed syntax we refer
the interested reader to [130].
LINEAR SECTION HYSDEL allows also one to define a continuous variable as an affine
function of continuous variables in the LINEAR section. This section, together with the
CONTINUOUS and AD sections allows more flexibility when modeling the SAS. This extra
flexibility allows algebraic loops that may render undefined the trajectories of the model.
The HYSDEL compiler integrates a semantic checker that is able to detect and report
such abnormal situations.
AUTOMATA SECTION The AUTOMATA section specifies the state transition equations of
the finite state machine (FSM) as a collection of Boolean functions x′bi(k) = fBi(xb(k), ub(k), δe(k)),
i = 1, . . . , nb.
OUTPUT SECTION The OUTPUT section allows one to specify static linear and logic
relations for the output vector y = [ yr

yb ].
Finally HYSDEL allows one more section:

MUST SECTION This section specifies arbitrary linear and logic constraints on continu-
ous and Boolean variables, and therefore it allows for defining the sets Xr, Xb, Ur, Ub, Yr,
Yb (more generally, the MUST section allows also mixed constraints on states, inputs,
and outputs).
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Thanks to the equivalences mentioned in the previous section, it is clear that HYS-
DEL is a tool that allows generating several different hybrid models of a given hybrid
system. In particular, HYSDEL generates MLD models, which can be immediately (and
efficiently) translated into PWA systems [13, 79], or LC/ELC/MMPS systems using the
constructive methods reported in [86].

2.8 A Simple Example

Consider the following simple PWA system [31]




x(k + 1) = 0.8
[

cosα(k) − sinα(k)
sinα(k) cosα(k)

]
x(k) +

[
0
1

]
u(k)

y(k) =
[
0 1

]
x(k)

α(k) =
{

π
3 if [ 1 0 ]x(k) ≥ 0
−π

3 if [ 1 0 ]x(k) < 0

(2.32)

Assuming that [−5, 5] × [−5, 5] is the set of states x(k) of interest, using HYSDEL we
describe (2.32) as

/* 2x2 PWA system */

SYSTEM pwa {

INTERFACE {
STATE { REAL x1,x2; }

INPUT { REAL u; }

OUTPUT{ REAL y; }

PARAMETER {
REAL Ts = 1; /* sampling time, seconds */
REAL alpha = 1.0472; /* radiants */
REAL C = cos(alpha);
REAL S = sin(alpha);

REAL umax = 1;
REAL xmax = 10;
REAL e = 1e-6; /* precision for strict inequalities */ }

}

IMPLEMENTATION {
AUX { REAL z1,z2;

BOOL sign; }
AD { sign = x1<=0 [xmax,-xmax,e]; }

DA { z1 = {IF sign THEN 0.8*(C*x1+S*x2) [2*xmax,-2*xmax,e]
ELSE 0.8*(C*x1-S*x2) [2*xmax,-2*xmax,e]};

z2 = {IF sign THEN 0.8*(-S*x1+C*x2) [2*xmax,-2*xmax,e]
ELSE 0.8*(S*x1+C*x2) [2*xmax,-2*xmax,e]}; }

CONTINUOUS { x1 = z1;
x2 = z2+u; }

OUTPUT { y = x2; }
}

}

and obtain the equivalent MLD form

x(k + 1) = [ 1 0
0 1 ] z(k) + [ 0

1 ]u(k)
y(k) = [ 0 1 ]x(k)


20
20−20
−20
20
20−20
−20
−5.0

5


 δ(k) +




−1 0
1 0−1 0
1 0
0 −1
0 1
0 −1
0 1
0 0
0 0


 z(k) ≤




−0.4000 −0.6928
0.4000 0.6928−0.4000 0.6928
0.4000 −0.6928
0.6928 −0.4000
−0.6928 0.4000
−0.6928 −0.4000
0.6928 0.4000
1.0000 0−1.0000 0


 x(k) +




20
20
0
0
20
20
0
0

0.0
5


 .
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2.9 Identification of Hybrid Systems

Finally, we mention that identification techniques for obtaining piecewise affine models
(or parts of models) from input/output data were recently developed in [12,21,73,123].



Chapter 3

Controller Synthesis

3.1 Introduction

Controlling a system means to choose the command input signals so that the output
signals tracks some desired reference trajectories. The control problem can be tackled
in several ways, according to the model type and control objective.

The problem of determining optimal control laws for hybrid systems has been widely
investigated in recent years and many results can be found in the control and computer
science literature. For continuous-time hybrid systems, most of the literature is focused
on the study of necessary conditions for a trajectory to be optimal [116,129], and on the
computation of optimal/suboptimal solutions by means of dynamic programming or the
maximum principle [46,47,82,85,100,121,122,138]. For determining the optimal feed-
back control law some of these techniques require the discretization of the state space
in order to solve the corresponding Hamilton-Jacobi-Bellman equations. In [82] the
authors use a hierarchical decomposition approach to break down the overall problem
into smaller ones. In so doing, discretization is not involved and the main computational
complexity arises from a higher-level nonlinear programming problem.

Optimal quadratic control of piecewise linear and hybrid systems is addressed in
[85, 120], where the authors derive bounds on the solution to the associated Hamilton-
Jacobi-Bellman inequalities, which are computable by solving convex optimization prob-
lems (linear matrix inequalities [120] or finite-dimensional linear programming [85]). In
the case of switched linear systems composed by stable autonomous dynamics, in [27]
the authors proved that the control law is a state-feedback and there exists a numerical
procedure to compute the regions of the state space where the i-th switch should occur.

The hybrid optimal control problem becomes less complex when the dynamics is
expressed in discrete-time or as discrete-events [49]. In the area of intelligent manu-
facturing and queuing systems, for example, one frequently faces scheduling problems.
The goal of scheduling is to accomplish a given set of tasks (also identified as jobs) so
as to optimize a meaningful performance criterion. Since the jobs to be scheduled usu-
ally involve some dynamics, the problem is hybrid. The dynamics taken into account in
scheduling problems are generally very simple (often just of integral type, corresponding
to timed events [50, 105]). Optimization of hybrid processes through dynamic simula-
tion is also proposed in [114]. Here, the authors use mixed-integer linear programming
(MILP) to obtain a candidate switching sequence. A standard scheduling problem is
then solved for the fixed sequence.

For discrete-time linear hybrid systems, in [31] the authors showed how mixed-
integer quadratic programming (MIQP) can be efficiently used to determine optimal con-
trol sequences. It was also shown that when optimal control is implemented in a reced-
ing horizon fashion by repeatedly solving MIQPs on-line, this leads to an asymptotically
stabilizing control law. For those cases where on-line optimization is not viable, [16,17]

27
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proposed multiparametric programming as an effective means for synthesizing piece-
wise affine optimal controllers, that solve in state-feedback form the finite-time hybrid
optimal control problem with criteria based on linear (1-norm, ∞-norm) and quadratic
(squared Euclidean norm) performance objectives. Such a control design flow for hybrid
systems was applied to several industrial case studies, in particular to automotive prob-
lems where the simplicity of the control law is essential for its applicability [14,24,110].

In the discrete-time case, the main source of complexity is the combinatorial num-
ber of possible switching sequences. By combining reachability analysis and quadratic
optimization, in Chapter 4 we describe a technique that rules out switching sequences
that are either not optimal or simply not compatible with the evolution of the dynamical
system. An algorithm to optimize switching sequences that has an arbitrary degree of
suboptimality was presented in [100].

Other approaches for synthesizing controllers for piecewise affine systems using LMI
relaxations was presented in [59], and for min-max-plus-scaling systems in [64].

3.2 Model Predictive Control for Hybrid Systems

For complex constrained multivariable control problems, model predictive control (MPC)
has become the accepted standard in the process industries [106, 118]. Here at each
sampling time, starting at the current state, an open-loop optimal control problem is
solved over a finite horizon. The optimal command signal is applied to the process only
during the following sampling interval. At the next time step a new optimal control
problem based on new measurements of the state is solved over a shifted horizon. The
optimal solution relies on a dynamic model of the process, respects all input and out-
put constraints, and minimizes a performance figure. This is usually expressed as a
quadratic or a linear criterion, so that, for linear prediction models, the resulting op-
timization problem can be cast as a quadratic program (QP) or linear program (LP),
respectively, for which a rich variety of efficient active-set and interior-point solvers are
available.

MPC ideas can be applied to control hybrid models. Assume we want the output y(t)
to track a reference signal ye, and let xe, ue, δe, ze be a corresponding equilibrium pair
for state, input, and auxiliary variables. Let t be the current time, and x(t) the current
state. Consider the following optimal control problem

min
{v,δ,z}T−1

0

J({v, δ, z}T−1
0 , x(t)) �

T−1∑
k=0

‖Q1(v(k) − ue)‖p+

‖Q2(δ(k|t)− δe)‖p + ‖Q3(z(k|t)− ze)‖p+
‖Q4(x(k|t) − xe)‖p + ‖Q5(y(k|t)− ye)‖p (3.1a)

s.t.




x(t|t) = x(t)
x(k + 1|t) = Ax(k|t) +B1v(k) +B2δ(k|t) +B3z(k|t) +B5

y(k|t) = Cx(k|t) +D1v(k) +D2δ(k|t) +D3z(k|t) +D5

E2δ(k|t) + E3z(k|t) ≤ E1v(k) + E4x(k|t) + E5

E2δ(k|t) + E3z(k|t) = E1v(k) + E4x(k|t) + E5

umin ≤ v(t+ k) ≤ umax, k = 0, 1, . . . , T − 1
xmin ≤ x(t+ k|t) ≤ xmax, k = 1, . . . , T − 1
x(T |t) = xe

(3.1b)

where T is the prediction, x(k|t) is the state predicted at time t + k resulting from the
input u(t + k) = v(k) to (2.20) starting from x(0|t) = x(t), umin, umax and xmin, xmax are
hard bounds on the inputs and on the states, respectively. In (3.1a), ‖Qx‖p = x′Qx for
p = 2 and ‖Qx‖p = ‖Qx‖∞ for p =∞, where

Q1,4 = Q′
1,4 � 0, Q2,3,5 = Q′

2,3,5 � 0 (p = 2)
Q1−5 nonsingular (p =∞). (3.2)
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Assume for the moment that the optimal solution {v∗t (0), . . ., v∗t (T − 1), δ∗t (0), . . .,
δ∗t (T − 1), z∗t (0), . . ., z∗t (T − 1)} exists. According to the receding horizon philosophy, set

u(t) = v∗t (0), (3.3)

disregard the subsequent optimal inputs v∗t (1), . . . , v∗t (T − 1), and repeat the whole op-
timization procedure at time t + 1. The control law (3.1)–(3.3) provides an extension of
MPC to hybrid models, and relies upon the solution of the mixed-integer program (3.1).

In principle all the design rules about parameter choices and theoretical results re-
garding stability developed for MPC over the last two decades can be applied here after
some adjustments. For instance, the number of control degrees of freedom can be re-
duced to Nu < T , by setting u(k) ≡ u(Nu − 1), ∀k = Nu, . . . , T . While this choice usually
reduces the size of the optimization problem dramatically at the price of inferior per-
formance, here the computational gain is only partial, since all the T δ(k|t) and z(k|t)
variables remain in the optimization.

The end point constraint x(T |t) = xe can be relaxed by weighting the final state.
However from a theoretical point of view, it is not clear how to reformulate an infinite
horizon problem for an MLD system, as can be done for linear systems through weights
computed from Lyapunov or Riccati algebraic equations. Indeed, infinite horizon for-
mulations are inappropriate for both practical and theoretical reasons. In fact, approxi-
mating the infinite horizon with a large T is computationally prohibitive, as the number
of 0-1 variables involved in the optimization problem depends linearly on T . Moreover,
the quadratic term in δ might oscillate (for example, for a system which approaches
the origin in a “switching” manner), and hence “good” (i.e. asymptotically stabilizing) in-
put sequences might be ruled out by a corresponding infinite value of the performance
index; it could even happen that no input sequence has finite cost.

3.2.1 Closed-Loop Stability

The following theorem [31] shows that the control law (3.1)–(3.3) stabilizes system (2.20)
asymptotically.

Theorem 2 Let (xe, ue) be an equilibrium pair and the corresponding equilibrium auxiliary
variables be (δe, ze). Assume that the initial state x(0) is such that a feasible solution of
problem (3.1) exists at time t = 0. Then for all matrices Q1−5 satisfying (3.2) the MPC
law (3.1)–(3.3) stabilizes the system in that

lim
t→∞x(t) = xe

lim
t→∞u(t) = ue

lim
t→∞ ‖Q2(δ(t)− δe)‖p = 0

lim
t→∞ ‖Q3(z(t)− ze)‖p = 0

lim
t→∞ ‖Q5(y(t)− ye)‖p = 0

while fulfilling constraints (2.20c) and the input and state constraints umin ≤ u(t) ≤ umax,
xmin ≤ x(t) ≤ max.

Note that if Q2 (or Q3, Q5) is non singular, convergence of δ(t) (or z(t), y(t)) follows as
well.
Proof. The proof follows easily from standard Lyapunov arguments. Let U∗

t denote the
optimal control sequence {v∗t (0), . . . , v∗t (T − 1)}, let

V (t) � J(U∗
t , x(t))

denote the corresponding value attained by the performance index, and let U1 be the
sequence {v∗t (1), . . . , v∗t (T −2), ue}. Then, U1 is feasible at time t+1, along with the vectors
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u(t)

time ttime t

0 2 4 6 8 10
-0.8

-0.6

-0.4

-0.2

0

0 2 4 6 8 10
-1

-0.5

0

0.5

1

x
1
( ),t x

2
( )t

Figure 3.1: MPC closed-loop regulation to the origin of system (2.32)
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Figure 3.2: Closed-loop tracking problem for system (2.32), with y(t) = x2(t)

δ(k|t+1) = δ(k+1|t), z(k|t+1) = z(k+1|t), k = 0, . . . , T−2, δ(T−1|t+1) = δe, z(T−1|t+1) = ze,
because x(T − 1|t+ 1) = x(T |t) = xe. Hence,

V (t+ 1) ≤ J(U1, x(t+ 1)) =
V (t)− ‖Q4(x(t) − xe)‖p +

−‖Q1(u(t)− ue)‖p − ‖Q2(δ(t)− δe)‖p +
−‖Q3(z(t)− ze)‖p − ‖Q5(y(t)− ye)‖p (3.4)

and V (t) is decreasing. Since V (t) is lower-bounded by 0, there exists V∞ = limt→∞ V (t),
which implies V (t+ 1)− V (t)→ 0. Therefore, each term of the sum

‖Q4(x(t)− xe)‖p + ‖Q1(u(t)− ue)‖p +
‖Q2(δ(t)− δe)‖p + ‖Q3(z(t)− ze)‖p +

‖Q5(y(t)− ye)‖p ≤ (3.5)

V (t)− V (t+ 1)

converges to zero as well, which proves the theorem. �

Example 3.2.1 In order to stabilize system (2.32) to the origin, the feedback control
law (3.1)–(3.3) is adopted, along with the parameters T = 3, ue = 0, δe = 0, ze = [0 0]′,
xe = [0 0]′, ye = 0, and the weights Q1 = 1, Q2 = 0.01, Q3 = 0.01I2, Q4 = I2, Q5 = 0, with the
norm p = 2. Fig. 3.1 shows the resulting trajectories. Consider now a desired reference
r(t) = sin(t/8) for the output y(t). We apply the same MPC controller, with the exception
of Q4 = 10−8I2, Q5 = 1. The steady-state parameters are selected as ye = r(t), and ue, xe,
δe, ze consistently. Fig. 3.2 shows the resulting closed-loop trajectories. Notice that the
constraint −1 ≤ u(t) ≤ 1 prevents the system from tracking the peaks of the sinusoid,
and therefore the output trajectory is chopped.

�
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3.2.2 MPC Optimization Problem

The MPC formulation (3.1) can be rewritten as a Mixed Integer Quadratic Program (MIQP)
when the squared Euclidean norm p = 2 is used, or as a Mixed Integer Linear Program
(MILP), when p = ∞ or p = 1. The construction of the matrices of the mixed-integer
linear program associated with MPC for the case p =∞ are reported in Section 3.2.3.

Despite the fact that very effective methods exist to compute the (global) optimal so-
lution of both MIQP and MILP problems (see Section 3.2.4 below), in the worst-case the
solution time depends exponentially on the number of integer variables. In principle,
this might limit the scope of application of the proposed method to very slow systems,
since for real-time implementation the sampling time should be large enough to allow
the worst-case computation. However, the stability proof does not require that the eval-
uated control sequences {U∗

t }∞t=0 are global optima, but only that they lead to a decrease
in the objective function. Thus the solver can be interrupted at any intermediate step to
obtain a suboptimal solution U∗

t+1 which satisfies the decrease condition. For instance,
when Branch & Bound methods are used to solve an MIQP problem, the new control se-
quence U∗

t can be selected as the solution to a QP subproblem which is integer-feasible
and has the lowest value. Obviously in this case the performance deteriorates.

3.2.3 MILP Associated with MPC

The sum of the components of any vector

q � [εu
0 , . . . , ε

u
T−1, ε

δ
0, . . . , ε

δ
T−1, ε

z
0, . . . , ε

z
T−1, ε

x
1 , . . . , ε

x
T−1, ε

y
0, . . . , ε

y
T−1]

′

that satisfies

−1mε
u
k ≤ Q1(u(k|t)− ue) k = 0, 1, . . . , T − 1

−1mε
u
k ≤ −Q1(u(k|t)− ue) k = 0, 1, . . . , T − 1

−1r�
εδ

k ≤ Q2(δ(k|t)− δe) k = 0, 1, . . . , T − 1
−1r�

εδ
k ≤ −Q2(δ(k|t)− δe) k = 0, 1, . . . , T − 1

−1rcε
z
k ≤ Q3(z(k|t)− ze) k = 0, 1, . . . , T − 1

−1rcε
z
k ≤ −Q3(z(k|t)− ze) k = 0, 1, . . . , T − 1

−1nε
x
k ≤ Q4(x(k|t) − xe) k = 1, 2, . . . , T − 1

−1nε
x
k ≤ −Q4(x(k|t)− xe) k = 1, 2, . . . , T − 1

−1pε
y
k ≤ Q5(y(k|t)− ye) k = 0, 1, . . . , T − 1

−1pε
y
k ≤ −Q5(y(k|t)− ye) k = 0, 1, . . . , T − 1

(3.6)

represents an upper bound on J(vT−1
0 , x(t)), where 1h is a column vector of ones of length

h, and where

x(k|t) = Akx(t) +
k−1∑
j=0

Aj(B1u(k − 1− j|t) + (3.7)

B2δ(k − 1− j|t) +B3z(k − 1− j|t) +B5) (3.8)

Similarly to what was shown in [48], it is easy to prove that the vector q that satisfies
equations (3.6) and simultaneously minimizes

J(q) = εu
0 + . . .+ εu

T−1 + εδ
0 + . . .+ εδ

T−1 +
εz
0 + . . .+ εz

T−1 + εx
1 + . . .+ εx

T−1 +
εy
0 + . . .+ εy

T−1 (3.9)
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also solves the original problem, i.e. the same optimum J∗(vT−1
0 , x(t)) is achieved. There-

fore, problem (3.1) can be reformulated as the following MILP problem

min
q

J(q) = [1 1 . . . 1]q

s.t. −1mε
u
k ≤ ±Q1(u(k|t)− ue), k = 0, 1, . . . , T − 1

−1mε
δ
k ≤ ±Q2(δ(k|t)− δe), k = 0, 1, . . . , T − 1

−1mε
z
k ≤ ±Q3(z(k|t)− ze), k = 0, 1, . . . , T − 1

−1nε
x
k ≤ ±Q4(Akx(0|t) +

∑k−1
j=0 A

j(B1v(u − 1− j|t)+
B2δ(k − 1− j|t) +B3u(k − 1− j|t))− xe), k = 1, . . . , T − 1

−1nε
y
k ≤ ±Q5(CAkx(0|t) + C

∑k−1
j=0 A

j(B1u(k − 1− j|t)+
B2δ(k − 1− j|t) +B3z(k − 1− j|t)))+
D1u(k) +D2δ(k|t) +D3z(k|t)− ye), k = 0, . . . , T − 1

xmin ≤ Akx(0|t) +
∑k−1

j=0 A
j(B1u(k − 1− j|t)+

B2δ(k − 1− j|t) +B3z(k − 1− j|t)) ≤ xmax, k = 1, . . . , T
umin ≤ u(k|t) ≤ umax, k = 0, 1, . . . , T − 1

x(T |t) = xe

x(k + 1|t) = Ax(k|t) +B1u(k) +B2δ(k|t) +B3z(k|t), k ≥ 0
y(k|t) = Cx(k|t) +D1u(k) +D2δ(k|t) +D3z(k|t)

E2δ(k|t) + E3z(k|t) ≤ E1u(k) + E4x(k|t) + E5 k ≥ 0
E2δ(k|t) + E3z(k|t) = E1u(k) + E4x(k|t) + E5, k ≥ 0

(3.10)

where the variable x(0|t) appears only in the constraints in (3.10) as a vector parameter.
Problem (3.10) can be rewritten in the more compact MILP form

q∗t � argmin
q

fT
c qc + fT

d qd

s.t. Gcqc +Gcqd ≤ S + Fx(t)
(3.11)

where the matrices G, S, F can be straightforwardly defined from (3.10), and qc, qd rep-
resent the continuous and binary components, respectively, of the optimization vector q.
The case of quadratic cost functions leads to an MIQP, whose derivation is very similar
and therefore omitted here.

3.2.4 Mixed Integer Program Solvers

With the exception of particular structures, mixed-integer programming problems in-
volving 0-1 variables are classified as NP -complete, which means that in the worst case,
the solution time grows exponentially with the problem size [119]. Despite this combina-
torial nature, several packages exist for solving MILP and MIQP problems, including the
commercial software Cplex [92], and other software packages [61,75,104,125]. A basic
MILP/MIQP solver implemented in Matlab is also freely available for download [29].

Many algorithmic approaches have been proposed and applied successfully to medium
and large size application problems [76], the four major ones being

• Cutting plane methods, where new constraints (or “cuts”) are generated and added
to reduce the feasible domain until a 0-1 optimal solution is found.

• Decomposition methods, where the mathematical structure of the models is ex-
ploited via variable partitioning, duality, and relaxation methods.

• Logic-based methods, where disjunctive constraints or symbolic inference tech-
niques are utilized which can be expressed in terms of binary variables.



3.3. EXPLICIT HYBRID MPC CONTROL LAWS 33

• Branch and Bound / Branch and Cut methods, where the 0-1 combinations are
explored through a binary tree, the feasible region is partitioned into sub-domains
systematically, and valid upper and lower bounds are generated at different levels
of the binary tree.

See [124] for a review of these methods. For MIQP, in [75] a numerical study compares
the different approaches, and Branch and Bound is shown to be superior by an order of
magnitude. While OA and GBD techniques can be attractive for general Mixed-Integer
Nonlinear Problems (MINLP), for MIQP at each node the relaxed QP problem can be
solved without approximations and reasonably quickly (for instance, the Hessian matrix
of each relaxed QP is constant).

As described by [75], the Branch and Bound algorithm for MIQP consists of solving
and generating new QP problems in accordance with a tree search, where the nodes
of the tree correspond to QP subproblems. Branching is obtained by generating child-
nodes from parent-nodes according to branching rules, which can be based for instance
on a-priori specified priorities on integer variables, or on the amount by which the inte-
ger constraints are violated. Nodes are labeled as either pending, if the corresponding
QP problem has not yet been solved, or fathomed, if the node has already been fully
explored. The algorithm stops when all nodes have been fathomed. The success of the
branch and bound algorithm relies on the fact that whole subtrees can be excluded from
further exploration by fathoming the corresponding root nodes. This happens if the cor-
responding QP subproblem is either infeasible or an integer solution is obtained. In the
second case, the corresponding value of the cost function serves as an upper bound on
the optimal solution of the MIQP problem, and is used to further fathoming other nodes
having greater optimal value or lower bound.

The simulation results reported here have been obtained by interfacing Matlab with
the mixed-integer solvers [29, 61, 92, 104, 125]. All these have different advantages, in
terms of reliability, speed, platform portability, etc.

3.3 Explicit Hybrid MPC Control Laws

There is an alternative to on-line mixed integer optimization for implementing MPC for
hybrid systems.

By generalizing the result of [33] for linear systems to hybrid systems, we proposed
the idea in [15, 16] of handling the state vector x(t), which appears in the the linear
part of the objective function and of the rhs of the constraints, as a vector of param-
eters. Then, for performance indices based on the ∞-norm, the optimization problem
can be treated as a multi-parametric MILP (mp-MILP). Solving an mp-MILP amounts to
express the solution of the MILP as a function of the parameters, as we will detail in
Section 3.3.1.

Once the multi-parametric problem (3.1) has been solved off line, i.e., the solution
U∗

t = f(x(t)) of (3.1) has been found, the model predictive controller is available explicitly.
In [1] the authors also show that the solution U∗ = f(x) of the mp-MILP problem is
piecewise affine. Clearly, the same properties are inherited by the controller, i.e.,

u(t) = Fix(t) + gi, for
x(t) ∈ Xi � {x : Hix ≤ Si}, i = 1, . . . , s

(3.12)

where ∪s
i=1Xi is the set of states for which a feasible solution to (3.1) exists.

We remark that the piecewise affine controller (3.12) and the MPC controller (3.1) are
equal, in the sense that they produce the same control action, and therefore share the
same stabilizing and optimality properties. The difference is only in the implementation:
for the form (3.12), on-line computation reduces to a function evaluation, instead of an
expensive mixed-integer linear program.
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The technique was later extended in [17,39] for quadratic performance indices using
a combination of dynamic programming and multiparametric quadratic programming.

The explicit representation of the MPC controller discussed above is significant for
several reasons. First of all, it gives some insight into the mathematical structure of the
controller which is otherwise hidden behind the optimization formalism. Furthermore,
it offers an alternative route to an efficient controller implementation, opening up the
route to use MPC in “fast” and “cheap” systems where the on-line solution of a QP or,
even worse, of an MIQP is prohibitive. Finally, the fact that we can represent the closed
loop system in a PWA form allows us to apply new tools for performance analysis based
on reachability analysis, as discussed in Section 4.5.

3.3.1 Multiparametric-MILP Solvers

Two main approaches have been proposed for solving mp-MILP problems. In [1], the
authors developed an algorithm based on branch and bound (B&B) methods. At each
node of the B&B tree an mp-LP is solved where a certain number of integer variables is
relaxed to continuous values in [0, 1]. The solution at the root node, where all the integer
variables are relaxed, represents a valid lower bound, while the solution at a leaf node
where all the integer variables have been fixed to 0 or 1 represents a valid upper bound.
As in standard B&B methods, the complete enumeration of combinations of 0-1 integer
variables is avoided by comparing the multiparametric solutions, and by eliminating
the nodes where there is no improvement of the value function. In [68] an alternative
algorithm was proposed, which only solves mp-LPs where the integer variables are fixed
to the optimal value determined by an MILP, instead of solving mp-LP problems with
relaxed integer variables. More in detail, problem (3.11) is alternatively decomposed
into an mp-LP and an MILP subproblem. First, by treating also the parameters as
optimization variables, an MILP problem is solved. Then an mp-LP is solved where
the binary variables are fixed to the optimal values determined by the previous MILP.
The solution of the mp-LP provides a parametric upper bound. A new integer vector
is determined by solving an MILP that includes an additional constraint imposing a
decrease of the value function with respect to the previous mp-LP (see [68] for more
details). The algorithmic implementation of the mp-MILP [68] algorithm adopted here
relies on [41] for solving mp-LP problems, and on [92] for solving MILP’s.

Example 3.3.1 Consider again system (2.32). In order to optimally transfer the state
from x0 = [−1 1]′ to the origin, the performance index (3.1a) is minimized subject to (3.1b)
and the MLD system dynamics (2.32), along with the weights Q1 = 0.001, Q2 = 0.04,
Q3 = 30I4, Q4 = 10I2, Q5 = 700. By solving the mp-MILP associated with this MPC
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Figure 3.3: Polyhedral partition of the state-space

problem we obtain the following explicit controller:

u =




− 1.0000 if

[
1.0000 −1.7296
−1.0000 0.0000
0.0000 1.0000
94.5067 −1.0000

]
x ≤

[ −2.1680
5.0000
5.0000

−105.1385

]

(Region #1)

[ 0.9238 0.0000 ] x if
[−188.1504 1.0000

−20.3158 −34.1997
1.0000 0.0000
0.0000 1.0000

]
x ≤

[
204.3621
1.0000
0.0000
5.0000

]
(Region #2)

[−0.9238 −0.0000 ] x if
[−217.00 1.0000

38.1919 −64.29
1.0000 0.0000
0.0000 1.0000

]
x ≤

[
4.9708
1.0000
1.0000
5.0000

]
(Region #3)

− 1.0000 if
[−188.15 −1.0000
−1.0000 −1.6858
1.0000 0.0000
1.0000 133.68

]
x ≤

[−204.39
−2.1673
5.0000
665.60

]
(Region #4)

[ 0.4619 −0.8000 ] x if


 1.0000 −1.7193

−1.0000 1.7295
−1.0000 0.0000
13.4029 23.6383
43.4009 0.0000


 x ≤


 2.1387

2.1174
5.0000
−1.0000
−1.0000




(Region #5)

[−0.4619 −0.8000 ] x if


 1.0000 1.7175

−20.2527 34.1997
−1.0000 0.0000
−1.0000 −1.7369
106.3247 1.0000


 x ≤

[ 2.0413
−1.0000
0.0000
2.2345

525.0259

]

(Region #6)

1.0000 if




1.0000 −1.6446
−1.0000 1.7449
−1.0000 0.0000
−1.0000 −1.6788
1.0000 −265.137
1.0000 1.7369
1.0000 0.0000


 x ≤




12.0940
−2.2448
5.0000
12.3141
1329.55
−2.2345
5.0000




(Region #7)

whose corresponding partition of the state space into polyhedral regions is depicted in
Fig. 3.3.

�

Example 3.3.2 Consider the following hybrid control problem for the heat exchange ex-
ample proposed by Hedlund and Ranzter [85]. The temperature of two furnaces should
be controlled to a given set-point by alternate heating. Only three modes of operation
are allowed: heat only the first furnace, heat only the second one, do not heat. The
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amount of power u0 to be fed to the furnaces at each time instant is fixed. The system
is described by the following equations:




Ṫ =
[
−1 0
0 −2

]
T +Biu0

Bi =




[
1
0

]
if heat furnace 1[

0
1

]
if heat furnace 2[

0
0

]
if no heating

(3.13)

System (3.13) has two binary inputs, heat1 and heat2, which cannot be active simulta-
neously, is converted to a discrete-time model by sampling (3.13) for each combination
of active inputs (sampling time Ts = 0.08s), and is described in HYSDEL as follows:

/* HEAT EXCHANGE model */

SYSTEM furnaces {

INTERFACE {
STATE { REAL t1,t2,u0;

}
INPUT { BOOL heat1,heat2;

}
PARAMETER {

REAL Ts=0.08; /* sampling time, seconds */

REAL Bd1=0.07688365361336;
/* matrix B, heat 1 on */

REAL Bd2=0.07392810551689;
/* matrix B, heat 2 on */

REAL A11=exp(-Ts);
REAL A22=exp(-2*Ts);

/* discretization of matrix A */

REAL u0max=10; /* upperbound on u0 */
REAL e = 1e-6; /* precision for ‘‘>’’ */
}

}

IMPLEMENTATION {
AUX {REAL z1,z2; }

DA { z1 = {IF heat1 THEN Bd1*u0 [Bd1*u0max,0,e]};
z2 = {IF heat2 THEN Bd2*u0 [Bd2*u0max,0,e]}; }

CONTINUOUS { t1 = A11*t1+z1;
t2 = A22*t2+z2;
u0 = u0; }

MUST { ~heat1 | ~heat2;
/* heat1 and heat2 not both active */ }

}
}

where we modeled u0 as an additional constant continuous state. The resulting MLD
model is

x(t+ 1) =
[

0.9231 0 0
0 0.8521 0
0 0 1.0000

]
x(t) +

[
1 0
0 1
0 0

]
z(t)




−1 0
1 0
−1 0
1 0
0 −1
0 1
0 −1
0 1
0 0


 z(t) ≤




−0.7688 0
0 0
0 0

0.7688 0
0 −0.7393
0 0
0 0
0 0.7393

−1.0000 −1.0000


 u(t) +




−0.0769
0.0769

0
0

−0.0739
0.0739

0
0
0


 x3(t) +




0.7688
0
0
0

0.7393
0
0
0

1.0000


 .

(3.14)
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Figure 3.4: Polyhedral partition of the state-space associated with the optimal control
law

In order to optimally control the two temperatures to the desired values T 1
e = 1/4 and

T 2
e = 1/8, the following performance index is minimized:

min
J

({v, δ, z}20, x(t)) �
2∑

k=0

‖R(v(k + 1)− v(k))‖∞ + ‖Q(T (k|t)− Te)‖∞ (3.15)

subject to the MLD system dynamics (3.14), along with the weights Q = 1, R = 700.
The cost function weights the tracking error and trades it off with the number of input
switches occurring along the prediction horizon. By solving the mp-MILP associated
with the MPC problem we obtain the explicit controller for the range T ∈ [−1, 1]× [−1, 1],
u0 ∈ [0, 1] (the mp-MILP consists of 168 linear constraints, 33 continuous variables, 6
binary variables, 3 parameters, and is solved in Matlab in about 5m on a standard PC,
leading to 105 polyhedral regions and affine gains). In Fig. 3.4 two slices of the three-
dimensional state-space partition for different constant power levels u0 are depicted.
Around the equilibrium, the solution appears more finely partitioned, in order to per-
form an optimal control action. The resulting optimal trajectories are shown in Fig. 3.5.
For a low power u0 = 0.4 the set-point is never reached. �
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Chapter 4

Reachability Analysis

Models are mathematical objects that allow one to reproduce the dynamic evolution of
real plants and to quantitatively analyze their properties. A good model should combine
a satisfactory detail of the real system with a tractable mathematical structure in order
to formulate and efficiently solve interesting applicative problems like definition and
computation of trajectories, stability and safety analysis, control, state estimation, etc.
As mentioned in Chapter 1, several classes of hybrid models have been proposed in the
literature, each class is usually tailored to solve a particular problem or it is specific to
a certain subclass of hybrid processes, and often can approximate other classes with
arbitrary precision, or be equivalent under certain transformations.

A simulation of the mathematical model enables to probe the system, but very often
it does not permit to assess its structural properties. In fact, any analysis based on
simulation is likely to miss the subtle phenomena that a model may generate, especially
in the case of hybrid models. Tools like reachability analysis and piecewise quadratic
Lyapunov stability are becoming a standard in analysis of hybrid systems. Reachability
analysis (or safety analysis or formal verification) aims at detecting if a hybrid model will
eventually reach an unsafe state configuration or satisfy a temporal logic formula [58].
Reachability analysis relies on a reach set computation algorithm, which strongly de-
pends on to the mathematical model of the system [127]. Piecewise quadratic Lyapunov
stability is a deductive way to prove the stability of an equilibrium point of a subclass of
hybrid systems (piecewise linear systems), the computational burden is usually low, at
the price of a convex relaxation of the problem which may lead to conservative results.

Timed automata and hybrid automata have proved to be a successful modeling
framework for formal verification, and have been widely used in the literature. The
starting point for both models is a finite state machine equipped with continuous dy-
namics. In the theory of timed automata [7], the dynamic part is the continuous-time
flow ẋ = c ∈ R

d. Efficient computational tools complete the theory of timed automata and
allow one to perform verification [38] and optimal control [11] of such models. Timed au-
tomata were extended to linear hybrid automata [3], where the dynamics is modeled by
the differential inclusion a ≤ ẋ ≤ b. Specific tools consent the formal verification of such
models against safety and liveness requirements. Linear hybrid automata were further
extended to hybrid automata where the continuous dynamics is governed by differential
equations. Tools exists to model and analyze those systems, either directly [6,57] or by
approximating the model with timed automata or linear hybrid automata.

In this chapter we present an algorithm that computes the set of states that a given
DHA system can reach within Kmax sampling times from any initial state x(0) ∈ X (0) and
under any possible input excitation of u(t) ∈ U , t = 0, . . . ,Kmax.

By exploiting the linearity of the dynamics in each operating mode of the DHA sys-
tem, the proposed reachability algorithm computes the reach set via simple polyhedral
computations, and using the properties of the Minkowski’s sum it is able to detect the

39
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set of the state trajectories that have switched mode. A significantly fast analysis is
obtained by over-approximating the reach set. This introduces some conservativeness
that is eventually removed in a simple post-processing operation.

The importance of reach set computations is twofold. First, as shown in Section 4.4,
it allows one to check for safety/liveness properties, for instance that the trajectories of
the hybrid system will never enter some unsafe regions of the state space, or that all the
trajectories will reach a target region within a given maximum time. Interesting control-
theoretical questions like stability [35] and observability [18] can be reformulated as
reachability questions. Second, the proposed algorithmic ingredients for reachability
analysis can be suitably used for optimal control purposes: as shown in Section 4.6,
if an optimization stage is performed in parallel with reach-set computation, the latter
can be selectively carried out according to a convenient strategy that discards evolutions
which are recognized not to be optimal, and finally determines the desired optimal input
sequence. Compared with approaches based on mixed-integer programming [31], where
the complexity depends exponentially on the prediction horizon Kmax, the method pro-
posed here appears particularly attractive for solving hybrid optimal/receding horizon
control problems where the prediction horizon is large and switching is not frequent.
In particular, the larger the number of sampling steps between switches (e.g., because
of a small sampling time), the more efficient the algorithm is with respect to the use
of mixed-integer solvers. An additional feature of this approach is that it intrinsically
embeds a practical reachability test for the system to be controlled, which is generally a
prerequisite.

This chapter summarizes the results in [26, 32, 35, 37] and is mainly based on the
report [132].

4.1 Preliminaries on Polyhedral Computation

The purpose of this section is to recall some basic notions and theorems on convex
polyhedra that will be used later.

For two subsets P1 and P2 of R
d, their Minkowski’s sum, denoted by P1 + P2, is the

set {x : x = x1 + x2, x1 ∈ P1, x2 ∈ P2}. For a finite subset V = {v1, . . . , vn} of R
d, its convex

hull conv(V ) and the conic hull cone(V ) are defined by

conv(V ) := {x : x =
n∑

i=1

λivi, λ ≥ 0,
n1∑
i=1

λi = 1}

cone(V ) := {x : x =
n∑

i=1

λivi, λ ≥ 0}.

Here is a fundamental theorem of convex polyhedra.

Theorem 3 (Motzkin’s Theorem [141, p. 30]) For a subset P ⊆ R
d, the following two

statements are equivalent:

(a) P = conv(V ) + cone(R) for some finite subsets V and R of R
d;

(b) P = {x : Ax ≤ B} for some matrix A ∈ R
m×d and some vector B ∈ R

m.

A subset P of R
d represented by either (a) or (b) is called a convex polyhedron or sim-

ply polyhedron. A convex polytope or simply polytope is a bounded convex polyhedron. A
representation (V,R) of a convex polyhedron P is called a V-representation, and a repre-
sentation (A,B) is an H-representation. A convex polyhedron given by V-representation
(H-representation) is called V-polyhedron (H-polyhedron). It is possible to go from one
representation to another [77], but the numerical sensitivity and complexity of those
operations increases with the dimension d of the polytopes [8].
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Given an H-polyhedron P = {x : Ax ≤ B}, the i-th inequality Aix ≤ Bi is redundant
for P if its removal preserves the polyhedron, i.e. P = {x : Ax ≤ B} = {x : Ajx ≤
Bi for all j �= i}. Similarly, given a collection of n points V in R

d, we say that v ∈ V is
redundant for V if conv(V ) = conv(V \ {v}).

For two V-polytopes P1 = conv(V ), V = {v1, . . . , vn} and P2 = conv(W ),W = {w1, . . . , wm},
the Minkowski’s sum P1 + P2 = conv(Z), Z = {vi + wj , ∀i = 1, . . . , n, ∀j = 1, . . . ,m}, where
however many of the vertices in Z might be redundant. It is possible to compute a
V-representation of P1 + P2 minimal in the number of vertices [78,84,113].

Given two H-polytopes P1 = {x : A1x ≤ B1} and P2 = {x : A2 ≤ B2}, the Minkowski’s
sum P1 + P2 = {x : x = x1 + x2, A1x1 ≤ B1, A2x2 ≤ B2}. It is possible to eliminate the vari-
ables x1 and x2 from the definition of P1+P2 by using Fourier-Motzkin elimination [141],
however, in general, the Fourier-Motzkin elimination provides an highly redundant H-
representation.

Remark 4.1.1 It follows from the definition of Minkowski’s sum that the maximum of
a linear function fx on P1 + P2 is the sum of the maxima on the single polytopes, i.e.:
maxx∈(P1+P2) fx = maxx∈P1 fx + maxx∈P2 fx, and argmaxx∈(P1+P2) fx = arg maxx∈P1 fx +
arg maxx∈P2 fx.

�
The problem of determining if a polytope P is contained in a polytope Q is known

as a containment problem in the field of computational convexity. If P is a V-polytope
and Q is given in H-representation, then the solution is trivial. If P and Q are both V-
or H-polytopes then the problem has a polynomial-time solution. Finally if P is given
in H-representation and Q is a V-polytope then problem is coNP-complete [83, Theorem
4.1].

The following Lemma allows one to check if the Minkowski’s sum of polytopes is
contained in a given H-polytope.

Lemma 3 Given n polytopes P1, P2, . . . , Pn and a H-polytope Q = {x : Ax ≤ B}, let
Ajx ≤ Bj , j ∈ J = {1, . . . ,m} be the j-th inequality of Q. (P1 +P2 + . . .+Pn) ⊆ Q, if and only
if
∑n

i=1(maxx∈Pi Ajx) ≤ Bj , ∀j ∈ J .

Proof. Denote by Ps the Minkowski’s sum (P1+P2+ . . .+Pn). We first prove the “if” part of
the lemma. By Remark 4.1.1, the point x̄ =

∑n
i=1 arg maxx∈Pi Ajx = arg maxx∈Ps Ajx is the

point that maximizes the normal to the j-th constraint of Q on the set Ps. If Aj x̄ ≤ Bj

then Ajx ≤ Bj for all the x ∈ Ps, i.e. all the points of Ps satisfy the j-th constraint
of Q. As this holds for all j ∈ J then Ps ⊆ Q. For proving the “only if” part, assume
by contradiction that there exists some ̄ such that

∑n
i=1(maxx∈Pi A̄x) > B̄. Then, the

point x̄ =
∑n

i=1 argmaxx∈Pi A̄x does not satisfy the ̄-th constraint of Q but x̄ ∈ Ps and
contradicts the hypothesis Ps ⊆ Q. �

The weighted Minkowski’s sum of n polytopes P1 ∈ R
d1, P2 ∈ R

d2, . . . , Pn ∈ R
dn with

weights R1 ∈ R
d×d1, R2 ∈ R

d×d2, . . . , Rn ∈ R
d×dn denoted by R1P1 + R2P2 + . . . + RnPn =∑n

i=1RiPi, is defined inductively as:

1. M1 = {x : R1x1, x1 ∈ P1},

2. Mi = Mi−1 +RiPi = {x : x = xi−1 +Rixi, xi ∈Mi−1, xn ∈ Pn}, for i = 2, . . . , n.

The weighted Minkowski’s sum R1P1+R2P2+. . .+RnPn is a polytope as it is the projection
of the polytope P1 × P2 × . . .× Pn on the coordinates x = R1x1 +R2x2 + . . . Rnxn [141].

Remark 4.1.2 It follows directly from the definition that a weighted Minkowski’s sum∑n
i=1RiPi is feasible if and only if all the sets Pi are feasible.

�
The proof of the following is along the same lines of Lemma 3 and is therefore omitted.
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Corollary 1 Given n polytopes P1, P2, . . . , Pn, a H-polytope Q as in Lemma 3, let R1,
R2, . . . , Rn be matrices of suitable dimensions. Then,

∑n
i=1RiPi ⊆ Q, if and only if∑n

i=1(maxx∈Pi AjRix) ≤ Bj , ∀j ∈ J .

Remark 4.1.3 Note that Corollary 1 provides an algorithmic way of checking if
∑n

i=1 RiPi ⊆
Q by solving m × n linear programs (LP). Moreover it provides as byproduct the indices
of the constraints of Q violated by some point of the Minkowski’s sum

∑n
i=1 RiPi.

�

Remark 4.1.4 If P ⊆ Q then P ∩Q = P.

�

4.2 Reach-Set Computation

In this section we focus on the problem of computing the reach set of a piecewise affine
system subject to constraints. In order to answer the control and analysis questions
described in the introduction, we are interested in computing the set of states that are
reachable in exactly k steps from X (0) when the input u(t) ∈ U , 0 ≤ t < k, and denote
such a set as (forward) reach set Reachk(X (0),U). The set of all the points that are reach-
able within Kmax time steps starting from the set of initial conditions X (0) is therefore the
union of the sets Reachk defined above, ReachableKmax(X (0),U) = ∪k≤Kmax Reachk(X (0),U).
Note that already for linear systems the set ReachableKmax could be nonconvex and dis-
connected.

4.2.1 Switching Sequences

The evolution of a PWA system (2.1) is given by

x(k) = Πk−1
j=0Ai(j)x(0) +

k−1∑
j=0

(
Πk−1

h=j+1Ai(k)Bi(j)u(j) + fi(j)

)
� ΦI(k)




x(0)
u(0)

...
u(k−1)


+ ψI(k), (4.1)

where i(t) ∈ Is � {1, . . . , s} is the active mode at time t, such that the pair x(t), u(t)
satisfies (2.1c)–(2.1d), the ordered collection of modes I(k) � {i(0), i(1), . . . , i(k − 1)} ∈ Ik

s

is called switching sequence, and Φ : Ik
s 	→ X × Uk, Ψ : Ik

s 	→ X are implicitly defined
by (4.1)1.

The set of points that are reachable from any x(0) ∈ X (0) with u(t) ∈ U , 0 ≤ t < k by
following a given switching sequence I(k) is:

Reachk(X (0),U) |I(k)=



x :

x = ΦI(k)




x(0)
u(0)

...
u(k−1)


+ ψI(k),

x(0) ∈ X (0), u(t) ∈ U ,
Hi(t)x(t) + Ji(t)u(t) ≤ Ki(t),

H̃i(t)x(t) + J̃i(t)u(t) < K̃i(t),
0 ≤ t < k



, (4.2)

where x(t) is given by Equation (4.1) using the first t components of I(k).
Let I(k) be the collection of all the switching sequences of length k, then

Reachk(X (0),U) = ∪I(k)∈I(k) Reachk(X (0),U) |I(k) . (4.3)

1In case X , U are not vector spaces, a well posedness assumption as in Definition 2 implies that Φ I(k) [ · ] +
ψI(k) ∈ X .
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Ci

Cj

Ph

X (0)

X (1;X (0))

X (2;X (0))

X (3;X (0))

Figure 4.1: Reach-set evolution, guardline crossing, outer approximation of a new in-
tersection

In general the set Reachk(X (0),U) is not convex and disconnected. We remark also that
the number of all switching sequences of length k is combinatorial with respect to k and
makes an explicit enumeration approach impractical. A switching sequence I(k) is feasi-
ble for the initial set X (0) and the input set U if the corresponding set Reachk(X (0),U) |I(k)

is nonempty. Clearly only the feasible switching sequences contribute to determining
the set Reachk(X (0),U).

In the next section we will present a forward reachability analysis algorithm ca-
pable of enumerating all the feasible switching sequences and therefore to determine
Reachk(X (0),U) using Equations (4.2) and (4.3).

4.2.2 Determination of the Reachable Set

In order to determine admissible switching sequences I(T ), we can exploit the structure
of the PWA system (2.1) to easily compute the forward reach set as long as the evolution
remains within a single region Xi of the polyhedral partition. Whenever the reach set
crosses a guardline and enters a new region Xj, a new reach-set computation based
on the j-th linear dynamics is computed, as shown in Figure 4.1. The procedure is
summarized by the following Algorithm 4.2.1.
In Algorithm 4.2.1 we assume that X (0) and U are convex polytopes and STACK is a stack
for which appropriate pop(), push() and isEmpty() operations are defined. If X (0) is a non
convex polytope given as the union of convex polytopes X (0) = ∪iXi(0), then it is enough
to push each polytope Xi(0) × U in the STACK in Step 1.. The algorithm determines
the set ReachableKmax as union of sets Reachk(X (0),U) |I(k), I(k) ∈ I(k), k ≤ Kmax. Each
while loop in Step 2.3. is referred to as exploration. The function terminate() in Step 2.3.
contains the following termination conditions for the exploration:

F1 The evolution left the current region (XU(t) ∩ Pi = ∅),

F2 The exploration horizon is over k > Kmax.

Reach-Set Representation

The high level description of Algorithm 4.2.1 is conceptually similar to other existing
forward reachability algorithms. What makes each algorithm specific is the way the
reach set is stored and updated.
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function ReachableKmax = reachset(ΣPWA,X (0), U ,Kmax)

1. STACK.push((X (0) × U)(0));

2. while not STACK.isEmpty(),

2.1. XU(k) = STACK.pop();

2.2. let i such that XU(k) ⊆ Pi;

2.3. while not terminate(XU(k),Kmax),

2.3.1. ReachableKmax = ReachableKmax

⋃ XU(k);

2.3.2. if (XU(k)) ⊆ Pi,

2.3.2.1. k ← k + 1;

2.3.2.2. X (k)← [Ai Bi]XU(k − 1) + fi;

2.3.2.3. XU(k)← X (k)× U ;

2.3.3. else

2.3.3.1. for all h �= i such that XUh � Ph
⋂XU(k) �= ∅,

2.3.3.1.1. STACK.push(XUh);

2.3.3.2. XU(k)← (X (k)× U)
⋂Pi;

3. return ReachableKmax .

Algorithm 4.2.1: Computation of the reach set

The formal simplicity of timed automata implies that the reach set can be stored as
zones. Zones are simple polytopes for which efficient manipulation tools exist [7, 66].
The main problem when dealing with timed automata is to capture complex dynam-
ics into the limited model capability ẋ = c. Nonetheless verification of timed automata
encountered a remarkable success especially because of the efficient tools capable of
checking a timed automata against a specification [38, 140], moreover the same tools
allow to perform control [11]. On the other hand, more complex hybrid models usu-
ally lead to more complex reach set representations (either exact or approximated by
some simpler shapes). HyperTech [89] represents the reach set as the union of hyper-
rectangles. It provides guarantees on the overapproximation as it uses interval arith-
metics. ChechMate [56, 57] uses convex polytopes to track the evolution of a set sub-
ject to a nonlinear dynamics. However the overapproximation property may not be
guaranteed if the dynamics are nonlinear. The tool d/dt [6, 60] represents an over-
approximation of the reachable set as orthogonal polyhedra while similarly to Check-
Mate uses convex polyhedra to compute the one step reach set. VeriSHIFT [43] uses a
different approach and profits from the compact representation of ellipsoids [99].

In this chapter the reachable set (ReachableKmax ) and the reach set (Reachk) are repre-
sented as the union of polytopes, and within a single exploration the reach set is kept
as a single polytope. In order to implement the algorithm we need four key operations:
(i) the computation of the Minkowski’s sum in Step 2.3.2.1., (ii) the intersection of poly-
hedra in steps 2.3.3.2., 2.3.3.1. and for the termination condition F1 of Step 2.3., (iii)
a set containment test in Step 2.3.2. and (iv) an emptiness test. In addition, in order to
contain the time and space requirements, it is desirable to minimize the complexity of
the operations mentioned above and to have a compact reach set representation.

The explicit computation of the Minkowski’s sum is not attractive as both H- and
V-representation have computational drawbacks. The explicit computation of an H-
representation of the Minkowski’s sum requires the projection of the polytope, while the
computation of a V-representation requires repeated computations to remove the redun-
dant vertices, moreover the number of non-redundant vertices of a V-representation has
an upper bound exponential in the dimension of the polytope, that is achieved when
the summand polytopes are zonotopes [84, Theorem 2.1.10]. A zonotope [74] is the
projection of an n-dimensional cube on a d-dimensional linear subspace, examples of
Zonotopes are hyper-rectangles. Therefore, if X (0) and U are hyper-rectangles, then the
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reach set for a given switching sequence (Reachk(X (0),U) |I(k)) is a zonotope by Equa-
tion (4.1). Apart form that, computing the intersection of polytopes in V-representation
is the dual problem of the extended convex hull problem, which is computationally in-
volving [77].

Each polyhedron is stored as a weighted Minkowski’s sum (we remark once more
that the weighted Minkowski’s sum is an implicit representation where we store the
summand and the weights). It is attractive because it allows to save the operations
needed for computing the explicit representation and it is compact. Such a representa-
tion addresses the first computational request described above.

Example 4.2.1 Consider the reach set of a 4-dimensional linear system with 2 inputs
on Kmax = 10 steps. Assume that X (0) and U are hyper-rectangles (i.e.: mi ≤ xi ≤ Mi,
i = {1, . . . , 4} and nj ≤ uj ≤ Nj, j = {1, 2}) then the number of constraints of X (0) and U is
respectively nx = 8 and nu = 4. The reach set after 10 steps has 4096 vertices, while the
implicit representation would need nx +Kmaxnu = 48 inequalities and Equation (4.1).

�
The following Proposition 1 addresses the second computational requirement.

Proposition 1 The intersection of a weighted Minowski’s sum R1P1 +R2P2 + . . .+RnPn,
Pi = {x : Cix ≤ Di} with a polytope Q = {x : Ax ≤ B} is a weighted Minkowski’s sum ST
where

S =
[
R1 R2 . . . Rn

]
, (4.4)

and

T =



y :




C1 0 · · · 0
0 C2 · · · 0
...

...
. . .

...
0 0 · · · Cn

AR1 AR2 · · · ARn


 y ≤




D1

D2

...
Dn

B






. (4.5)

Proof. The set ST is a weighted Minkowski’s sum of one polytope. The first n block of
rows of constraints of T and S are an other way of writing

∑n
i=1 RiPi with y = [x′1 . . . x′n]′,

while the last block of constraints of T together with S define the set Q, to see this is
enough to substitute x = Sy in the inequalities Ax ≤ B to obtain the last block of
constraints of T . �

Note that, in general, the H-representation of the set T may contain redundant con-
straints. However Corollary 1 and Remark 4.1.3 provide a computational tool to solve
the containment problem and as a byproduct provide the constraints of Q that are
violated by points of the Minkowski’s sum, therefore the intersection of Step 2.3.3.2.
contains only non-redundant constraints of Q.

Finally feasibility of a weighted Minkowski’s sum is simply addressed by Remark 4.1.2.
We recall here that the feasibility of a H-polytope can be checked by solving a linear pro-
gram (LP).

Remark 4.2.1 The containment test in Step 2.3.2. provides information on the con-
straints of Pi that are violated. This information can be exploited in the following
Step 2.3.3.1. to save computations and check the intersection only for the regions Ph

that share at least one violated constraint with Pi.

�

Tree of Evolution

The result of the exploration algorithm detailed in the previous sections is conveniently
stored in a tree G (see Figure 4.2). The nodes of the tree represent sets from which a
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Figure 4.2: Tree of evolution

reach set evolution is computed, and a branch connects two nodes if a transition exists
between the two corresponding sets, starting at time k1 and ending at time k2, with
i(k) ≡ h, ∀k = k1, . . . , k2, where h ∈ Is is a given mode, associated with the starting node.
Each branch b has an associated weight kb = k − 2− k1 which represents the number of
steps needed for the transition. The root node of the tree is the initial set2 XU0 = X (0)×U ,
from which the reach set evolution is computed. When a new set XUh crossing a guard-
line is detected, it becomes a new node. The new node is connected by a weighted
branch from XU0, and inserted in a list of sets to be subsequently explored. Then,
computation of the reach set proceeds in each region Ph from each new intersection
XUh. The oriented paths on G from the initial node XU0 determine all the feasible
switching sequences I(Kmax) ∈ IKmax

s .

4.3 Approximate Reachability Analysis

In this section we present tools for determining over-approximations of the reachable set
that have a reduced complexity, in particular that have an associated tree of evolution
with less nodes. Over-approximations have the consequence of making the analysis
conservative when used for instance in the context of verification of safety properties,
although, as we will show, this conservativeness can be eventually removed in a simple
post-processing operation.

4.3.1 Approximation of Intersections

The computation of the reach set proceeds in each region Ph from each new intersection
XUh. Before starting a new reach set computation from a set XU j extracted from STACK,
we check for inclusion of XUj in other nodes of G. If this happens, say XU j ⊆ XU1 as in
Figure 4.3, the node associated with XUj is connected to XU1 with an arc of weight 0.3

2With a slight abuse of notation, XUk will be referred to as both a node of the tree and the associated set
in the state space.

3If we are interested in an inner approximation of the reach set then it is enough to direct the new arc in
the other direction.
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Figure 4.3: Adding and removing nodes to the graph G
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Figure 4.4: Inner (B1 ∪ B2) and outer (∪9
i=1Bi) approximation of a polytope P

Clearly, if we perform this check we save explorations but the tree becomes an oriented
graph.

In principle the number of constraints defining XUh grows linearly with time, we
therefore need to approximate XUh so that its complexity is bounded (and therefore
reach set computation from XUh has a limited complexity with respect to the initial
region), and checking for set inclusion is a simple task. Hyper-rectangular approxi-
mations are the best candidates, as set inclusion between hyper-rectangles reduces to
a simple comparison of the coordinates of the vertices. On the other hand, a crude
rectangular outer approximation of XUh can lead to explore large regions which are not
reachable from the initial set XU(0), as they are just introduced by the approximation
itself. In [19] the authors propose an iterative method for inner and outer approxima-
tion which is based on linear programming, and approximates with arbitrary precision
polytopes by a collection of hyper-rectangles, as depicted in Figure 4.44.

Again all the switching sequences are contained in the oriented path coming out from
node XU0 in graph G. However, due to the hyper-rectangular outer approximation of
new intersections XUh and to the inclusion of nodes with small initial set XUj in larger
nodes, not all the paths in G correspond to feasible switching sequences. Nevertheless,

4 The inner approximation is useful when we are interested in an inner approximation of the ReachableKmax
set, see also previous footnote 3.
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Target set Z1

Target set Z2

Initial set XU(0)

XUZ1

XUZ2

Figure 4.5: Verification problem

feasibility of each switching sequence can be simply tested via linear programming5.

4.4 Verification of Safety Properties

The main purpose of reachability analysis is to provide the certification that a given
hybrid dynamical system enjoys certain safety properties, or provide a counterexample.
A safety property can be stated as follows: for a given set of initial conditions and
exogenous signals, the set of unsafe states is never entered. We formalize the problem
of verification of safety properties as follows:

Problem 1 (Verification Problem) Given a hybrid system Σ in PWA form (2.1)6, a set of
initial conditions X (0), a collection of disjoint target sets Z1, Z2, . . ., ZL, a bounded set
of inputs U , and a time interval {0, . . . ,Kmax}, determine (i) if Zj is reachable from X (0)
within k ≤ Kmax steps for some sequence {u(0), . . . , u(t − 1)} ⊆ U of exogenous inputs;
(ii) if yes, the subset of initial conditions XZj (0) of X (0) from which Zj can be reached
within Kmax steps; (iii) for any x1 ∈ XZj (0) and x2 ∈ Zj , (one of) the input sequence(s)
{u(0), . . . , u(k − 1)} ⊆ U , k ≤ Kmax, that drives x1 to x2.

From now on, we will assume that Zj, are polyhedral sets, and, without loss of
generality, that they are also convex. The reason for focusing on finite-time reachability
is that states which are not reachable in less than Kmax steps are in practice, if Kmax is
large enough, unreachable. Although finite time reachability analysis cannot guarantee
certain liveness properties (for instance, if Zi will be ever reached), the reachability
problem stated above is clearly decidable. Nevertheless, the problem is NP -hard [37].

The problem formulated above is very similar to the one stated in [67], where the au-
thors use big-M techniques to transform the problem into a mixed integer linear prob-
lem (MILP). While here we exploit the reach set computation techniques of Section 4.2,
in [67] the solution approach is based on the solution to a (large) MILP that summarizes
the system dynamics over the time Kmax and the target regions configuration. The cost
function aims at maximizing the permanence in the unsafe regions and therefore finds
the less safe trajectory. Although good MILP solvers have a satisfactory performance for
large problems, the problem might become intractable already for small Kmax.

The previous questions of verification can be answered once all the switching se-
quences I(k), ∀k ≤ Kmax leading to Z1, or Z2, . . . , or ZL from XU(0) = X (0) × U are
determined using Algorithm 4.2.1. In fact, it is enough to check that the reach set at
time k satisfies Reachk(X ,U) ∩ Zj �= ∅. Nonetheless Algorithm 4.2.1 can be improved by
exploiting the results of Section 4.3, as the following Algorithm 4.4.1 shows.

Steps 1.1., 1.2., 1.2.1., 1.2.4.1., 1.2.4.1.2.–1.2.4.1.3.1., and 1.2.4.1.3.2. are directly
inherited by the generic Algorithm 4.2.1. At Step 1., the set of initial states is consid-
ered as an union of convex sets, X (0) = ∪no

i=1Xi. GRAPH is the graph G summarizing

5In the case of inner approximation of the ReachableKmax set all the switching sequences in the graph G
are feasible, therefore there is no need for testing the feasibility of the switching sequences.

6If the system is not directly given in PWA form, but in MLD or DHA form, an equivalent PWA form can be
always obtained by exploiting the equivalence properties recalled in Chapter 2.
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function GRAPH=Verification (ΣPWA,X (0), U ,Kmax)

1. GRAPH.init({(Xi(0) × U)(0)}n0
i=1);

1.1. STACK.push((Xi(0) × U)(0)), i = 1, . . . , n0;

1.2. while not STACK.isEmpty(),

1.2.1. XUf = XU(k) = STACK.pop(), let i such that XU(k) ⊆ Pi;

1.2.2. k ← k∗ � minimum arrival time from initial nodes to XU(k);

1.2.3. if XU(k) ⊆ XUj , XUj ∈ GRAPH,

GRAPH.connect(XUj ,XUf ,0), next();

1.2.4. if relaxedSafe(XU(k),{Zj}nf

j=1), next();

1.2.4.1. while not terminate(XU(k),Kmax),

1.2.4.1.1. for j = 1, . . . , nf ,

1.2.4.1.1.1. if XU(k)
⋂

(Zj × U) �= ∅,
GRAPH.connect(Zj ,XUf ,k − k∗);

1.2.4.1.2. if (XU(k)) ⊆ Pi,

1.2.4.1.2.1. k ← k + 1;X (k)← [Ai Bi]XU(k − 1) + fi;

1.2.4.1.2.2. XU(k) = X (k)× U ;

1.2.4.1.3. else

1.2.4.1.3.1. for all h �= i such that XUh � Ph
⋂ XU(k) �= ∅,

STACK.push(
XUh�);
GRAPH.connect(
XUh�,XUf ,k = k∗);

1.2.4.1.3.2. XU(k)← (X (k) × U)
⋂ Pi;

2. return GRAPH.

Algorithm 4.4.1: Verification Algorithm

the evolution according to Section 4.3.1, the function init() initializes the graph with the
initial sets, the function connect(nodeTo,nodeFrom,arcWeight) connects two nodes and cre-
ates the node nodeTo if it does not exist. The function relaxedSafe() in Step 1.2.4. checks
if the convex over approximation Ck([I 0]XU(k)) of Reachk([I 0]XU(k)) is safe, if so the
exact evolution is also safe and there is no need to compute the exact reach set. As
Ck([I 0]XU(k)) is a weighted Minkowski’s sum, the safety check is formally equivalent to
the case of exact reach set and is therefore omitted. The function next() exits from the
current exploration and jumps to Step 1.2.1.. In Steps 1.2.4.1.3.1., �XUh� stands for the
over approximation of XUh obtained using the approach of [19]. Finally, Step 1.2.4.1.
contains the termination conditions which include the conditions F1 and F2 defined in
Section 4.2.2 and the following conditions:

F3 The reach set entered target set XU(k) ⊆ Zi,

F4 The reach set will never exit region Pi.

We already discussed how containment conditions can be checked, therefore condition
F3 is easy to check. Condition F4 deserves some more explanation, as in the given
formulation may seem hard to test. In [98], the authors present the computation of
the maximal robust positively invariant set O∞ for a discrete-time linear system with
state constraints x ∈ Pi, subject to additive polyhedral bounded disturbances u ∈ U . In
other words O∞ is the largest set such that [x(k) ∈ O∞] ⇒ [x(k + t) ∈ O∞, ∀u ∈ U , ∀t > 0].
Clearly if we compute the set Oi∞ for each region Pi of the PWA system, then termination
condition F4 reduces to the already discussed set containment condition.

With minor modifications Algorithm 4.4.1 is capable of reporting the first sequence
that enters any target set as soon as it is identified, to refine an already built graph
by increasing the maximum number of steps Kmax, and to remove the conservatism
due to the over approximations introduced by adopting the techniques discussed in
Section 4.3.1.
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4.4.1 Applications

A typical application of Algorithm 4.4.1 is the verification of safety properties of an
embedded system, namely a digital controllers that operates on a continuous system.
In [32] a preliminary version of this algorithm was used to asses the maximum excur-
sion of the height of an electronic car suspension system, and the computational times
were comparable to the those achieved by using symbolic approaches. In [131] the au-
thors verified if a cruise control is able to reach the speed set point within a maximum
time without overshooting more than the tolerance enforced by local authorities. The
algorithm was also applied in [37] to the batch evaporator process benchmark, where
the aim is to asses if the controller is capable of shutting down a chemical plant in a
safe way in case of equipment failures.

Verification can be used also to assess system theoretic properties, such as stability.
In [35], we formulated the problem of characterizing the stability of a piecewise affine
(PWA) system as a reachability analysis problem. The basic idea is to take the whole R

n

as the set of initial conditions, and check that all the trajectories go to the origin. More
precisely, it is possible to recast the stability problem as a reachability analysis problem
by restricting the set of initial conditions to an (arbitrarily large) bounded set X (0), and
label as “asymptotically stable in T steps” the trajectories that enter an invariant set
Z1 around the origin within a finite time T , or as “unstable in T steps” the trajectories
which enter a set Z2 of (very large) states. Subsets of X (0) leading to none of the two
previous cases are labeled as “non-classifiable in T steps”. The domain of asymptotical
stability in T steps is a subset of the domain of attraction of an equilibrium point, and
has the practical meaning of collecting the initial conditions from which the settling time
to a specified set around the origin is smaller than T . In addition, it can be computed
algorithmically in finite time using Algorithm 4.4.1. The same idea was used to assess
the stability and the performance of PWA (i.e.: model predictive) controllers in [36], and
is reviewed in the next section.

4.5 Performance Assessment of Hybrid MPC

The closed-loop constituted by a hybrid MLD/PWA system and the explicit MPC con-
troller (3.12) is of the form (2.1) [28]. Note that the form of the closed-loop MPC system
remains PWA also when the plant model and the prediction model are different hybrid
models. This is for instance the case when the MPC law is designed based on a linear
model obtained by linearizing the nonlinear model of the plant around some operat-
ing condition. When the nonlinear model can be approximated by a PWA system (e.g.,
through multiple linearizations at different operating points or by approximating non-
linear static mappings by piecewise linear functions), the closed-loop consisting of the
nonlinear plant model and the MPC controller can be approximated by a PWA system
as well.

In this section we discuss the application of the reachability analysis algorithm de-
veloped in Section 4.4 for performance analysis of MPC in some detail.

For MPC applications, it is interesting to estimate the domain of attraction of the
equilibrium state, and the set of initial conditions from which the state trajectory re-
mains feasible for the constraints. As mentioned in the previous section, the nominal
MPC closed-loop system is an autonomous PWA system. The origin typically belongs to
the interior of one of the sets of the partition, for instance a region where a linear con-
troller is asymptotically stabilizing while fulfilling the constraints, which by convention
will be referred to as X0. Denote by D∞(0) ⊆ R

n the (unknown) domain of attraction
of the origin. Given a bounded set X (0) of initial conditions, we want to characterize
D∞(0)

⋂
X (0).

By construction, the matrix A0, associated with the region X0, is strictly Hurwitz and
f0 = 0 (in fact, in X0 the feedback gain is the unconstrained LQR gain F0 = K, g0 = 0 [33]).
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Then we can compute an invariant set in X0. In particular, we compute the maximum
output admissible set (MOAS) X∞ ⊆ X0. X∞ is the largest invariant set contained in
X0, which by construction of X0 is compatible with the constraints umin ≤ Kx(t) ≤ umax,
xmin ≤ x(t) ≤ xmax. By [80, Th.4.1], MOAS is a polyhedron with a finite number of facets,
and is computed through a finite number of linear programs (LP’s) [80].

In order to circumvent the undecidability of stability, we give the following

Definition 5 Consider the PWA system (2.1), and let the origin 0 ∈
◦
X 0 � {x : H0x < S0},

and A0 be strictly Hurwitz. Let X∞ be the maximum output admissible set (MOAS) in X0,
which is an invariant for the linear system x(t+ 1) = A0x(t). Let T be a finite time horizon.
Then, the set X (0) ⊆ R

n of initial conditions is said to belong to the domain of attraction
in T steps DT (0) of the origin if ∀x(0) ∈ X (0) the corresponding final state x(T ) ∈ X∞.

Note that DT (0) ⊆ DT+1(0) ⊆ D∞(0), and DT (0) → D∞(0) as T → ∞. The horizon T is
a practical information about the speed of convergence of the PWA system to the origin
and thus about its dynamic performance.

Definition 6 Consider the PWA system (2.1), and let Xinfeas � R
n\ ∪s

i=1 Xi. The set X (0) ⊆
R

n of initial conditions is said to belong to the domain of infeasibility in T steps IT (0) if
∀x(0) ∈ X (0) there exists t, 0 ≤ t ≤ T such that x(t) ∈ Xinfeas.

In Definition (6), the set Xinf must be interpreted as a set of “very large” states. Al-
though instability in T steps does not guarantee instability (for any finite T , a trajectory
might reach Xinf and converge back to the origin), it has the practical meaning of labeling
as “unstable” the trajectories whose magnitude is unacceptable, for instance because
the PWA system is no longer valid as a model of the real system.

Given a set of initial conditions X (0), we aim at finding subsets of X (0) which are
safely asymptotically stable (X (0)

⋂
DT (0)), and subsets which lead to infeasibility in

T steps (X (0)
⋂
IT (0)). Subsets of X (0) leading to none of the two previous cases are

labeled as non-classifiable in T steps As we will use linear optimization tools, we assume
that X (0) is a convex polyhedral set (or the union of convex polyhedral sets). Typically,
non-classifiable subsets shrink and eventually disappear for increasing T .

Example 4.5.1 Consider the system y(t) = s+1
s2+s+2u(t), sample the dynamics with T =

0.2 s, and obtain the state-space representation{
x(t+ 1) =

[
0.7839 −0.1788
0.3577 0.9627

]
x(t) + [ 0.1788

0.0372 ]u(t)

y(t) = [ 1 0.5 ]x(t)
(4.6)

The task is to regulate the system to the origin while fulfilling the constraints −1 ≤
u(t) ≤ 1 and x(t) ≥

[−0.5
−0.5

]
. To this aim, we design a linear MPC controller based on the

optimization problem

min
ut,ut+1

||xt+2|t||2P +
1∑

k=0

||xt+k|t||2 + .1||ut+k||2

s.t. −2 ≤ ut+k ≤ 2, k = 0, 1
xt+k|t ≥ xmin, xmin �

[−0.5
−0.5

]
, k = 0, 1

(4.7)

where P is the solution to the Riccati equation (in this example Q = [ 1 0
0 1 ], R = 0.1,

Nu = Ny = Nc = 2). Note that this choice of P corresponds to setting ut+k = Kxt+k|t for
k ≥ 2, where K is the LQR gain, and minimizes

∑∞
k=0 x

′
t+k|txt+k|t + .01u2

t+k with respect
to ut, ut+1. The closed loop response from the initial condition x(0) = [1 1]′ is shown in
Fig. 4.6(a).

The solution to the mp-QP problem was computed by using the solver in [33] in 0.66 s
on a PC Pentium III 650 MHz running Matlab 5.3, and the corresponding polyhedral
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(a) Closed-loop MPC
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Figure 4.6: Example (4.7)
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Figure 4.7: Partition of initial states into safely stable, and infeasible in T = 20 steps

partition of the state-space is depicted in Fig. 4.6(b). The MPC law is linear in each one
of the four depicted regions.

Region #3 corresponds to the unconstrained LQR controller, #1 and #4 to saturation
at −1 and +1, respectively, and #2 is a transition region between LQR control and the
saturation.

Note that the union of the regions depicted in Fig. 4.6(b) should not be confused with
the region of attraction of the MPC closed-loop. For instance, by starting at x(0) = [3.5 0]′

(for which a feasible solution exists), the MPC controller runs into infeasibility after t = 5
time steps.

The reachability analysis algorithm described above was applied to determine the set
of safely stable initial states and states which are infeasible in T = 20 steps (Fig. 4.7).
The algorithm computes the graph of evolutions in 115 s on a Pentium II 400 running
Matlab 5.3.

�
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4.6 Optimal Control Solutions Based on Reachability Anal-
ysis

Consider the following optimal control problem

Jopt = min
UK−1

0

{
‖x(K)−xf‖2

P +
K−1∑
k=0

‖u(k)‖2
R+‖x(k)−xf‖2

Q

}
(4.8a)

s.t.




x′(k) = Ai(k)x(k)+Bi(k)u(k)+fi(k) for
[

x(k)
u(k)

]
∈ Pi(k)

umin ≤ u(k) ≤ umax, k = 0, 1, . . . , K−1
xmin ≤ x(k) ≤ xmax, k = 1, . . . , K
x(0) = x0

i(k) ∈ {1, . . . , s}
x(K) ∈ Zfin

(4.8b)

where K is the prediction horizon, P , Q and R are positive definite weighting matrices,
x(k) is the state evolved at time k by applying the input sequence Uk−1

0 � {u(0), . . . , u(k−1)}
to (2.1) from the initial state x(0) = x0, i(k) ∈ {1, . . . , s} is the index such that Equa-
tions (2.1c)-(2.1c) are satisfied, xf and Zfin are a reference state and a polyhedral final
target set, respectively 7, umin, umax and xmin, xmax are hard bounds on inputs and states,
respectively. The sets U � {u : umin ≤ u ≤ umax} and Zsafe � {x : xmin ≤ x ≤ xmax} will be
used in the sequel for compactness of notation8. In this section we exploit the ideas of
the reachability analysis algorithm proposed in Section 4.2 in order to solve the optimal
control problem (4.8).

Remark 4.6.1 For ease of notation, we have supposed that the weighting matrices are
constant with respect to i (=space) and k (=time). Nonetheless, the proposed framework
can easily handle the case of region-dependent and/or time-varying weights Ri(k)(k),
Qi(k)(k). This feature is helpful for instance when the index i reflects different plant
operation modes. The same extension can be done for the input and state limits umin,
umax, xmin, xmax.

�

Remark 4.6.2 Existing heuristic information about the expected optimal schedule can
be easily embedded into (4.8). In fact, when heuristics are given as space/time “land-
marks” to be hit, such requirements can be expressed in (4.8) as additional constraints
of the form x(k) ∈ Zheur[kmin, kmax], where Zheur[kmin, kmax] represents the landmark area
in the state-space to be reached at time k ∈ [kmin, kmax].

�
By taking into account the equivalence between PWA and MLD systems (2.20) men-

tioned in Chapter 2, the optimization problem (4.8) can be reformulated as the mixed-
integer quadratic programming (MIQP) problem

Jopt = min
UK−1

0

{
‖x(K)−xf‖2

P +

K−1∑
k=0

‖u(k)‖2
R+‖x(k)−xf‖2

Q

}
(4.9a)

s.t.




x′(k) = Ax(k) + B1u(k) + B2δ(k) + B3z(k)
E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5

umin ≤ u(k) ≤ umax, k = 0, 1, . . . , K−1
xmin ≤ x(k) ≤ xmax, k = 1, . . . , K
x(0) = x0

δ(k) ∈ {0, 1}rb

x(K) ∈ Zfin

(4.9b)

7For instance, Zfin can be a satisfactory range around the equilibrium xf
8More in general, the sets U and Zsafe could also be polyhedral
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Figure 4.8: Optimal Control Algorithm

This is indeed the approach pursued in [31]. We stress that in the MLD+MIQP formula-
tion (4.9) the binary variables δ(k) play the role of the index variables i(k) in (4.8).

Practical applications of the above optimal control problems can be developed ac-
cording to two different philosophies. In some cases, an open-loop solution to (4.8) is
sought. This situation resembles a typical scenario for discrete event systems [49], in
which optimal input sequences have to be planned. Sometimes a closed-loop imple-
mentation is required instead. In this case the proposed optimization strategy can be
pursued on-line, combined with a receding horizon philosophy. The result is an optimal
control law in feedback form enjoying nice stability properties, provided that suitable
terminal state conditions are chosen. In particular, when (4.8)/(4.9) are solved on-line
within an MPC scheme, under feasibility assumptions the choice of the terminal state
constraint Xfin = {xf} guarantees stability of the controlled system, which is proven by
using standard Lyapunov analysis techniques [31].

Here, we use reachability analysis to determine admissible switching profiles IK−1
0 =

{i(0), . . . , i(K−1). During the computation of reachable sets, set evolutions can be selec-
tively propagated in accordance with the value function J. More precisely, set evolutions
having an intermediate cost which is greater than a current upper-bound on Jopt are
not propagated. Here below, we detail the basic ingredients of the algorithm that to-
gether with the computation of the reach sets in Section 4.2 solve the problem. The idea
leads to a solver to the optimal control problem which is of branch-and-bound nature,
see Figure 4.8. A branch occurs whenever a switching is detected, and a bound on the
optimal cost allows instantaneous termination of entire non-optimal subtrees.

Partial Cost Computation

We note that each node XUh of the tree considered in Section 4.2.2 corresponds to a
unique switching path from XU0 to XUh itself. The switching path is associated with a
switching sequence IKh−1

0 = {ih(0), . . . , ih(Kh−1)} of length Kh =
∑

b Kb, where Kb are the
time intervals associated with the arcs along the switching path. If we were to build up
the whole tree as described before, the leaves at distance K from the initial set (those
which were terminated by condition F1 in Section 4.2) and possessing a nonempty in-
tersection with Zfin would certainly be feasible candidates for solving the optimal control
problem. We could then enumerate all possible winning K-step switching sequences9

and then compute for each of them the solution J∗ to problem (4.8) with IK−1
0 fixed,

through standard quadratic programming.
On the other hand, we are not interested in the full reachability analysis, so we do

not need to build up the whole tree. The idea is to associate a cost Jh to each node XUh

9Selecting only K-step sequences is consistent with the fact that the considered optimal control problem is
not a minimum-time one. Note in fact that, for some sequences of inputs, a state-set evolution could possibly
reach the final set in a time k < K and leave it afterwards.



4.6. OPTIMAL CONTROL SOLUTIONS BASED ON REACHABILITY ANALYSIS 55

by computing the intermediate minimum cost from XU0 to the corresponding region,
given by the solution of the following quadratic program

Jh = min
U

Kh−1
0

J(UKh−1
0 , 0,Kh) (4.10a)

s.t.




x′(k) = Aih(k)x(k)+Bih(k)u(k)+fih(k) for
[

x(k)
u(k)

]
∈ Pih(k)

umin ≤ u(k) ≤ umax, k = 0, 1, . . . ,Kh−1
xmin ≤ x(k) ≤ xmax, k = 1, . . . ,Kh

x(Kh) ∈ XUh

x(0) = x0

(4.10b)

where IKh−1
0 = {ih(0), . . . , ih(Kh−1)} is the corresponding switching sequence, and

J(UKf−1
Ki

,Ki,Kf) �


Kf−1∑

k=Ki

‖u(k)‖2R + ‖x(k)− xf‖2Q


 .

When no feasible solution to (4.10) exists, we conventionally set Jh = +∞. The advantage
provided by these additional calculations is that — once the target region is eventually
reached in K steps and we can compute an upper bound J∗ on the overall cost —
we have an additional termination condition. More precisely, as soon as an evolution
intersects Zfin at k = K, we compute J∗ as described before and enforce the following
new termination condition

F5 Jh ≥ J∗, the intermediate cost exceeds or is equal to the current upper bound10.

Whenever a new exploration reaches Zfin in K steps with a lower cost, the upper
bound J∗ is updated, along with the the correspoding minimizer U∗ = arg minJ∗. Note
that we can still use the hyper-rectangular approximation and that the partial cost
computation is also able to rule out possible infeasible switches as soon as they are
detected. In fact, in this case at least one of the intermediate optimal control problems
associated to the child nodes will be infeasible.

Node Selection Criterion

The last point to be addressed is the choice of an effective exploration strategy, that is,
the ordering criterion according to which new nodes are taken from the list and explored.
In order to reduce fruitless explorations, an adequate strategy should recognize the more
promising paths to be searched. To this purpose, we suggest the following node selection
criterion

NS1 Select the node having the smallest associated normalized cost Ĵh � Jh/Kh

where, for convenience, we set J0 = Ĵ0 = 0. The normalization factor 1/Kh is instrumen-
tal to the proposed performance-driving mechanism. In fact, it penalizes, among se-
quences characterized by identical intermediate cost Jh, those sequences with a smaller
minimum cumulated time Kh, which therefore have a larger time-to-go, and are more
likely to give rise to a higher overall cost J∗. As a result, the exploration is guided by
performance in the sense that the procedure aims at reaching the target set Zfin through
the most promising evolutions. This strategy leads to tighter upper bounds J∗, and thus
to a more effective termination condition F5.
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function U∗ = control(x0,U ,K)

1. XU(0) = {x0} × U ; J∗ ← +∞; U∗ ← ∅;
2. TREE.init(XU(0)); LIST.init(XU(0), J0 = 0, T0 = 0});
3. while not LIST.isEmpty(),

3.1. XUf = XU(k) = LIST.selectNode(), let i such that XU(k) ⊆ Pi;

3.2. k0 = k

3.3. while not terminate(XU(k),Kmax,J∗),

3.3.1. if (Zfin × U)
⋂ XU(k) �= ∅ and k = K,

3.3.1.1. let Jfin ← minimum cost along the path XU0 − XU(k)− Zfin;

3.3.1.2. if Jfin<J
∗, J∗=Jfin; U∗=argminJfin;

3.3.2. if (XU(k)) ⊆ Pi,

3.3.2.1. k ← k + 1; X (k)← [Ai Bi]XU(k − 1) + fi;

3.3.2.2. XU(k) = X (k)× U ;

3.3.3. else

3.3.3.1. for all h �= i such that XUh � Ph
⋂XU(k) �= ∅,

3.3.3.1.1. let Jh ← minimum cost along the path XU0 −XUh

3.3.3.1.2. if Jh < J∗,

3.3.3.1.2.1. TREE.connect(
XUh�,XUf ,k − k0);

3.3.3.1.2.2. LIST.addNode({
XUh�, Jh, k});
3.3.3.2. XU(k)← (X (k)× U)

⋂Pi
⋂

(Zsafe × U);

4. if J∗ = +∞, return infeasible else return U∗.

Algorithm 4.6.1: Algorithm for optimal control of hybrid systems based on reachability
analysis

The Optimal Control Algorithm

The following is a complete algorithmic representation of the optimization procedure
described in the previous section.
Steps 3.3.2., 3.3.2.1., 3.3.2.2., 3.3.3., 3.3.3.1. are directly inherited by Algorithm 4.4.1.
When LIST is a prioritized stack, the function selectNode() implements NS1. If a feasible
input sequence U∗ is already known, in step 1. J∗ can be initialized accordingly, in order
to improve the termination condition F5 already in the early stages of the algorithms. As
discussed before, in steps 3.3.3.1.2.1. -3.3.3.1.2.2. the hyper-rectangular outer approx-
imation �XUh� is used, rather than XUh. In step 3.3.1.1., it is conventionally understood
that Jfin � +∞ when no feasible solution exists. The termination conditions F1–F5 are
invoked in Step 3.3. by the function terminate.

Remark 4.6.3 Algorithm 4.6.1 is a branch and bound algorithm, where branching is
associated with the switching of the system, and bounding is given by the termination
conditions. In particular, conditions F1 -F4 provide a bound for infeasibility, while F5 a
bound related to the cost function. Compared to a branch and bound MIQP solver, Algo-
rithm 4.6.1 is neither a depth-first nor a breadth-first algorithm, but rather a best-first
algorithm which exploits the structure of the control problem. The adjective “best-first”
stems from the node selection criterion, that aims at exploring first the most promising
nodes. Note that the structure of the control problem also determines the way Algo-
rithm 4.6.1 computes the lower bounds. In fact, while a standard MIQP solver would
obtain lower bounds by relaxing the integrality constraints, Algorithm 4.6.1 compute

10The non-strict inequality in F5 ensures that, in case of multiple global minima, we obtain only one of the
solutions. If the strict inequality is used, the algorithm determines all the optimal solutions.
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lower bounds by optimizing over reachable sub-paths. Even though the worst-case per-
formance of this algorithm is lower with respect to plain enumeration, as in general
are branch and bound algorithms, the proposed method is considerably faster in the
average.

�
Clearly the node selection criterion NS1 could be augmented to take into account

landmarks and select first the evolutions that match a spatial and temporal landmark
Zheur[kmin, kmax].

Remark 4.6.4 When binary inputs uj(k) ∈ {0, 1} are present (mb �= 0), they can be han-
dled as shown in [117]. In the particular case where the dynamics of the system is
simply linear (s = 1), the algorithm executes just one single QP (as only one reach-set
computation is performed), in accordance with non-hybrid, conventional finite-horizon
linear quadratic solvers.

�

4.6.1 Variations to the Optimization Algorithm

One of the key steps of the optimization algorithm described in the previous section is
the computation of the intermediate costs Jh. The approach proposed in Algorithm 4.6.1
solves problem (4.10) at each switching detection. This is computationally expensive,
since the number of free inputs (and therefore the computation time for solving the QP)
grows as the exploration proceeds.

In this section we propose some alternatives to the termination condition F5 and the
node selection criterion, which can be implemented by computing a lower bound to the
intermediate cost Jh, and a lower bound to the cost to go.

Lower Bound to the Intermediate Cost

At each switching detection the minimum cost to get from the father node XU f to the
new node XUh can be computed by solving a QP. Let Kf be the length of the switching
sequence associated with the father node XUf , and let if be the region index associated
with the father node, the node-to-node cost Jb from Gf to Gk is defined as

Jb = min
U

Kh−1
Kf

J(UKh−1
Kf

,Kf ,Kh) (4.11a)

s.t.




x′(k) = Aif
x(k) +Bif

u(k) + fif
, for

[
x(k)
u(k)

]
∈ Pif

umin ≤ u(k) ≤ umax, k = Kf , . . . ,Kh−1
xmin ≤ x(k) ≤ xmax, t = Kf + 1, . . . ,Kh

x(Kf ) ∈ XUf

x(Kh) ∈ XUh .

(4.11b)

Node-to-node costs are clearly properties of the arcs of the tree, exactly as transition
times, and the time required for their computation depends on the inter-switching time,
Kh−Kf , but, contrarily to the partial costs Jh computed in (4.10), does not grow with the
absolute time Kh, Kf . The sum of all node-to-node costs along the path to region XUh

is a lower bound to Jh. The reason for this is simply explained in Fig. 4.9). Compared to
the partial cost Jh associated with the path XU0 − XUf − XUh, the sum of the node-to-
node costs Jf + Jb is computed with one extra artificial degree of freedom, namely that
x1 and x2 can be different.

Note that using a lower bound to Jh, although cheaper to compute, is less effective
when used in place of the exact value in the termination condition F5, and renders the
node selection criterion less accurate.
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Figure 4.9: Partial cost computation and node-to-node costs: Jf + Jb ≤ Jh

Lower Bound to the Cost-to-Go

In Section 4.6 we have proposed the lowest Jh/Kh as a criterion for selecting the next
node to explore. A possible alternative is to compute the estimate Jres of the cost-to-go
needed to reach Zfin from XUh, and adopt the following node selection criterion

NS2 Select the node having the lowest Jh + Jres

Contrarily to the node selection criterion NS1, the alternative criterion NS2 does not
explicitly favors the nodes which are likely to reach the final time T soon (which is in
the spirit of a depth-first strategy).

Computing the exact cost-to-go amounts to solve Problem (4.8) from the current
arrival time Kh to the final time K. Similarly to (4.9), such a problem can be equivalently
formulated as the MIQP, however the solution of the MIQP might be time consuming.
Consider

min
UK−1

Kh

(
K−1∑
k=Kh

‖u(k)‖2R + ‖x(k)− xf‖2Q

)
+ ‖x(K)− xf‖2P (4.12a)

s.t.




[
x(k)
u(k)

x′(k)

]
∈ CXU(X ,U), k = Kh, . . . ,K−1,

umin ≤ u(k) ≤ umax, k = Kh, . . . ,K−1,
xmin ≤ x(k) ≤ xmax, k = Kh + 1, . . . ,K,

x(Kh) ∈ XUh,
x(K) ∈ Zfin,

(4.12b)

where CXU(X ,U) is the convex hull of the single step flow of the system Σ. Note that
problem 4.12 is a QP.

We remark here again that the relaxation obtained by removing the integrality con-
straints from the MLD model 2.20 is an alternative relaxation and could be used as well
to compute Jres. However, as the relaxation is worse, the estimated cost-to-go could be
over optimistic.

The lower bound Jres can be also used to strengthen the termination condition F5 in
the following

F6 Jh + Jres ≥ J∗, the lower bound to the total cost exceeds or is equal to the current
upper bound
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Figure 4.10: Estimate of the total cost Jh + Jres in the termination condition F6: Jh is
given by the reachability analysis, Jres by the relaxed MLD form

where Jh can be either the partial cost or its lower bound presented in Section 4.6.1.
As shown in Figure 4.10, the idea is that the total cost from time 0 to time K can be
lower-estimated by replacing the PWA dynamics from time k to time K by its convex
relaxation. Note that F5 amounts to use the estimate Jres = 0 in F6. Clearly, the
additional computation needed to compute a better estimate Jres and the use of F6 is
only meaningful when J∗ <∞.

4.7 Conclusions

For a large class of hybrid systems with switching affine discrete-time dynamics, we have
presented a theoretical and algorithmic machinery for computing reach and reachable
sets, either exact or over/under-approximated, and for solving complex optimal control
problems.

We believe that for a relatively wide class of hybrid systems the approach is compu-
tationally viable for (1) verifying the satisfaction of safety, robust stability, and liveness
properties for a given set of initial conditions and against prescribed bounded distur-
bances, and (2) for computing optimal command input sequences according to the phi-
losophy “optimize what is reachable and reach what is optimizing”. It is expected that
the method is especially advantageous for seldom switching systems (e.g., over-sampled
discrete-time systems).

The potentials of the proposed method are illustrated on a nontrivial hybrid problem
in Section 5.1. Another example dealing with the verification of the batch evaporator
process benchmark is reported in [37].
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Chapter 5

Application Examples

5.1 Analysis and Control of a Cruise Control System

In this section we use HYSDEL to obtain a hybrid model of a car with robotized manual
gear shift, and show how such a model can be directly used (i) to formally verify certain
safety and liveness properties of a simple cruise controller based on PI control and a set
of gear-switching rules and (ii) to synthesize a cruise control system that is piecewise
affine and optimal with respect to a certain performance index.

5.1.1 Car model

We focus on a car equipped with manual transmission, and we assume that the gear
command is robotized, namely that a slave control system takes care of releasing the
clutch, shifting the gear, and engaging the clutch. We only consider the longitudinal
dynamics of the car: the continuous variables are the scalar position x (m) and the
speed v = ẋ (m·s−1). The continuous inputs are the engine torque ut (Nm), the braking
force ub (N), and the sinus of the road slope us, plus six binary inputs g1, g2, g3, g4, g5 and
gR ∈ {0, 1} corresponding to the selected gear. Denoting by ω the engine speed (rad·s−1),
we have the kinematic relation

v =
klossrwheel

Rg(i)Rfin
ω, (5.1)

where Rg(i) is the gear ratio corresponding to the i-th gear, Rfin is the final drive ratio,
rwheel is the wheel radius, and kloss is the drive train efficiency level [42]. Note that by
using a kinematic relation for the speed engine, we are neglecting the clutch, the motor
dynamic behavior, and we are assuming that the time spent for gear shift is negligible.

The dynamic equation of motion of the car is mẍ = Fe − Fb − Fr − Fs where m (kg) is
the vehicle mass, Fe (N) is the traction force, Fb = ub is the braking force (N), Fr (N) is the
friction force, and Fs (N) takes into account the slope of the road. Fs = mgus (N), where
us = sinα and α is the slope of the road and as a first approximation, we assume that
Fr is linear in v, Fr = βv, where β (kg·m·s−1) is a constant that takes into account all
the frictions (i.e. aerodynamic, tires deformation, drive train). From the conservation of
mechanical power, we have Fev = ωu1, which gives Fe = kloss

Rg(i)u1. The commanded torque
ut is upper-bounded by the maximum torque deliverable at a certain engine speed ω,
ut ≤ C+

e (ω) where C+
e (ω) is a nonlinear function typically reported in the data sheets of

the car and C−
e (ω) is the maximum braking force that the engine can provide when the

throttle is fully released. In order to derive a hybrid model of the car as described in
Section 2.2, we piecewise-linearize C+

e (ω) into four regions using the PWL toolbox [96],
which requires the introduction of three event variables δPWL1, δPWL2, δPWL3, and as a
first approximation, we assume C−

e (ω) = −α1 − β1ω, cf. Fig. 5.1.

61
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Figure 5.1: Torque of the engine of the Clio 1.9 DTI RXE (solid line) and PWL approxi-
mation (dotted line)

The engine speed ω can be written as a SAS, and by (2.3), as the sum of auxiliary
continuous variables, ω = ω1 + ω2 + ω3 + ω4 + ω5 + ωR, where

ωi =
{ ks

Rg(i) ẋ, if gi = 1,
0, otherwise.

To validate the model, we took the parameters of the Renault Clio 1.9 DTI RXE
from http://www.renault.com/. The simulated acceleration and max speed tests gave
the same results as the experimental counterpart, reported in the technical documen-
tation. For the reader’s convenience we report the main parameters of the car under
consideration: Rg(1) = 3.7271, Rg(2) = 2.048, Rg(3) = 1.321, Rg(4) = 0.971, Rg(5) = 0.756,
Rg(R) = −3.545, Rfin = 3.2940, kloss = 0.925, rwheel = 0.2916 m, β = 25 kg·m·s−1, m = 1020
kg, α1 = 10 Nm, β1 = 0.3 kg·m2·s−1. Figure 5.1 reports the measured torque and the
piecewise affine approximation, the maximum error is 5.7 Nm. Finally the dynamics is
discretized with sampling time Ts = 0.5 s using forward finite differences to obtain the
DHA model. The corresponding HYSDEL model of the car is reported in Appendix. The
resulting MLD model contains 2 continuous states (vehicle position x and speed v), 3
continuous inputs (engine torque Fe, breaking force Fb, and slope us), 6 binary inputs
(gears gR, g1, . . . , g5), one continuous output (speed v), 16 auxiliary continuous variables
(6 for the traction force, 6 for the engine speed, 4 for the piecewise linearization of the
maximum engine torque), 4 auxiliary binary variables (breakpoints for the piecewise
linearization of the maximum engine torque), and 96 mixed-integer inequalities. The
DHA model can be then transformed into a PWA model using the approach presented
in [79]1 or equivalently the MLD model can be converted in a PWA model by running the
algorithm proposed in [13]2. The total number of binary variables is 0+6+4 = 10, which
gives a worst-case number of possible regions in the PWA system equals to 210 = 1024,
while the PWA equivalent to the hybrid MLD model has 30 regions, and is computed

1The corresponding software is available for download from http://control.ee.ethz.ch/~hybrid/hysdel as
a plug-in for HYSDEL.

2The corresponding software is available for download from http://www.dii.unisi.it/~bemporad/tools
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Figure 5.2: PWA system equivalent to the MLD model obtained through HYSDEL from
the list reported in Appendix – Section in the (velocity,torque) space for position x = 0,
braking force Fb = 0, gear input vector = [0 0 0 0 1 0]T (4th gear)

.

in 7.5 s starting from the DHA and in 72.66 s starting from the MLD using Matlab on a
Pentium III 650 MHz machine.

5.1.2 Reachability Analysis

We want to show how the HYSDEL model can be successfully employed to verify safety
properties. To this end, we assume we have a simple cruise controller from a previous
design. We want to verify that the controlled system will never exceed the target speed by
some tolerance, for instance the speed limits imposed by local authorities. The complete
hybrid system under examination is now composed of two subsystems: the car dynamic
model described in Section 5.1, and the cruise controller. For a detailed description of
compositional DHA models, refer to [79].

Model of the Cruise Controller

The controller commands throttle position, braking force, and selected gear, based on
the desired vehicle speed and measurements of the actual car speed.

The automaton reported in Fig. 5.3 selects the gear. If the engine speed is faster than
ωu = 5000 RPM then the gear is shifted up. Similarly, if the speed is lower than ωl = 3000
RPM, the gear is shifted down. The two thresholds are chosen by looking at the max
torque plot in Fig. 5.1. To track the desired speed reference vr(k), the throttle and the
brakes are operated by a PI controller. Let e(k) be the integral error, e′(k) = e(k)+Ts∆v(k),
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Figure 5.3: Gear shift logic controller

∆v(k) = vr(k)− v(k). The controller is

ut(k) =
{
kt∆v(k) + ite(k), if v(k) ≤ vr(k) + 1.
0, otherwise,

(5.2a)

ub(k) =
{
kb∆v(k), if v(k) > vr(k) + 1,
0, otherwise.

(5.2b)

The control variables ut and ub are saturated against the maximum torque and braking
force, respectively. The integrator in the PI controller uses an anti-windup scheme: e(k)
is integrated only when the control inputs ut and ub are not saturated. Note that, the
threshold in (5.2) is 1 m/s over the target speed, therefore the fine tracking of the speed
reference is performed using only the command coming for the throttle. By fixing the
gear ratio in fifth gear we calibrate the parameters kt, kb, and it on the resulting linear
system (kt = 70, kb = 20, and it = 10). The HYSDEL model of the car is reported in the
Appendix, and it is available together with the cruise control system in the HYSDEL
distribution [130]. The corresponding MLD model (2.20) has 173 MLD constraints,
x ∈ R

2 × {0, 1}5, d ∈ {0, 1}15, z ∈ R
19.

Verification

The HYSDEL compiler is used to generate a PWA model of the cruise control system.
The verification is performed using the algorithm presented in [37]. We check the above
mentioned safety requirement, namely that the cruise control will never accelerate the
car over the speed limits. As the safety specification is independent of the car position
we omit this from the model and we use the following initial set X (0) = {x = [ v

e ] : v ∈
[0, 1], e ∈ [0, 1]} and target set: Z1 = {v : v > vr + rtoll} where rtoll is a tolerance, in this
example we set rtoll = 1.3889 m·s−1 (5 km/h) that is for instance the tolerance of the speed
limit enforcement devices adopted in Switzerland. Moreover, we check the liveness of the
controller by adding the set Z2 = {v, t : v ≤ vr − 2rtoll, t > 10/Ts}, where we require that
the controller reaches the target speed minus the tolerance 2rtoll in 10 s (a controller
that stops the car would be safe against fines, but not at all desirable!). We perform
parametric verification [37] for a class of constant references vr ∈ [8.333, 19.444] m/s
(= [30, 70] km/h). The exploration horizon is fixed to Tmax = 15.5s (Kmax = Tmax/Ts = 31
steps).

Verification Results

The result of the verification algorithm is that the controlled system satisfies both the
specifications: It does not enter the unsafe region Z1 (over the speed limit) and guaran-
tees the liveness of the control action (within 10s the speed v is in a bounded set around
the target speed vr. The verification required 9109s on a PC Pentium 650 MHz running
Matlab 5.3.

The algorithm was run also for the same initial and target sets and for an extended
range of the parameter vr ∈ [30, 120] km/h. The algorithm reported the first counterex-
ample in 415s: for vr = 105.0012 km/h) the liveness condition is not satisfied. In fact,
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Figure 5.4: Counterexample to the liveness property

by examining the plot of the counterexample reported in Fig. 5.4, one can see that the
controller fails to reach the requested vehicle speed within the specified time frame.

5.1.3 Cruise Control Design

Now we replace the heuristic controller with an optimal one. We use the hybrid model
of the car to synthesize a cruise control system that commands the gear ratio (discrete
input) and gas pedal and brakes (continuous inputs) in order to track a desired speed
and minimize fuel consumption. To this end, we design a receding horizon controller
and derive its equivalent explicit piecewise affine form [16], so that the cruise controller
becomes a look-up table of affine functions of the measured velocity and reference sig-
nals, that can be easily implemented in real time. Since the controller does not depend
on the position of the car, we will remove x from the model.

The main idea of the approach is to setup a finite-horizon optimal control problem
for the hybrid MLD system (2.20) by optimizing a performance index under operating
constraints. In particular, we minimize

min
ξ
J(v(k), vd(k)) � |v′(k)− vd(k)|+ ρ|ω(k)|, (5.3a)

s.t.




v′(k) = Av(k) +B1u(k)+
B2δ(k) +B3z(k),

E2δ(k) + E3z(k) ≤ E1u(k)+
E4x(k) + E5,

(5.3b)

where v(k) is the measured velocity of the car at time t = kTs, and ξ � [uT (k), δT (k), zT (k)]T

is the optimization vector.
As remarked above, the design of the controller is performed in two steps. First, the

RHC controller based on the optimal control problem (5.3) is tuned in simulation using
MILP solvers [92], until the desired performance is achieved. The RHC controller is not
directly implementable, as it would require a MILP to be solved on-line, which is clearly
prohibitive on standard automotive control hardware. Therefore, for implementation, in
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Figure 5.5: Maximum acceleration profiles

the second phase the explicit piecewise affine form of the RHC law is computed off-line
by using a multiparametric mixed integer linear programming (mp-MILP) solver, accord-
ing to the approach of [16], which provides the optimal control action as a piecewise
affine function of the measured (or estimated) state vector of the hybrid system and
reference signals. As a result, the state+reference space is partitioned into polyhedral
sets, where an affine control law is defined in each polyhedron.

As a first design step, we choose ρ = 0.001 m/rad in (5.3a). The corresponding multi-
parametric mixed-integer linear programming has 98 linear inequalities, 19 continuous
variables, 10 binary variables, 2 parameters (v(k), vd(k)), and is solved in 27 m on a Sun
Ultra 10 running Matlab 5.3 and Cplex. The corresponding piecewise affine control law
consists of 49 regions.

For a commanded speed vd = 250 km/h, which cannot be reached by the car, the
cruise controller leads to the maximum acceleration curves depicted in Fig. 5.5, that
are very close to those reported in the data sheets.

Figure 5.6 shows the closed-loop trajectories for a few changes of the velocity set-
point. During the shift from 0 to 120 km/h, the cruise controller commands the gears
similarly to what shown in Fig. 5.5, with full-throttle and no action on the brakes. When
the set-point changes from 120 km/h to 50 km/h, the cruise controller does its best to
slow down the car: switch to second gear, use full brakes, release the gas pedal. As soon
as the set-point is recovered, the weight ρ on the fuel consumption leads back to fifth
gear. The simulation also includes a nonzero road slope, which acts as an unmeasured
and unmodeled disturbance to be rejected by the cruise controller.

Clearly, the controller is too aggressive during the set-point transition. This can be
easily fixed by adding in (5.3) the constraint

|v′(k)− v(k)| < Tsamax,

where amax is the maximum acceleration tolerated. The resulting MILP problem has 100
linear inequalities, and is solved multiparametrically in 28 m, leading to a partition of
the (v, vd) space into 54 regions. The corresponding closed-loop trajectories are depicted
in Fig. 5.7, where a better drive comfort is clearly apparent.

We remark that the cruise control system described in this section has to be consid-
ered as a pure exercise of modeling and control synthesis for hybrid systems, and there
is no claim that it is sensible, as it is, in a real application. For instance, it is apparent
the rotation speed of the engine ω ≈ 800 rpm depicted in Figure 5.6 would not be real-
istic for most commercial vehicles. A more comprehensive study for the synthesis of a
supervisor for automatic gear shifting is currently under investigation in collaboration
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Figure 5.6: Closed-loop profiles: aggressive control action

with the Fiat Research Center, Italy [14].
HYSDEL Code — Car Model

SYSTEM car {
INTERFACE {

STATE {
REAL position [-1000, 1000];
REAL speed [-50*1000/3600, 220*1000/3600];
}

INPUT {
REAL torque [-300,300]; /* Nm */
REAL F_brake [0,9000]; /* N */
REAL slope [0, 1];
BOOL gear1, gear2, gear3, gear4, gear5, gearR;

}
OUTPUT {

REAL position_y, speed_y, w_y;
}

PARAMETER {
REAL mass = 1020; /* kg */
REAL beta_friction = 25; /* W/m*s */
REAL Rgear1 = 3.7271;

Parameters omitted for brevity, full list available in [130].

}
}
IMPLEMENTATION {

AUX {
REAL Fe1, Fe2, Fe3, Fe4, Fe5, FeR,

w1, w2, w3, w4, w5, wR,
DCe1, DCe2, DCe3, DCe4;

BOOL dPWL1, dPWL2, dPWL3, dPWL4;
}
AD {
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Figure 5.7: Closed-loop profiles: smoother control action

dPWL1 = wPWL1 - (w1 + w2 + w3 + w4 + w5 + wR) <= 0;
dPWL2 = wPWL2 - (w1 + w2 + w3 + w4 + w5 + wR) <= 0;
dPWL3 = wPWL3 - (w1 + w2 + w3 + w4 + w5 + wR) <= 0;
dPWL4 = wPWL4 - (w1 + w2 + w3 + w4 + w5 + wR) <= 0;

}
DA {

Fe1 = {IF gear1 THEN torque / sf * Rgear1};
Fe2 = {IF gear2 THEN torque / sf * Rgear2};
Fe3 = {IF gear3 THEN torque / sf * Rgear3};
Fe4 = {IF gear4 THEN torque / sf * Rgear4};
Fe5 = {IF gear5 THEN torque / sf * Rgear5};
FeR = {IF gearR THEN torque / sf * RgearR};
w1 = {IF gear1 THEN speed / sf * Rgear1};
w2 = {IF gear2 THEN speed / sf * Rgear2};
w3 = {IF gear3 THEN speed / sf * Rgear3};
w4 = {IF gear4 THEN speed / sf * Rgear4};
w5 = {IF gear5 THEN speed / sf * Rgear5};
wR = {IF gearR THEN speed / sf * RgearR};
DCe1 = {IF dPWL1 THEN (aPWL2 - aPWL1) +
(bPWL2 - bPWL1) * (w1 + w2 + w3 + w4 + w5 + wR)};

DCe2 = {IF dPWL2 THEN (aPWL3 - aPWL2) +
(bPWL3 - bPWL2) * (w1 + w2 + w3 + w4 + w5 + wR)};

DCe3 = {IF dPWL3 THEN (aPWL4 - aPWL3) +
(bPWL4 - bPWL3) * (w1 + w2 + w3 + w4 + w5 + wR)};

DCe4 = {IF dPWL4 THEN (aPWL5 - aPWL4) +
(bPWL5 - bPWL4) * (w1 + w2 + w3 + w4 + w5 + wR)};

}
CONTINUOUS {

position = position + Ts * speed;
speed = speed + Ts / mass * (Fe1 + Fe2 + Fe3 + Fe4 + Fe5
+ FeR - F_brake - beta_friction * speed) - g * slope;

}
OUTPUT {

position_y = position;
speed_y = speed;
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w_y = (w1 + w2 + w3 + w4 + w5 + wR);
}
MUST {

-w1 <= -wemin; w1 <= wemax; -w2 <= -wemin; w2 <= wemax;
-w3 <= -wemin; w3 <= wemax; -w4 <= -wemin; w4 <= wemax;
-w5 <= -wemin; w5 <= wemax; -wR <= -wemin; wR <= wemax;
-F_brake <=0; F_brake <= max_brake_force;
-torque - (alpha1 + beta1 * (w1 + w2 + w3 + w4 + w5 +
wR)) <= 0;

torque - (aPWL1 + bPWL1 * (w1 + w2 + w3 + w4 + w5 + wR)
+ DCe1 + DCe2 + DCe3 + DCe4) - 1 <= 0;

-((REAL gear1) + (REAL gear2) + (REAL gear3) + (REAL
gear4) + (REAL gear5) + (REAL gearR)) <= -0.9999;

(REAL gear1) + (REAL gear2) + (REAL gear3) + (REAL
gear4) + (REAL gear5) + (REAL gearR) <= 1.0001;

dPWL4 -> dPWL3; dPWL4 -> dPWL2; dPWL4 -> dPWL1;
dPWL3 -> dPWL2; dPWL3 -> dPWL1; dPWL2 -> dPWL1;

}
}
}

HYSDEL Code — Cruise Control System

SYSTEM carcruise { INTERFACE {
STATE {

REAL speed [-50*1000/3600, 220*1000/3600];
REAL err [-50*100/3600, 220*100/3600]; /* integral */;
REAL vr [-50*1000/3600, 220*1000/3600];
BOOL gear1, gear2, gear3, gear4, gear5;

}
OUTPUT {

REAL y, w;
}
PARAMETER {

REAL mass = 1020; /* kg */
REAL g = 9.8; /* m/s^2 , not used*/
REAL beta_friction = 25; /* W/m*s */

Parameters omitted for brevity.

}
}
IMPLEMENTATION {

AUX {
REAL Fe1, Fe2, Fe3, Fe4, Fe5,

w1, w2, w3, w4, w5,
DCe1, DCe2, DCe3, DCe4;

BOOL dPWL1, dPWL2, dPWL3, dPWL4;
BOOL sd, su, verr;
REAL zut, zub;
BOOL sat_torque, sat_F_brake;
REAL torque, F_brake;
BOOL no_sat;
REAL ierr;

}
LOGIC {

no_sat = ~(sat_torque | sat_F_brake) & verr;
}
AD {

dPWL1 = wPWL1 <= (w1 + w2 + w3 + w4 + w5);
dPWL2 = wPWL2 <= (w1 + w2 + w3 + w4 + w5);
dPWL3 = wPWL3 <= (w1 + w2 + w3 + w4 + w5);
dPWL4 = wPWL4 <= (w1 + w2 + w3 + w4 + w5);
sd = (w1 + w2 + w3 + w4 + w5) <= wl;
su = wu <= (w1 + w2 + w3 + w4 + w5);
verr = speed - vr - 2 <= 0;
sat_torque = (DCe1 + DCe2 + DCe3 + DCe4) + 1 <= zut;
sat_F_brake = - zub + max_brake_force <= 0;

}
DA {

Fe1 = {IF gear1 THEN torque / sf * Rgear1};
Fe2 = {IF gear2 THEN torque / sf * Rgear2};
Fe3 = {IF gear3 THEN torque / sf * Rgear3};
Fe4 = {IF gear4 THEN torque / sf * Rgear4};
Fe5 = {IF gear5 THEN torque / sf * Rgear5};
w1 = {IF gear1 THEN speed / sf * Rgear1};
w2 = {IF gear2 THEN speed / sf * Rgear2};
w3 = {IF gear3 THEN speed / sf * Rgear3};
w4 = {IF gear4 THEN speed / sf * Rgear4};
w5 = {IF gear5 THEN speed / sf * Rgear5};
DCe1 = {IF dPWL1 THEN (aPWL2) + (bPWL2) *
(w1 + w2 + w3 + w4 + w5) ELSE (aPWL1) +
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(bPWL1) * (w1 + w2 + w3 + w4 + w5)};
DCe2 = {IF dPWL2 THEN (aPWL3 - aPWL2) +
(bPWL3 - bPWL2) * (w1 + w2 + w3 + w4 + w5)};

DCe3 = {IF dPWL3 THEN (aPWL4 - aPWL3) +
(bPWL4 - bPWL3) * (w1 + w2 + w3 + w4 + w5)};

DCe4 = {IF dPWL4 THEN (aPWL5 - aPWL4) +
(bPWL5 - bPWL4) * (w1 + w2 + w3 + w4 + w5)};

zut = {IF verr THEN kt * (vr - speed) + it * err};
zub = {IF ~verr THEN - kb * (vr - speed) - ib * err};
torque ={IF sat_torque THEN (DCe1 + DCe2 + DCe3 + DCe4)
+ 1 ELSE zut};

F_brake = {IF sat_F_brake THEN max_brake_force
ELSE zub};

ierr = {IF no_sat THEN err + Ts * (vr - speed)};

}
CONTINUOUS {

speed = speed + Ts / mass * (Fe1 + Fe2 + Fe3 + Fe4 + Fe5
- F_brake - beta_friction * speed);

err = ierr;
vr = vr;

}
AUTOMATA {

gear1 = (gear2 & sd)|(gear1 & ~su);
gear2 = (gear1 & su)|(gear3 & sd)|(gear2 & ~sd & ~su);
gear3 = (gear2 & su)|(gear4 & sd)|(gear3 & ~sd & ~su);
gear4 = (gear3 & su)|(gear5 & sd)|(gear4 & ~sd & ~su);
gear5 = (gear4 & su) |(gear5 & ~sd );

}
OUTPUT {

y = speed;
w = w1 + w2 + w3 + w4 + w5;

}
MUST {

/* max engine speed */
/* wemin <= w1+w2+w3+w4+w5 <= wemax */
-w1 <= -wemin; w1 <= wemax; -w2 <= -wemin;
w2 <= wemax; -w3 <= -wemin; w3 <= wemax;
-w4 <= -wemin; w4 <= wemax; -w5 <= -wemin;
w5 <= wemax; F_brake <= max_brake_force;
-F_brake <= 0; /* brakes cannot accelerate ! */
torque - (DCe1 + DCe2 + DCe3 + DCe4) - 1 <= 0;
/* xor(gear1,gear2,gear3,gear4,gear5,gearR)=TRUE */
-((REAL gear1) + (REAL gear2) + (REAL gear3) +
(REAL gear4) + (REAL gear5)) <= -0.9999;

(REAL gear1) + (REAL gear2) + (REAL gear3) +
(REAL gear4) + (REAL gear5) <= 1.0001;

dPWL4 -> dPWL3; dPWL4 -> dPWL2; dPWL4 -> dPWL1;
dPWL3 -> dPWL2; dPWL3 -> dPWL1; dPWL2 -> dPWL1;

}
}
}



Chapter 6

Conclusions

We introduced Discrete Hybrid Automata as a general modeling framework for obtain-
ing hybrid models oriented to the solution of analysis and synthesis problems. The
language HYSDEL describes DHA at a high level and its associated compiler generates
the corresponding computational models. This simplifies the use of the whole theory
and set of tools available for different classes of hybrid systems for solving control, state
estimation and verification problems. The effectiveness of HYSDEL was shown on an
automotive case study.

HYSDEL has been successfully used in several industrial applications. In [40] the
authors modeled the hybrid behavior of a vehicle/tyre system and designed a traction
controller that improves a driver’s ability to control a vehicle under adverse external
conditions such as wet or icy roads. Another automotive application was presented
in [22], where the focus is on the application of hybrid modeling and optimal control to
the problem of air-to-fuel ratio and torque control in advanced gasoline direct injection
stratified charge (DISC) engines. In both cases, the control design leaded to a control
law that can be implemented on automotive hardware as a piecewise affine function of
the measured and estimated quantities. In [70] the economic optimization of a com-
bined cycle power plant was accomplished by modeling the system in HYSDEL (turning
on/off the gas and steam turbine, operating constraints, different modalities start up
of the turbines), and then using the generated MLD model in a mixed integer linear
optimization algorithm [92].

The HYSDEL compiler is available on-line at http://control.ee.ethz.ch/~hybrid/
hysdel.
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