
Chapter 4
Computational Methods for Contact
Problems with Roughness

Marco Paggi, Alberto Bemporad and José Reinoso

Abstract This chapter provides a self-consistent introduction to computational
methods for the solution of contact problems between bodies separated by rough
interfaces. Both frictional and frictionless contact problems are examined. Themath-
ematical formulation of the boundary element method is presented first, with details
on the possible algorithmic implementation strategies and their computational effi-
ciency. In the second part of the chapter, the fundamentals of the finite element
method for the solution of contact problems are presented, along with an overview
on the different strategies available in the literature to accurately discretize the mul-
tiscale features of roughness. A synopsis of the major advantages and disadvantages
provided by the computational methods based on the boundary element method or
the finite elementmethod concludes the chapter, illustrating also perspective research
directions.

Introduction

Contact mechanics between rough surfaces is a very active area of theoretical and
applied research in physics and engineering (Vakis et al. 2018). Due to rough-
ness, when two bodies separated by rough boundaries are brought into contact, they
exchange forces through the so-called contact spots, which correspond to the tips of
the asperities, i.e., the local maxima of the surfaces. As a consequence, the real area
of contact is usually a small percentage of the nominal one, which would be attained
only if the surfaces were perfectly flat. The evolution of the contact domain, which
includes all the contact spots, the size of the real area of contact, and the normal con-
tact stiffness, do depend on the applied normal load level, see Borri-Brunetto et al.
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(1999), Ciavarella et al. (2000, 2004, 2008a), Campaña et al. (2001), Barber (2003),
Nosonovsky and Bhushan (2005), Persson (2006), Hyun and Robbins (2007), Car-
bone and Bottiglione (2008), Paggi and Ciavarella (2010), Paggi and Barber (2011),
Paggi et al. (2014), and Yastrebov et al. (2015) for a selection of studies. Simi-
larly, when a shearing load is applied, there is a progressive transition of the contact
spots from a full stick condition, with perfect adhesion and no relative displacement
between the bodies, to full slip, when sliding takes place. Such a transition is ruled
by the Coulomb friction law at the asperity level, while the emerging quantities, such
as for instance the total shearing load versus the size of the contact area in stick or
slip conditions, are the result of a collective response emerging from the complex
local interactions (Carpinteri and Paggi 2005, 2009; Paggi et al. 2014).

In this context, semi-analytical micromechanical contact theories relying on the
statistical distribution of the elevation of the asperities and their radii of curvature
have been proposed and widely explored in the engineering community (seeMcCool
1986; Zavarise et al. 2004a for comprehensive review articles), following the pio-
neering approach by Greenwood and Williamson (1966) and extending it to more
complex statistical distributions of elevations and curvatures (Ciavarella et al. 2006;
Greenwood 2006; Paggi and Ciavarella 2010), considering also elastic interactions
between asperities (Ciavarella et al. 2008b) that were not included in the original
pioneering formulations. Since the 1990s, research focused on the multiscale fea-
tures of roughness, exploiting the use of fractal geometry for the understanding of
its role on the contact behavior (Majumdar and Bhushan 1990; Borri-Brunetto et al.
1999; Carpinteri and Paggi 2005; Persson et al. 2005).

More recently, it has been found that neither the random process theory, which
is the theoretical framework for the derivation of micromechanical contact theories,
nor the fractal description of roughness is able to reproduce the complexmorphology
of surfaces (Greenwood andWu 2001), as recently proved for natural or engineering
surfaces with functionalized textures (Borri and Paggi 2015, 2016). Therefore, the
predictions of semi-analytical contact models based on random process theory or
fractal assumptions should be checked with care and led to a wide range of compar-
isons and validation studies (Mueser et al. 2017). On the other hand, experimental
investigations are challenging to be performed and involve approximations too (Woo
and Thomas 1980). For example, very often the contact quantities can only be esti-
mated by indirect measurements of thermal or electric resistances of compressed
rough joints (Sridhar and Yovanovich 1994), or they are mostly concerned with the
measurement of the real area of contact under special conditions allowing for its
inspection (O’Callaghan and Probert 1970; Hendriks and Visscher 1995).

Therefore, due to the general considerations above, numericalmethods able to deal
with realistic surface topologies without making approximations and assumptions on
their shape, and with any constitutive response of the continuum and of the interface,
are very important to predict the contact response and infer general conclusions on
the observed trends.

In the linear elastic regime, if the multiscale character of roughness covering a
wide range of wavelengths is one of the most prominent research topics, then the use
of the boundary elementmethod (BEM) has been historically preferred over the finite
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element method (FEM) (Andersson 1981; Man 1994). This is essentially due to the
fact that only the surface must be discretized in the boundary element method, and
not the surrounding continuum, as required by the finite element method. Moreover,
it is not necessary to adopt surface interpolation techniques, like Bezier curves, to
discretize the interface (see, e.g., the approach in Wriggers and Reinelt (2009)) and
make it amenable for the application of contact search algorithms. This avoids an
undesired smoothing of the fine-scale geometrical features of roughness.

In the application of the boundary element method, the core of the procedure is
based on the knowledge of the so-called Green functions that relate the displacement
of a generic point of the half-plane to the action of a concentrated force on the
surface caused by contact interactions. An integral convolution of the effects of all
the contact tractions provides the deformed contact configuration. After introducing
a discretization of the half-plane consisting of a grid of boundary elements, the
problem of point-force singularity is solved numerically by using the closed-form
solution for a patch load acting on a finite-size boundary element (Johnson 1985,
Chaps. 3, 4). The contact problem is then set in terms of equalities and inequalities
stemming from the unilateral contact constraints and it can be solved by constrained
optimization algorithms, see Polonsky andKeer (1999), Bemporad and Paggi (2015).
The basic version of the boundary element method can be also extended to solve
contact problems with friction (Li and Berger 2003; Pohrt and Li 2014) and between
viscoelastic materials, see Carbone and Putignano (2013) and the references therein
given.

However, standard boundary element formulations are based on the fundamental
assumptions of linear elasticity and homogeneity of the materials, and their exten-
sion to inhomogeneities (Leroux et al. 2010), finite-size geometries (Putignano et al.
2015), or interface constitutive nonlinearities such as adhesion (Rey et al. 2017;
Popov et al. 2017; Li et al. 2018) are sometimes possible but are not so straight-
forward. For these problems, the finite element method would be conceived as a
more versatile computational approach to pursuit in order to overcome all the major
limitations of the boundary element method. The finite element method can in fact
take into account any material or interface constitutive nonlinearity, and it can easily
treat finite-size geometries of practical interest in industrial applications. Moreover,
it is prone to be extended for the solution of nonlinear multi-field problems involved
in heat transfer or in reaction–diffusion systems (Zavarise et al. 2019; Sapora and
Paggi 2014; Lenarda et al. 2018), for which the boundary element method has not
been applied so far.

In spite of the different appealing aspects of the finite element method over the
boundary element method, this approach has been limited to few remarkable studies
concerning contact problemswith roughness, especially in relation to elastoplasticity
(Pei et al. 2005; Hyun et al. 2004). The motivation is primarily due to the need for
discretizing the bulk and also the rough interface, which is not an easy task from
the mathematical standpoint and it also gives a rise in computation costs. As shown
in Wriggers and Reinelt (2009), Bezier interpolation techniques can be employed
to regularize rough interfaces to become amenable for contact search algorithms.
Nevertheless, smoothing should be applied with care in order to avoid artificial



134 M. Paggi et al.

filtering of finer surface features relevant to the physics of contact. To overcome
such limitations, a recent approach which does not explicitly discretize roughness,
but it embeds its analytical form in a nominally flat interface finite element has proved
to be very efficient in solving contact problems with roughness in the finite element
method (Paggi and Reinoso 2018), significantly simplifying the issue of roughness
discretization.

In this chapter, an overview of computational methods for solving contact prob-
lems with roughness is proposed. Section “The Boundary Element Method” focuses
on the fundamentals of the boundary element method, first in relation to the friction-
less normal contact problem. Based on the results in Bemporad and Paggi (2015),
special attention is given to the review of the computational challenges of themethod,
which regard two main aspects: (i) efficiently solve the system of linear equations;
(ii) impose the satisfaction of the unilateral contact constraints (contact inequalities).
Regarding the first issue, iterative methods like the conjugate gradient algorithm or
the Gauss–Seidel method (Francis 1983; Borri-Brunetto et al. 1999, 2001), or the
capabilities of multigrid or multilevel methods (Raous 1999; Polonsky and Keer
1999), or even the solution of the linear system of equations in the Fourier space
(Nogi and Kato 1997; Polonsky and Keer 2000a, b; Batrouni et al. 2002; Scaraggi
et al. 2013; Prodanov et al. 2014; Vollebregt 2014) are possible strategies.

Regarding the imposition of the contact inequalities, on the other hand, a greedy
approach where the boundary elements bearing tensile loads are iteratively excluded
can be exploited (Kubo et al. 1981; Borri-Brunetto et al. 1999, 2001; Karpenko
and Akay 2001; Batrouni et al. 2002), although it has been demonstrated by Bem-
porad and Paggi (2015) that it often fails for very compact contact domains. The
constrained conjugate gradient method proposed by Polonsky and Keer (1999) and
based on the theory in Hestenes (1980, Chaps. 2, 3) to solve the linear system of
equations and rigorously impose the satisfaction of the contact constraints is also
discussed, along with its developments (Polonsky and Keer 2000a, b). Finally, other
optimization algorithms based on the solution of the corresponding quadratic pro-
gram, such as nonnegative least squares (NNLS) and the alternative directionmethod
of multipliers (ADMM), proposed in Bemporad and Paggi (2015), are detailed. A
careful comparison of the available methods in terms of computation cost is also
provided, along with other more advanced acceleration strategies.

The presentation moves then to the contact problem with friction, which is sig-
nificantly complicated by the coupling between the normal and the tangential defor-
mations, and by the Coulomb friction law to be locally satisfied in the tangential
direction.

Section “The Finite Element Method” presents the basis of the finite element
method, starting from the variational formulation of the problem, including the strong
form, the governing equations for the continuum and the interface, and also the weak
form.Next, finite element procedures basedon the explicit discretizationof roughness
are briefly summarized in relation to seminal work published in the literature. Finally,
the zero-thickness interface finite element with embedded profile for joint roughness
(MPJR interface finite element, recently proposed in Paggi and Reinoso (2018))
is presented, along with its implementation details in the research finite element
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analysis program FEAP (Zienkiewicz and Taylor 2000). A comparison between
the different finite element discretization strategies for the solution of a benchmark
Hertzian contact problem concludes the section and it shows the great potential of
the MPJR interface finite element for future research.

The last section provides an overall summary of the chapter with a synopsis
reporting the major advantages and disadvantages of the computational methods
herein reviewed, along with an overview of perspective research directions in the
field of contact mechanics between rough surfaces.

The Boundary Element Method

The boundary element method (BEM) is an efficient technique to solve the contact
problem between two linear elastic bodies, say �1 and �2, with rough boundaries
�1 and �2, respectively. The first step for the application of the method is the knowl-
edge of the topographies �i (i = 1, 2), which are nowadays acquired using confocal
profilometers or atomic force microscopes. They are stored in a matrix containing
the xi , yi , and zi coordinates with respect to an arbitrary datum. Such surfaces are
nonconforming, i.e., they do not match when in contact. Hence, the shape of the
contact area changes with the applied load and the contact area is an unknown of the
problem, which is a source of complexity for the solution procedure.

Due to linear elasticity of the continuum, the actual contact problem can be sim-
plified by reducing it to the solution of a fictitious contact problem between a rigid
microscopically rough surface with a composite topography and a flat linear elastic
half-space with composite elastic moduli E and G dependent on the Young’s moduli
Ei and the Poisson’s ratios νi of the two materials (i = 1, 2). The composite topog-
raphy is simply obtained by summing up the elevations of the two rough surfaces
�i (i = 1, 2). The composite elastic moduli, on the other hand, are given by the
following formulae:

E =
(
1 − ν2

1

E1
+ 1 − ν2

2

E2

)−1

, (4.1a)

G =
(
2 − ν1

4G1
+ 2 − ν2

4G2

)−1

, (4.1b)

where Gi = Ei/[2(1 + νi )]. The composite Poisson ratio ν is related to E and G via
ν = E/(2G) − 1.

In this simplified setting, the next step for the application of the method is the
knowledge of the so-called Green functions, which relate the displacements of any
point belonging to the deformable half-space to the applied tractions on its surface.
This allows formulating the problem by involving only contact tractions and surface
displacements, getting rid of the surrounding continua. While the simplest expres-
sions for the Green functions are those for a cylindrical punch on a homogenous
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and isotropic half-space, other forms for more complex material configurations can
be of interest in engineering applications. For instance, multilayered half-spaces,
deformable elastic bodies with finite size (Putignano et al. 2015), or half-spaces
with spatial inclusions or voids (Leroux et al. 2010) have been investigated in the
literature. Quite recently, adhesion effects in tension have been included in BEM for
frictionless normal contact problems, see Rey et al. (2017), Popov et al. (2017), Li
et al. (2018).

For more complex heterogeneous material compositions due to the random pres-
ence of inclusions or voids of arbitrary shape, or functionally graded compositions,
the Green functions can be solely determined in numerical form (Paggi and Zavarise
2011). For that, the finite element method (FEM) can be used to preliminary extract
the Green functions. This is done by discretizing the bulk of the deformable body
and its internal microstructure. Then, unit tractions are applied at any point over the
half-plane boundary, and the induced surface displacements are computed. There-
fore, point-by-point, the Green functions can be numerically reconstructed. In the
sequel, we shall restrict the attention to linear elastic homogeneous and isotropic
half-spaces, for the sake of simplicity. More complex material compositions can be
dealt with by modifying the expression for the Green functions.

It is important to remark here that the knowledge of the relation between tractions
and surface displacements is a key point for the simplification of the complexity of
the contact problem, since it allows avoiding the discretization of the bulk. This is
indeed a significant gain over the finite element method in terms of computation
costs, especially for problems with rough boundaries where the discretization of the
rough interface has to be very fine to capture its essential multiscale features. On the
other hand, BEM is rigorously exact only for linear elastic contact problems, since
the principle of superposition is applied to convolute the effect of any distribution
of surface tractions applied over the half-plane. For elastoplastic contact problems
with isotropic or kinematic hardening laws, Chen et al. (2008) generalized the BEM
formulation by considering modified discrete expressions for the Green functions
and the residual displacements caused by plastic deformation. For other relevant
publications on this topic, the reader is referred to Kogut and Etsion (2002), Chang et
al. (1987), Nelias et al. (2006). For other problems involving material or geometrical
(finite elasticity) nonlinearities of the continuum, or for multi-field problems, the
finite element method is indeed preferable over the boundary element method and it
would be the ideal framework for their investigation.

The Frictionless Normal Contact Problem

Back to the classical framework of BEM for frictionless normal contact problems
in linear elasticity, the normal displacements u(x) at any point of the half-plane
identified by the position vector x are related to the contact tractions p(y) at other
points as follows (Johnson 1985; Barber 2018):
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u(x) =
∫
S

H(x, y)p(y)dy, (4.2)

where H(x, y) represents the displacement at a point x due to a surface contact pres-
sure p acting at y, and S is the elastic half-plane. For homogeneous, isotropic, linear
elasticmaterials, the influence coefficients (Green function) are given byBoussinesq:

H(x, y) = 1 − ν2

πE

1

‖ x − y ‖ , (4.3)

where ‖ · ‖ denotes the standard Euclidean norm. The total contact force P is the
integral of the contact pressure field:

P =
∫
S

p(x)dA. (4.4)

By referring to Fig. 4.1, in the following we define for each surface point
x ∈ S its elevation ξ(x), measured with respect to a reference frame, and set
ξmax � maxx∈S ξ(x) the maximum elevation. The indentation of the half-plane at
the points in contact is denoted by ū, whereas a generic displacement along the
surface is u.

For a given far-field displacement � ≥ 0 in the direction perpendicular to the
undeformed half-plane, the problem is to find the solution of the normal contact u(x),
p(x) satisfying (4.2) and the unilateral contact (linear complementarity) conditions

Fig. 4.1 Sketch of the contact problem between a rigid rough surface and an elastic half-plane.
Its deformed configuration corresponding to the imposed far-field displacement � is depicted with
a solid line. The dashed line corresponding to a rigid body motion of the half-plane identifies the
heights to be included in the initial trial contact domain. Once the contact problem is solved, one
may have (i) heights certainly not in contact from the beginning, type (a); (ii) heights loosing contact
due to elastic interactions, type (b); (iii) heights in contact, type (c). Adapted from Bemporad and
Paggi (2015)
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u(x) − ū(x,�) ≥ 0, (4.5a)

p(x) ≥ 0, (4.5b)

(u(x) − ū(x,�))p(x) = 0, (4.5c)

for all points x ∈ S, where contact tractions are considered positive when compres-
sive.

Introducing the quantityw(x,�) = u(x) − ū(x,�), Eq. (4.5) can be rewritten as

w(x,�) ≥ 0, (4.6a)

p(x) ≥ 0, (4.6b)

w(x,�)p(x) = 0. (4.6c)

The above contact problem is an infinite-dimensional linear complementarity
problem. A finite-dimensional approximate solution can be sought by discretizing
the surface as a square grid of spacing δ consisting of N × N average heights. Let
Si j be the cell of area δ2 indexed by i, j ∈ IN , with IN � {1, . . . , N } × {1, . . . , N }.
Let xi, j � 1

Si j

∫
x∈Si j xdA, ξi, j � 1

Si j

∫
x∈Si j ξ(x)dA, pi, j �

∫
x∈Si j p(x)dA, and ui, j �

1

Si j

∫
x∈Si j u(x)dA be, respectively, the barycentric coordinate, average height, resul-

tant of the contact tractions, and the corresponding average displacement on the
surface element Si j . Consider the following discretized version of (4.2)

ui, j =
N∑

k=1

N∑
l=1

Hi−k, j−l pk,l (4.7)

for all (i, j), (k, l) ∈ IN , pk,l ≥ 0, where the term Hi−k, j−l is the Green function
in (4.3) averaged over the elementary area δ2. For instance, Borri-Brunetto et al.
(1999) used the following approximation related to a uniform pressure acting on a
rounded punch of radius δ/2:

Hi−k, j−l =

⎧⎪⎨
⎪⎩

2

Eπδ
, if i = k and j = l

2

Eπδ
arcsin

δ

2‖xi, j − xk,l‖ , if i �= k, j �= l
(4.8)

but other formulae for a square punch can also be taken as in Pohrt and Li (2014).
Let ĪC � {(i, j) ∈ IN : ξi, j < ξmax − �} be the set of indices corresponding to

elements Si j that are certainly not in contact (cf. Fig. 4.1), and hence

pk,l = 0,∀(k, l) ∈ ĪC . (4.9)
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Letm = # ĪC be the number of elements of ĪC and n = #IC the number of elements
belonging to the initial trial contact domain, IC � IN \ ĪC . The set IC is only a super-
set of the set I ∗

C of actual contact points, since the corrections to the displacements
induced by elastic interactions may induce lack of contact in some elements (i, j),
i.e., ui, j > ūi, j , where ūi, j � � − ξmax + ξi, j is the value of the compenetration of
the height corresponding to the element (i, j) in the half-plane (see Fig. 4.1).

For a generic (i, j) ∈ IC corresponding to an element of the surface which is
potentially in contact with the elastic half-plane, we denote by

wi, j � ui, j − ūi, j ≥ 0 (4.10)

the corresponding elastic correction to the displacement. Clearly, it must hold that

wi, j pi, j = 0, ∀(i, j) ∈ IC (4.11)

since wi, j > 0 implies no contact between the surfaces and therefore vanishing con-
tact pressures, while pi, j > 0 implies contact, ui, j = ūi, j , or equivalently wi, j = 0.

By taking into account that pk,l = 0 for all (k, l) ∈ ĪC , Eq. (4.7) can be recast as
the following condition:

wi, j + ūi, j =
∑

(k,l)∈IC
Hi−k, j−l pk,l, ∀(i, j) ∈ IC , (4.12)

which is limited to the nodes belonging to the initial trial contact domain IC , whose
number of elements is in general significantly smaller than those of IN . The rela-
tions (4.9)–(4.12) can be recast in matrix form as the following Linear Complemen-
tarity Problem (LCP) (Cottle et al. 1992):

w = Hp − ū (4.13a)

w ≥ 0, p ≥ 0, wTp = 0, (4.13b)

where w ∈ R
n is the vector of unknown elastic corrections wi, j , (i, j) ∈ ĪC , wT

denotes its transpose, p ∈ R
n is the vector of unknown boundary element contact

forces pi, j , (i, j) ∈ IC , ū ∈ R
n is the vector of compenetrations ūi, j , (i, j) ∈ IC , and

H = HT is the matrix obtained by collecting the compliance coefficients Hi−k, j−l ,
for (i, j), (k, l) ∈ IC . Due to the properties of linear elasticity (Johnson 1985, p.
144), we have that

H = HT � 0, (4.14)

that is,H is a symmetric positive definitematrix (with the additional property deriving
from (4.8) of having all its entries positive). After solving (4.13), the vector u ∈ R

n

of normal displacements ui, j , (i, j) ∈ IC , is simply retrieved as u = ū + w.
By the positive definiteness property (4.14) of H, we inherit immediately the

following important property (Cottle et al. 1992, Theorem 3.3.7): the discretized
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version (4.6), (4.9)–(4.12) of the contact problem admits a unique solution p, u, for
all � ≥ 0.

The LCP problem (4.13) corresponds to the Karush–Kuhn–Tucker (KKT) condi-
tions for optimality of the following convex quadratic program (QP):

minp
1

2
pTHp − ūTp (4.15a)

s.t. p ≥ 0 (4.15b)

in that the solution p of (4.15) and its corresponding optimal dual solution w
solve (4.13), and vice versa.

The QP problem is consistent with former considerations by Kalker and van
Randen (1972) and also summarized in Johnson (Johnson 1985, pp. 151–152). In
fact, the contact pressures solving the unilateral contact problem can be obtained by
minimizing the total complementary energyW of the linear elastic system, subject to
the constraint p(x) ≥ 0, ∀x ∈ S. For a continuous system, the total complementary
energy is

W = U −
∫
S

p(x)ū(x,�) dx, (4.16)

whereU is the internal complementary energy of the deformed half-plane in contact.
For linear elastic materials, we have

U = 1

2

∫
S

p(x)u(x) dx. (4.17)

Although such an energy-based approach can be used to derive finite element
formulations, it is also possible to remain within the boundary element method and
introduce a surfacediscretization as before.By invoking the averagedGreen functions
in (4.8), the discretized version of W , say W̃ , reads

W̃ = 1

2

∑
(i, j)∈IC

∑
(k,l)∈IC

Hi−k, j−l pk,l pi, j −
∑

(i, j)∈IC
pi, j ūi, j , (4.18)

which represents a quadratic function of p to be minimized, under the constraints
pi, j ≥ 0, ∀(i, j) ∈ IC , as in (4.15). Since it is unlikely that the contact area is known
a priori, the active set of nodes in contact results only after solving problem (4.13)
or equivalently (4.15).

A large variety of solvers for LCP and QP problems were developed in the last
60 years (Beale 1955; Fletcher 1971; Goldfarb and Idnani 1983; Cottle et al. 1992;
Schmid and Biegler 1994; Patrinos and Bemporad 2014), and is still an active area of
research in the optimization and control communities. Historically, in the mechanics
community, Kalker and van Randen (1972) proposed the simplex method, although
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it was found to be practical only for relatively small N . More recent contributions
adopt algorithms to solve the unconstrained linear system of equations and then
correct the solution by eliminating the boundary elements bearing tensile tractions
(Francis 1983; Borri-Brunetto et al. 1999, 2001), or use a constrained version of the
conjugate gradient (CG) algorithm (Polonsky and Keer 1999). These methods are
simply initialized by considering arbitrary nonnegative entries in p, without taking
advantage of the monotonic increase (or decrease) of pressures by increasing (or
decreasing) the far-field displacement, an important property guaranteed by rigorous
elasticity theorems (Barber 1974). The history of pressures can be saved during a
contact simulation and it is easy to access and use and it can be beneficial to save
computation time, as proved by Bemporad and Paggi (2015).

Optimization algorithms. Since now on, we use the subscript i to denote the i th
component of a vector or the i th row of a matrix, the subscript I to denote the
subvector obtained by collecting all the components i ∈ I of a vector (or all the rows
i of a matrix), and the double subscript I, I1 to denote the submatrix obtained by
collecting the i th row and j th column, for all i ∈ I, j ∈ I1.

In the sequel, following the content in Bemporad and Paggi (2015), a brief
overview of algorithms to solve the constrained contact problem is provided, starting
first with those for the solution of the LCP, namely, the greedy method and the con-
strained conjugate gradient algorithm. Next, optimization algorithms for the solution
of the corresponding QP are discussed, such as the nonnegative least squares and
the alternative direction method of multipliers. Finally, a comparison of the algo-
rithms above in terms of computation performance is presented. Further acceleration
strategies and advanced methods are also discussed.

A greedy method corresponds to solve problem (4.15) by iteratively solving the
unconstrained linear system of equations w = Hp − ū = 0 with respect to p and
increasingly zeroing negative elements of p until the condition p ≥ 0 is satisfied.
By construction we obtain wTp = 0. The method is described in Algorithm 1, in
which a standard conjugate gradient (CG) is employed to solve the unconstrained
linear system of equations. Steps 2.1–2.4 can be replaced by any other algorithm for
solving the linear system of equations, like the Gauss–Seidel iterative scheme as in
Borri-Brunetto et al. (1999, 2001), the MATLAB’s mldivide solver, or even the
FFT algorithm as in Karpenko and Akay (2001), Batrouni et al. (2002), Vollebregt
(2014).

Assuming that the prescribed initial p and I are such that p j = 0 for all j ∈
{1, . . . , n} \ I, and Kmax is sufficiently large, the output of the greedy algorithm
leads to a contact pressure vector p∗ and a normal displacement vector u∗ satisfying
u∗ = Hp∗, p∗ ≥ 0, (u∗ − ū)Tp∗ = 0. In fact, condition p∗ ≥ 0 is guaranteed by the
condition in Step 2 up to ε precision. By letting w∗ � u∗ − ū, at termination of
the algorithm we have w∗

I = HI,Ip∗
I − ūI = 0 because of the solution of the CG

method (Step 2.4), or equivalently u∗
I = ūI (cf. Step 4). By setting u∗

Ī � HĪ,IpI in
Step 4, and recalling that p∗

Ī = 0, we have
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Input: Matrix H = HT � 0, vector ū; initial guess p and initial active set I ⊆ {1, . . . , n}
such that p{1,...,n}\I = 0; maximum number Kmax of iterations, tolerance ε > 0.

1. i ← 0; Ī ← {1, . . . , n} \ I;
2. while (i ≤ Kmax and min(p) < −ε) or i = 0 do:

(2.1) wI ← HI,IpI − ūI ;
(2.2) nw ← ‖wI‖2;
(2.3) bI ← −wI
(2.4) while nw > ε and i ≤ Kmax do:

(2.4.1) sI ← HI,IbI ;

(2.4.2) pI ← pI − wT
IbI

bTIsI
bI ;

(2.4.3) w̄I ← HI,IpI − ūI ;

(2.4.4) bI ← −w̄I + w̄T
IsI

bTIsI
bI ;

(2.4.5) wI ← w̄I ;
(2.4.6) nw ← ‖wI‖2;
(2.4.7) i ← i + 1;

(2.5) for j ∈ I do:
(2.5.1) if p j < −ε then p j ← 0; I ← I \ { j}; Ī ← Ī ∪ { j};

3. p∗ ← p;
4. u∗

I = ūI , u∗̄
I ← HĪ,IpI ;

5. end.

Output: Contact force vector p∗ and normal displacement vector u∗.

Algorithm 1: Greedy method with Conjugate Gradient (greedy CG)

[
w∗

I
w∗

Ī

]
=

[
0 0

HĪ,I 0

] [
p∗
I
0

]
+

[
0

−ūĪ

]
=

[
HI,I HI,Ī
HĪ,I HĪ,Ī

] [
p∗
I

p∗
Ī

]
+

[−ūI
−ūĪ

]

and hence u∗ = w∗ + ū = Hp∗. The complementarity condition (u∗ − ū)Tp∗ =
(w∗)Tp∗ = 0 follows by construction, as Step 2.4 zeroes all the components of w∗

j
that correspond to nonnegative p∗

j , ∀ j ∈ I, and zeroes all the components p∗
j that

correspond to possible nonzero components w∗
j , ∀ j ∈ Ī.

However, Bemporad and Paggi (2015) demonstrated that there is no formal proof
that the conditionw∗

Ī ≥ 0 (i.e., thatu∗ ≥ ū) is satisfied after the algorithm terminates.
If the algorithm is applied to randomly generated ū vectors and H positive definite
matrices with positive coefficients, Bemporad and Paggi (2015) found that in many
cases the LCP is not solved exactly. This problem was noticed especially when
the contact domain is densely packed, with many boundary elements close to each
other and all in contact. A MATLAB routine of the counterexample is available for
download at http://musam.imtlucca.it/counterexample.m.

Therefore, as a word of caution, the reliability of the greedy method should be
carefully checked in case of applications of the boundary element method to contact

http://musam.imtlucca.it/counterexample.m
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problems governed by other forms ofH, as in the case of contact with an anisotropic
or an inhomogeneous half-plane.

Another drawback of the algorithm is the difficulty to warm start the method with
a proper choice of the initial active set I. Since at Step 2.5.1 the number of elements
in the sequence I is decreased by removing negative enough components p j of the
current solution vector, i.e., eliminating the points bearing tensile (negative) forces,
in a monotonic way (no index j that has been removed from I can be added back),
a safe cold start is to set I = {1, . . . , n} and pick up a vector p ≥ 0, usually a vector
with arbitrary nonnegative numbers. The history of boundary element contact forces
obtained during the solution of a sequence of imposed displacements is not taken into
account by the method to accelerate its convergence, although we know that contact
forces are monotonically increasing functions of the far-field displacement. In any
case, for a complex sequence of loading with an increased or decreased far-field
displacement, any warm starting on forces cannot be implemented in the method,
since the elimination of contact points is irreversible.

A constrained conjugate gradient (CG) algorithm was proposed by Polonsky and
Keer (1999) based on the theory by Hestenes (1980, Chaps. 2, 3), to solve the linear
system of equations and rigorously impose the satisfaction of the contact constraints.
Algorithm 2 has been applied by Polonsky and Keer (1999) to simulations under
load control. However, it can be used also for displacement control. The condition
for convergence set by Polonsky and Keer (1999) in terms of relative variation in the
local contact forces from an iteration to the next has been recast in terms of the error
in the local contact displacements. The two criteria are completely equivalent.

This constrained CG algorithm does not remove the points bearing tensile forces
from the active set, as the Greedy algorithms do. Therefore, the size of the linear
system of equations is not reduced during the iterations, increasing the computation
time for its solution. On the other hand, themethod assures the satisfaction of the LCP
conditions (4.13) and itwas found inBemporad andPaggi (2015) to convergencewith
a reduced number of iterations as compared to the Greedy CG algorithm. Although
not investigated in Polonsky and Keer (1999), it can be warm-started in case of a
sequence of loading steps by considering both an initial trial contact domain and a set
of contact pressures derived from the previous converged solution. The FFT method
can be used to accelerate step (3.8) of Algorithm 2, as in Polonsky and Keer (2000a).

The QP problem with positive definite Hessian matrix having the special form
(4.15) and corresponding to the LCP can be effectively solved as a nonnegative least
squares problem, as proposed by Bemporad and Paggi (2015).

Thanks to property (4.14), matrix H admits a Cholesky factorization H = CTC.
Hence, we can theoretically recast problem (4.15) as the nonnegative least squares
(NNLS) problem:

minp
1

2
‖Cp − C−T

ū‖22 (4.19a)

s.t. p ≥ 0. (4.19b)



144 M. Paggi et al.

Input: Matrix H = HT � 0, vector ū, initial guess p ≥ 0, initial active set I = {1, . . . , n};
maximum number Kmax of iterations, tolerance ε > 0.

1. i ← 0, nw,old = 1, d = 0, err = +∞;
2. w ← Hp − ū;
3. while (i ≤ Kmax and err > ε):

(3.1) if i = 0 ;
then t ← w ;

else: t ← w + d
nw

nw,old
told;

(3.2) τ = wTt
tTHt

;

(3.3) p ← p − τ t;
(3.4) ∀ j ∈ I : p j ← max{p j , 0};
(3.5) Find Iol = { j ∈ I : p j = 0, w j < 0};

if Iol = ∅ then d = 1 else d = 0; p j ← p j − τw j , ∀ j ∈ Iol ;
(3.6) I ← { j : p j > 0} ∪ Iol ;
(3.7) told ← t, nw,old ← nw;
(3.8) w ← Hp − ū;
(3.9) nw = ‖w‖2;

(3.10) err ← |nw − nw,old|/nw,old;
(3.11) i ← i + 1;

4. p∗ ← p; u∗ = Hp∗;
5. end.

Output: Contact force vector p∗ and normal displacement vector u∗.

Algorithm 2: Constrained Conjugate Gradient

A simple and effective active-set method for solving the NNLS problem (4.19) is
the one in Lawson and Hanson (1974, p. 161) that was extended by Bemporad and
Paggi (2015) in Algorithm 3 to directly solve (4.15) without explicitly computing the
Cholesky factorC and its inverseC−1, and to handlewarmstarts.After a finite number
of steps, Algorithm 3 converges to the optimal contact force vector p∗ and returns
the normal displacement vector u∗ whose components pi, j , ui, j satisfy pi, j ≥ 0,
ui, j ≥ ūi, j , (ui, j − ūi, j )pi, j = 0, and (4.12), ∀(i, j) ∈ IC .

The method is easy to warm start in case of a loading scenario consisting of an
alternating sequence of increasing or decreasing far-field displacements. The contact
forces determined for a given imposed displacement are used to initialize vector p.
Due to the monotonicity of the contact solution, this initialization is certainly much
closer to the optimal solution p∗ than a zero vector. This usually significantly reduces
the iterations of the method to convergence. Such a warm start has a fast implementa-
tion requiring a projection of the forces of the points belonging to I ∗

C(�k) to the same
points of the trial domain I ∗

C(�k+1) for a new imposed far-field displacement �k+1.
For an increasing far-field displacement, i.e., �k+1 > �k the forces in the elements
belonging to I ∗

C(�k+1) − I ∗
C(�k) are simply initialized equal to zero.
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Input: Matrix H = HT � 0, vector ū, initial guess p; maximum number Kmax of iterations,
tolerance ε > 0.

1. I ← {i ∈ {1, . . . , n} : pi > 0}; ini t ← FALSE; k ← 0;
2. if I = ∅ then ini t ← TRUE;
3. w ← Hp − ū;
4. if ((w ≥ −ε or I = {1, . . . , n}) and ini t = TRUE) or k ≥ Kmax

then go to Step 13;
5. if ini t = TRUE then i ← argmini∈{1,...,n}\I wi ; I ← I ∪ {i};

else ini t ← TRUE;
6. sI ← solution of the linear system HI sI = ūI
7. if sI ≥ −ε then p ← s and go to Step 3;

8. j ← argminh∈I: sh≤0

{
ph

ph−sh

}
;

9. p ← p + p j
p j−s j

(s − p);
10. I0 ← {h ∈ I : ph = 0};
11. I ← I \ I0; k ← k + 1;
12. go to Step 6;
13. p∗ ← p;
14. u∗ ← w + ū;
15. end.

Output: Contact force vector p∗ and normal displacement vector u∗ satisfying u∗ = Hp,
u∗ ≥ ū, p∗ ≥ 0, (u∗ − ū)Tp = 0.

Algorithm 3: Non-Negative Least Squares (NNLS)

Note that Step 6 of Algorithm 3 is equivalent to Step 2.4 of Algorithm 3 and it
has been performed in Algorithm 1 by using the MATLAB’s mldivide solver.
This step can be accelerated by the use of an approach based on the FFT (for its
implementation, see, e.g., Batrouni et al. (2002)). Alternatively, since the set I0
changes incrementally during the iterations of the algorithm, more efficient iterative
QR (Lawson and Hanson, 1974, Chap. 24) or LDLT Bemporad (2014) factorization
methods can be employed.

An alternative method to solve the QP problem (4.15) is to use an accelerated
gradient projection (GP) method for QP (Nesterov 1983; Patrinos and Bemporad
2014). Because of the simple nonnegative constraints in (4.15), rather than going to
the dual QP formulation as in Patrinos and Bemporad (2014), the GP problem was
formulated directly for the primal QP problem (4.15). Numerical experiments have
shown slow convergence of a pure accelerated GP method to solve (4.15). However,
the method can be used to warm start Algorithm 3, as described in Algorithm 4
proposed in Bemporad and Paggi (2015). If Algorithm 4 is executed (K > 0), it
returns a vector p that is immediately used as an input to Algorithm 3, otherwise
one can simply set p = 0 (cold start). As shown in the algorithms’ comparison in
the sequel, GP iterations provide large benefits in warm starting the NNLS solver,
therefore allowing taking the best advantages of the two methods: quickly getting in
the neighborhood of the optimal solution (GP iterations of Algorithm 4) and getting
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solutions up to machine precision after a finite number of iterations (the active-set
NNLS Algorithm 3).

Input: Matrix H = HT � 0 and its Frobenius norm L , vector ū, initial guess p, number K
of iterations.

1. p̄ ← p;
2. for i = 0, . . . , K − 1 do:

(2.1) β = max{ i−1
i+2 , 0};

(2.2) s = p + β(p − p̄);
(2.3) w = Hs − ū;
(2.4) p̄ ← p;
(2.5) p ← max{s − 1

Lw, 0};
3. end.

Output: Warm start for contact force vector p and elastic correction vector w.

Algorithm 4: Accelerated Gradient Projection (GP) to be used to warm start the
NNLS algorithm

The QP problem (4.15) can also be solved by the alternating direction method of
multipliers (ADMM), which belongs to the class of augmented Lagrangian meth-
ods. The reader is referred to Boyd et al. (2011) for mathematical details, while its
application to contact problems was proposed in Bemporad and Paggi (2015). The
method treats the QP (4.15) as the following problem:

minp,s
1
2p

THp − ūTp + g(s)
s.t. p = s,

(4.20)

where

g(s) =
{

0 if s ≥ 0
+∞ if s < 0

.

Then, the augmented Lagrangian function

Lρ(p, s,w) = 1

2
pTHp − ūTp + g(s) + wT(p − s) + ρ

2
‖p − s‖22

is considered, where ρ > 0 is a parameter of the algorithm. The basic ADMM algo-
rithm consists of the following iterations:

pk+1 = argminp Lρ(p, sk,wk)

sk+1 = argmins Lρ(pk+1, s,wk)

wk+1 = wk + ρ(pk+1 − sk+1).

(4.21)
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A scaled form with over-relaxation of the ADMM iterations (4.21) is summa-
rized in Algorithm 5. The algorithm is guaranteed to converge asymptotically to the
solution p∗, u∗ of the problem. The over-relaxation parameter α > 1 is introduced
to improve convergence. Typical values for α suggested in Boyd et al. (2011) are
α ∈ [1.5, 1.8].

A warm start of the algorithm that takes into account the loading history is pos-
sible in a way analogous to that described for the NNLS approach. However, as an
additional complexity, also an initialization for the dual variable vector w must be
provided, possibly obtained by projecting the solution obtained for a certain �k to
that for �k+1.

Input: Matrix H = HT � 0, vector ū, initial guesses p, w, parameter ρ > 0,
over-relaxation parameter α > 1, maximum number Kmax of iterations, tolerance ε > 0.

1. M ← ( 1
ρ
H + I)−1;

2. wρ ← − 1
ρ
w;

3. s ← p;
4. i ← 0;
5. while (i ≤ Kmax and ‖p − s‖∞ > ε) or i = 0 do:

(5.1) s ← M(p − wρ − 1
ρ
ū);

(5.2) s̄ ← αs + (1 − α)p;
(5.3) p ← max{s̄ + wρ, 0};
(5.4) wρ ← wρ + s̄ − p;
(5.5) i ← i + 1;

6. p∗ ← p;
7. u∗ ← ū − ρwρ ;
8. end.

Output: Contact force vector p∗ and normal displacement vector u∗ satisfying u∗ = Hp,
u∗ ≥ ū, p∗ ≥ 0, (u∗ − ū)Tp = 0.

Algorithm 5: Alternative Direction Method of Multipliers (ADMM)

Comparison of the algorithms’ performance. To assess the computation efficiency
and performance in terms of number of iterations required to achieve convergence,
the optimization algorithms reviewed in the previous section can be compared in
relation to a benchmark frictionless normal contact problem involving a numerically
generated fractal rough surface and a half-plane.

To this aim, the random midpoint displacement algorithm (Peitgen and Saupe
1988) can be used to generate the synthetic height field of surfaces with multiscale
fractal roughness, i.e., with a power spectral density (PSD) function of the height
field of power-law type. The surface with a given resolution (pre-fractal) is realized
by a successive refinement of an initial coarse representation by adding a sequence of
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Fig. 4.2 Rough surfaceswithmultiscale roughness and different resolutions, numerically generated
by the random midpoint displacement algorithm. From Bemporad and Paggi (2015)

intermediate heights whose elevation is extracted from aGaussian distribution with a
suitable rescaled variance, see a qualitative sketch in Fig. 4.2. Several applications of
the method to model rough surfaces for contact mechanics simulations are available
in Zavarise et al. (2004a, b), Paggi and Ciavarella (2010).

In particular, let us consider a test problem consisting of a surface with Hurst
exponent H = 0.7, lateral size L = 100 µm, and 512 heights per side. The surface
is brought into contact with an elastic half-plane under displacement control. Ten
displacement steps are imposed to reach a maximum far-field displacement which is
set equal to (ξmax − ξave)/2, where ξmax and ξave are the maximum and the average
elevations of the rough surface, respectively. All the simulations were carried out
with the server 653745-421 Proliant DL585R07 from Hewlett Packard with 128
GB Ram, 4 processors AMD Opteron 6282 SE 2.60 GHz with 16 cores running
MATLAB R2014b.

The parameters for the Greedy CGmethod are the maximum number of iterations
Kmax = 1 × 105 and the convergence tolerance ε = 1 × 10−8. The contact forces are
initialized at zero (cold start). The constrained CG method also considers Kmax =
1 × 105 and the same tolerance ε = 1 × 10−8. Both the original version by Polonsky
and Keer (1999) (labeled P&K1999 in Fig. 4.3) and its warm-started variant (labeled
P&K1999 + warm start in Fig. 4.3) are considered.

For the NNLS algorithm (Algorithm 3), the warm start strategy based on the pro-
jection of contact forces from the solution corresponding to a previous displacement
step is adopted. Alternatively, warm starting using gradient projections (denoted
as NNLS+GP) is examined, using 100 gradient projections to initialize vector p.
The parameters for the ADMM method are α = 1.5, ρ = 1, Kmax = 3 × 103, and
ε = 10−8. The total number n of optimization variables is varying with the amount
of imposed displacement � and therefore with the force level. For the highest inden-
tation level of the present test, n = 35,555. Warm starting the algorithm is achieved
by projecting primal variables as for the NNLS and dual variables w as well. The
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Fig. 4.3 Comparison
between the optimization
algorithms in terms of
speedup of computation time

projection simply consists of assigning the values of p∗
i, j and w∗ of the boundary

elements in contact for the step �k to the same boundary elements belonging to the
trial contact domain IC corresponding to the higher indentation �k+1.

Once convergence is achieved for each imposed far-field displacement, the opti-
mization algorithms provide the same normal force P and contact domains, with
small roundoff errors due to finite machine precision. The ratio between the CPU
time required by each method to achieve convergence and the CPU time employed
by the Greedy CG algorithm, which is the slowest, is considered as a measure of
speedup. This ratio is plotted vs. the dimensionless normal force P/(E A) in Fig. 4.3,
where A = L2 is the nominal contact area. The best performance is achieved by the
application of the NNLS method with 100 gradient projections (GP), which is 25
times faster than the original constrained CG method by Polonsky and Keer (1999)
and about two orders of magnitude faster than the ADMM and the Greedy CG algo-
rithms, with an increasing efficiency for high loads. The NNLS with warm start is
also very well performing, with a stable speedup of about 25 times for any load level.

As outlined in the introduction, the Greedy method can be used in conjunction
with other algorithms for solving the unconstrained linear system of equations (Step
2.4) than the CG algorithm. For instance, the CG Step 2.4 in the Greedy algorithm
can be replaced with the optimized built-in mldivide function of MATLAB, or
with the Gauss–Seidel algorithm, as proposed in Borri-Brunetto et al. (1999, 2001).

The MATLAB’s mldivide solver (which employs the Cholesky factorization)
leads to a reduction of computation time of 30–40% with respect to the CG method,
almost regardless of the size of the system n, see Fig. 4.4. Even with this gain in
computation speed, the overall performance is still quite far from that of the NNLS
Algorithm 3 on the platform used for the tests. Moreover, the MATLAB solver leads
to an error of lack of memory for n >20,000, a serious problem for large systems
that are not suffered by the CG solver described in Step 2.4 of Algorithm 1. The
Gauss–Seidel algorithm does not suffer for the lack of memory but it is about 3 times
slower than the CG method.
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Fig. 4.4 Ratio between
computation times for the
Greedy method using
different solvers
(MATLAB’s mldivide
solver or Gauss–Seidel
algorithm) as compared to
the conjugate gradient (CG)
algorithm, for different sizes
n of the contact superset IC .
Adapted from Bemporad and
Paggi (2015)

Fig. 4.5 Computation times
of the NNLS algorithm
depending on the number K
of gradient projection (GP)
iterations. Adapted from
Bemporad and Paggi (2015)

The effect of the number K of GP iterations applied before the NNLS algorithm
was also investigated in Bemporad and Paggi (2015). Figure 4.5 shows, for the same
test problemwhose results are shown in Fig. 4.3, the effect of K on the total computa-
tion time. For K from 0 to 100, we observe a reduction in the total computation time
due to a decrease in the number of iterations requested by the NNLS algorithm to
achieve convergence, thanks to a better initial guess of p. However, a further increase
in K (see, e.g., the curve in Fig. 4.5 corresponding to K = 200 iterations) does not
correspond to further savings of CPU time. This is due to the fact that the number of
NNLS iterations was already reduced to its minimum for K = 100 GP iterations, so
that the application of further gradient projections is just leading to additional CPU
time without further benefit.

Further acceleration strategies and variants of the boundary element method.
A further speedup of computation time, as compared to the NNLS method, can be
achieved by improving the criterion for the guess of the initial set IC of points in
contact. The standard criterion based on checking the interpenetration of the surface
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Fig. 4.6 A sketch illustrating the property of lacunarity of the contact domain: the real contact area
progressively diminishes by refining the surface, until vanishes in the fractal limit of δ → 0. This
implies that some boundary elements detected by the rigid body interpenetration criterion (dashed
gray elements) can be neglected a priori since they are outside the real contact area corresponding
to the coarse scale contact solution. From Bemporad and Paggi (2015)

heights into the half-plane in case of a rigid body motion is the most conservative
one. However, at convergence, we know that only a small subset I ∗

C of that initial set
is actually in contact. Therefore, a better choice of the initial trial contact domain
would reduce the size of the system of linear equations with an expected benefit in
terms of computation time.

As shown in Borri-Brunetto et al. (1999) via numerical simulations on pre-fractal
surfaces with Hurst exponent H > 0.5 and different resolutions by refining the sur-
face height field via a recursive application of the random midpoint displacement
algorithm, the real contact area of each surface representation decreases by reducing
the grid spacing δ, as illustrated in the sketch in Fig. 4.6. In the fractal limit of δ → 0,
the real contact area vanishes. Therefore, this property of lacunarity implies that the
heights that are not in contact for a coarser surface representation are not expected to
come into contact by a successive refining of the height field, for the same imposed
far-field displacement.

Therefore, a possible better criterionwas proposed byBemporad and Paggi (2015)
and was called cascade multiresolution (CMR) algorithm. In the method, the initial
trial contact domain is selected by retaining, among all the heights selected by the
rigid body interpenetration check, only those located within the areas of influence of
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the nodes belonging to the contact domain of a coarser representation of the rough
surface for the same imposed displacement �. This criterion, inspired by fractal
considerations, shares some analogies with multigrid methods, where coarse and
fine grids are used to compute the contact solution.

As graphically shown in Fig. 4.6, an area of influence of a given node in contact
can be defined by the radius

√
2δ, where δ is the grid size of the coarser surface

representation. Since the criterion is not exact, Bemporad and Paggi (2015) suggested
to consider a multiplicative factor h larger than unity for the radius defining the nodal
area of influence. It is remarkable to note that this numerical scheme can be applied
recursively to a cascade of coarser representations of the same rough surface. As
a general trend, computation time is expected to drastically diminish by increasing
the number of cascade projections. However, the propagation of errors due to the
wrong exclusion of heights that would actually make contact cannot be controlled
by the algorithm and it is expected to increase with the number of projections as well.
The advantage of the method is represented by the fact that, in addition to saving
computation time with respect to that required by the NNLS algorithm to solve just
one contact problem for the finest surface, all the contact predictions for the coarser
scale representations of the same surface are providedwithout additional costs, which
is a useful result for the multiscale characterization of contact problems. Moreover,
the CMRmethod can be used in conjunction with any of the optimization algorithms
reviewed in the previous sections. The algorithm is illustrated in Algorithm 6.

Input: s = 1, . . . , l surface representations with different resolution or grid spacing δ(s);
area of influence parameter h ≥ 1.

1. for s = 1, . . . , l do:

(1.1) Determine IC (s) = {(i, j) ∈ IN (s) : ξi, j ≥ ξmax(s) − �};
(1.2) if s = 1 then IC,p(s) = IC (s)

else
IC,p(s) = {(i, j) ∈ IC (s) : ri−k, j−l = ‖xi, j − xk,l‖ ≤ hδ(s − 1)}, ∀(k, l) ∈ I ∗

C (s − 1)
end

2. Construct H based on the projected trial contact domain IC,p(s);
3. Apply optimization algorithms (e.g., NNLS) and determine p∗, u∗, I ∗

C (s);
4. end.

Algorithm 6: Cascade multi-resolution (CMR) algorithm

To assess the computational performance of the method, the CMD algorithm was
applied in conjunction with the NNLS algorithm to pre-fractal surfaces with different
H numerically generated by the RMD method (Bemporad and Paggi 2015). As an
example, the lateral size was set equal to 100 µm for all the surfaces and the finest
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resolution whose contact response has to be sought corresponded to 256 heights per
side. The method requires the storage of the coarser representations of such surfaces
that are in any case available by the RMD algorithm during its various steps of
random addition.

The cascade of projections was applied starting with a coarser representation of
the surfaces with only 16 heights per side and then considering 32, 64, 128, and
finally 256 heights per side. A parameter h = 2 was used for the definition of the
area of influence. The solution of the contact problem for the surface with 16 heights
per side was obtained in an exact form, since it is the starting point of the cascade
projections, whereas the contact predictions for the finer surface representations can
be affected by an error intrinsic in the criterion. The approximate predictions for
the surface with 256 heights per side were compared with the reference solution
corresponding to the application of the NNLS algorithm with warm start directly to
the finest representation of the rough surface.

The computation time of the CMR+NNLS solution is the sum of the CPU time
required to solve all the coarser surface representations and it is found to bemuch less
than the CPU time required by the NNLS algorithm to solve just one single surface
with the finest resolution, see Fig. 4.7, where we observe a reduction of about 50%
in CPU time almost regardless of H . The relative error in the computation of the
maximum normal force between the predicted solution and the reference one is a

Fig. 4.7 Performance of the CMR+NNLSmethod applied to numerically generated fractal surfaces
with a different Hurst exponent H and h = 2. Adapted from Bemporad and Paggi (2015)
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Fig. 4.8 Performance of the
CMR+NNLS method with
respect to NNLS for a
numerically generated fractal
surface with H = 0.7,
depending on the parameter
h. Adapted from Bemporad
and Paggi (2015)

rapidly decreasing function of H , as shown in Fig. 4.7. Considering that real surfaces
have often a Hurst exponent H > 0.5, the method is very promising.

A synthetic diagram illustrating the effect of the parameter h for the surface with
H = 0.7 and for a single imposed displacement corresponding to the maximum load
is shown in Fig. 4.8. The relative error is rapidly decreasing to values less than 1%
by increasing h. The ratio between the number of points expected to be in contact
after the application of the CMR projection criterion, np, and the number of points
that would be included by using the classic rigid body interpenetration check, n, is
ranging from 0.4 to 0.8 by increasing h from 1.25 to 3.0. The ratio between CPU
times, on the other hand, tends to an asymptotic value of 0.6, which implies a saving
of 40% of computation time as compared to the exact solution, with less than 0.01%
of relative error.

Among the variants of the boundary element method published in the literature,
some concerned with the treatment of the key features of roughness and its evolu-
tion during contact. Starting from the fundamental assumption of micromechanical
contact theories that only the asperities, i.e., the local maxima of the rough surface,
make contact (Greenwood and Williamson 1966; Zavarise et al. 2004a; Paggi and
Ciavarella 2010), then one could simplify the boundary element approach by treat-
ing only the set of asperities as boundary elements. Each asperity can be modeled
as a paraboloid whose geometry is defined by its position (x, y) in the plane, its
elevation z above a reference plane, and its mean radius of curvature R, as proposed
in Greenwood (2006). For such a Hertzian asperity, the theory of elasticity provides
the displacement of the half-plane in the location of the asperity itself, as well as the
displacement in any other position, see Nowell andHills (1989). Such an information
can be used to define the Green functions for the application of a generalized bound-
ary element method, where a recursive elimination of asperities supporting tensile
forces can be implemented till the final active set of asperities in contact and the
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corresponding normal contact forces are identified, using, for instance, the Greedy
algorithm. Alternatively, the problem can be formulated by an iterative correction to
the asperity deformation as proposed in Ciavarella et al. (2006), avoiding the inver-
sion of the compliance matrix. Moreover, the scheme allows also studying the effect
of short- or long-range elastic interaction effects, as carefully investigated in Paggi
and Barber (2011).

The above multi-asperity contact problem overcomes the limitations of the origi-
nal semi-analytical contact theory by Greenwood and Williamson (1966) which did
not include elastic interactions in its original form. Moreover, the correction scheme
proposed inCiavarella et al. (2006) inspired also away to improve theGreenwood and
Williamson contact theory by introducing a yet simple but effective mean pressure
elastic interaction effect (Ciavarella et al. 2008b). Moreover, the approach presents
several advantages over the standard boundary element method, especially in terms
of speedup of computation time which is mainly achieved by the fact that the size of
the set of potential asperities in contact is significantly much smaller than the total
number of boundary elements. On the other hand, drawbacks regard the fact that
the method strongly relies on the geometrical parameters of the asperities, which
are resolution-dependent as discussed in Majumdar and Bhushan (1990), Zavarise
et al. (2004b). Another limitation as compared to a more general boundary element
method regards the fact that the contact problem relies on the undeformed asperity
geometry. This limitation has been partially overcome by Afferrante et al. (2012),
who proposed an update of the asperity detection and their geometrical parameters
during contact, to model the phenomenon of merging of asperities by forming bigger
ones with completely different geometrical features as compared to what estimated
from the undeformed configuration.

The Contact Problem with Friction

In the most general three-dimensional contact problem with friction, the surface
displacement vector projected onto an orthogonal Cartesian frame Oxyz has three
components, ux , uy , and uz . The component uz is the component perpendicular to
the mean plane of the nominally flat rough surface and it corresponds to the vari-
able u for the frictionless normal contact problem detailed in the previous section.
The other components ux and uy correspond, on the other hand, to the in-plane sur-
face displacements. The latter are intimately connected to the corresponding surface
tractions qx , qy , and p through the Green functions.

For instance, a uniform distributed normal traction p(y) acting over a square
surface element S of lateral size δ identified by the position vector y = (x ′, y′)T
leads to the following surface displacements at another point x = (x, y)T at a distance
r = ‖x − y‖:
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ux = −1 − 2ν

4πG

∫
S

x − x ′

r2
p(y)dy, (4.22a)

uy = −1 − 2ν

4πG

∫
S

y − y′

r2
p(y)dy, (4.22b)

uz = 1 − ν

2πG

∫
S

p(y)
r

dy. (4.22c)

Similarly, for a uniform distributed tangential traction qx (y),

ux = 1

2πG

∫
S

[
1 − ν

r
+ ν

(x − x ′)2

r3

]
qx (y)dy, (4.23a)

uy = 1

2πG

∫
S

ν
(x − x ′)(y − y′)

r3
qx (y)dy, (4.23b)

uz = 1 − 2ν

4πG

∫
S

x − x ′

r2
qx (y)dy, (4.23c)

and for a uniform distributed tangential traction qy(y):

ux = 1

2πG

∫
S

ν
(x − x ′)(y − y′)

r3
qy(y)dy, (4.24a)

uy = 1

2πG

∫
S

[
1 − ν

r
+ ν

(y − y′)2

r3

]
qy(y)dy, (4.24b)

uz = 1 − 2ν

4πG

∫
S

y − y′

r2
qy(y)dy. (4.24c)

Therefore, we recognize that the normal contact problem is in general fully cou-
pled with the tangential one, in the sense that a normal pressure induces not only
normal displacements but also not-vanishing in-plane deformation. After introduc-
ing a boundary element discretization of the nominally rough surface into N × N
elements as for the frictionless normal contact problem, surface displacements in a
point defined by the indices i, j are related to uniform surface tractions acting on a
square element defined by the indices k, l via amatrix collecting the Green functions,
see Love (1999), Pohrt and Li (2014):

⎧⎨
⎩
ux

uy

uz

⎫⎬
⎭

i, j

=
N∑

k=1

N∑
l=1

⎡
⎣Hxx Hxy Hxz

Hyx Hyy Hyz

Hzx Hzy Hzz

⎤
⎦

i jkl

⎧⎨
⎩
qx
qy
p

⎫⎬
⎭

k,l

, (4.25)
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where Hzx = −Hxz , Hzy = −Hyz , Hyx = Hxy .
The special case ν = 1/2 leads to Hxz = Hyz = 0 and therefore the normal contact

problem becomes uncoupled from the tangential one. Another notable case corre-
sponds to ν = 0, where the coefficient Hxy vanishes and Hxx = Hyy = 2Hzz , leading
to coupling between the normal and the tangential contact problems, but uncoupling
between the two in-plane directions.

The computation of the surface displacements requires a convolution of the trac-
tion effects according to the application of Eq. (4.25), which has a complexity of the
order of O(N 4) operations. Although the number of boundary elements #IC included
in the superset of the possible candidates in contact, IC , is usually smaller than N 2,
a speedup is certainly required. To this aim, a multilevel multi-integration procedure
has been proposed in Lubrecht and Ioannides (1991) reducing the complexity to
O(N 2 log N ) by carrying out a summation over a coarser grid and then introducing
a correction in the vicinity of the point i, j . The same complexity can be reached by
doing the convolution in the Fourier space using a Fast Fourier Transform technique,
as proposed in Vollebregt (2014), Pohrt and Li (2014).

Suppose now to apply a monotonically increasing displacement in the normal
direction, till a given maximum value which is then held constant. Afterward, a
monotonically increasing displacement is applied in a tangential (in-plane) direction.
While the normal contact problem is ruled by the unilateral contact condition, in the
tangential direction it is customary to postulate the existence of two regimes locally
valid for any point in contact: stick, when the points of the two surfaces are intimately
adhering to each other, and slip, when the points experience a relative displacement
in the tangential direction. The distinction between such two states is ruled by the
Coulomb law of friction, which affirms that any point with q ≤ μp is in the stick
condition, being μ the local coefficient of static friction. Therefore, the solution of
the tangential contact problem requires finding the boundary elements belonging to
the stick or to the slip state, for a given fixed normal displacement and an imposed
tangential one.

Due to coupling, tangential tractions determined from the solution of the tangential
contact problem lead to an additional contribution to the normal displacements,which
would demand the recursive solution of the normal contact problem to identify the
corresponding updated normal contact tractions. Since coupling is in general weak,
this feedback effect is often neglected also in the case of ν �= 1/2, simply setting
Hxz = Hyz ∼= 0, see, e.g., the implementation in Pohrt and Li (2014). Physically,
this approximation implies that the real contact area does not change due to tangential
tractions.

Under these assumptions, after solving the frictionless normal contact problem for
a given imposed normal displacement �, the set I ∗

C of boundary elements in contact
(#I ∗

C = N ∗
C) is known. The subsequent application of a tangential displacement �T

leads to a partition of the contact set into two parts: a set where stick is observed, I ∗
C,st,

and a set where slip is expected, I ∗
C,sl. Hence, in matrix form, the relation between

surface displacements and tangential tractions can be formally partitioned as follows:
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{
ust
usl

}
=

[
Ast,st Ast,sl

Asl,st Asl,sl

]{
qst
qsl

}
, (4.26)

whereust collects the value of the imposed far-field tangential displacement�T for all
the boundary elements in stick condition. On the other hand, by definition, the vector
qsl collects entries which are given by the product between the friction coefficient
μ and the local pressure p acting on the boundary element in slip condition, and
therefore it is known.

The solution of the problem requires an iterative algorithm to identify I ∗
C,st, I

∗
C,sl,

and all the tractions and the surface displacements. To do so, the set I ∗
C,st is usually

initialized equal to I ∗
C , i.e., all the boundary elements in contact are supposed to be

in stick condition, while I ∗
C,sl is empty. Then, the tangential tractions of the boundary

elements in stick condition associated to the surface deflections can be computed
using the first row of Eq. (4.26):

Ast,stqst = ust − Ast,slqsl, (4.27)

which requires the inversion of the matrix Ast,st using an inverse fast convolution (a
conjugate gradient algorithm, for instance). In the first iteration, qsl = 0 and ust is a
vector of entries all equal to �T.

If all the boundary elements haveqst < μp, then the initial tentative approximation
was correct. However, in general, there will be some elements with a tangential
traction overcoming the limit value for the stick condition, and therefore they slip
and have to be moved to the I ∗

C,sl set. Correspondingly, the tangential tractions of
those boundary elements have to be limited to the maximum admissible value μp.
The tangential deflections ust and usl can now be recomputed from the updated
distribution of the stick and the slip tractions using again Eq. (4.26). At this point
it is still necessary to check if any boundary element in the tentative slip domain
presents usl ≥ �T. If this is the case, then such boundary elements should be sticking
and therefore they have to be transferred back to the stick domain and usl has to be
limited by�T. Afterward, for the updated partition of stick and slip domains, another
iteration is performed, which requires the computation of qst from Eq. (4.27) and
the surface displacements from Eq. (4.26). The iterative procedure stops when the
entries in I ∗

C,st and I ∗
C,sl do not change anymore, all the boundary elements belonging

to I ∗
C,st are subject to tangential tractions less than μp, and all the boundary elements

belonging to IC,sl have usl < �T.
Applications of this algorithm have been made in Paggi et al. (2014) for the iden-

tification of the evolution of the stick and slip contact domains from full stick to
full slip for fractal rough surfaces subject to a given normal force and an increasing
shearing displacement. Results pinpointed that the last boundary elements entering
the contact domain are the first slipping, due to the low normal pressures acting on
them. Therefore, the contact domain in stick condition is initially coincident with the
normal contact domain and it progressively shrinks to zero, when all the boundary
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elements slip. From the macroscopical point of view, the shearing force level corre-
sponding to full slip is simply equal to the local friction coefficient multiplied by the
applied total normal force, consistently with the Coulomb criterion adopted at the
microscopical level.

The Finite Element Method

Variational Formulation

In this section, the variational formulation governing the problem of contact between
two bodies across a rough interface is detailed. Since the mathematical formula-
tion leading to the finite element method can easily handle in a consistent manner
also adhesive (tensile) interactions at the interface, the most general scenario is
herein examined. Therefore, starting from the strong differential form describing the
mechanics of the continua and the problem of contact with adhesion along the inter-
face, the correspondingweak form is derived. Afterward, different solution strategies
and finite element discretization schemes are discussed, comparing methods based
on the explicit discretization of roughness versus a recent method proposed in Paggi
and Reinoso (2018) to analytically embed roughness into a special interface finite
element.

Governing equations and strong form. Let two deformable bodies occupy the
domains�i ∈ R

2 (i = 1, 2) in the undeformed configuration defined by the reference
system Oxyz. The two domains are separated by an interface � defined by the
opposite boundaries �i (i = 1, 2) of the two bodies, viz., � = ⋃

i=1,2 �i , where
contact or adhesive interactions take place. The whole boundary of the i th body,
∂�i , is therefore split into three parts: (i) a portion where displacements are imposed,
i.e., the Dirichlet boundary ∂�D

i ; (ii) a portion where tractions are specified, i.e.,
the Neumann boundary ∂�N

i ; (iii) and the interface �i = �C
i

⋃
�A
i where specific

boundary conditions have to be imposed to model contact on �C
i or adhesion on �A

i ,
see Fig. 4.9. The partition of �i in �C

i and �A
i is not known a priori, but it is the result

of the solution of the elastic problem.
In the most general case, we postulate the existence of a displacement field for

each body, ui = (ui , vi , wi )
T, that maps the transformation from the underformed

configuration to the deformed one, and vice versa. Such functions are thereby
assumed to be continuous, invertible, and differentiable functions of the position
vector x = (x, y, z)T within each body. At the interface �∗, on the other hand, the
configuration of the system is described by the relative displacement field�u, usually
called gap field g across the interface, which is mathematically defined as the projec-
tion of the relative displacement u1 − u2 onto the normal and tangential directions of
the interface defined by the unit vectors n, t1 and t2, respectively. In components, the
vector �u collects the relative tangential displacements, �ut,1, �ut,2, and the rel-
ative normal displacement, �un , i.e., �u = (�ut1,�ut2,�un)T. The total relative
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Fig. 4.9 Domains �i (i = 1, 2), their Dirichlet (∂�D
i ) and Neumann (∂�N

i ) boundaries, and the
interface � = �1

⋃
�2 composed of an adhesive part, �A

i , and a contact part, �C
i . Adapted from

Paggi and Reinoso (2018)

displacement in the tangential plane is given by�ut = (�ut1,�ut2)T. In the sequel,

we denote gn = �un and gt = �ut , with its modulus gt = �ut =
√

�u2t1 + �u2t3.
Inside each deformable material, the small deformation strain tensor εi (i = 1, 2)

is introduced as customary, which is defined as the symmetric part of the dis-
placement gradient: εi = ∇sui . In the sequel, the standard Voigt notation will
be used and the strain tensor components will be collected in the vector εi =
(εxx , εyy, εzz, γxy, γxz, γyz)

T
i .

In the absence of body forces, the strong (differential) formof equilibrium for each
body is provided by the linear momentum equation along with the Dirichlet and the
Neumann boundary conditions on ∂�D

i and ∂�N
i , respectively (i = 1, 2), equipped

by unilateral contact conditions in the normal direction on �∗
C , Coulomb frictional

conditions on the stick and slip partitions �∗
C,st and �∗

C,sl of �∗
C , and adhesion on �∗

A:

∇ · σ i = 0 in�i , (4.28a)

ui = u on ∂�D
i , (4.28b)

σ i · n = T on ∂�N
i , (4.28c)

gn = 0, pn < 0 on�∗
C , (4.28d)

gt = 0, ‖q‖ < μ|pn| on�∗
C,st, (4.28e)

q = −μ|pn| ġt
‖ġt‖ on�∗

C,sl, (4.28f)

gn > 0, pn = pA > 0 on�∗
A, (4.28g)
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where u denotes the imposed displacement,T the applied traction vector, pA(gn) is a
function of the relative displacement�u, and q is the shearing traction vector. There-
fore, the nonlinearity of the problem stems from the fact that the contact and adhesive
portions of the interface �∗ are known only once the displacement field, solution of
the problem, is known. As a consequence, the present problem can be ascribed to the
family of the so-called moving boundary value problems and it requires an iterative
solution scheme.

For its solution, the strong form has to be equipped by the constitutive equations
for the bulk and for the interface. For the bulk, recalling standard thermodynamic
arguments, general (linear or nonlinear) constitutive stress–strain relations can be
postulated without any loss of generality for the i th material domain: σ i := ∂εi �(εi )

and Ci := ∂2
εi εi

�(εi ), whereby �(εi ) is the Helmholtz free-energy function for the
body i , whereas its corresponding Cauchy stress tensor and the constitutive oper-
ator are, respectively, denoted by σ i and Ci . The two bodies are in general both
deformable, but in the present setting it is also possible to consider one of them as
rigid. This condition is of paramount interest for contact mechanics in the presence
of two dissimilar linear elastic bodies. In such a case, it is possible to simplify the
matter by replacing the bi-material system by a rigid body indenting a linear elastic
material having composite elastic parameters, function of the Young’s moduli Ei ,
and Poisson’s ratios νi (i = 1, 2) of the two elastic materials, as previously detailed
for the boundary element method, see also Barber (2010, 2018).

Regarding the interface, the constitutive response should be introduced by distin-
guishing between the normal and the tangential directions. In the normal direction,
the contact condition imposes that the displacement field solution leads to a vanish-
ing normal gap gn = 0 for the points in contact. Correspondingly, contact tractions
are negative valued in the finite element method, while it is remarkable to note that
the opposite convention was adopted in the boundary element method. For gn > 0,
positive-valued adhesive tractions apply, and they can be, for instance, given by a
relation dictated by an adhesion model inspired by the interatomic Lennard-Jones
potential:

pA = 24ε

[
κ6

(gn + gn,0)7
− 2

κ12

(gn + gn,0)13

]
, (4.29)

where ε and κ are the model parameters and gn,0 is the molecular equilibrium dis-
tance. The parameter gn,0 is such that the condition gn = 0 leads to vanishing adhe-
sive tractions and it correctly captures the transition from adhesion to contact. Other
nonlinear adhesive models can be used in the present approach without any loss of
generality, e.g., the surface potential derived from the interatomic Lennard-Jones
potential, see Yu and Polycarpou (2004). To treat both contact and adhesive tractions
in a unified framework, relaxing at the same time the unilateral contact constraint, a
generalized penalty approach can be efficiently exploited (Paggi and Reinoso 2018).
Physically speaking, a nonlinear springmodel is inserted along the interface between
the two bodies, where pn is given by
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pn(gn) =
{
Kgn, if gn < 0,

pA, if gn ≥ 0.
(4.30)

This formulation leads to a solution allowing for small compenetration, depending
on the value of the penalty stiffness K . Hence, K should be high enough to reduce
material penetration between adjacent continua and, at the same time, it should not
be too high to cause ill-conditioning of the tangent operator resulting from the com-
putational scheme. Following the pioneering work in Zavarise et al. (2019, 1992),
the penalty stiffness K could be related to the normal contact stiffness predicted by
semi-analytical micromechanical contact models, giving a physical ground for its
estimation.

In the tangential direction, q is the tangential traction vector which obeys the
Coulomb friction law. To simplify its treatment into a computational scheme, a
regularized dependency of q upon ġt is usually put forward, smoothing the sharp
transition from the stick to the slip condition, see, e.g., Wriggers (2006, Sect. 5.2.3).

It is remarkable to note here that the treatment of the contact problem with fric-
tion in the finite element method is more general than the analogous treatment in
the boundary element method, since it allows simulating any loading path in three
dimensions. According to Eq. (4.28), the tangential traction vector q changes sign
depending on the velocity of sliding, ġt, which has to be computed using a time
integration routine, usually based on the implicit Euler scheme. Moreover, the stick
and slip portions of q can be computed using a return mapping algorithm, in anal-
ogy with elastoplasticity. For small tangential displacements leading to a situation
intermediate from full stick to full slip, before the onset of gross sliding, and for
simple monotonic loading paths in one given tangential direction, the formulation
can be simplified and rewritten in terms of the total relative displacement gt, instead
of its time derivative. This leads to a penalty-like formulation similar to that used for
Mode II cohesive zone models for fracture, see Paggi et al. (2006), Carpinteri et al.
(2008), where tangential tractions are opposing to the relative sliding deformation
and are specified as a closed-form equation in terms of gt.

Weak form. According to the principle of virtual work, the weak form associated to
the strong formEq. (4.28)with the penalty regularization in the normal and tangential
directions reads

� =
∫

�1

σ 1(u1)Tε1(v1)d� +
∫

�2

σ2(u2)Tε2(v2)d�

−
∫

∂�N
1

TTv1d∂� −
∫

∂�N
2

TTv2d∂�

−
∫

�∗
C

pn(�u)gn(�v)d� −
∫

�∗
C

q(�u)gt(�v)d�

−
∫

�∗
A

pA(�u)gn(�v)d� = 0,

(4.31)
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where vi is the test function (virtual displacement field), and gn(�v) and gt (�v) are
the virtual normal and tangential relative displacements at the interface �∗. The test
function in the i th body fulfills the condition vi = 0 on ∂�D

i and the adhesive-contact
condition on �∗. The displacement field ui solution of the weak form (4.31) is such
that it corresponds to the minimum of � for any choice of the test functions vi .

The numerical treatment of the weak form (4.31) within the finite element method
requires the introduction of two different types of finite element discretization, one
for the bulk,�i,h , and another for the interface,�∗

h , where the subscript h refers to the
respective discretized geometrical feature. For the bulk, standard linear quadrilateral
or triangular isoparametric finite elements can be invoked, see classical finite element
textbooks (Zienkiewicz and Taylor 2000) for details. For the interface, different
strategies can be exploited and they are discussed in the next sections.

Methods Based on the Explicit Discretization of Roughness

Methods based on the explicit discretization of roughness introduce special dis-
cretization schemes to model the rough interface topology.

The simplestmethodwas proposed byHyun et al. (2004) and Pei et al. (2005),who
investigated the frictionless normal contact problem between a rough surface and a
flat half-plane for elastic (Hyun et al. 2004) or elastoplastic (Pei et al. 2005) continua.
In their approach, a three-dimensional mesh for a rough surface was constructed
in two stages. First, a flat surface with nodes at each point on the square grid was
considered.A local refinement techniquewas used to achieve a strongmesh gradation
with very small elements near the surface and a coarser discretization in the bulk, to
reduce the number of finite elements and, therefore, indirectly, the computation cost
associated to the solution of the algebraic equations associated to the finite element
method. In the second step, all nodes belonging to the surface were displaced to
create the desired roughness.

Since only a small fraction of the nodes of the rough surface are in contact after
the application of the load, it was convenient to assemble only nonvanishing contact
contributions to the weak form. To do that, the conventional master/slave node-to-
surface contact search was employed in Hyun et al. (2004), Pei et al. (2005). The
contact search computes the valueof the normal gap for eachnodeof the rough surface
with respect to the opposingmaster flat surface, considering the projection of the node
position in the direction normal to the flat surface, see Wriggers (2006, Sect. 10.1).
Depending on the sign of the gap function, nodes experiencing a compenetration are
retained in the so-called active set. After inserting the finite element discretization,
an explicit Newmark time-stepping algorithm was adopted in Hyun et al. (2004),
Pei et al. (2005) to further reduce the computation cost. The advantage is that the
explicit method leads to a set of uncoupled algebraic equations whose solution can
be parallelized. The disadvantage is represented by the fact that an artificial damping
has to be introduced to simulate quasi-static contact problems and the algorithm is
not unconditionally stable, thus requiring small time steps.
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More sophisticate discretizationmethods available in the literature exploit smooth
interpolation schemes based on splines with randomly chosen heights to generate
the asperities of the surface (Wriggers and Reinelt 2009), in conjunction with con-
tact search algorithms and implicit Newton–Raphson incremental-iterative solution
schemes for the solution of the nonlinear algebraic equations. Such an approach
is unconditionally stable, thanks to the computation of the tangent stiffness matrix.
However, sparse global stiffness matrices are obtained, which do not allow a straight-
forward parallelization of the linearized set of algebraic equations as for the explicit
approach. Moreover, the introduction of smooth interpolation schemes can be ben-
eficial for modeling wavy surfaces or spheres, as in the case of NURBS used in De
Lorenzis and Wriggers (2013) to depict sinusoidal wavy profiles, but it is cumber-
some for the description of multiscale roughness features over multiple wavelengths.
Due to the complexity of the implicit solution scheme and the explicit discretization
of the rough geometry, applications have been confined to the solution of small-scale
problems on representative surface elements. This is, for instance, the case of two-
scale finite element simulations as proposed in Wriggers and Reinelt (2009), where
a reduced fine-scale model of a wavy surface was used for the computation of a
microscopically constitutive law to be passed to standard smooth macroscale finite
element computations.

Interface Finite Elements with Embedded Profile for Joint
Roughness

As an alternative approach to the explicit discretization of roughness, which is com-
putationally demanding and poses severe limitations for the use of the finite element
method, a new interface finite element with analytically embedded roughness has
been proposed in Paggi and Reinoso (2018).

The method assumes that the boundaries �i in Fig. 4.9 are nominally flat but
microscopically embedding rough profiles. �1 and �2 can be one the negative of the
other, as in the case of an interface originated by fracture, or different from each
other, as for two bodies coming into contact, without any restriction.

It is convenient to introduce for the i th rough profile �i its smoother line hi (ξi )
parallel to the average line of the profile and with datum set in correspondence
of its deepest valley (see Fig. 4.10). A point along the curve hi (ξi ) is identified
by a value of the curvilinear coordinate ξi = ξi (x, y), which establishes a one-to-
one correspondence with the coordinates of the same point in the global reference
system Oxy. It also associates the tangential and normal unit vectors ti (ξi ) and
ni (ξi ) to hi (ξi ), to identify the normal and the tangential directions at any point
along the smoothed line hi (ξi ), with ni pointing outward from the domain �i . Due
to the assumption that the two non-conformal profiles are microscopically rough but
nominally flat, the two smoother lines hi (ξi ) are parallel to each other and therefore
n1(ξ) = −n2(ξ) and t1(ξ) = −t2(ξ), ∀ξ .
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Fig. 4.10 Parametrization of two microscopically rough profiles composing an interface �.
Adapted from Paggi and Reinoso (2018)

Fig. 4.11 Composite topography of the interface �. Adapted from Paggi and Reinoso (2018)

The actual elevation of the rough profile measured from hi (ξi ) is finally described
by the roughness function hi (ξi ). Therefore, the i th boundary �i is parametrized
such that its actual elevation ei (ξi ) in the curvilinear setting is given by ei (ξi ) =
hi (ξi ) + hi (ξi ).

It is in general convenient to exploit the concept of composite topography �∗ of
the interface �, as also routinely done for the boundary element method. The contact
problem between two linear elastic materials with dissimilar rough boundaries is
therefore simplified into the contact problem between an infinitely stiff indenter
with such a composite topography taken as boundary, and a linear elastic half-plane
with composite elastic parameters function of those of the parent elastic bodies. This
transformation also allows the study of the contact problem involving a rigid indenter
of arbitrary profile (spherical, conical, etc.) and a half-plane.

In the context of the present method, the composite topography is mathematically
represented by a flat line, e2 = h2(ξ), and a profile with elevation e1(ξ) = h2(ξ) +
h∗(ξ), where h∗(ξ) = maxξ [h1(ξ) + h2(ξ)] − [h1(ξ) + h2(ξ)] (see Fig. 4.11).

This transformation does not apply for two elastoplastic or viscoelastic materials,
while it does apply for any nonlinear interface constitutive model provided that the
two materials are linear elastic. Elastoplastic or viscoelastic contact problems can be
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Fig. 4.12 Zero-thickness interface representation �∗ of the composite topography. Adapted from
Paggi and Reinoso (2018)

still simulated using the proposed approach, provide that the attention is restricted to
the contact problem between a rigid indenter with rough boundary �1 and a flat half-
plane �2 with any prescribed material constitutive relation. In such a case, in fact,
the composite topography simply reduces to �1 and the original indenter geometry
is kept unchanged.

After this transformation, a zero-thickness interface model for �∗ is introduced
and defined by the two initially coincident but distinct (not-joined) flat lines described
by the function e2(ξ), plus the associated function h∗(ξ). This composite topography
has also unique tangential and normal unit vectors t and n, as previously discussed,
see Fig. 4.12.

In this framework, the normal gap gn of the composite topography, which rep-
resents the actual physical separation between the composite topography and the
smooth curve e2 after deformation, is given by gn = �un + h∗, since material 1 acts
as a rigid indenter with a rough profile h∗. Based on the value of gn, the portion of
the interface in contact, �C = �C

1

⋃
�C
2 , is identified by the condition gn = 0. On

the other hand, the portion subject to adhesion, �A = �A
1

⋃
�A
2 , presents a positive-

valued normal gap gn > 0. A negative-valued normal gap is not admissible so far by
definition, since it would imply compenetration between the bodies.

At the interface, a conforming finite element discretization for the continua can
be simply adopted. Consequently, a special interface finite element with embedded
profile for joint roughness (MPJR interface finite element) whose kinematics departs
from the formulation of interface elements used in nonlinear fracture mechanics for
cohesive crack growth (Ortiz and Pandolfi 1999; Paggi and Wriggers 2011, 2012;
Reinoso and Paggi 2014; Paggi and Reinoso 2015) has been proposed in Paggi and
Reinoso (2018) to be inserted along the interface.

In 2D problems, the interface element is defined by nodes 1 and 2, which belong
to �∗

2,h , and by nodes 3 and 4, which belong to �∗
1,h , see Fig. 4.13.

For frictionless normal contact problems, the contribution of the interface to the
weak form is provided by the integral

∫
�∗ p(gn)gnd� in Eq. (4.31), which can be

Fig. 4.13 Sketch of the
interface finite element
topology. From Paggi and
Reinoso (2018)
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computed as the sum of the contributions of the whole interface elements, invoking
the property of compactness of isoparametric shape functions:

∫
�∗

p(gn)gnd� ∼=
∫
�∗
h

p(gn)gnd� = Anel
e=1

⎧⎪⎨
⎪⎩

∫
�∗
e

p(gn)gnd�

⎫⎪⎬
⎪⎭ , (4.32)

where the subscript e refers to the eth interface element e = 1, . . . , nel , and A sym-
bolically denotes an assembly operator.

The interface integral is herein computed exactly, by using the two-point Newton–
Cotes quadrature formula which implies the sampling of the integrand at the nodes
1 and 2 (or, equivalently, at nodes 3 and 4):

∫
�∗
e

p(gn)gnd� =
∑
j=1,2

pi (gn)gn,i det J, (4.33)

where det J is the standard determinant of the Jacobian of the transformation that
maps the geometry of the interface element from its global reference frame to the
natural reference system.

To evaluate the normal gap gn at any point inside the interface element, the nodal
displacement vector d = (u1, v1, . . . , u4, v4)T has to be introduced, which collects
the displacements u and v of the four interface finite element nodes. The relative
displacement �u for the nodes 1–4 and 2–3 is then computed by applying a matrix
operator L which makes the difference between the displacements of nodes 1 and
4, and between nodes 2 and 3. The relative displacement within the interface finite
element is then given by the linear interpolation of the corresponding nodal values,
performed by the multiplication with the matrixNwhich collects the shape functions
at the element level. Finally, the tangential and the normal gaps are determined by
the multiplication with the rotation matrix R defined by the components of the unit
vectors t and n. In formulae, we have

�u = RNLd, (4.34)

where the operators present the following matrix form:

L =

⎡
⎢⎢⎣

−1 0 0 0 0 0 1 0
0 −1 0 0 0 0 0 1
0 0 −1 0 1 0 0 0
0 0 0 −1 0 1 0 0

⎤
⎥⎥⎦ , (4.35a)

N =
[
N1 0 N2 0
0 N1 0 N2

]
, (4.35b)

R =
[
tx ty
nx ny

]
, (4.35c)
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where nx , ny , tx , and ty are the components of the unit vectors n and t along the x
and y directions, respectively.

Once �u = (�ut,�un)T is determined, the actual normal gap is given by a cor-
rection to �un to account for the embedded profile that models the non-planarity
of the rigid indenter �∗, i.e., gn = �un + h∗. The normal gap is used to compute
the normal traction pn according to Eq. (4.30). Similarly, for further extensions to
adhesive-contact problems with friction in the tangential direction, a relationship
between the shearing traction pt and the relative sliding displacement gt, or its veloc-
ity, should be introduced, in analogy with the normal problem.

Due to the intrinsic nonlinearity, a full Newton–Raphson iterative and incremental
scheme was adopted in Paggi and Reinoso (2018) to solve the implicit nonlinear
algebraic system of equations resulting from the finite element discretization:

K(k)�d(k) = −R(k), (4.36a)

d(k+1) = d(k) + �d(k), (4.36b)

where the superscript k denotes the iteration inside the Newton–Raphson loop. The
residual vector R(k)

e and the tangent stiffness matrix K(k)
e associated with the eth

interface finite element, to be assembled to the global residual vector R and to the
global stiffness matrix K, are

R(k)
e =

∫
�∗
e

LTNTRTp d�, (4.37a)

K(k)
e =

∫
�∗
e

LTNTRT
CRNL d�, (4.37b)

where p = (pt, pn)T = (0, pn)T for frictionless normal contact problems, and C is
the linearized interface constitutive matrix:

C =
⎡
⎢⎣

∂pt
∂gt

∂pt
∂gn

∂pn
∂gt

∂pn
∂gn

⎤
⎥⎦ , (4.38)

where, again for the frictionless normal contact problem, one needs to specify only
∂pn/∂gn depending on the sign of the normal gap, distinguishing between the penalty
relation in compression or the adhesive relation in tension.

In principle, the MPJR interface element contributions to the stiffness matrix
could be added only for the elements in contact, using a conventional contact search
algorithm. However, in case of adhesive contact with long-range adhesive effects,
all the interface elements can contribute to tension or compression and have to be
assembled in any case. Due to the simplicity in modeling roughness according to
this approach, which is embedded in the computation of the normal gap, the cost of
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assembling the whole set of interface finite elements is much less important than for
the methods relying on an explicit discretization of roughness. Therefore, contact
search algorithms can be skipped, further simplifying the numerical implementation
and the robustness of the computational method.

Comparison Between Different Approaches

As a benchmark problem to compare the different approaches presented in Sects.
4.3.2 and 4.3.3, we simulate the bidimensional frictionless normal contact problem
without adhesion between a rigid cylinder indenting a half-plane. For comparison
purposes, we recall the Hertzian analytical solution, which is available to assess the
model accuracy.

The standard procedure for solving this problem within the finite element method
requires modeling of the circular cross section of the cylinder and the use of a contact
formulation to enforce the unilateral contact constraint along the interface between
the cylinder and the half-plane. For that, among the possible numerical strategies, the
penalty approach, the Lagrangemultiplier method, and themortar method are among
the most popular formulations, see Wriggers (2006). In spite of the simplicity of this
nonconforming contact problem, it is well known that all such methods require very
finemeshes to resolve the contact area and the contact traction distribution, especially
near the edges of the contact strip. This is primarily due to the fact that a C1 linear
finite element interpolation scheme is not sufficiently accurate to describe the circular
shape of the cylinder. To overcome this drawback and increase the accuracy in the
boundary element method and in the finite element method relying on the explicit
discretization of the interface geometry, adaptive mesh refinement was proposed by
Oysu (2007), see Fig. 4.14.

Alternatively, the NURBS finite element technique, which adopts shape functions
with a very high regularity and smoothness to approximate curvilinear shapes, can
be adopted to explicitly discretize the interface geometry, since it has been demon-
strated in Dimitri et al. (2014) to provide the best accuracy over other discretization
techniques. In spite of that, NURBS still presents problems in capturing the analyti-
cal Hertzian contact solution for the frictionless normal contact problem between a
sphere and a half-plane, though a very fine mesh was used in Dimitri et al. (2014),
see Fig. 4.15.

In the MPJR interface finite element, instead of modeling the geometry of the
circular cross section, the non-planarity of the interface is simply embedded in the
interface finite element with its exact analytical function. The actual circular shape of
the boundary �1 is therefore given by the composite topography of the interface pro-
file: e1(x) = h2 + h∗(x), where h2 = xl and h∗(x) = R − √

R2 − x2. This strategy
resolves the issues related to the accuracy of finite element interpolation schemes for
the bulk and the interface, which can now have low-order linear shape functions. In
this context, the geometry of the cylinder of radius R occupying the domain �1 can
be simply replaced by a rectangular block of lateral size xl and thickness xl/20, while
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Fig. 4.14 Problems in resolving contact tractions in Hertzian normal contact problems arising
from the boundary element method and the finite element method with or without mesh refinement.
Adapted from Oysu (2007)

Fig. 4.15 Problems in
resolving contact tractions in
Hertzian normal contact
problems arising from the
finite element method with
NURBS discretization of the
interface geometry. Adapted
from Dimitri et al. (2014)

the half-plane occupying the domain �2 can be modeled as a plane strain domain
with size xl , see Fig. 4.16. Since the indenter is rigid, the equivalent model is exact,
because there is no error resulting from the deformation associated to the different
geometries of body 1. The low-order interpolation scheme used for the interface,
on the other hand, is enhanced by the exact analytical representation of the circular
indenter profile.

To achieve the condition of a rigid cylinder pressed onto an elastically deformable
half-plane, E1 canbe simply set equal to 1000E2,where the subscripts 1 and2 identify
the rigid (indenter) and deformable (half-plane) bodies, respectively. Regarding the
ratio between the cylinder radius and the lateral size of the half-plane, R/xl , two cases
were examined in Paggi and Reinoso (2018): (i) R/xl = 100, which corresponds
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Fig. 4.16 The actual geometry of the Hertz contact problem (left), and its finite element model
based on the present variational approach with embedded roughness (right), which incorporates the
analytical expression of the curved interface profile into the MPJR interface finite elements instead
of explicitly discretizing the interface geometry

to a slightly nonplanar interface; (ii) R/xl = 1, which corresponds to a significant
deviation of the interface from the non-planarity. For both cases, uniform meshes for
the domains �1 and �2 were used, employing four nodes linear finite elements for
the bulk and the proposed MPJR interface elements with embedded roughness for
the interface. The whole interface was discretized in the horizontal direction by only
nel = 100 finite elements, which is much less than what was used in Fig. 4.15 for
NURBS, and without adopting any mesh refinement.

Dirichlet boundary conditions are represented in this test by imposed downward
vertical displacements w on the topmost side of the domain �1, monotonically
increasing with a pseudo-time variable to simulate the quasi-static normal contact
problem; a fully restrained lower side of the domain�2; and a symmetry condition on
the vertical size of domains �1 and �2 to account for the symmetry in the geometry
and in the loading (Fig. 4.16).

Numerical predictions are provided in terms of the dimensionless normal con-
tact pressure, p/E , versus the dimensionless position along the interface, x/R. The
contact pressure p is given by p = −pn, and therefore it is positive valued on the
portion of the interface �C in contact and it must be zero elsewhere, since adhesion
is not considered here. The penalty stiffness K is set K = 10E1/xl , to model a very
stiff interface and avoid material penetration.

Results from the current simulations are shown in Fig. 4.17 for the case R/xl =
100 and R/xl = 1, considering nine increasing values for the imposed far-field dis-
placement w. Analytical Hertzian results, corresponding to the same contact radii,
are also superimposed by circles. As can be observed in these graphs, the agree-
ment between the present model predictions and theory is excellent, also for the case
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Fig. 4.17 Dimensionless contact pressure along the interface for different imposed far-field dis-
placements and two different values of R/xl . E , R, and xl denote, respectively, the composite
Young’s modulus, the cylinder radius, and the lateral size of the domain, respectively. The analyti-
cal Hertzian solution is superimposed with circles. Adapted from Paggi and Reinoso (2018)

R/xl = 1, which is indeed very challenging from the computational point of view
due to the significant non-planarity of the interface.

Conclusive Remarks

The solution of the contact problem between bodies separated by rough boundaries
is very important in many tribological applications and it is a challenging research
topic due to the multiscale features of roughness that span over multiple length
scales. So far, especially in relation to the linear elastic frictionless normal contact
problem, the boundary element method has been proved to be very efficient from
the computational point of view and preferable over the finite element method. It
has been used to validate semi-analytical approaches based on asperities or other
prominent contact theories, see, e.g., Mueser et al. (2017), inspiring also further
developments in the framework of multi-asperity contact models including elastic
interaction effects. Moreover, it has been applied to identify valuable trends on the
effect of roughness on the emerging contact response, such as the real contact area
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Table 4.1 Synopsis of the computational methods reviewed in this chapter

Approach Roughness
discretization

Continua Interface Pros Cons

BEM Exact
representation

Linear
elasticity or
elastoplastic-
ity

Recently
extended to
adhesion

Fast and
accurate

Nonlinearities
and multi-field
problems are
difficult to be
addressed

Multi-asperity
BEM

Only
asperities

Linear
elasticity

Resolution-
dependent
discretization

Very fast As BEM, plus
the limits of
defining the
asperities

FEM with
explicit
discretization
of the
interface
geometry
(NURBS,
splines, etc.)

Modeling
multiscale
roughness is
problematic

No restrictions No restrictions Ideal for
nonlinear and
multi-field
problems

Limits in the
discretization
of roughness;
computation-
ally
demanding

FEM-MPJR
with
embedded
roughness

Exact No restrictions No restrictions Ideal for
nonlinear and
multi-field
problems

Faster and
simpler than
FEM, but still
computation-
ally
demanding as
compared to
BEM

versus load relation (Paggi and Ciavarella 2010), the normal contact stiffness versus
load dependency (Paggi and Barber 2011), as well as the evolution of the free volume
between rough surfaces during the progress of contact (Paggi and He 2015).

If the research on the frictionless normal contact problem between linear elastic
materials has seen a significant impulse during the last decades, the contact problem
in the presence of friction still presents open issues and aspects deserving investi-
gation. So far, the evolution of the stick and slip contact domains in the case of a
monotonically increasing tangential displacement applied by keeping constant the
normal load has been investigated using the boundary element method in Paggi et al.
(2014). Another important topic regards the effect of roughness on hysteretic energy
dissipation caused by cyclic tangential loading paths, see, e.g., Borri-Brunetto et al.
(2006), Barber et al. (2011).

Finally, there is a range of contact problems involving nonlinear constitutive rela-
tions, nonlinear geometric (finite elasticity) effects, and coupled multi-field prob-
lems that have been only marginally challenged so far. For instance, the problem of
electromechanical interaction between excitable deformable cells in finite elasticity
investigated in Lenarda et al. (2018) is an exemplary problem requiring the exten-
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sion of the methods of contact mechanics to soft biological matter. For this class
of problems, the constitutive nonlinearities for the interface and the continua sug-
gest passing to the finite element method. In this regard, further advancements in the
interface finite element discretization are indeed required for an efficient treatment of
contact problems with roughness features covering multiple length scales. The novel
approach based on the interface finite element with embedded roughness proposed
in Paggi and Reinoso (2018) opens new perspectives in this direction.

As a guideline for new researchers entering the field, and also for experienced
researchers willing to explore future directions of research in contact mechanics
between rough surfaces, a synopsis of the computational methods reviewed in this
chapter is provided in Table 4.1, emphasizing the advantages and the disadvantages
of each approach.
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