

Predictive Control

for Linear and Hybrid Systems

Model Predictive Control (MPC), the dominant advanced control approach in industry
over the past 25 years, is presented comprehensively in this unique book. With a simple,
unified approach, and with attention to real-time implementation, it covers predictive
control theory including the stability, feasibility, and robustness of MPC controllers. The
theory of explicit MPC, where the nonlinear optimal feedback controller can be calculated
efficiently, is presented in the context of linear systems with linear constraints, switched
linear systems, and, more generally, linear hybrid systems. Drawing upon years of practical
experience and using numerous examples and illustrative applications, the authors discuss:

• The techniques required to design predictive control laws, including algorithms for
polyhedral manipulations, mathematical, and multiparametric programming.

• How to validate the theoretical properties and to implement predictive control
policies.

The most important algorithms feature in an accompanying free online MATLAB
toolbox, which allows easy access to sample solutions. Predictive Control for Linear and
Hybrid Systems is an ideal reference for graduate, postgraduate and advanced control
practitioners interested in theory and/or implementation aspects of predictive control.

Francesco Borrelli is a chaired professor at the Department of Mechanical Engineering
of the University of California, Berkeley. Since 2004 he has served as a consultant for
major international corporations in the area of real-time predictive control. He was the
founder and CTO of BrightBox Technologies Inc., and is the co-director of the Hyundai
Center of Excellence in Integrated Vehicle Safety Systems and Control at UC Berkeley.
His research interests include constrained optimal control, model predictive control and
its application to advanced automotive control, robotics, and energy-efficient building
operation.

Alberto Bemporad is a professor and former director of the IMT School for Advanced
Studies Lucca. He has published numerous papers on model predictive control and
its application in multiple domains. He has been a consultant for major automotive
companies and cofounder of ODYS S.r.l., a company specialized in advanced control and
optimization software for industrial production. He is the author or co-author of various
MATLAB toolboxes for model predictive control design, including the Model Predictive
Control Toolbox and the Hybrid Toolbox.

Manfred Morari was a professor and head of the Department of Information Technology
and Electrical Engineering at ETH Zurich. During the last three decades he has shaped
many of the developments and applications of model predictive control through his
academic research and interactions with companies from a wide range of sectors. The
analysis techniques and software developed in his group are used throughout the world.
He received numerous awards and was elected to the National Academy of Engineering
(US) and is a Fellow of the Royal Academy of Engineering (UK).

Predictive Control

for Linear and Hybrid Systems

Francesco Borrelli

University of California, Berkeley

Alberto Bemporad

IMT School for Advanced Studies, Lucca

Manfred Morari

ETH Zurich

University Printing House, Cambridge CB2 8BS, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India

79 Anson Road, #06-04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107016880
10.1017/9781139061759

© Francesco Borrelli, Alberto Bemporad, and Manfred Morari 2017

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2017

Printed in the United Kingdom by TJ International Ltd. Padstow Cornwall

A catalogue record for this publication is available from the British Library.

Library of Congress Cataloging-in-Publication Data

Names: Borrelli, Francesco, author. | Bemporad, Alberto, author. |
Morari, Manfred, author.
Title: Predictive control for linear and hybrid systems / Francesco Borrelli,
University of California, Berkeley, Alberto Bemporad, IMT Institute for Advanced
Studies, Manfred Morari, Swiss Federal Institute of Technology (ETH).
Description: New York : Cambridge University Press, 2017. |
Includes bibliographical references. | Includes bibliographical references and index.
Identifiers: LCCN 2016042160| ISBN 9781107016880 (Hardback) |
ISBN 9781107652873 (Paperback)
Subjects: LCSH: Predictive control.
Classification: LCC TJ217.6 .B67 2017 | DDC 629.8–dc23 LC record
available at https://lccn.loc.gov/2016042160

ISBN 978-1-107-01688-0 Hardback
ISBN 978-1-107-65287-3 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy
of URLs for external or third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

www.cambridge.org
www.cambridge.org/9781107016880
https://lccn.loc.gov/2016042160
http://dx.doi.org/10.1017/9781139061759

To

Maryan, Federica and Marina

and our families

Contents

Preface xi

Acknowledgments xvii

Symbols and Acronyms xix

I Basics of Optimization 1

1 Main Concepts 3

1.1 Optimization Problems . 3

1.2 Convexity . 6

1.3 Optimality Conditions . 9

1.4 Lagrange Duality Theory . 10

1.5 Complementary Slackness . 13

1.6 Karush-Kuhn-Tucker Conditions . 14

2 Linear and Quadratic Optimization 19

2.1 Polyhedra and Polytopes . 19

2.2 Linear Programming . 20

2.3 Quadratic Programming . 27

2.4 Mixed-Integer Optimization . 30

3 Numerical Methods for Optimization 33

3.1 Convergence . 33

3.2 Unconstrained Optimization . 35

3.3 Constrained Optimization . 47

4 Polyhedra and P-Collections 71

4.1 General Set Definitions and Operations 71

4.2 Polyhedra and Representations . 73

viii Contents

4.3 Polytopal Complexes . 76

4.4 Basic Operations on Polytopes . 78

4.5 Operations on P-Collections . 88

II Multiparametric Programming 93

5 Multiparametric Nonlinear Programming 95

5.1 Introduction to Multiparametric Programs 95

5.2 General Results for Multiparametric Nonlinear Programs 98

6 Multiparametric Programming: A Geometric Approach 107

6.1 Multiparametric Programs with Linear Constraints 107

6.2 Multiparametric Linear Programming 110

6.3 Multiparametric Quadratic Programming 125

6.4 Multiparametric Mixed-Integer Linear Programming 136

6.5 Multiparametric Mixed-Integer Quadratic Programming 140

6.6 Literature Review . 142

III Optimal Control 145

7 General Formulation and Discussion 147

7.1 Problem Formulation . 147

7.2 Solution via Batch Approach . 149

7.3 Solution via Recursive Approach . 150

7.4 Optimal Control Problem with Infinite Horizon 152

7.5 Lyapunov Stability . 156

8 Linear Quadratic Optimal Control 163

8.1 Problem Formulation . 163

8.2 Solution via Batch Approach . 164

8.3 Solution via Recursive Approach . 165

8.4 Comparison of the Two Approaches 166

8.5 Infinite Horizon Problem . 168

9 Linear 1/∞ Norm Optimal Control 171

9.1 Problem Formulation . 171

9.2 Solution via Batch Approach . 172

9.3 Solution via Recursive Approach . 175

9.4 Comparison of the two Approaches 177

9.5 Infinite Horizon Problem . 178

Contents ix

IV Constrained Optimal Control of Linear Systems 181

10 Controllability, Reachability and Invariance 183

10.1 Controllable and Reachable Sets . 183

10.2 Invariant Sets . 190

10.3 Robust Controllable and Reachable Sets 195

10.4 Robust Invariant Sets . 204

11 Constrained Optimal Control 211

11.1 Problem Formulation . 211

11.2 Feasible Solutions . 213

11.3 2-Norm Case Solution . 218

11.4 1-Norm and ∞-Norm Case Solution 229

11.5 State Feedback Solution, Minimum-Time Control 239

11.6 Comparison of the Design Approaches and Controllers 241

12 Receding Horizon Control 243

12.1 RHC Idea . 243

12.2 RHC Implementation . 244

12.3 RHC Main Issues . 251

12.4 State Feedback Solution of RHC, 2-Norm Case 257

12.5 State Feedback Solution of RHC, 1-Norm, ∞-Norm Case 260

12.6 Tuning and Practical Use . 262

12.7 Offset-Free Reference Tracking . 266

12.8 Literature Review . 274

13 Approximate Receding Horizon Control 277

13.1 Stability of Approximate Receding Horizon Control 278

13.2 Barycentric Interpolation . 280

13.3 Partitioning and Interpolation Methods 285

14 On-Line Control Computation 301

14.1 Storage and On-Line Evaluation of the PWA Control Law 301

14.2 Gradient Projection Methods Applied to MPC 312

14.3 Interior Point Method Applied to MPC 315

15 Constrained Robust Optimal Control 317

15.1 Problem Formulation . 317

15.2 Feasible Solutions . 324

15.3 State Feedback Solution, Nominal Cost 330

15.4 State Feedback Solution, Worst-Case Cost, 1-Norm and

∞-Norm Case . 331

15.5 Parametrizations of the Control Policies 336

x Contents

15.6 Example . 342

15.7 Robust Receding Horizon Control 343

15.8 Literature Review . 345

V Constrained Optimal Control of Hybrid Systems 347

16 Models of Hybrid Systems 349

16.1 Models of Hybrid Systems . 349

16.2 Piecewise Affine Systems . 350

16.3 Discrete Hybrid Automata . 356

16.4 Logic and Mixed-Integer Inequalities 361

16.5 Mixed Logical Dynamical Systems 363

16.6 Model Equivalence . 365

16.7 The HYSDEL Modeling Language 365

16.8 Literature Review . 368

17 Optimal Control of Hybrid Systems 375

17.1 Problem Formulation . 375

17.2 Properties of the State Feedback Solution, 2-Norm Case 377

17.3 Properties of the State Feedback Solution, 1-Norm, ∞-Norm Case . 384

17.4 Computation of the Optimal Control Input via Mixed Integer

Programming . 384

17.5 State Feedback Solution via Batch Approach 389

17.6 State Feedback Solution via Recursive Approach 390

17.7 Discontinuous PWA Systems . 399

17.8 Receding Horizon Control . 400

References 405

Index 421

Preface

Dynamic optimization has become a standard tool for decision making in a wide
range of areas. The search for the most fuel-efficient strategy to send a rocket into
orbit or the most economical way to start up a chemical production facility can
be expressed as dynamic optimization problems that are solved almost routinely
nowadays.

The basis for these dynamic optimization problems is a dynamic model, for
example,

xk+1 = g(xk, uk), x0 = x(0)

that describes the evolution of the state xk with time, starting from the initial
condition x(0), as it is affected by the manipulated input uk. Here, g(x, u) is some
nonlinear function. Throughout the book we are assuming that this discrete-time
description, i.e., the model of the underlying system, is available. The goal of the
dynamic optimization procedure is to find the vector of manipulated inputs UN =
[u′

0, ..., u
′
N−1]

′ such that the objective function is optimized over some time horizon
N , typically

minUN

N−1∑
k=0

q(xk, uk) + p(xN)

The terms q(x, u) and and p(x) are referred to as the stage cost and terminal
cost, respectively. Many practical problems can be put into this form and many
algorithms and software packages are available to determine the optimal solution
vector U∗

N , the optimizer. The various algorithms exploit the structure of the
particular problem, e.g., linearity and convexity, so that even large problems
described by complex models and involving many degrees of freedom can be solved
efficiently and reliably.

One difficulty with this idea is that, in practice, the sequence of u0, u1, ..., which
is obtained by this procedure cannot be simply applied. The model of the system
predicting its evolution is usually inaccurate and the system may be affected by
external disturbances that may cause its path to deviate significantly from the one
that is predicted. Therefore, it is common practice to measure the state after some
time period, say one time step, and to solve the dynamic optimization problem

xii Preface

again, starting from the measured state x(1) as the new initial condition. This
feedback of the measurement information to the optimization endows the whole
procedure with a robustness typical for closed-loop systems.

What we have described above is usually referred to as Model Predictive
Control (MPC), but other names like Open Loop Optimal Feedback and Reactive
Scheduling have been used as well. Over the last 25 years MPC has evolved
to dominate the process industry, where it has been employed for thousands of
problems [241].

The popularity of MPC stems from the fact that the resulting operating strategy
respects all the system and problem details, including interactions and constraints,
something that would be very hard to accomplish in any other way.

Indeed, often MPC is used for the regulatory control of large multivariable
linear systems with constraints, where the objective function is not related to an
economical objective, but is simply chosen in a mathematically convenient way,
namely quadratic in the states and inputs, to yield a “good” closed-loop response.
Again, there is no other controller design method available today for such systems
that provides constraint satisfaction and stability guarantees.

One limitation of MPC is that running the optimization algorithm on-line
at each time step requires substantial time and computational resources. Today,
fast computational platforms together with advances in the field of operations
research and optimal control have enlarged in a very significant way the scope of
applicability of MPC to fast-sampled applications. One approach is to use tailored
optimization routines which exploit both the structure of the MPC problem and
the architecture of the embedded computing platform to implement MPC in the
order of milliseconds.

The second approach is to have the result of the optimization precomputed
and stored for each x in the form of a look-up table or as an algebraic function
uk = f(x(k)) which can be easily evaluated. In other words, we want to determine
the (generally nonlinear) feedback control law f(x) that generates the optimal
uk = f(x(k)) explicitly and not just implicitly as the result of an optimization
problem. It requires the solution of the Bellman equation and has been a long-
standing problem in optimal control. A clean, simple solution exists only in the case
of linear systems with a quadratic objective function, where the optimal controller
turns out to be a linear function of the state (Linear Quadratic Regulator, LQR).
For all other cases a solution of the Bellman equation was considered prohibitive
except for systems of low dimension (2 or 3), where a look-up table can be generated
by gridding the state space and solving the optimization problem off-line for each
grid point.

The major contribution of this book is to show how the nonlinear optimal
feedback controller can be calculated efficiently for some important classes of
systems, namely linear systems with constraints and switched linear systems or,
more generally, hybrid systems. Traditionally, the design of feedback controllers for
linear systems with constraints, for example, antiwindup techniques, was ad hoc
requiring both much experience and trial and error. Though significant progress
has been achieved on antiwindup schemes over the last decade, these techniques
deal with input constraints only and cannot be extended easily.

Preface xiii

The classes of constrained linear systems and linear hybrid systems treated in
this book cover many, if not most, practical problems. The new design techniques
hold the promise to lead to better performance and a dramatic reduction in the
required engineering effort.

The book is structured in five parts.

• In the first part of the book (Part I) we recall the main concepts and results of
convex and discrete optimization. Our intent is to provide only the necessary
background for the understanding of the rest of the book. The material of
this part follows closely the presentation from the following books and lecture
notes: “Convex Optimization” by Boyd and Vandenberghe [65], “Nonlinear
Programming Theory and Algorithms” by Bazaraa, Sherali and Shetty [27],
“LMIs in Control” by Scherer and Weiland [258] and “Lectures on Polytopes”
by Ziegler [296].

Continuous problems as well as integer and mixed-integer problems are
presented in Chapter 1. Chapter 1 also discusses the classical results of
Lagrange duality. In Chapter 2, linear and quadratic programs are presented
together with their properties and some fundamental results. Chapter 3
introduces algorithms for the solution of unconstrained and constrained
optimization problems. We only discuss those that are important for the
problems encountered in this book and explain the underlying concepts.
Since polyhedra are the fundamental geometric objects used in this book,
Part I closes with Chapter 4, where we introduce the main definitions and
the algorithms, which describe standard operations on polyhedra.

• The second part of the book (Part II) is a self-contained introduction to
multiparametric programming. In our framework, parametric programming
is the main technique used to study and compute state feedback optimal
control laws. In fact, we formulate the finite time optimal control problems
as mathematical programs where the input sequence is the optimization
vector. Depending on the dynamical model of the system, the nature of the
constraints, and the cost function used, a different mathematical program
is obtained. The current state of the dynamical system enters the cost
function and the constraints as a parameter that affects the solution of
the mathematical program. We study the structure of the solution as this
parameter changes and we describe algorithms for solving multiparametric
linear, quadratic and mixed integer programs. They constitute the basic tools
for computing the state feedback optimal control laws for these more complex
systems in the same way as algorithms for solving the Riccati equation
are the main tools for computing optimal controllers for linear systems.
In Chapter 5, we introduce the concept of multiparametric programming
and we recall the main results of nonlinear multiparametric programming.
Then, in Chapter 6, we describe three algorithms for solving multiparametric
linear programs (mp-LP), multiparametric quadratic programs (mp-QP) and
multiparametric mixed-integer linear programs (mp-MILP).

• In the third part of the book (Part III) we introduce the general class
of optimal control problems studied in the book. Chapter 7 contains the

xiv Preface

basic definitions and essential concepts. Chapter 8 presents standard results
on Linear Quadratic Optimal Control, while in Chapter 9, unconstrained
optimal control problems for linear systems with cost functions based on 1
and ∞ norms are analyzed.

• In the fourth part of the book (Part IV) we focus on linear systems
with polyhedral constraints on inputs and states. We start with a self-
contained introduction to controllability, reachability and invariant set
theory in Chapter 10. The chapter focuses on computational algorithms for
constrained linear systems and constrained linear systems subject to additive
and parametric uncertainty.

In Chapter 11 we study finite time and infinite time constrained optimal
control problems with cost functions based on 2, 1 and ∞ norms. We first
show how to transform them into LP or QP optimization problems for a
fixed initial condition. Then we show that the solution to all these optimal
control problems can be expressed as a piecewise affine state feedback law.
Moreover, the optimal control law is continuous and the value function is
convex and continuous. The results form a natural extension of the theory
of the Linear Quadratic Regulator to constrained linear systems.

Chapter 12 presents the concept of MPC. Classical feasibility and stability
issues are shown through simple examples and explained by using invariant
set methods. Finally, we show how they can be addressed with a proper
choice of the terminal constraints and the cost function.

The result in Chapter 11 and Chapter 12 have important consequences
for the implementation of MPC laws. Precomputing off-line the explicit
piecewise affine feedback policy reduces the on-line computation for the
receding horizon control law to a function evaluation, therefore avoiding
the on-line solution of a mathematical program. However, the number
of polyhedral regions of the explicit optimal control laws could grow
exponentially with the number of constraints in the optimal control problem.
Chapter 13 discusses approaches to define approximate explicit control laws
of desired complexity that provide certificates of recursive feasibility and
stability.

Chapter 14 focuses on efficient on-line methods for the computation of
MPC control laws. If the state-feedback solution is available explicitly, we
present efficient on-line methods for the evaluation of explicit piecewise
affine control laws. In particular, we present algorithms to reduce its storage
demands and computational complexity. If the on-line solution of a quadratic
or linear program is preferred, we briefly discuss how to improve the efficiency
of a mathematical programming solver by exploiting the structure of the
MPC control problem.

Part IV closes with Chapter 15 where we address the robustness of the
optimal control laws. We discuss min–max control problems for uncertain
linear systems with polyhedral constraints on inputs and states and present
an approach to compute their state feedback solutions. Robustness is
achieved against additive norm-bounded input disturbances and/or poly-
hedral parametric uncertainties in the state space matrices.

Preface xv

• In the fifth part of the book (Part V) we focus on linear hybrid systems. We
give an introduction to the different formalisms used to model hybrid systems
focusing on computation-oriented models (Chapter 16). In Chapter 17, we
study finite time optimal control problems with cost functions based on 2, 1
and ∞ norms. The optimal control law is shown to be, in general, piecewise
affine over nonconvex and disconnected sets. Along with the analysis of the
solution properties, we present algorithms that compute the optimal control
law for all the considered cases.

Francesco Borrelli
Alberto Bemporad
Manfred Morari

Acknowledgments

• Large parts of the material presented in this book are extracted from the
work of the authors Francesco Borrelli, Alberto Bemporad and Manfred
Morari.

• Several sections contain the results of the PhD theses of Miroslav Baric,
Mato Baotic, Fabio Torrisi, Domenico Mignone, Pascal Grieder, Eric
Kerrigan, Tobias Geyer and Frank J. Christophersen.

• We are extremely grateful to Martin Herceg for his meticulous work on the
Matlab examples and all the book figures.

• A special thanks goes to Michal Kvasnica, Stefan Richter, Valerio Turri,
Thomas Besselmann and Rick Meyer for their help with the construction
of the examples.

• Our gratitude also goes to the colleagues who have carefully read prelimi-
nary versions of the book and gave us suggestions on how to improve them.
They include Dimitri Bertsekas, Miroslav Fikar, Paul Goulart, Per Olof
Gutman, Diethard Klatte, Bill Levine, David Mayne and all the students
of our classes on Model Predictive Control.

• The authors of the LaTex book style files and macros are Stephen Boyd
and Lieven Vandenberghe. We are most grateful to Stephen and Lieven for
sharing them with us.

• Over many years ABB provided generous financial support making possible
the fundamental research reported in this book.

• The authors of Chapter 3 are Dr. Alexander Domahidi and Dr. Stefan
Richter.

• The author of Chapter 13 is Professor Colin N. Jones.

Symbols and Acronyms

Logic Operators and Functions

A ⇒ B A implies B, i.e., if A is true then B must be true
A ⇔ B A implies B and B implies A, i.e., A is true if and only if

(iff) B is true

Sets

R (R+) Set of (nonnegative) real numbers
N (N+) Set of (nonnegative) integers
Rn Set of real vectors with n elements
Rn×m Set of real matrices with n rows and m columns

Algebraic Operators and Matrices

A′ Transpose of matrix A
A−1 Inverse of matrix A
A† Generalized Inverse of A, A† = (A′A)−1A′

det(A) Determinant of matrix A
A � (�)0 A symmetric positive (semi)definite matrix,

x′Ax > (≥)0, ∀x 	= 0
A ≺ (�)0 A symmetric negative (semi)definite matrix,

x′Ax < (≤)0, ∀x 	= 0
Ai i-th row of matrix A
xi i-th element of vector x
x ∈ Rn, x > 0 (x ≥ 0) True iff xi > 0 (xi ≥ 0) ∀ i = 1, . . . , n
x ∈ Rn, x < 0 (x ≤ 0) True iff xi < 0 (xi ≤ 0) ∀ i = 1, . . . , n
|x|, x ∈ R Absolute value of x
‖x‖ Any vector norm of x

‖x‖2 Euclidian norm of vector x ∈ Rn, ‖x‖2 =
√∑n

i=1 |xi|2

xx Symbols and Acronyms

‖x‖1 Sum of absolute elements of vector x ∈ Rn,
‖x‖1 =

∑n
i=1 |xi|

‖x‖∞ Largest absolute value of the vector x ∈ Rn,
‖x‖∞ = maxi∈{1,...,n} |xi|

‖S‖∞ Matrix ∞-norm of S ∈ Cm×n,
i.e., ‖S‖∞ = maxi∈{1,...,m}

∑n
j=1 |si,j |

‖S‖1 Matrix 1-norm of S ∈ Cm×n,
i.e., ‖S‖1 = maxj∈{1,...,n}

∑m
i=1 |si,j |

I Identity matrix
1 Vector of ones, 1 = [1 1 . . . 1]′

0 Vector of zeros, 0 = [0 0 . . . 0]′

Set Operators and Functions

∅ The empty set
: “Such that”
∂P The boundary of P
int(P) The interior of P, i.e., int(P) = P \ ∂P
|P| The cardinality of P, i.e., the number of elements in P
P ∩Q Set intersection P ∩Q = {x : x ∈ P and x ∈ Q}
P ∪ Q Set union P ∪Q = {x : x ∈ P or x ∈ Q}⋃

r∈{1,...,R} Pr Union of R sets Pr, i.e.,
⋃

r∈{1,...,R} Pr = {x :x ∈ P0

or . . . or x ∈ PR}
Pc Complement of the set P, Pc = {x :x /∈ P}
P \ Q Set difference P \ Q = {x :x ∈ P and x /∈ Q}
P ⊆ Q The set P is a subset of Q, x ∈ P ⇒ x ∈ Q
P ⊂ Q The set P is a strict subset of Q, x ∈ P ⇒ x ∈ Q and

∃x ∈ (Q \ P)
P ⊇ Q The set P is a superset of Q
P ⊃ Q The set P is a strict superset of Q
P �Q Pontryagin difference P�Q = {x : x+q ∈ P, ∀q ∈ Q}
P ⊕Q Minkowski sum P ⊕Q = {x+ q : x ∈ P, q ∈ Q}
f(x) With abuse of notation denotes the value of the

function f at x or
the function f , f : x → f(x).
We use the notation f : Rn → Rs to mean that f is a
Rs-valued function on
some subset of Rn, its domain, which we denote by
dom f

f(x) continuous f : Rn → R continuous for all x ∈ Rn, f(0) = 0 and
and positive definite f(x) > 0 ∀x ∈ Rn \ {0}
f(x) � 0 f(x) continuous and positive definite
f(x) continuous f : Rn → R continuous for all x ∈ Rn,
and positive semi-definite f(x) ≥ 0 ∀x ∈ Rn

f(x) � 0 f(x) continuous and positive semi-definite

Symbols and Acronyms xxi

Acronyms

ARE Algebraic Riccati Equation
CLQR Constrained Linear Quadratic Regulator
CFTOC Constrained Finite Time Optimal Control
CITOC Constrained Infinite Time Optimal Control
DP Dynamic Program(ming)
LMI Linear Matrix Inequality
LP Linear Program(ming)
LQR Linear Quadratic Regulator
LTI Linear Time Invariant
MILP Mixed Integer Linear Program
MIQP Mixed Integer Quadratic Program
MPC Model Predictive Control
mp-LP multiparametric Linear Program
mp-QP multiparametric Quadratic Program
PWA Piecewise Affine
PPWA Piecewise Affine on Polyhedra
PWP Piecewise Polynomial
PWQ Piecewise Quadratic
QP Quadratic Program(ming)
RHC Receding Horizon Control
rhs right-hand side
SDP Semi Definite Program(ming)

Part I

Basics of Optimization

1

Main Concepts

In this chapter, we recall the main concepts and definitions of continuous and
discrete optimization. Our intent is to provide only the necessary background for
the understanding of the rest of the book. The notions of feasibility, optimality,
convexity and active constraints introduced in this chapter will be widely used in
this book.

1.1 Optimization Problems

An optimization problem is generally formulated as

infz f(z)
subj. to z ∈ S ⊆ Z,

(1.1)

where the vector z collects the decision variables, Z is the optimization problem
domain, and S ⊆ Z is the set of feasible or admissible decisions. The function
f :Z → R assigns to each decision z a cost f(z) ∈ R. We will often use the following
shorter form of problem (1.1)

inf
z∈S⊆Z

f(z). (1.2)

Solving problem (1.2) means to compute the least possible cost f∗

f∗ = inf
z∈S

f(z).

The number f∗ is the optimal value of problem (1.2), i.e.,

f(z) ≥ f(z∗) = f∗ ∀z ∈ S, with z∗ ∈ S,

or the greatest lower bound of f(z) over the set S:

f(z) > f∗ ∀z ∈ S and (∀ε > 0 ∃z ∈ S : f(z) ≤ f∗ + ε).

4 1 Main Concepts

If f∗ = −∞ we say that the problem is unbounded below. If the set S is empty
then the problem is said to be infeasible and we set f∗ = +∞ by convention. If
S = Z the problem is said to be unconstrained.

In general, one is also interested in finding an optimal solution, that is in
finding a decision whose associated cost equals the optimal value, i.e., z∗ ∈ S with
f(z∗) = f∗. If such z∗ exists, then we rewrite problem (1.2) as

f∗ = min
z∈S

f(z) (1.3)

and z∗ is called an optimizer, global optimizer or optimal solution. Minimizer or
global minimizer are also used to refer to an optimizer of a minimization problem.
The set of all optimal solutions is denoted by

argminz∈Sf(z) = {z ∈ S : f(z) = f∗} .

A problem of determining whether the set of feasible decisions is empty and, if not,
to find a point which is feasible, is called a feasibility problem.

1.1.1 Continuous Problems

In continuous optimization the problem domain Z is a subset of the finite-
dimensional Euclidian vector-space Rs and the subset of admissible vectors is
defined through a list of equality and inequality constraints:

infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . ,m

hj(z) = 0 for j = 1, . . . , p
z ∈ Z,

(1.4)

where f, g1, . . . , gm, h1, . . . , hp are real-valued functions defined over Rs, i.e.,
f : Rs → R, gi : Rs → R, hi : Rs → R. The domain Z is the intersection of
the domains of the cost and constraint functions:

Z = {z ∈ Rs : z ∈ dom f, z ∈ dom gi, i = 1, . . . ,m, z ∈ dom hj , j = 1, . . . , p}.
(1.5)

In the sequel we will consider the constraint z ∈ Z implicit in the optimization
problem and often omit it. Problem (1.4) is unconstrained if m = p = 0.

The inequalities gi(z) ≤ 0 are called inequality constraints and the equations
hi(z) = 0 are called equality constraints. A point z̄ ∈ Rs is feasible for problem (1.4)
if: (i) it belongs to Z, (ii) it satisfies all inequality and equality constraints, i.e.,
gi(z̄) ≤ 0, i = 1, . . . ,m, hj(z̄) = 0, i = j, . . . , p. The set of feasible vectors is

S = {z ∈ Rs : z ∈ Z, gi(z) ≤ 0, i = 1, . . . ,m, hj(z) = 0, j = 1, . . . , p}. (1.6)

Problem (1.4) is a continuous finite-dimensional optimization problem (since
Z is a finite-dimensional Euclidian vector space). We will also refer to (1.4) as
a nonlinear mathematical program or simply nonlinear program. Let f∗ be the
optimal value of problem (1.4). An optimizer, if it exists, is a feasible vector z∗

with f(z∗) = f∗.

1.1 Optimization Problems 5

A feasible point z̄ is locally optimal for problem (1.4) if there exists an R > 0
such that

f(z̄) = infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . ,m

hi(z) = 0 for i = 1, . . . , p
‖z − z̄‖ ≤ R
z ∈ Z.

(1.7)

Roughly speaking, this means that z̄ is the minimizer of f(z) in a feasible
neighborhood of z̄ defined by ‖z − z̄‖ ≤ R. The point z̄ is called a local optimizer
or local minimizer.

Active, Inactive and Redundant Constraints

Consider a feasible point z̄. We say that the i-th inequality constraint gi(z) ≤ 0 is
active at z̄ if gi(z̄) = 0. If gi(z̄) < 0 we say that the constraint gi(z) ≤ 0 is inactive
at z̄. Equality constraints are always active for all feasible points.

We say that a constraint is redundant if removing it from the list of constraints
does not change the feasible set S. This implies that removing a redundant
constraint from problem (1.4) does not change its solution.

Problems in Standard Forms

Optimization problems can be cast in several forms. In this book, we use the
form (1.4) where we adopt the convention to minimize the cost function and to
have the right-hand side of the inequality and equality constraints equal to zero.
Any problem in a different form (e.g., a maximization problem or a problem with
“box constraints”) can be transformed and arranged into this form. The interested
reader is referred to Chapter 4 of [65] for a detailed discussion on transformations
of optimization problems into different standard forms.

Eliminating Equality Constraints

Often in this book we will restrict our attention to problems without equality
constraints, i.e., p = 0

infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . ,m.

(1.8)

The simplest way to remove equality constraints is to replace them with two
inequalities for each equality, i.e., hi(z) = 0 is replaced by hi(z) ≤ 0 and−hi(z) ≤ 0.
Such a method, however, can lead to poor numerical conditioning and may ruin
the efficiency and accuracy of a numerical solver.

If one can explicitly parameterize the solution of the equality constraint
hi(z) = 0, then the equality constraint can be eliminated from the problem. This
process can be described in a simple way for linear equality constraints. Assume
the equality constraints to be linear, Az − b = 0, with A ∈ Rp×s. If Az = b is
inconsistent then the problem is infeasible. The general solution of the equation
Az = b can be expressed as z = Fx + z0 where F is a matrix of full rank whose
spanned space coincides with the null space of the A matrix, i.e., R(F) = N (A),

6 1 Main Concepts

F ∈ Rs×k, where k is the dimension of the null space of A. The variable x ∈ Rk is
the new optimization variable and the original problem becomes

infx f(Fx+ z0)
subj. to gi(Fx+ z0) ≤ 0 for i = 1, . . . ,m.

(1.9)

We want to point out that in some cases the elimination of equality constraints
can make the problem harder to analyze and understand and can make a solver
less efficient. In large problems it can destroy useful structural properties of the
problem such as sparsity. Some advanced numerical solvers perform elimination
automatically.

Problem Description

The functions f, gi and hi can be available in analytical form or can be described
through an oracle model (also called “black box” or “subroutine” model). In an
oracle model, f, gi and hi are not known explicitly but can be evaluated by querying
the oracle. Often the oracle consists of subroutines which, called with the argument
z, return f(z), gi(z) and hi(z) and their gradients∇f(z),∇gi(z),∇hi(z). In the rest
of the book we assume that analytical expressions of the cost and the constraints
of the optimization problem are available.

1.1.2 Integer and Mixed-Integer Problems

If the decision set Z in the optimization problem (1.2) is finite, then the
optimization problem is called combinatorial or discrete. If Z ⊆ {0, 1}s, then the
problem is said to be integer.

If Z is a subset of the Cartesian product of an integer set and a real Euclidian
space, i.e., Z ⊆ {[zc, zb] : zc ∈ Rsc , zb ∈ {0, 1}sb}, then the problem is said to be
mixed-integer. The standard formulation of a mixed-integer nonlinear program is

inf [zc,zb] f(zc, zb)
subj. to gi(zc, zb) ≤ 0 for i = 1, . . . ,m

hj(zc, zb) = 0 for j = 1, . . . , p
zc ∈ Rsc , zb ∈ {0, 1}sb

(1.10)

where f, g1, . . . , gm, h1, . . . , hp are real-valued functions defined over Z.
For combinatorial, integer and mixed-integer optimization problems, all defini-

tions introduced in the previous section apply.

1.2 Convexity

A set S ∈ Rs is convex if

λz1 + (1− λ)z2 ∈ S for all z1 ∈ S, z2 ∈ S and λ ∈ [0, 1].

1.2 Convexity 7

A function f : S → R is convex if S is convex and

f(λz1 + (1− λ)z2) ≤ λf(z1) + (1− λ)f(z2)

for all z1 ∈ S, z2 ∈ S and λ ∈ [0, 1].

A function f : S → R is strictly convex if S is convex and

f(λz1 + (1− λ)z2) < λf(z1) + (1− λ)f(z2)

for all z1 ∈ S, z2 ∈ S and λ ∈ (0, 1).

A twice differentiable function f : S → R is strongly convex if the Hessian

∇2f(z) � 0 for all z ∈ S.

A function f : S → R is concave if S is convex and −f is convex.

Operations Preserving Convexity

Various operations preserve convexity of functions and sets. A detailed list can be
found in Chapter 3.2 of [65]. A few operations used in this book are mentioned
below.

1. The intersection of an arbitrary number of convex sets is a convex set:

if S1, S2, . . . , Sk are convex, then S1 ∩ S2 ∩ . . . ∩ Sk is convex.

This property extends to the intersection of an infinite number of sets:

if Sn is convex ∀n ∈ N+ then
⋂

n∈N+

Sn is convex.

The empty set is convex because it satisfies the definition of convexity.

2. The sublevel sets of a convex function f on S are convex:

if f(z) is convex then Sα = {z ∈ S : f(z) ≤ α} is convex ∀α ∈ R.

3. If f1, . . . , fN are convex functions, then
∑N

i=1 αifi is a convex function for
all αi ≥ 0, i = 1, . . . , N .

4. The composition of a convex function f(z) with an affine map z = Ax + b
generates a convex function f(Ax+ b) of x:

if f(z) is convex then f(Ax+ b) is convex on {x : Ax+ b ∈ dom(f)}.

5. Suppose f(x) = h(g(x)) = h(g1(x), . . . , gk(x)) with h : Rk → R, gi : Rs → R.
Then,

(a) f is convex if h is convex, h is nondecreasing in each argument, and gi
are convex,

8 1 Main Concepts

(b) f is convex if h is convex, h is nonincreasing in each argument, and gi
are concave,

(c) f is concave if h is concave, h is nondecreasing in each argument, and gi
are concave.

6. The pointwise maximum of a set of convex functions is a convex function:

f1(z), . . . , fk(z) convex functions ⇒ f(z)

= max{f1(z), . . . , fk(z)} is a convex function.

This property holds also when the set is infinite.

Linear and Quadratic Convex Functions

1. A linear function f(z) = c′z + r is both convex and concave.

2. A quadratic function f(z) = z′Hz + 2q′z + r is convex if and only if H � 0.

3. A quadratic function f(z) = z′Hz + 2q′z + r is strictly convex if and only if
H � 0. A strictly convex quadratic function is also strongly convex.

Convex Optimization Problems

The standard optimization problem (1.4) is said to be convex if the cost function
f is convex on Z and S is a convex set. A fundamental property of convex
optimization problems is that local optimizers are also global optimizers. This is
proven next.

Theorem 1.1 Consider a convex optimization problem and let z̄ be a local
optimizer. Then, z̄ is a global optimizer.

Proof: By hypothesis z̄ is feasible and there exists R such that

f(z̄) = min{f(z) : gi(z) ≤ 0 i = 1, . . . ,m, hj(z) = 0, j = 1, . . . , p ‖z − z̄‖ ≤ R}.
(1.11)

Now suppose that z̄ is not globally optimal. Then, there exist a feasible y such that
f(y) < f(z̄), which implies that ‖y − z̄‖ > R. Now consider the point z given by

z = (1− θ)z̄ + θy, θ =
R

2‖y − z̄‖ .

Then ‖z − z̄‖ = R/2 < R and by convexity of the feasible set z is feasible. By
convexity of the cost function f

f(z) ≤ (1− θ)f(z̄) + θf(y) < f(z̄),

which contradicts (1.11). �

Theorem 1.1 does not make any statement about the existence of a solution to
problem (1.4). It merely states that all local minima of problem (1.4) are also global
minima. For this reason, convexity plays a central role in the solution of continuous
optimization problems. It suffices to compute a local minimum to problem (1.4)

1.3 Optimality Conditions 9

to determine its global minimum. Convexity also plays a major role in most non-
convex optimization problems which are solved by iterating between the solutions
of convex subproblems.

It is difficult to determine whether the feasible set S of the optimization
problem (1.4) is convex or not except in special cases. For example, if the functions
g1(z), . . . , gm(z) are convex and all the hi(z) (if any) are affine in z, then the
feasible set S in (1.6) is an intersection of convex sets and is therefore convex.
Moreover there are nonconvex problems which can be transformed into convex
problems through a change of variables and manipulations of cost and constraints.
The discussion of this topic goes beyond the scope of this overview on optimization.
The interested reader is referred to [65].

Remark 1.1 With the exception of trivial cases, integer and mixed-integer optimiza-
tion problems are always nonconvex problems because {0, 1} is not a convex set.

1.3 Optimality Conditions

In general, an analytical solution to problem (1.4), restated below, does not exist.

infz f(z)
subj. to gi(z) ≤ 0 for i = 1, . . . ,m

hj(z) = 0 for j = 1, . . . , p
z ∈ Z.

(1.12)

Solutions are usually computed by iterative algorithms which start from an initial
guess z0 and at step k generate a point zk such that the sequence {f(zk)}k=0,1,2,...

converges to f∗ as k increases. These algorithms iteratively use and/or solve
conditions for optimality, i.e., analytical conditions that a point z must satisfy
in order to be an optimizer. For instance, for convex, unconstrained optimization
problems with a smooth cost function the most commonly used optimality criterion
requires the gradient to vanish at the optimizer, i.e., z is an optimizer if and only
if ∇f(z) = 0. In this chapter we summarize necessary and sufficient optimality
conditions for unconstrained and constrained optimization problems.

1.3.1 Optimality Conditions for Unconstrained Problems

The proofs of the theorems presented next can be found in Chapter 4 and Section
8.6.1 of [27].

Necessary Conditions

Theorem 1.2 Suppose that f : Rs → R is differentiable at z̄. If there
exists a vector d such that ∇f(z̄)′d < 0, then there exists a δ > 0 such that
f(z̄ + λd) < f(z̄) for all λ ∈ (0, δ).

10 1 Main Concepts

The vector d in the theorem above is called a descent direction. At a given
point z̄ a descent direction d satisfies the condition ∇f(z̄)′d < 0. Theorem
1.2 states that if a descent direction exists at a point z̄, then it is possible to
move from z̄ towards a new point z̃ whose associated cost f(z̃) is lower than
f(z̄). The direction of steepest descent ds at a given point z̄ is defined as the
normalized direction where ∇f(z̄)′ds < 0 is minimized. The direction ds of

steepest descent is ds = − ∇f(z̄)
‖∇f(z̄)‖ .

Two corollaries of Theorem 1.2 are stated next.

Corollary 1.1 Suppose that f : Rs → R is differentiable at z̄. If z̄ is a
local minimizer, then ∇f(z̄) = 0.

Corollary 1.2 Suppose that f : Rs → R is twice differentiable at z̄. If z̄
is a local minimizer, then ∇f(z̄) = 0 and the Hessian ∇2f(z̄) is positive
semidefinite.

Sufficient Condition

Theorem 1.3 Suppose that f : Rs → R is twice differentiable at z̄. If
∇f(z̄) = 0 and the Hessian of f(z) at z̄ is positive definite, then z̄ is a local
minimizer.

Necessary and Sufficient Condition

Theorem 1.4 Suppose that f : Rs → R is differentiable at z̄. If f is
convex, then z̄ is a global minimizer if and only if ∇f(z̄) = 0.

When the optimization is constrained and the cost function is not sufficiently
smooth, the conditions for optimality become more complicated. The intent of this
chapter is to give an overview of some important optimality criteria for constrained
nonlinear optimization. The optimality conditions derived here will be the main
building blocks for the theory developed later in this book.

1.4 Lagrange Duality Theory

Consider the nonlinear program (1.12). Let f∗ be the optimal value. Denote by Z
the domain of cost and constraints (1.5). Any feasible point z̄ provides an upper
bound to the optimal value f(z̄) ≥ f∗. Next, we will show how to generate a lower
bound on f∗.

Starting from the standard nonlinear program (1.12) we construct another
problem with different variables and constraints. The original problem (1.12) will
be called the primal problem while the new one will be called the dual problem.
First, we augment the objective function with a weighted sum of the constraints.
In this way the Lagrange dual function (or Lagrangian) L is obtained

L(z, u, v) = f(z) + u1g1(z) + · · ·+ umgm(z) +

+ v1h1(z) + · · ·+ vphp(z), (1.13)

1.4 Lagrange Duality Theory 11

where the scalars u1, . . . , um, v1, . . . , vp are real variables called dual variables or
Lagrange multipliers. We can write Equation (1.13) in the compact form

L(z, u, v) = f(z) + u′g(z) + v′h(z), (1.14)

where u = [u1, . . . , um]′, v = [v1, . . . , vp]
′ and L : Rs × Rm × Rp → R. The

components ui and vi are called dual variables. Note that the i-th dual variable
ui is associated with the i-th inequality constraint of problem (1.12), the i-th dual
variable vi is associated with the i-th equality constraint of problem (1.12).

Let z be a feasible point: for arbitrary vectors u ≥ 0 and v we trivially obtain
a lower bound on f(z)

L(z, u, v) ≤ f(z). (1.15)

We minimize both sides of Equation (1.15)

inf
z∈Z, g(z)≤0, h(z)=0

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z) (1.16)

in order to reconstruct the original problem on the right-hand side of the expression.
Since for arbitrary u ≥ 0 and v

inf
z∈Z

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

L(z, u, v), (1.17)

we obtain
inf
z∈Z

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z). (1.18)

Equation (1.18) implies that for arbitrary u ≥ 0 and v the solution to

inf
z∈Z

L(z, u, v) (1.19)

provides us with a lower bound to the original problem. The “best” lower bound
is obtained by maximizing problem (1.19) over the dual variables

sup
(u,v), u≥0

inf
z∈Z

L(z, u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z).

Define the dual cost d(u, v) as follows

d(u, v) = inf
z∈Z

L(z, u, v) ∈ [−∞,+∞]. (1.20)

Then the Lagrange dual problem is defined as

sup
(u,v), u≥0

d(u, v), (1.21)

and its optimal solution, if it exists, is denoted by (u∗, v∗). The dual cost d(u, v) is
the optimal value of an unconstrained optimization problem. Problem (1.20) is called
the Lagrange dual subproblem. Only points (u, v) with d(u, v) > −∞ are interesting
for the Lagrange dual problem. A point (u, v) will be called dual feasible if u ≥ 0
and d(u, v) > −∞. d(u, v) is always a concave function since it is the pointwise
infimum of a family of affine functions of (u, v). This implies that the dual problem

12 1 Main Concepts

is a convex optimization problem (max of a concave function over a convex set)
even if the original problem is not convex. Therefore, it is easier in principle to
solve the dual problem than the primal (which is in general nonconvex). However,
in general, the solution to the dual problem is only a lower bound of the primal
problem:

sup
(u,v), u≥0

d(u, v) ≤ inf
z∈Z, g(z)≤0, h(z)=0

f(z).

Such a property is called weak duality. In a simpler form, let f∗ and d∗ be the
primal and dual optimal value, respectively,

f∗ = inf
z∈Z, g(z)≤0, h(z)=0

f(z), (1.22a)

d∗ = sup
(u,v), u≥0

d(u, v), (1.22b)

then, we always have
f∗ ≥ d∗ (1.23)

and the difference f∗ − d∗ is called the optimal duality gap. The weak duality
inequality (1.23) holds also when d∗ and f∗ are infinite. For example, if the primal
problem is unbounded below, so that f∗ = −∞, we must have d∗ = −∞, i.e., the
Lagrange dual problem is infeasible. Conversely, if the dual problem is unbounded
above, so that d∗ = +∞, we must have f∗ = +∞, i.e., the primal problem is
infeasible.

Remark 1.2 We have shown that the dual problem is a convex optimization problem
even if the original problem is nonconvex. As stated in this section, for nonconvex
optimization problems it is “easier” to solve the dual problem than the primal
problem. However the evaluation of d(ū, v̄) at a point (ū, v̄) requires the solution
of the nonconvex unconstrained optimization problem (1.20), which, in general, is
“not easy.”

1.4.1 Strong Duality and Constraint Qualifications

If d∗ = f∗, then the duality gap is zero and we say that strong duality holds:

sup
(u,v), u≥0

d(u, v) = inf
z∈Z, g(z)≤0, h(z)=0

f(z). (1.24)

This means that the best lower bound obtained by solving the dual problem
coincides with the optimal cost of the primal problem. In general, strong duality
does not hold, even for convex primal problems. Constraint qualifications are con-
ditions on the constraint functions which imply strong duality for convex problems.
A detailed discussion on constraint qualifications can be found in Chapter 5 of [27].

A well-known simple constraint qualification is “Slater’s condition”:

Definition 1.1 (Slater’s condition) Consider problem (1.12). There exists
ẑ ∈ Rs which belongs to the relative interior of the problem domain Z, which
is feasible (g(ẑ) ≤ 0, h(ẑ) = 0) and for which gj(ẑ) < 0 for all j for which gj is
not an affine function.

1.5 Complementary Slackness 13

Remark 1.3 Note that Slater’s condition reduces to feasibility when all inequality
constraints are linear and Z = Rn.

Theorem 1.5 (Slater’s theorem) Consider the primal problem (1.22a) and its
dual problem (1.22b). If the primal problem is convex, Slater’s condition holds and
f∗ is bounded then d∗ = f∗.

1.4.2 Certificate of Optimality

Consider the (primal) optimization problem (1.12) and its dual (1.21). Any feasible
point z gives us information about an upper bound on the cost, i.e., f∗ ≤ f(z).
If we can find a dual feasible point (u, v) then we can establish a lower bound
on the optimal value of the primal problem: d(u, v) ≤ f∗. In summary, without
knowing the exact value of f∗ we can give a bound on how suboptimal a given
feasible point is. In fact, if z is primal feasible and (u, v) is dual feasible then
d(u, v) ≤ f∗ ≤ f(z). Therefore z is ε-suboptimal, with ε equal to the primal-dual
gap, i.e., ε = f(z)− d(u, v).

The optimal value of the primal (and dual) problems will lie in the same interval

f∗ ∈ [d(u, v), f(z)] and d∗ ∈ [d(u, v), f(z)].

For this reason (u, v) is also called a certificate that proves the (sub)optimality
of z. Optimization algorithms make extensive use of such criteria. Primal-dual
algorithms iteratively solve primal and dual problems and generate a sequence of
primal and dual feasible points zk, (uk, vk), k ≥ 0 until a certain ε is reached. The
condition

f(zk)− d(uk, vk) < ε,

for terminating the algorithm guarantees that when the algorithm terminates, zk is
ε-suboptimal. If strong duality holds the condition can be met for arbitrarily small
tolerances ε.

1.5 Complementary Slackness

Consider the (primal) optimization problem (1.12) and its dual (1.21). Assume that
strong duality holds. Suppose that z∗ and (u∗, v∗) are primal and dual feasible with
zero duality gap (hence, they are primal and dual optimal):

f(z∗) = d(u∗, v∗).

By definition of the dual problem, we have

f(z∗) = inf
z∈Z

(
f(z) + u∗′g(z) + v∗′h(z)

)
.

Therefore
f(z∗) ≤ f(z∗) + u∗′g(z∗) + v∗′h(z∗), (1.25)

14 1 Main Concepts

and since h(z∗) = 0, u∗ ≥ 0 and g(z∗) ≤ 0 we have

f(z∗) ≤ f(z∗) + u∗′g(z∗) ≤ f(z∗). (1.26)

From the last equation we can conclude that u∗′g(z∗) =
∑m

i=1 u
∗
i gi(z

∗) = 0 and
since u∗

i ≥ 0 and gi(z
∗) ≤ 0, we have

u∗
i gi(z

∗) = 0, i = 1, . . . ,m. (1.27)

Conditions (1.27) are called complementary slackness conditions. Complemen-
tary slackness conditions can be interpreted as follows. If the i-th inequality
constraint of the primal problem is inactive at the optimum (gi(z

∗) < 0), then the
i-th dual optimizer has to be zero (u∗

i = 0). Vice versa, if the i-th dual optimizer
is different from zero (u∗

i > 0), then the i-th constraint is active at the optimum
(gi(z

∗) = 0).
Relation (1.27) implies that the inequality in (1.25) holds as equality

f(z∗) +
∑
i

u∗
i gi(z

∗) +
∑
j

v∗jhj(z
∗) = min

z∈Z

⎛⎝f(z) +
∑
i

u∗
i gi(z) +

∑
j

v∗jhj(z)

⎞⎠ .

(1.28)

Therefore, complementary slackness conditions implies that z∗ is a minimizer of
L(z, u∗, v∗).

1.6 Karush-Kuhn-Tucker Conditions

Consider the (primal) optimization problem (1.12) and its dual (1.21). Assume
that strong duality holds. Assume that the cost functions and constraint functions
f , gi, hi are differentiable. Let z∗ and (u∗, v∗) be primal and dual optimal
points, respectively. Complementary slackness conditions implies that z∗ minimizes
L(z, u∗, v∗) under no constraints (Equation (1.28)). Since f , gi, hi are differentiable,
the gradient of L(z, u∗, v∗) must be zero at z∗

∇f(z∗) +
∑
i

u∗
i∇gi(z

∗) +
∑
j

v∗j∇hj(z
∗) = 0.

In summary, the primal and dual optimal pair z∗, (u∗, v∗) of an optimization
problem with differentiable cost and constraints and zero duality gap, have to
satisfy the following conditions:

∇f(z∗) +
m∑
i=1

u∗
i∇gi(z

∗) +

p∑
j=1

v∗j∇hi(z
∗) = 0, (1.29a)

u∗
i gi(z

∗) = 0, i = 1, . . . ,m (1.29b)

u∗
i ≥ 0, i = 1, . . . ,m (1.29c)

gi(z
∗) ≤ 0, i = 1, . . . ,m (1.29d)

hj(z
∗) = 0, j = 1, . . . , p (1.29e)

1.6 Karush-Kuhn-Tucker Conditions 15

where Equations (1.29d)–(1.29e) are the primal feasibility conditions, Equation
(1.29c) is the dual feasibility condition and Equation (1.29b) are the complementary
slackness conditions.

Conditions (1.29a)–(1.29e) are called the Karush-Kuhn-Tucker (KKT) condi-
tions. We have shown that the KKT conditions are necessary conditions for any
primal-dual optimal pair if strong duality holds and the cost and constraints
are differentiable, i.e., any primal and dual optimal points z∗, (u∗, v∗) must
satisfy the KKT conditions (1.29). If the primal problem is also convex then the
KKT conditions are sufficient, i.e., a primal dual pair z∗, (u∗, v∗) which satisfies
conditions (1.29a)–(1.29e) is a primal dual optimal pair with zero duality gap.

There are several theorems which characterize primal and dual optimal points
z∗ and (u∗, v∗) by using KKT conditions. They mainly differ on the type of
constraint qualification chosen for characterizing strong duality. Next we report
just two examples.

If a convex optimization problem with differentiable objective and constraint
functions satisfies Slater’s condition, then the KKT conditions provide necessary
and sufficient conditions for optimality.

Theorem 1.6 [27, p. 244] Consider problem (1.12) and let Z be a nonempty set
of Rs. Suppose that problem (1.12) is convex and that cost and constraints f , gi and
hi are differentiable at a feasible z∗. If problem (1.12) satisfies Slater’s condition
then z∗ is optimal if and only if there are (u∗, v∗) that, together with z∗, satisfy
the KKT conditions (1.29).

If a convex optimization problem with differentiable objective and constraint
functions has a linearly independent set of active constraints gradients, then the
KKT conditions provide necessary and sufficient conditions for optimality.

Theorem 1.7 (Section 4.3.7 in [27]) Consider problem (1.12) and let Z be a
nonempty open set of Rs. Let z∗ be a feasible solution and A = {i: gi(z

∗) = 0}
be the set of active constraints at z∗. Suppose cost and constraints f , gi are
differentiable at z∗ for all i and that hj are continuously differentiable at z∗ for
all j. Further, suppose that ∇gi(z

∗) for i ∈ A and ∇hj(z
∗) for j = 1, . . . , p, are

linearly independent. If z∗, (u∗, v∗) are primal and dual optimal points, then they
satisfy the KKT conditions (1.29). In addition, if problem (1.12) is convex, then z∗

is optimal if and only if there are (u∗, v∗) that, together with z∗, satisfy the KKT
conditions (1.29).

The KKT conditions play an important role in optimization. In a few special cases,
it is possible to solve the KKT conditions (and therefore, the optimization problem)
analytically. Many algorithms for convex optimization are conceived as, or can be
interpreted as, methods for solving the KKT conditions as Boyd and Vandenberghe
observe in [65].

The following example [27] shows a convex problem where the KKT conditions
are not fulfilled at the optimum. In particular, both the constraint qualifications of
Theorem 1.7 and Slater’s condition in Theorem 1.6 are violated.

16 1 Main Concepts

z2

z1

(1, 1)

(1, −1)

∇g2(1, 0)

∇g1(1,0)

∇f(1, 0)

Figure 1.1 Example 1.1. Constraints, feasible set and gradients. The feasible
set is the point (1, 0) that satisfies neither Slater’s condition nor the
constraint qualification condition in Theorem 1.7.

Example 1.1 [27, p. 196] Consider the convex optimization problem

min z1

subj. to (z1 − 1)2 + (z2 − 1)2 ≤ 1
(z1 − 1)2 + (z2 + 1)2 ≤ 1.

(1.30)

From the graphical interpretation in Figure 1.1 it is immediate that the feasible set is a
single point z̄ = [1, 0]′. The optimization problem does not satisfy Slater’s conditions
and moreover z̄ does not satisfy the constraint qualifications in Theorem 1.7. At
the optimum z̄ Equation (1.29a) cannot be satisfied for any pair of nonnegative real
numbers u1 and u2.

1.6.1 Geometric Interpretation of KKT Conditions

A geometric interpretation of the KKT conditions is depicted in Figure 1.2 for an
optimization problem in two dimensions with inequality constraints and no equality
constraints.

Equation (1.29a) and equation (1.29c) can be rewritten as

−∇f(z) =
∑
i∈A

ui∇gi(z), ui ≥ 0, (1.31)

where A = {1, 2} at z1 and A = {2, 3} at z2. This means that the negative gradient
of the cost at the optimum −∇f(z∗) (which represents the direction of steepest
descent) has to belong to the cone spanned by the gradients of the active constraints

1.6 Karush-Kuhn-Tucker Conditions 17

∇g1(z1) −∇f (z1)

∇g2(z1)

−∇f (z2)

∇g2(z2)

∇g3(z2)

z1

z2
g 1

(z
)≤

0

g
2 (z)≤

0

g(z)≤0

g 3
(z)

≤0

Figure 1.2 Geometric interpretation of KKT conditions [27].

∇gi (since inactive constraints have the corresponding Lagrange multipliers equal
to zero). In Figure 1.2, condition (1.31) is not satisfied at z2. In fact, one can move
within the set of feasible points g(z) ≤ 0 and decrease f , which implies that z2
is not optimal. At point z1, on the other hand, the cost f can only decrease if
some constraint is violated. Any movement in a feasible direction increases the
cost. Conditions (1.31) are fulfilled and hence z1 is optimal.

2

Linear and Quadratic
Optimization

This chapter focuses on two widely known and used subclasses of convex optimiza-
tion problems: linear and quadratic programs. They are popular because many
important practical problems can be formulated as linear or quadratic programs
and because they can be solved efficiently. Also, they are the basic building blocks
of many other optimization algorithms. This chapter presents their formulation
together with their main properties and some fundamental results.

2.1 Polyhedra and Polytopes

We first introduce a few concepts needed for the geometric interpretation of linear
an quadratic optimization. They will be discussed in more detail in Section 4.2.

A polyhedron P in Rn denotes an intersection of a finite set of closed halfspaces
in Rn:

P = {x ∈ Rn : Ax ≤ b}, (2.1)

where Ax ≤ b is the usual shorthand form for a system of inequalities, namely
a′ix ≤ bi, i = 1, . . . ,m, where a′1, . . . , a

′
m are the rows of A, and b1, . . . , bm are

the components of b. A polytope is a bounded polyhedron. In Figure 2.1 a two-
dimensional polytope is plotted.

A linear inequality c′z ≤ c0 is said to be valid for P if it is satisfied for all points
z ∈ P. A face of P is any nonempty set of the form

F = P ∩ {z ∈ Rs : c′z = c0}, (2.2)

where c′z ≤ c0 is a valid inequality for P. All faces of P satisfying F ⊂ P are called
proper faces and have dimension less than dim(P). The faces of dimension 0,1,
dim(P)-2 and dim(P)-1 are called vertices, edges, ridges, and facets, respectively.

20 2 Linear and Quadratic Optimization

a1x ≤ b1

a 2
x
≤
b 2

a
3 x≤

b3

a 4
x
≤
b 4

Figure 2.1 Polytope. A polytope is a bounded polyhedron defined by
the intersection of closed halfspaces. The planes (here lines) defining the
boundary of the halfspaces are a′

ix− bi = 0.

2.2 Linear Programming

When the cost and the constraints of the continuous optimization problem (1.4)
are affine, then the problem is called a linear program (LP). The most general form
of a linear program is

infz c′z
subj. to Gz ≤ w,

(2.3)

where G ∈ Rm×s, w ∈ Rm. Linear programs are convex optimization problems.
Two other common forms of linear programs include both equality and

inequality constraints:
infz c′z
subj. to Gz ≤ w

Az = b,
(2.4)

where A ∈ Rp×s, b ∈ Rp, or only equality constraints and positive variables:

infz c′z
subj. to Az = b

z ≥ 0.
(2.5)

By standard simple manipulations [65, p. 146] it is always possible to convert one
of the three forms (2.3), (2.4) and (2.5) into the others.

2.2.1 Geometric Interpretation and Solution Properties

Let P be the feasible set (1.6) of problem (2.3). As Z = Rs, this implies that P
is a polyhedron defined by the inequality constraints in (2.3). If P is empty, then

2.2 Linear Programming 21

the problem is infeasible. We will assume for the following discussion that P is
not empty. Denote by f∗ the optimal value and by Z∗ the set of optimizers of
problem (2.3)

Z∗ = argminz∈P c′z.

Three cases can occur.

Case 1. The LP solution is unbounded, i.e., f∗ = −∞.

Case 2. The LP solution is bounded, i.e., f∗ > −∞ and the optimizer is unique.
z∗ = Z∗ is a singleton.

Case 3. The LP solution is bounded and there are multiple optima. Z∗ is an
subset of Rs which can be bounded or unbounded.

The two-dimensional geometric interpretation of the three cases discussed above
is depicted in Figure 2.2.

k1

k2
k3

k4

P

(a) Case 1. Solution unbounded.

k1
k2

k3

k4

P

z∗

(b) Case 2. Unique optimizer z∗.

k1

k2

k3

k4

P

Z∗

(c) Case 3. Multiple optimizers Z∗.

Figure 2.2 Linear program. Geometric interpretation, level curve parameters
ki < ki−1.

22 2 Linear and Quadratic Optimization

The level curves of the cost function c′z are represented by the parallel lines. All
points z belonging both to the line c′z = ki and to the polyhedron P are feasible
points with an associated cost ki, with ki < ki−1. Solving (2.3) amounts to finding
a feasible z which belongs to the level curve with the smallest cost ki. Since the
gradient of the cost is c, the direction of steepest descent is −c/‖c‖.

Case 1 is depicted in Figure 2.2(a). The feasible set P is unbounded. One can
move in the direction of steepest descent −c and be always feasible, thus decreasing
the cost to −∞. Case 2 is depicted in Figure 2.2(b). The optimizer is unique and
it coincides with one of the vertices of the feasible polyhedron. Case 3 is depicted
in Figure 2.2(c). The whole facet of the feasible polyhedron P is optimal, i.e., the
cost for any point z belonging to the facet equals the optimal value f∗. In general,
the optimal facet will be a facet of the polyhedron P parallel to the hyperplane
c′z = 0.

From the analysis above we can conclude that the optimizers of any bounded
LP always lie on the boundary of the feasible polyhedron P.

2.2.2 Dual of LP

Consider the LP (2.3)

infz c′z
subj. to Gz ≤ w,

(2.6)

with z ∈ Rs and G ∈ Rm×s.
The Lagrange function as defined in (1.14) is

L(z, u) = c′z + u′(Gz − w).

The dual cost is

d(u) = inf
z
L(z, u) = inf

z
(c′ + u′G)z − u′w =

{
−u′w if−G′u = c
−∞ if−G′u 	= c.

Since we are interested only in cases where d is finite, from the relation above we
conclude that the dual problem is

supu −u′w
subj. to −G′u = c

u ≥ 0,
(2.7)

which can be rewritten as

infu w′u
subj. to G′u = −c

u ≥ 0.
(2.8)

Note that for LPs, feasibility implies strong duality (Remark 1.3).

2.2 Linear Programming 23

2.2.3 KKT condition for LP

The KKT conditions (1.29a)–(1.29e) for the LP (2.3) become

G′u+ c = 0, (2.9a)

ui(Giz − wi) = 0, i = 1, . . . ,m (2.9b)

u ≥ 0, (2.9c)

Gz − w ≤ 0. (2.9d)

They are: stationarity condition (2.9a), complementary slackness conditions (2.9b),
dual feasibility (2.9c) and primal feasibility (2.9d). Often dual feasibility in linear
programs refers to both (2.9a) and (2.9c).

2.2.4 Active Constraints and Degeneracies

Consider the LP (2.3). Let I = {1, . . . ,m} be the set of constraint indices. For any
A ⊆ I, let GA and wA be the submatrices of G and w, respectively, comprising
the rows indexed by A and denote with Gj and wj the j-th row of G and w,
respectively. Let z be a feasible point and consider the set of active and inactive
constraints at z:

A(z) = {i ∈ I : Giz = wi}

NA(z) = {i ∈ I : Giz < wi}.
(2.10)

From (2.10) we have
GA(z∗)z

∗ = wA(z∗)

GNA(z∗)z
∗ < wNA(z∗).

(2.11)

Definition 2.1 (Linear Independence Constraint Qualification (LICQ))
We say that LICQ holds at z∗ if the matrix GA(z∗) has full row rank.

Lemma 2.1 Assume that the feasible set P of problem (2.3) is bounded. If the
LICQ is violated at z∗1 ∈ Z∗ then there exists z∗2 ∈ Z∗ such that |A(z∗2)| > s.

Consider z∗1 ∈ Z∗ on an optimal facet. Lemma 2.1 states the simple fact that if
LICQ is violated at z∗1 , then there is a vertex z∗2 ∈ Z∗ on the same facet where
|A(z∗2)| > s. Thus, violation of LICQ is equivalent to having more than s constraints
active at an optimal vertex.

Definition 2.2 The LP (2.3) is said to be primal degenerate if there exists a
z∗ ∈ Z∗ such that the LICQ does not hold at z∗.

Figure 2.3 depicts a case of primal degeneracy with four constraints active at the
optimal vertex, i.e., more than the minimum number two.

Definition 2.3 The LP (2.3) is said to be dual degenerate if its dual problem is
primal degenerate.

24 2 Linear and Quadratic Optimization

1

2

3

4

5

6

z∗

P

Figure 2.3 Primal degeneracy in a linear program.

The LICQ condition is invoked so that the optimization problem is well behaved
in a way we will explain next. Let us look at the equality constraints of the dual
problem (2.8) at the optimum G′u∗ = −c or equivalently G′

Au
∗
A = −c since

u∗
NA = 0. If LICQ is satisfied, then the equality constraints will allow only a unique

optimizer u∗. If LICQ is not satisfied, then the dual may have multiple optimizers.
Thus we have the following Lemma.

Lemma 2.2 If the primal problem (2.3) is not degenerate then the dual problem
has a unique optimizer. If the dual problem (2.8) is not degenerate, then the primal
problem has a unique optimizer.

Multiple dual optimizers imply primal degeneracy and multiple primal optimizers
imply dual degeneracy but the reverse is not true as we will illustrate next. In other
words, LICQ is only a sufficient condition for uniqueness of the dual.

Example 2.1 Primal and dual degeneracies
Consider the following pair of primal and dual LPs

Primal
inf [−1 − 1]x⎡⎢⎢⎣

0 1
1 1
−1 0
0 −1

⎤⎥⎥⎦x ≤

⎡⎢⎢⎣
1
1
0
0

⎤⎥⎥⎦ (2.12)

Dual
inf [1 1 0 0]u[

0 1 −1 0
1 1 0 −1

]
u =

[
1
1

]
u ≥ 0

(2.13)

2.2 Linear Programming 25

max

primal solution

1

2

x2

x1

(a) Primal LP.

min

dual solution

u2

u1

(b) Dual LP.

Figure 2.4 Example 2.1. LP with primal and dual degeneracy. The vectors
max and min point in the direction for which the objective improves. The
feasible sets are shaded.

Substituting for u3 and u4 from the equality constraints in (2.13) we can rewrite the
dual as

Dual

inf [1 1]

[
u1

u2

]
⎡⎢⎣ 1 0

0 1
1 1
0 1

⎤⎥⎦[u1

u2

]
≥

⎡⎢⎣ 0
1
1
0

⎤⎥⎦ (2.14)

The situation is portrayed in Figure 2.4.

Consider the two solutions for the primal LP denoted with 1 and 2 in Figure 2.4(a)
and referred to as “basic” solutions. Basic solution 1 is primal nondegenerate, since it
is defined by exactly as many active constraints as there are variables. Basic solution
2 is primal degenerate, since it is defined by three active constraints, i.e., more than
two. Any convex combination of optimal solutions 1 and 2 is also optimal. This
continuum of optimal solutions in the primal problem corresponds to a degenerate
solution in the dual space, that is, the dual problem is primal-degenerate. Hence
the primal problem is dual-degenerate. In conclusion, Figures 2.4(a) and 2.4(b) show
an example of a primal problem with multiple optima and the corresponding dual
problem being primal degenerate.

Next we want to show that the statement “if the dual problem is primal degenerate
then the primal problem has multiple optima” is, in general, not true. Switch dual
and primal problems, i.e., call the “dual problem” primal problem and the “primal
problem” dual problem (this can be done since the dual of the dual problem is the
primal problem). Then, we have a dual problem which is primal degenerate in solution
2 while the primal problem does not present multiple optimizers.

26 2 Linear and Quadratic Optimization

2.2.5 Convex Piecewise Affine Optimization

Consider a continuous and convex piecewise affine function f : R ⊆ Rs → R:

f(z) = c′iz + di if z ∈ Ri, i = 1, . . . , p, (2.15)

where {Ri}pi=1 are polyhedral sets with disjoint interiors, R =
⋃p

i=1 Ri is a
polyhedron and ci ∈ Rs, di ∈ R. Then, f(z) can be rewritten as [257]

f(z) = max
i=1,...,k

{c′iz + di}, z ∈ R, (2.16)

or [65]:
f(z) = minε ε

c′iz + di ≤ ε, i = 1, . . . , k
z ∈ R.

(2.17)

See Figure 2.5 for an illustration of the idea.
Consider the following optimization problem

f∗ = minz f(z)
subj. to Gz ≤ w

z ∈ R,
(2.18)

where the cost function has the form (2.15). Substituting (2.17) this becomes

f∗ = minz,ε ε
subj. to Gz ≤ w

c′iz + di ≤ ε, i = 1, . . . , k
z ∈ R.

(2.19)

The previous result can be extended to the sum of continuous and convex
piecewise affine functions. Let f : R ⊆ Rs → R be defined as:

f(z) =
r∑

j=1

f j(z), (2.20)

R1 R2 R3 R4

c1z + d1

c2 z + d2

c3 z + d3

c4 z + d4

f
(z

)

Figure 2.5 Convex piecewise affine (PWA) function described as the max of
affine functions.

2.3 Quadratic Programming 27

with

f j(z) = max
i=1,...,kj

{cji
′
z + dji}, z ∈ R. (2.21)

Then the following optimization problem

f∗ = minz f(z)
subj. to Gz ≤ w

z ∈ R,
(2.22)

where the cost function has the form (2.20), can be solved by the following linear
program:

f∗ = minz,ε1,...,εr ε1 + · · ·+ εr

subj. to Gz ≤ w

c1i
′
z + d1i ≤ ε1, i = 1, . . . , k1

c2i
′
z + d2i ≤ ε2, i = 1, . . . , k2

...
cri

′z + dri ≤ εr, i = 1, . . . , kr

z ∈ R.

(2.23)

Remark 2.1 Note that the results of this section can be immediately applied to the
minimization of one or infinity norms. For any y ∈ R, |y| = max {y,−y}. Therefore
for any Q ∈ Rk×s and p ∈ Rk:

‖Qz − p‖∞ = max{Q1
′z + p1,−Q1

′z − p1, . . . , Qk
′z + pk,−Qk

′z − pk},

and

‖Qz − p‖1 =
k∑

i=1

|Qi
′z + pi| =

k∑
i=1

max{Qi
′z + pi,−Qi

′z − pi}.

2.3 Quadratic Programming

The continuous optimization problem (1.4) is called a quadratic program (QP) if the
constraint functions are affine and the cost function is a convex quadratic function.
In this book we will use the form:

minz
1
2z

′Hz + q′z + r
subj. to Gz ≤ w,

(2.24)

where z ∈ Rs, H = H ′ � 0 ∈ Rs×s, q ∈ Rs, G ∈ Rm×s. In (2.24) the constant term
can be omitted if one is only interested in the optimizer.

Other QP forms often include equality and inequality constraints:

minz
1
2z

′Hz + q′z + r
subj. to Gz ≤ w

Az = b.
(2.25)

28 2 Linear and Quadratic Optimization

P

z∗

(a) Case 1. Optimizer z∗ in interior of P.

P

z∗

(b) Case 2. Optimizer z∗ on boundary of P.

Figure 2.6 Geometric interpretation of the quadratic program solution.

2.3.1 Geometric Interpretation and Solution Properties

Let P be the feasible set (1.6) of problem (2.24). As Z = Rs, this implies that P is
a polyhedron defined by the inequality constraints in (2.24). The two dimensional
geometric interpretation is depicted in Figure 2.6. The level curves of the cost
function 1

2z
′Hz+q′z+r are represented by the ellipsoids. All the points z belonging

both to the ellipsoid 1
2z

′Hz + q′z + r = ki and to the polyhedron P are feasible
points with an associated cost ki. The smaller the ellipsoid, the smaller is its cost
ki. Solving (2.24) amounts to finding a feasible z which belongs to the level curve
with the smallest cost ki. Since H is strictly positive definite, the QP (2.24) cannot
have multiple optima nor unbounded solutions. If P is not empty the optimizer is
unique. Two cases can occur if P is not empty:

Case 1. The optimizer lies strictly inside the feasible polyhedron (Figure 2.6(a)).

Case 2. The optimizer lies on the boundary of the feasible polyhedron (Figure
2.6(b)).

In Case 1 the QP (2.24) is unconstrained and we can find the minimizer by
setting the gradient equal to zero

Hz∗ + q = 0. (2.26)

Since H � 0 we obtain z∗ = −H−1q.

2.3.2 Dual of QP

Consider the QP (2.24)
minz

1
2z

′Hz + q′z
subj. to Gz ≤ w.

The Lagrange function as defined in (1.14) is

L(z, u) =
1

2
z′Hz + q′z + u′(Gz − w).

2.3 Quadratic Programming 29

The dual cost is

d(u) = min
z

1

2
z′Hz + q′z + u′(Gz − w) (2.27)

and the dual problem is

max
u≥0

min
z

1

2
z′Hz + q′z + u′(Gz − w). (2.28)

For a given u the Lagrange function 1
2z

′Hz+ q′z+u′(Gz−w) is convex. Therefore
it is necessary and sufficient for optimality that the gradient is zero

Hz + q +G′u = 0.

From the equation above we can derive z = −H−1(q +G′u) and, substituting this
in Equation (2.27), we obtain:

d(u) = −1

2
u′(GH−1G′)u− u′(w +GH−1q)− 1

2
q′H−1q. (2.29)

By using (2.29) the dual problem (2.28) can be rewritten as:

minu
1
2u

′(GH−1G′)u+ u′(w +GH−1q) + 1
2q

′H−1q
subj. to u ≥ 0.

(2.30)

Note that for convex QPs feasibility implies strong duality (Remark 1.3).

2.3.3 KKT conditions for QP

Consider the QP (2.24). Then, ∇f(z) = Hz+ q, gi(z) = Giz−wi (where Gi is the
i-th row of G), ∇gi(z) = G′

i. The KKT conditions become

Hz + q +G′u = 0 (2.31a)

ui(Giz − wi) = 0, i = 1, . . . ,m (2.31b)

u ≥ 0 (2.31c)

Gz − w ≤ 0. (2.31d)

2.3.4 Active Constraints and Degeneracies

Consider the definition of active set A(z) in (2.10). Note that A(z∗) may be empty
in the case of a QP. We define primal and dual degeneracy as in the LP case.

Definition 2.4 The QP (2.24) is said to be primal degenerate if there exists a
z∗ ∈ Z∗ such that the LICQ does not hold at z∗.

Note that if the QP (2.24) is not primal degenerate, then the dual QP (2.30) has
a unique solution since u∗

NA = 0 and (GAH
−1G′

A) is invertible.

Definition 2.5 The QP (2.24) is said to be dual degenerate if its dual problem
is primal degenerate.

30 2 Linear and Quadratic Optimization

We note from (2.30) that all the constraints are independent. Therefore LICQ
always holds for dual QPs and dual degeneracy can never occur for QPs with
H � 0.

2.3.5 Constrained Least-Squares Problems

The problem of minimizing the convex quadratic function

‖Az − b‖22 = z′A′Az − 2b′Az + b′b (2.32)

is an (unconstrained) QP. It arises in many fields and has many names, e.g., linear
regression or least-squares approximation. From (2.26) we find the minimizer

z∗ = (A′A)−1A′b = A†b,

where A† is the generalized inverse of A. When linear inequality constraints are
added, the problem is called constrained linear regression or constrained least-
squares, and there is no longer a simple analytical solution. As an example we
can consider regression with lower and upper bounds on the variables, i.e.,

minz ‖Az − b‖22
subj. to li ≤ zi ≤ ui, i = 1, . . . , n,

(2.33)

which is a QP. In Chapter 6.3.1 we will show how to compute an analytical solution
to the constrained least-squares problem. In particular we will show how to compute
the solution z∗ as a function of b, ui and li.

2.4 Mixed-Integer Optimization

As discussed in Section 1.1.2, if the decision set Z in the optimization problem (1.2)
is the Cartesian product of a binary set and a real Euclidian space, i.e., Z ⊆
{[zc, zb] : zc ∈ Rsc , zb ∈ {0, 1}sb}, then the optimization problem is said to bemixed-
integer. In this section Mixed Integer Linear Programming (MILP) and Mixed
Integer Quadratic Programming (MIQP) are introduced.

When the cost of the optimization problem (1.10) is quadratic and the
constraints are affine, then the problem is called a mixed integer quadratic program
(MIQP). The most general form of an MIQP is

inf [zc,zb]
1
2z

′Hz + q′z + r

subj. to Gczc +Gbzb ≤ w
Aczc +Abzb = b
zc ∈ Rsc , zb ∈ {0, 1}sb
z = [zc, zb],

(2.34)

where H � 0 ∈ Rs×s, Gc ∈ Rm×sc , Gb ∈ Rm×sb , w ∈ Rm, Ac ∈ Rp×sc , Ab ∈
Rp×sb , b ∈ Rp and s = sc + sd. Mixed integer quadratic programs are nonconvex

2.4 Mixed-Integer Optimization 31

optimization problems, in general. When H = 0 the problem is called a mixed
integer linear program (MILP). Often the term r is omitted from the cost since
it does not affect the optimizer, but r has to be considered when computing the
optimal value. In this book, we will often use the form of MIQP with inequality
constraints only

inf [zc,zb]
1
2z

′Hz + q′z + r

subj. to Gczc +Gbzb ≤ w
zc ∈ Rsc , zb ∈ {0, 1}sb
z = [zc, zb].

(2.35)

The general form can always be translated into the form with inequality constraints
only by standard simple manipulations.

For a fixed integer value z̄b of zb, the MIQP (2.34) becomes a quadratic program:

infzc
1
2z

′
cHczc + qc(zb)

′zc + k(zb)

subj. to Gczc ≤ w −Gbz̄b
Aczc = beq −Abz̄b
zc ∈ Rsc .

(2.36)

Therefore the most obvious way to interpret and solve an MIQP is to enumerate
all the 2sb integer values of the variable zb and solve the corresponding QPs. By
comparing the 2sb optimal costs one can derive the optimizer and the optimal cost
of the MIQP (2.34). Although this approach is not used in practice, it gives a
simple way for proving what is stated next. Let Pz̄b be the feasible set (1.6) of
problem (2.35) for a fixed zb = z̄b. The cost is a quadratic function defined over
Rsc and Pz̄b is a polyhedron defined by the inequality constraints

Gczc ≤ w −Gbz̄b. (2.37)

Denote by f∗ the optimal value and by Z∗ the set of optimizers of problem (2.34)
If Pz̄b is empty for all z̄b, then the problem (2.35) is infeasible. Five cases can occur
if Pz̄b is not empty for at last one z̄b ∈ {0, 1}sb :

Case 1. The MIQP solution is unbounded, i.e., f∗ = −∞. This cannot happen if
Hc � 0.

Case 2. The MIQP solution is bounded, i.e., f∗ > −∞ and the optimizer is
unique. Z∗ is a singleton.

Case 3. The MIQP solution is bounded and there are infinitely many optimizers
corresponding to the same integer value. Z∗ is the Cartesian product of an
infinite dimensional subset of Rs and an integer number z∗b . This cannot
happen if Hc � 0.

Case 4. The MIQP solution is bounded and there are finitely many optimizers
corresponding to different integer values. Z∗ is a finite set of optimizers
{(z∗1,c, z∗1,b), . . . , (z∗N,c, z

∗
N,b)}.

Case 5. The union of Case 3 and Case 4.

3

Numerical Methods for
Optimization

Contributed by Dr. Alexander Domahidi and Dr. Stefan Richter
ETH Zurich
alex.domahidi@gmail.com, stefan.richter@alumni.ethz.ch

There is a great variety of algorithms for the solution of unconstrained and
constrained optimization problems. In this chapter we introduce those algorithms,
which are important for the problems encountered in this book and explain the
underlying concepts. In particular, we present numerical methods for finding a
minimizer z∗ to the optimization problem

minz f(z)
subj. to z ∈ S,

(3.1)

where both the objective function f : Rs → R and the feasible set S are convex,
hence (3.1) is a convex program. We will assume that if the problem is feasible, an
optimizer z∗ ∈ S exists, i.e., f∗ = f(z∗).

3.1 Convergence

Many model predictive control (MPC) problems for linear systems have the form of
problem (3.1) with a linear or convex quadratic objective function and a polyhedral
feasible set S defined by linear equalities and inequalities. In all but the simplest
cases, analytically finding a minimizer z∗ is impossible. Hence, one has to resort
to numerical methods, which compute an approximate minimizer that is “good
enough” (we give a precise definition of this term below). Any such method proceeds
in an iterative manner, i.e., starting from an initial guess z0, it computes a sequence
{zk}k=kmax

k=1 , where

zk+1 = Ψ
(
zk, f, S

)
,

34 3 Numerical Methods for Optimization

with Ψ being an update rule depending on the method. For a method to be useful, it
should terminate after kmax iterations and return an approximate minimizer zkmax

that satisfies

|f
(
zkmax

)
− f (z∗) | ≤ ε and dist(zkmax , S) ≤ δ,

where
dist(z, S) = min

y∈S
‖y − z‖

is the shortest distance between a point and a set in Rs measured by the norm ‖ ·‖.
The parameters ε, δ > 0 define the required accuracy of the approximate minimizer.

There exist mainly two classes of optimization methods for solving (3.1): first-
order methods that make use of first-order information of the objective function
(subgradients or gradients) and second-order methods using in addition second-
order information (Hessians). Note that either method may also use zero-order
information, i.e., the objective value itself, for instance, to compute step sizes.

In the following list, key aspects that are important for any optimization method
are summarized. Some of these aspects are discussed in detail for the corresponding
optimization methods later in this chapter.

• Convergence: Is kmax finite for all accuracies ε, δ > 0?

• Convergence rate: How do errors |f
(
zk

)
− f (z∗) | and dist(zk, S) depend on

the iteration counter k?

• Feasibility: Does the method produce feasible iterates, i.e., dist(zk, S) = 0
for all iterations k?

• Numerical robustness: Do the properties above change in presence of
finite precision arithmetics when using fixed or floating point number
representations?

• Warm-starting: Can the method take advantage of z0 being close to a
minimizer z∗?

• Preconditioning: Is it possible to transform (3.1) into an equivalent problem
that can be solved in fewer iterations?

• Computational complexity: How many arithmetic operations are needed for
computing the approximate solution zkmax?

The speed or rate of convergence relates to the second point in the list above
and is an important distinctive feature between various methods. We present a
definition of convergence rates next.

Definition 3.1 (Convergence Rates (cf. [223, Section 2.2])) Let {ek} be a
sequence of positive reals that converges to 0. The convergence rate of this sequence
is called linear if there exists a constant q ∈ (0, 1) such that

lim sup
k→∞

ek+1

ek
≤ q.

3.2 Unconstrained Optimization 35

If q = 1, the convergence rate is said to be sublinear, whereas if q = 0, the sequence
has a superlinear convergence rate. A superlinearly converging sequence converges
with order p if

lim sup
k→∞

ek+1

ek
p ≤ C,

where C is a positive constant, not necessarily less than 1. In particular, superlinear
convergence with order p = 2 is called quadratic convergence.

For an optimization method, the sequence {ek} in the definition above can be
any sequence of errors associated with the particular method, e.g., ek can be defined
as the absolute error in the objective value

ek = |f
(
zk

)
− f (z∗) |

or any other nonnegative error measure that vanishes only at a minimizer z∗.
In the previous classification of convergence rates, sublinear convergence is

eventually slower than linear convergence which itself is eventually slower than
superlinear convergence. Within superlinear convergence rates, the ones with higher
order converge faster eventually. However, for a fixed number of iterations, the
actual ordering of convergence rates also depends on constants q and C, for instance,
a linearly converging sequence with a small value of q might have a smaller error
after 10 steps than a quadratically converging sequence.

In the remainder of this chapter we first introduce methods that solve the
unconstrained problem, i.e., S = Rs, in Section 3.2. They are the prerequisite
for understanding constrained optimization methods, i.e., S ⊂ Rs, which are then
presented in Section 3.3.

3.2 Unconstrained Optimization

In unconstrained smooth optimization we are interested in solving the problem

min
z

f(z), (3.2)

where f : Rs → R is convex and continuously differentiable.
For the purpose of this section, we focus on so-called descent methods for

unconstrained optimization. These methods obtain the next iterate zk+1 from the
current iterate zk by taking a step of size hk > 0 along a certain direction dk:

zk+1 = zk + hkdk (3.3)

Particular methods differ in the way dk and hk are chosen. In general, dk has to
be a descent direction, i.e., for all zk 	= z∗ it must satisfy

∇f(zk)′dk < 0. (3.4)

36 3 Numerical Methods for Optimization

The step sizes hk have to be chosen carefully in order to ensure a sufficiently large
decrease in the function value, which is crucial for convergence of descent methods.
Since solving for the optimal step size,

hk,∗ ∈ argmin
h≥0

f(zk + hdk),

is generally too expensive, inexact line search methods are used instead. They
compute hk cheaply and achieve a reasonably good decrement in the function
value ensuring convergence of the algorithm. We discuss line search methods in
Section 3.2.3.

In the following, we present two of the most important instances of descent
methods: the classic gradient method in Section 3.2.1 and Newton’s method in
Section 3.2.2. We include Nesterov’s fast gradient method in the discussion along
with gradient methods, although it is not a descent method. We shall see that
gradient methods, under certain assumptions on the gradient of f , allow for a
constant step size, which results in an extremely simple and efficient algorithm in
practice. Newton’s method, on the contrary, requires a line search to ensure global
convergence, but it has a better (local) convergence rate than gradient methods.

3.2.1 Gradient Methods

Classic Gradient Method

One property of the gradient of f evaluated at zk, ∇f(zk), is that it points into
the direction of steepest local ascent. The main idea of gradient methods for
minimization is therefore to use the anti-gradient direction as a descent direction,

dk = −∇f(zk),

trivially satisfying (3.4). Before turning to the question of appropriate step sizes hk,
we introduce an additional assumption on the gradient of f . For the remainder of
this section, we assume that f has a Lipschitz continuous gradient, i.e., that f is
so-called L-smooth. All of the upcoming results regarding Lipschitz continuity of
the gradient are taken from [220, Section 1.2.2].

Definition 3.2 (L-Smoothness of a Function) Let f : Rs → R be once conti-
nuously differentiable on Rs. The gradient ∇f is Lipschitz continuous on Rs with
Lipschitz constant L > 0 if for all pairs (z, y) ∈ Rs × Rs

‖∇f(z)−∇f(y)‖ ≤ L ‖z − y‖ .

If function f is twice continuously differentiable, L-smoothness can be char-
acterized using the largest eigenvalue of the Hessian of f . This alternative
characterization can be useful in order to compute the actual value of the Lipschitz
constant.

Lemma 3.1 (L-Smoothness: Second-Order Characterization) Let func-
tion f : Rs → R be twice continuously differentiable on Rs. Then the gradient ∇f

3.2 Unconstrained Optimization 37

z

f (y) + ∇f (y) (z−y) + L
2 z−y

2
f(z)

f (y) + ∇f (y) (z−y) +
µ

2 z − y
2

f (y)

0 0.25
0

1

2

3

–0.5–1 0.5 1

Figure 3.1 Upper and lower bounds on functions: The quadratic upper bound
stems from L-smoothness of f (Definition 3.2), while the quadratic lower
bound is obtained from strong convexity of f (Theorem 3.1). In this example,
f(z) = z2 + 1

2
z + 1 and we have chosen L = 3 and μ = 1 for illustration.

is Lipschitz continuous on Rs with Lipschitz constant L > 0 if and only if for
all z ∈ Rs ∥∥∇2f(z)

∥∥ ≤ L.

The most important consequence of Lipschitz continuity of the gradient is that
f can be globally upper-bounded by a quadratic. This is expressed in the next
lemma and illustrated in Figure 3.1.

Algorithm 3.1 Gradient method for smooth convex optimization

Input: Initial iterate z0 ∈ Rs, Lipschitz constant L of ∇f

Output: Point close to z∗

Repeat

zk+1 ← zk − 1

L
∇f(zk)

Until stopping criterion is satisfied

Lemma 3.2 (Descent Lemma) Let f be L-smooth on Rs. Then for any pair
(z, y) ∈ Rs × Rs we have

f(z) ≤ f(y) +∇f(y)′(z − y) +
L

2
‖z − y‖2 . (3.5)

We now return to the choice of step sizes hk in (3.3). Notice that interpreting the
next iterate zk+1 as the result of minimizing a quadratic at the previous iterate zk,

zk+1 = argmin
z

f̄(z, zk), (3.6)

38 3 Numerical Methods for Optimization

where we define

f̄(z, zk) = f(zk) +∇f(zk)′(z − zk) +
1

2hk
‖z − zk‖2, (3.7)

yields after some standard calculus the classic gradient update rule

zk+1 = zk − hk∇f(zk).

The quadratic function f̄(z, zk) in (3.7) is parametrized by the step length hk.
Choosing it as

hk =
1

L
,

the quadratic f̄(z, zk) becomes an upper bound on f (Lemma 3.2). Convergence
of the gradient method can then be shown using the relation

f(zk+1)
(1)

≤ f̄(zk+1, zk)
(2)

≤ f̄(zk, zk) = f(zk), (3.8)

where the first and second inequality are due to (3.5) and (3.6) respectively. In
fact, the second inequality is strict for zk 	= z∗.

The gradient method with constant step size summarized in Algorithm 3.1
can be shown to converge sublinearly with the number of iterations growing
proportionally to L/ε · ‖z0 − z∗‖2 [220, Corollary 2.1.2]. The required level of
suboptimality ε > 0 is hereby defined in terms of the error in the objective value
f
(
zk

)
− f∗. Note that in case of a constant step size, the gradient method is

an extremely simple, division-free algorithm (given that the gradient ∇f can be
computed without divisions).

Remark 3.1 If the Lipschitz constant L is unknown, a simple strategy is to start
with an initial guess L̃ > 0, solve for zk+1 according to (3.6) with hk = 1/L̃ and then
check whether the first inequality in (3.8) holds true. If so, the quadratic objective
in (3.6) was a (local) upper bound of f and minimization consequently leads to a
decrease in the function value, i.e., f(zk+1) < f(zk). Otherwise, the current guess
for the Lipschitz constant needs to be increased, e.g., L̃ = 2L̃, and the procedure
repeated. Termination is guaranteed because f was assumed L-smooth.

Algorithm 3.2 Fast gradient method for smooth convex optimization

Input: Initial iterates z0 ∈ Rs, y0 = z0; α0 = 1
2
(
√
5− 1), Lipschitz constant L of ∇f

Output: Point close to z∗

Repeat

zk+1 ← yk − 1

L
∇f(yk)

αk+1 ← αk

2

(√
αk2 + 4− αk

)
βk ← αk(1− αk)

αk2 + αk+1

yk+1 ← zk+1 + βk(zk+1 − zk)

Until stopping criterion is satisfied

3.2 Unconstrained Optimization 39

Fast Gradient Method

An accelerated version of the gradient method, Nesterov’s fast gradient method
[220, Section 2.2], is given in Algorithm 3.2. The basic idea behind this method is
to take the gradient at an affine combination of the previous two iterates, i.e., the
gradient is evaluated at

yk = zk + βk−1(zk − zk−1)

for some carefully chosen βk−1 ∈ (0, 1). This two-step method can be shown to
converge sublinearly with the number of iterations growing proportionally to

√
L/ε·

‖z0 − z∗‖ [220, Theorem 2.2.2]. This is the best convergence rate for L-smooth
problems using only first-order information (see [220, Section 2.1] for details). The
mathematical reasoning behind the improved convergence rate and optimality of
the fast gradient method amongst all first-order methods is quite involved and
beyond the scope of this book.

Example 3.1 Gradient method vs. fast gradient method for quadratic functions
Consider the optimization problem given by

min
1

2
z′Hz + q′z,

where the Hessian and the linear cost vector are given by

H =

[
0.2 0.2
0.2 2

]
and q =

[
−0.1
0.1

]
.

For quadratic functions, a tight Lipschitz constant L of the gradient can be
determined by computing the largest eigenvalue of the Hessian (Lemma 3.1), i.e.,

L = λmax(H), (3.9)

here L = 2.022. The upper left plot in Figure 3.2 shows the first 10 iterations of
the gradient method with constant step size 1/L (Algorithm 3.1). The upper right
and lower left plot show the first 10 iterations using larger (but constant) step
sizes, which correspond to underestimating the tight Lipschitz constant L. It can
be shown that if L is underestimated by a factor of 2 or more, convergence is lost
(cf. lower left plot). The lower right plot shows the iterates of the fast gradient
method using the tight Lipschitz constant (Algorithm 3.2). Contrary to the gradient
method, the fast gradient method generates a nonmonotonically decreasing error
sequence.

Strongly Convex Problems

In the case where the objective function f in (3.2) is also strongly convex, linear
convergence rates can be established for both the gradient method and the fast
gradient method. The following theorems from [151, Section B] characterize strong
convexity whenever the function is once or twice continuously differentiable. For
an illustration of this property see Figure 3.1.

40 3 Numerical Methods for Optimization

z1

z 2

0

123

–5 0 5
–3
–2
–1
0
1
2
3

(a) GM. Step size 1
L
.

z1

z 2

–5 0 5
–3
–2
–1
0
1
2
3

0

1
23

(b) GM. Step size 4
3L

.

0

1

2

3

z1

z 2

–5 0 5
–3
–2
–1
0
1
2
3

(c) GM. Step size 2
L
.

z1
z 2

0

123

–5 0 5
–3
–2
–1
0
1
2
3

(d) FGM. Step size 1
L
.

Figure 3.2 Example 3.1. First 10 iterations of the gradient method (GM)
with constant step size 1/L using the tight, a slightly underestimated and a
strongly underestimated Lipschitz constant L. Also shown are the iterates
of the fast gradient method (FGM) using the tight Lipschitz constant. The
contour lines indicate the function value of each iterate. Note that the
gradients are orthogonal to the contour lines.

Theorem 3.1 (StrongConvexity: First-OrderCharacterization) Let fun-
ction f : Rs → R be once continuously differentiable on Rs. Then f is strongly
convex on Rs with convexity parameter μ> 0 if and only if for all pairs (z, y) ∈
Rs × Rs

f(z) ≥ f(y) +∇f(y)′(z − y) +
μ

2
‖z − y‖2 .

Theorem 3.2 (Strong Convexity: Second-Order Characterization) Let
f : Rs → R be twice continuously differentiable on Rs. Then f is strongly convex
on Rs with parameter μ > 0 if and only if for all z ∈ Rs

∇2f(z) � μIs.

Algorithm 3.3 Fast gradient method for smooth strongly convex optimization

Input: Initial iterates z0 ∈ Rs, y0 = z0; 0 <
√

μ/L ≤ α0 < 1, Lipschitz constant L
of ∇f , strong convexity parameter μ of f

Output: Point close to z∗

Repeat

zk+1 ← yk − 1

L
∇f(yk)

3.2 Unconstrained Optimization 41

Compute αk+1 ∈ (0, 1): αk+12 = (1− αk+1)αk2
+

μαk+1

L

βk ← αk(1− αk)

αk2 + αk+1

yk+1 ← zk+1 + βk(zk+1 − zk)

Until stopping criterion is satisfied

From Theorem 3.1 it follows that a differentiable strongly convex function can
be lower-bounded by a quadratic. Relating this to the quadratic upper bound in
Lemma 3.2, the inequality

κf =
L

μ
≥ 1

follows intuitively. The constant κf is the so-called condition number of the
L-smooth and strongly convex function f .

With the additional assumption of strong convexity, it can be shown that the
gradient method in Algorithm 3.1 converges linearly with the number of iterations
growing proportionally to κf · ln(1/ε) [220, Theorem 2.1.15] with ε > 0 being the
required level of suboptimality in terms of the error in the objective. In order
for the fast gradient method in Algorithm 3.2 to achieve linear convergence rate,
it either needs to be modified or restarted after a number of steps that depends
on the condition number κf . In both cases it can be shown that the number of
iterations grows proportionally to

√
κf ·ln(1/ε) [220, Theorem 2.2.2]. This is the best

convergence rate for L-smooth and strongly convex problems using only first-order
information (see [220, Section 2.1] for details). A modified fast gradient method that
takes strong convexity into account explicitly and thus does not need restarting is
given in Algorithm 3.3.

Example 3.2 Strong convexity parameter of a quadratic function
Let f : Rs → R be a quadratic function defined as

f(z) =
1

2
z′Hz + q′z

with H
 0. Then, by Theorem 3.2, the (tight) parameter for strong convexity μ is
the smallest eigenvalue of the Hessian H, i.e.,

μ = λmin(H).

For the Hessian given in Example 3.1 we therefore have μ = 0.178, and the condition
number is κf = 11.36. From the convergence results for the gradient method and the
fast gradient method for the strongly convex case it follows that condition numbers
close to 1 lead to fast convergence. So, for this example, fast convergence can be
guaranteed for both methods.

Preconditioning

In the previous section we have seen that for gradient methods the number of
iterations to find an approximate minimizer depends on the condition number κf .

42 3 Numerical Methods for Optimization

In practice, a high condition number usually indicates that many iterations of
Algorithm 3.1 and Algorithm 3.3 are needed to achieve the specified accuracy.
To improve the conditioning of the problem and thus to lower the amount of
computation needed to obtain an approximate minimizer, one can transform
problem (3.2) into an equivalent problem by a variable transformation

y = Pz

with P invertible. The aim is to choose the preconditioner P such that the new
objective function h(y) = f(P−1y) has a smaller condition number, i.e., κh < κf .
Intuitively, the best choice for P is one that achieves a circular shape of the
level sets of the objective function or at least comes close to it. Mathematically
speaking, the preconditioner matrix P should be such that κh ≈ 1. Finding optimal
preconditioners for which κh = 1 is impossible for all but the simplest cases. We
give one such example in the following.

Example 3.3 Optimal preconditioner for a quadratic function
Let f(z) = 1

2
z′Hz + q′z with Hessian H
 0. It is easily verified that P = H1/2 is

the optimal preconditioner for which κh = 1, since h(y) = 1
2
y′y + q′H− 1

2 y. However,

computing H1/2 and its inverse is more expensive than minimizing f , which only
requires the inverse H−1. So nothing has been gained from preconditioning in this
example.

Stopping Criteria

Stopping criteria test whether the current iterate zk is optimal or, more practically,
has attained an acceptable level of suboptimality. In optimization, the most natural
stopping criterion is

f(zk)− f∗ ≤ ε, (3.10)

where ε > 0 is an accuracy measure specified by the user. However, since the optimal
value f∗ is rarely known, we look for a computable lower bound fk,∗ (≤ f∗), so
that we arrive at the evaluable sufficient condition for (3.10)

f(zk)− fk,∗ ≤ ε.

The latter stopping criterion works for any ε > 0 if the lower bounds fk,∗ converge
to the optimal value f∗ for an increasing iteration counter k.

For differentiable convex functions such lower bounds can be constructed right
from the definition of convexity, i.e.,

f∗ ≥ f(zk) +∇f(zk)′(z∗ − zk)

≥ f(zk)− ‖∇f(zk)‖‖z∗ − zk‖,

where the last inequality is due to Cauchy-Schwarz. Observe that for any converging
method, this lower bound converges to f∗ from below since the gradient at the
minimizer z∗ vanishes in unconstrained optimization.

3.2 Unconstrained Optimization 43

For many problems, the distance between an iterate and the minimizer can be
upper-bounded, i.e., ‖z∗ − zk‖ ≤ R for all iterations k. Consequently, we end up
with the evaluable stopping criterion

‖∇f(zk)‖R ≤ ε,

which is sufficient for (3.10).
More sophisticated stopping criteria can be derived if properties such as strong

convexity of function f are exploited. For more details, we refer the interested
reader to [250, Section 6.3].

Summary

In this section, we have discussed the concept of descent methods and presented
one of the most important instances, the classic gradient method for smooth
convex optimization. Although not a descent method in its basic form, Nesterov’s
fast gradient method was included due to its simplicity and improved speed of
convergence. Both methods are particularly useful in the strongly convex case,
where they converge linearly, with the fast gradient method attaining the best
theoretical convergence rate possible for first-order methods. Despite a slower
theoretical (and most of the time also practical) convergence, the classic gradient
method is well-suited for processors with fixed-point arithmetic, for instance field-
programmable gate arrays (FPGAs), because of its numerical robustness against
inaccurate computations. For the fast gradient method, recent research, e.g., [97],
indicates that care has to be taken if inexact gradients are used. When using
gradient methods in practice, preconditioning should be applied to decrease the
condition number of the problem in order to decrease the number of iterations
needed. The latter can also be achieved by warm-starting, i.e., starting the methods
from a point z0 close to a minimizer z∗. This follows immediately from the
dependence of the number of iterations on the distance ‖z0−z∗‖. More information
and links to the literature can be found in [250].

3.2.2 Newton’s Method

The (fast) gradient method uses only first-order information of the function f .
A much more quickly converging algorithm, at least locally, can be obtained when
using second-order information, i.e., the Hessian ∇2f . In the following, we assume
f to be μ-strongly convex; hence, the Hessian ∇2f is positive definite on Rs.
Furthermore we assume that the Hessian ∇2f is Lipschitz continuous on Rs with
Lipschitz constant M , i.e.,

‖∇2f(z)−∇2f(y)‖ ≤ M‖z − y‖ ∀z, y ∈ Rs. (3.11)

Intuitively, the constant M measures how well f can be approximated by a
quadratic function (M = 0 for a quadratic function f).

44 3 Numerical Methods for Optimization

Algorithm 3.4 Newton’s method for (3.2) (strongly convex case)

Input: Initial iterate z0 ∈ Rs

Output: Point close to z∗

Repeat

Newton direction: dk ← −
[
∇2f(zk)

]−1 ∇f(zk)

Line search: find hk > 0 such that f(zk + hkdk) < f(zk)

zk+1 ← zk + hkdk

Until stopping criterion is satisfied

The main idea of Newton’s method is to approximate the function f by a local
quadratic model θ(d) based on a second-order Taylor expansion,

f(zk + d) ≈ f(zk) +∇f(zk)′d+
1

2
d′∇2f(zk)d = θ(d), (3.12)

where ∇2f(zk) is the Hessian of f evaluated at the current iterate zk and d is a
search direction. The latter is chosen to minimize the quadratic model θ(d). From
the optimality condition ∇dθ(d) = 0, the so-called Newton direction

dN (zk) = −
[
∇2f(zk)

]−1 ∇f(zk) (3.13)

is obtained. The Newton direction is a descent direction, as it satisfies (3.4):

∇f(zk)′dN (zk) = −∇f(zk)′[∇2f(zk)]−1∇f(zk) < 0 (3.14)

for all zk 	= z∗ since, by strong convexity, the inverse of the Hessian
[
∇2f(z)

]−1

exists for all z ∈ Rs and is positive definite. If the Lipschitz constant of the Hessian,
M , is small, this method works very well, since the quadratic model remains a good
approximation even if a full Newton step is taken. However, the quadratic model
θ(d) is in general neither an upper nor a lower bound on f , and consequently a line
search (Section 3.2.3) must be used to ensure a sufficient decrease in the function
value, which results in global convergence of the algorithm. Newton’s method is
summarized in Algorithm 3.4. It can be shown to converge globally in two phases
(for technical details see [65, Section 9.5] and [220, Section 1.2.4]):

1. Damped Newton phase: When the iterates are “far away” from the optimal
point, the function value is decreased sublinearly, i.e., it can be shown that
there exist constants η, γ (with 0 < η < μ2/M and γ > 0) such that f(zk+1)−
f(zk) ≤ −γ for all zk for which ‖∇f(zk)‖2 ≥ η. The term damped is used in
this context since during this phase, the line search often returns step sizes
hk < 1, i.e., no full Newton steps are taken.

2. Quadratic convergence phase: If an iterate is “sufficiently close” to the
optimum, i.e., ‖∇f(zk)‖2 < η, a full Newton step is taken, i.e., the line
search returns hk = 1. The set {z | ‖∇f(z)‖2 < η} is called the quadratic
convergence zone, and once an iterate zk is in this zone, all subsequent
iterates remain in it. The function value f(zk) converges quadratically (i.e.,
with the iteration number growing proportionally to kmax ∼ O (ln 1/ε))
to f∗.

3.2 Unconstrained Optimization 45

The quadratic convergence property makes Newton’s method one of the
most powerful algorithms for unconstrained optimization of twice continuously
differentiable functions. (The method is also widely employed for solving nonlinear
equations.) As a result, it is used in interior point methods for constrained optimiza-
tion to solve the (unconstrained or equality constrained) subproblems in barrier
methods or to generate primal-dual search directions. We discuss these in detail in
Section 3.3.2.

A disadvantage of Newton’s method is the need to form the Hessian ∇2f(zk),
which can be numerically ill-conditioned, and to solve the linear system

∇2f(zk)dN = −∇f(zk) (3.15)

for the Newton direction dN , which costs O(s3) floating point operations in general.
Each iteration is therefore significantly more expensive than one iteration of any
of the gradient methods.

Preconditioning and Affine Invariance

Newton’s method is affine invariant, i.e., a linear (or affine) transformation of
variables as discussed in Section 3.2.1 will lead to the same iterates subject to
transformation, i.e.,

zk = Pyk ∀k = 0, . . . , kmax. (3.16)

Therefore, the number of steps to reach a desired accuracy of the solution does not
change. Consequently, preconditioning has no effect when using Newton’s method.

Newton’s Method with Linear Equality Constraints

Equality constraints are naturally handled in Newton’s method as follows. Assume
we want to solve the problem

minimize f(z)
subject to Az = b

(3.17)

with A ∈ Rp×s (assuming full rank p) and b ∈ Rp. As discussed above, the Newton
direction is given by the minimization of the quadratic model θ(d) at the current
feasible iterate zk (i.e., Azk = b) with an additional equality constraint:

dN = argmin
d

1

2
d′∇2f(zk)d+∇f(zk)′d+ f(zk)

subj. to Ad = 0
(3.18)

Since d is restricted to lie in the nullspace of A, we ensure that any iterate generated
by Newton’s method will satisfy Azk+1 = A(zk + hkdN (zk)) = b. From the
optimality conditions of (3.18), it follows that dN is obtained from the solution
to the linear system of dimension s+ p:[

∇2f(z) A′

A 0

] [
d
y

]
=

[
−∇f(z)

0

]
, (3.19)

where y ∈ Rp are the Lagrange multipliers associated with the equality constraint
Ad = 0.

46 3 Numerical Methods for Optimization

3.2.3 Line Search Methods

A line search determines the step length hk that is taken from the current iterate
zk ∈ Rs along a search direction Δzk ∈ Rs to the next iterate,

zk+1 = zk + hkΔzk . (3.20)

In the most general setting, a merit function ϕ : Rs → R is employed to measure
the quality of the step taken to determine a value of the step size hk that ensures
convergence of the optimization algorithm. Merit functions can, for example, be
the objective function f , or the duality measure μ (3.44) in primal-dual interior
point methods.

The general line search problem can be written as a one dimensional optimiza-
tion problem over the step size h,

h∗ ∈ argmin
h≥0

ϕ(zk + hΔzk) , (3.21)

minimizing the merit function along the ray {zk + hΔzk} for h ≥ 0. It is often too
expensive to solve this problem exactly, and therefore usually inexact line search
methods are employed in practice that return a step size hk that approximates
the optimal step size h∗ from (3.21) sufficiently well. In the following, we give a
brief overview on practical inexact line search methods; see [224] for a thorough
treatment of the subject.

Wolfe Conditions

In order to ensure convergence of descent methods for unconstrained optimization,
for example Newton’s method presented in Section 3.2, certain conditions on the
selected step size hk must be fulfilled. Popular conditions for inexact line searches
are the so-called Wolfe conditions [223]

f(zk + hkΔzk) ≤ f(zk) + c1h
k∇f(zk)′Δzk (3.22a)

∇f(zk + hkΔzk)′Δzk ≥ c2∇f(zk)′Δzk (3.22b)

with 0 < c1 < c2 < 1. The first condition (3.22a) is called Armijo’s condition [9],
and ensures that a sufficient decrease in the objective is achieved. The second
condition, the curvature condition (3.22b), ensures that the step length is not too
small [223].

One of the most popular inexact line search methods that fulfills the Wolfe
conditions is the backtracking line search as discussed in the following.

Backtracking Line Search for Newton’s Method

The backtracking line search for Newton’s method is given in Algorithm 3.5. It
starts with a unit step size, which is iteratively reduced by a factor t ∈ (0, 1) until
Armijo’s condition (3.22a) is satisfied. It can be shown that it is not necessary to
check the curvature condition because it is implied by the backtracking rule [223,
Algorithm 3.1].

3.3 Constrained Optimization 47

Algorithm 3.5 Backtracking Line Search for Newton’s Method (Algorithm 3.4) [223,
Algorithm 3.1]

Input: Current iterate zk, descent direction Δzk, constants c ∈ (0, 1) and t ∈ (0, 1)

Output: Step size hk ensuring Wolfe conditions (3.22)

hk ← 1

Repeat

hk ← thk

Until Armijo’s condition (3.22a) holds, i.e., f(zk + hkΔzk) ≤ f(zk) +
chk∇f(zk)′Δzk

Backtracking Line Search for Constrained Optimization

In order to obtain a line search method that ensures in addition feasibility of the
next iterate zk+1, the backtracking procedure is preceeded by finding 0 < h̄ ≤ 1
such that zk + h̄Δzk is feasible [65, pp. 465]. The backtracking then starts with
hk = h̄ in Algorithm 3.5.

3.3 Constrained Optimization

In this section we present three methods to solve the constrained optimization
problem (1.1): gradient projection, interior point and active set methods.

3.3.1 Gradient Projection Methods

Gradient methods presented in Section 3.2.1 for unconstrained L-smooth convex
optimization (or strongly convex optimization with parameter μ) have a natural
extension to the constrained problem

minz f(z)
subj. to z ∈ S

(3.23)

where S is a convex subset of Rs. The treatment of constraints within first-order
methods is best explained in terms of the classic gradient method in Algorithm
3.1; the accelerated versions (Algorithm 3.2 and Algorithm 3.3) can be adapted
according to the same principle.

As in the unconstrained case, we begin by rewriting the gradient update rule
as a minimization of a quadratic upper bound of f defined in (3.7) with hk = 1/L,
but restrict the minimization to the set S:

zk+1 = argmin
z∈S

f(zk) +∇f(zk)′(z − zk) +
L

2
‖z − zk‖2. (3.24)

The solution to this constrained minimization problem can be recast as

zk+1 = πS

(
zk − 1

L
∇f(zk)

)
, (3.25)

48 3 Numerical Methods for Optimization

where πS denotes the projection operator for set S defined as

πS(z) = argmin
y∈S

1

2
‖y − z‖2. (3.26)

Algorithm 3.6 Gradient method for constrained smooth convex optimization

Input: Initial iterate z0 ∈ S, Lipschitz constant L of ∇f

Output: Point close to z∗

Repeat

zk+1 ← πS

(
zk − 1

L
∇f(zk)

)
Until stopping criterion is satisfied

Algorithm 3.7 Fast gradient method for constrained smooth strongly convex
optimization

Input: Initial iterates z0 ∈ S, y0 = z0; 0 <
√

μ/L ≤ α0 < 1, Lipschitz constant L of
∇f , strong convexity parameter μ of f

Output: Point close to z∗

Repeat

zk+1 ← πS

(
yk − 1

L
∇f(yk)

)
Compute αk+1 ∈ (0, 1): αk+12 = (1− αk+1)αk2

+
μαk+1

L

βk ← αk(1− αk)

αk2 + αk+1

yk+1 ← zk+1 + βk(zk+1 − zk)

Until stopping criterion is satisfied

The expressions (3.24) and (3.25) for zk+1 can be shown to be equivalent
by deriving the optimality conditions and noting that they coincide. Thus, for
constrained optimization, Algorithms 3.1, 3.2 and 3.3 remain unchanged, except
that the right hand side of the assignment in the first line of these algorithms is
projected onto set S. The resulting algorithmic schemes are stated in Algorithm
3.6 (gradient method) and Algorithm 3.7 (fast gradient method for the strongly
convex case) and illustrated in Figure 3.3. It can be shown that for both Algorithm
3.6 and Algorithm 3.7 the same convergence results hold as in the unconstrained
case [220, Section 2.2.4].

Whenever the projection operator for set S can be evaluated efficiently, as for
the convex sets listed in Table 3.1, gradient projection methods have been shown
to work very well in practice. Such sets, which are also referred to as ‘simple’
sets in the literature, can be translated, uniformly scaled and/or rotated without
complicating the projection as stated in the next lemma.

3.3 Constrained Optimization 49

Table 3.1 Euclidean norm projection operators of selected convex sets in Rs.

Set Definition Projection Operator

affine set

S = {z ∈ Rs |Az = b}
with (A, b) ∈ Rp×s × Rp

πS (z) =

{
z +A′(AA′)−1 (b−Az) if rankA = p,

z +A′A
′† (

A†b− z
)

otherwise

nonnegative orthant

S = {z ∈ Rs | z ≥ 0}
(πS (z))i =

{
zi if zi ≥ 0,

0 otherwise
i = 1, . . . , s

rectangle

S = {z ∈ Rs | l ≤ z ≤ u}
with (l, u) ∈ Rs × Rs

(πS (z))i =

⎧⎪⎨⎪⎩
li if zi < li,

zi if li ≤ zi ≤ ui,

ui if zi > ui

i = 1, . . . , s

2-norm ball

S = {z ∈ Rs | ‖z‖ ≤ r} , r ≥ 0
πS (z) =

{
r z
‖z‖ if ‖z‖ > r,

z otherwise

zk

zk+1

S

zk − 1
L ∇f(zk)

(a) Gradient method.

zk

zk−1

zk+1

S

yk

yk − 1
L∇f(yk)

(b) Fast gradient method.

Figure 3.3 Classic gradient method (left) and fast gradient method (right)
for the constrained case. After computing the standard update rule from the
unconstrained case, a projection onto the feasible set is applied.

Lemma 3.3 (Projection on Translated, Scaled and Rotated Convex Set)
Let S ⊆ Rs be a closed convex set and πS its associated projection operator.
Projection of point z̄ ∈ Rs on the set

Ŝ = {z ∈ Rs | z = γWy + c, y ∈ S}

that is obtained from set S by translation with offset c ∈ Rs, positive scaling by
γ > 0 and a linear transformation with an orthonormal matrix W ∈ Rs×s, can be
accomplished by

πŜ (z̄) = γW πS

(
γ−1W ′(z̄ − c)

)
+ c .

If the feasible set S is polyhedral and does not have a computationally
efficient projection operator, it can alternatively be precomputed by means of

50 3 Numerical Methods for Optimization

multiparametric programming (see Chapter 6) with the point to project as the
parameter. Another possibility is to solve the original problem in the dual domain
instead as discussed next.

Solution in Dual Domain

If set S is such that the projection (3.26) cannot be carried out efficiently, one can
still use first-order methods to solve the constrained problem (3.23) by adopting a
dual approach. In the following, we assume that set S can be written as

S = {z ∈ Rs | Az = b, z ∈ K} , (3.27)

where K is a convex subset of Rs that allows for an efficient projection and the
pair (A, b) is from Rp×s ×Rp. Many practically relevant sets can be represented in
terms of (3.27), i.e., as the intersection of a “simple” convex set and an affine set,
e.g., polyhedra. We can now rewrite the original problem (3.23) as

min
z

f(z)

subj. to Az = b

z ∈ K.

Using a technique called partial Lagrange relaxation [52, Section 4.2.2] we eliminate
the complicating equality constraints and define the (concave) dual function as

d(v) = min
z∈K

f(z) + v′(Az − b), (3.28)

where v ∈ Rp. The concave dual problem is then given by

d∗ = max
v

d(v), (3.29)

which we also call the outer problem.
In order to apply any of the gradient methods for unconstrained optimization

in Section 3.2 for solving the outer problem, the dual function d(v) needs to fulfill
two requirements: (i) differentiability, i.e., the gradient ∇d(v) must exist for all v,
and (ii) Lipschitz continuity of the gradient. Next, we will show that if f is strongly
convex, both requirements are indeed fulfilled.

In the following it is assumed that the objective function f is strongly convex.
Strong convexity ensures uniqueness of the minimizer z∗(v) in the definition of
the dual function in (3.28). It is this uniqueness of z∗(v) that leads to a differentiable
dual function as shown in [52, Danskin’s Theorem, Proposition B.25]. Specifically,
it can be proved that

∇d(v) = Az∗(v)− b,

i.e., every evaluation of the dual gradient requires the solution of the so-called inner
problem (3.28).

The Lipschitz constant Ld of the dual gradient can be upper bounded by

Ld ≤ ‖A‖2

μ

3.3 Constrained Optimization 51

as stated in [221, Theorem 1]. This upper bound is sufficient for the step size
computation for any gradient method (note that the step size is given by 1/Ld).
However, the less conservative the Lipschitz constant is, the larger the step size
and the smaller the number of iterations. In [251, Theorem 7] it is shown that for
the case of quadratic objective functions f(z) = 1

2z
′Hz + q′z, H � 0, and under

mild assumptions, the tight Lipschitz constant of the dual gradient is

L∗
d = ‖AH− 1

2 ‖2.

So, strong convexity of the objective function f is key for using the gradient
methods in Section 3.2.1 for the solution of the dual problem (3.29). If f is not
strongly convex, there are different approaches available in the literature, e.g., a
smoothing approach for the dual function [221].

Note that the (unique) primal minimizer z∗ can be recovered from the
maximizer of the dual problem v∗, assuming it exists, by

z∗ = z∗(v∗).

It is also important to notice that, in general, the dual function d(v) lacks
strong concavity, so only sublinear convergence rates (instead of linear rates for
the primal problem) can be guaranteed for the solution of the dual problem. This
and the fact that each evaluation of the dual gradient requires solving the inner
problem can make the dual approach, as presented in this section, slow in practice.
More advanced first-order methods can significantly speed up convergence of the
dual approach, e.g., the alternating direction method of multipliers (ADMM). For
more details on ADMM, the interested reader is referred to the survey paper [64].

Summary

This section has introduced the generalization of gradient methods to the con-
strained case, the so-called gradient projection methods. As the name suggests, the
generalization comes from having to compute the projection of a gradient step onto
the feasible set. Apart from this additional operation, these methods are identical
to the ones introduced for the unconstrained case.

There exist many important convex sets for which the projection operator can
be evaluated in an efficient way, some of which are stated in Table 3.1. More sets
can be found, e.g., in [250, Section 5.4], which also contains further literature links.
One important consequence of having a set constraint is that a full preconditioner
matrix P (Section 3.2.1 and Example 3.3) is not admissible anymore since in the
new basis the set can lose its favorable projection properties. For instance, consider
a box constraint with its projection operator given in Table 3.1. Only for a diagonal
preconditioner the set remains a box in the new basis and thus easy to project.
For quadratic objective functions, finding the best preconditioner under set-related
structure constraints turns out to be a convex semi-definite program and hence can
be solved efficiently [250, Section 8.4].

Finally, we point the reader to the recent proximity gradient methods, which
can be understood as a natural generalization of gradient projection methods. An
introduction to these methods and literature links can be found in [250, Chapter 5]
and [228].

52 3 Numerical Methods for Optimization

3.3.2 Interior Point Methods

Today interior point methods are among the most widely used numerical methods
for solving convex optimization problems. This is the result of 25 years of
intensive research that has been initiated by Karmarkar’s seminal paper in 1984 on
solving LPs [166]. In 1994, Nesterov and Nemirovskii generalized interior point
methods to nonlinear convex problems, including second-order cone and semi-
definite programming [222]. Issues like numerical ill-conditioning, efficient and
stable solution of linear systems, etc., are now well understood, and numerous free
and commercial codes are available that can solve linear and quadratic programs
with high reliability.

We first discuss barrier methods, which were the first polynomial-time algo-
rithms for linear programming of practical relevance. Then we present modern
primal-dual method. This powerful class of interior point methods forms the basis
of almost all implementations today.

Throughout this section, we consider the primal P-IPM problem

minz f(z)
subj. to Az = b

g(z) ≤ 0
(3.30)

where z ∈ Rs are the primal variables, the functions f : Rs → R and g : Rs → Rm

are convex and twice continuously differentiable (for g, this holds component-wise
for each function gi, i = 1, . . . ,m). We assume that there exists a strictly feasible
point z0 with respect to g(z) ≤ 0, i.e., the set

S = {z ∈ Rs | gi(z) ≤ 0, i = 1, . . . ,m}, (3.31)

has a nonempty interior. We furthermore assume that a minimizer z∗ exists and
that it is attained.

Primal Barrier Methods

The main idea of the barrier method is to convert the constrained optimization
P-IPM problem (3.30) into an unconstrained problem (with respect to inequalities)
by means of a barrier function Φg : Rs → R. We denote by P (μ) the problem

z∗(μ) ∈ argmin f(z) + μΦg(z)
subj. to Az = b

(3.32)

where μ > 0 is called barrier parameter. The purpose of the barrier function Φg is
to “trap” an optimal solution of problem P (μ) (3.32), which we denote by z∗(μ), in
the set S. Thus, Φg(z) must take on the value +∞ whenever gi(z) > 0 for some i,
and a finite value otherwise. As a result, z∗(μ) is feasible with respect to S, but it
differs from z∗ since we have perturbed the objective function by the barrier term.

With the above idea in mind, we are now ready to outline the (primal) barrier
method summarized in Algorithm 3.8. Starting from (a possibly large) μ0, a solution
z∗(μ0) to problem P (μ0) is computed, for example by any of the methods for
unconstrained optimization presented in Section 3.2. For this reason, Φg should

3.3 Constrained Optimization 53

be twice continuously differentiable, allowing one to apply Newton’s method. After
z∗(μ0) has been computed, the barrier parameter is decreased by a constant factor,
μ1 = μ0/κ (with κ > 1), and z∗(μ1) is computed. This procedure is repeated
until μ has been sufficiently decreased. It can be shown under mild conditions
that z∗(μ) → z∗ from the interior of S as μ → 0. The points z∗(μ) form the so-
called central path, which is a continuously differentiable curve in S that ends in
the solution set (see Example 3.4). Solving a subproblem P (μ) is therefore called
centering.

If the decrease factor κ is not too large, z∗(μk) will be a good starting point
for solving P (μk+1), and therefore Newton’s method can be applied to P (μk+1)
to exploit the local quadratic convergence rate. Note that the equality constraints
in (3.30) have been preserved in problem P (μ) (3.32), since they do not cause
substantial difficulties for unconstrained methods as shown in Section 3.2. In
particular, we refer the reader to Section 3.2.2 for the equality constrained Newton
method.

Logarithmic Barrier

So far, we have not specified which function to use as a barrier. For example, the
indicator function

Ig(z) =

{
0 if g(z) ≤ 0

+∞ otherwise
, (3.33)

trivially achieves the purpose of a barrier, but it is not useful since methods for
smooth convex optimization as discussed in Section 3.2 require the barrier function
to be convex and continuously differentiable. A twice continuously differentiable
convex barrier function that approximates Ig well is the logarithmic barrier function

Φg(z) = −
m∑
i=1

ln (−gi(z)) , (3.34)

with domain {z ∈ Rs | gi(z) < 0 ∀ i = 1, . . . ,m} (the logarithmic barrier confines
z to the interior of the set S), gradient

∇Φg(z) =
m∑
i=1

1

−gi(z)
∇gi(z) (3.35)

and continuous Hessian

∇2Φg(z) =
m∑
i=1

1

gi(z)2
∇gi(z)∇gi(z)

′ +
1

−gi(z)
∇2gi(z), (3.36)

which makes it possible to use Newton’s method for solving the barrier sub-
problems. The logarithmic barrier function is used in almost all implementations
of barrier methods. In fact, the existence of polynomial-time algorithms for
convex optimization is closely related to the existence of barrier functions for the
underlying feasible sets [222].

54 3 Numerical Methods for Optimization

Algorithm 3.8 Barrier interior point method for (3.30)

Input: Strictly feasible initial iterate z0 w.r.t. g(z) ≤ 0, μ0, κ > 1, tolerance ε > 0

Output: Point close to z∗

Repeat

Compute z∗(μk) by minimizing f(z) + μkΦg(z) subject to Az = b starting
from the previous solution zk−1 (usually by Newton’s method, Algorithm
3.4). This is called “centering step.”

Update: zk ← z∗(μk)

Stopping criterion: Stop if mμk < ε

Decrease barrier parameter: μk+1 ← μk/κ

Until stopping criterion is satisfied

Example 3.4 Central Path of a QP
Consider the QP

min 1
2
z′ [2 0

0 1] z + [4 1
2] z

subj. to

[−1 2.0588
−1 −1.7527

−3.9669 1
1.1997 −1.3622
1.1673 1.3111

]
z ≤

[
1.0890
1.0623
2.0187

1
1

] (3.37)

The solutions of P (μ) (3.32) for this Quadratic Program for different values of μ
are depicted in Figure 3.4. For large μ, the level sets are almost identical to the
level sets of Φg(z), i.e., z

∗(5) is very close to the analytic center za = argminΦg(z)
of the feasible set. As μ decreases, z∗(μ) approaches z∗, by following the central
path.

Example 3.5 Barrier method for QPs
In the following, we derive the barrier method for quadratic programs of the form

minimize
1

2
z′Hz + q′z

subject to Az = b,
Gz ≤ w

(3.38)

with H
 0, A ∈ Rp×s, b ∈ Rp, G ∈ Rm×s and w ∈ Rm from the general method
described above. The logarithmic barrier function for linear inequalities takes the
form

Φg(z) = −
m∑
i=1

ln(wi −Giz), ∇Φg(z) =
m∑
i=1

1

wi −Giz
G′

i,

∇2Φg(z) =

m∑
i=1

1

(wi −Giz)2
G′

iGi

(3.39)

where Gi denotes the i-th row of G and wi the i-th element of w. Hence problem
P (μ) (3.32) takes the form

3.3 Constrained Optimization 55

z1

z 2

(a) Level curves of f(z) +

μΦg(z) for μ = 5

z1

z 2

(b) Level curves of f(z) +

μΦg(z) for μ = 0.25

z1

z 2

(c) Level curves of f(z)+μΦg(z)
for μ = 0.0125

z1

z 2

(d) Central path starting at
analytic center and moving
toward solution of (3.37) as μ
decreases

Figure 3.4 Example 3.4. Illustration of interior point method for example
problem (3.37). Black dots are the solutions z∗(μ).

min
z

1

2
z′Hz + q′z − μ

m∑
i=1

ln(wi −Giz)

subj. to Az = b,

(3.40)

which we solve by Newton’s method. Using the formula for the Newton direction dN
with equality constraints (3.19), we arrive at the following linear system of size s+ p,
which has to be solved in each Newton step at the current iterate z:⎡⎢⎢⎣H + μ

m∑
i=1

1

(wi −Giz)2
G′

iGi A′

A 0

⎤⎥⎥⎦[dNy
]
= −

⎡⎢⎢⎣Hz + q + μ
m∑
i=1

1

wi −Giz
G′

i

0

⎤⎥⎥⎦ .

(3.41)

The resulting barrier method for solving (3.38) is summarized in Algorithm 3.9. The
inner loop resembles the Newton iterations of the algorithm, computing z∗(μ). Note
that a primal feasible line search must be employed to ensure that the iterates remain
in the interior of S, see Section 3.2.3 for details.

56 3 Numerical Methods for Optimization

Algorithm 3.9 Barrier interior point method for QPs (3.38)

Input: Strictly feasible initial iterate z0 w.r.t. Az = b, Gz ≤ w, μ0, κ > 1, tolerance
ε > 0

Output: Point close to z∗

Repeat

Initialize Newton’s method with zk,0 ← zk−1. Set l = 0.

Loop

Newton direction: solve (3.41) for z = zk,l to obtain dk,lN (zk,l).

Feasible line search to obtain step size hk,l (see Section 3.2.3).

Update: zk,l+1 ← zk,l + hk,ldk,lN

End inner loop: break if l = lmax, otherwise set l = l+ 1 and continue.

Endloop

Update: zk ← zk,lmax

Stopping criterion: Stop if mμk < ε

Decrease barrier parameter: μk+1 ← μk/κ

Until stopping criterion

We conclude this section with a few remarks on the barrier method. The
main computational burden is the computation of the Newton directions by
solving linear systems of type (3.41). This is usually done using direct methods
(matrix factorizations), but iterative linear solvers can be used as well. In most
applications the matrices involved have a special sparsity pattern, which can be
exploited to significantly speed up the computation of the Newton direction. We
discuss structure exploitation for solving (3.41) arising from MPC problems in
Section 14.3.

If the barrier parameter μ is decreased too quickly, many inner iterations are
needed, but only a few outer iterations. The situation is reversed if μ is decreased
only slowly, which leads to a quick convergence of the inner problems (usually in
one or two Newton steps), but more outer iterations are needed. This tradeoff is
not much of an issue in practice. Usually, the total number of Newton steps is in
the range of 20−40, essentially independent of the conditioning of the problem.
The barrier method can be shown to converge linearly; more details can be found
in [65, Section 11.3].

Finally, we would like to point out that the barrier method is a feasible method,
which means that it starts with a feasible point and all iterates remain feasible.
This complicates the implementation in practice, as a line search must be employed
that maintains feasibility, and a strictly feasible initial iterate z0 has to be supplied
by the user or computed first by what is called a Phase I method. See [65] for more
details.

Computational experience has shown that modern primal-dual methods are
significantly more effective with only little additional computational cost when
compared to the barrier method. Therefore, primal-dual methods are now predom-
inant in commercial codes. They also allow infeasible iterates, that is, the equality
and inequality constraints on the primal variables are satisfied only at convergence,
which alleviates the necessity for finding a feasible initial point. We discuss this class
of methods next.

3.3 Constrained Optimization 57

Primal-Dual Methods

The general idea of primal-dual interior point methods is to solve the Karush-Kuhn-
Tucker (KKT) conditions by a modified version of Newton’s method. The nonlinear
KKT equations represent necessary and sufficient conditions for optimality for
convex problems under the assumptions discussed in Section 1.6. For the P-IPM
problem (3.30), the KKT conditions are

∇f(z) +A′v +G(z)′u = 0 (3.42a)

Az − b = 0 (3.42b)

g(z) + s = 0 (3.42c)

siui = 0, i = 1, . . . ,m (3.42d)

(s, u) ≥ 0 (3.42e)

where the vector s ∈ Rm
+ denotes slack variables for the inequality constraints

g(z) ≤ 0, and u ∈ Rm
+ is the vector of the associated Lagrange multipliers. The

vector v ∈ Rp denotes the Lagrange multipliers for the equality constraints Az = b,
and the matrix G(z) ∈ Rm×s is the Jacobian of g evaluated at z. The variables z
and s are from the primal, the variables v and u from the dual space.

If a primal-dual pair of variables (z∗, v∗, u∗, s∗) is found that satisfies these
conditions, the corresponding primal variables (z∗, s∗) are optimal for (3.30) (and
the dual variables (v∗, u∗) are optimal for the dual of (3.30)). Since Newton’s
method is a powerful tool for solving nonlinear equations, the idea of applying it to
the system of nonlinear KKT equations is apparent. However, certain modifications
to a pure Newton method are necessary to obtain a useful method for constrained
optimization. The name primal-dual indicates that the algorithm operates in both
the primal and dual space.

There are many variants of primal-dual interior point methods. For a thorough
treatment of the theory, we refer the reader to the book by Wright [290], which
gives a comprehensive overview of the different approaches. In this section, after
introducing the general framework of primal-dual methods, we restrict ourselves
to the presentation of a variant of Mehrotra’s predictor-corrector method [206],
because it forms the basis of most existing implementations of primal-dual interior
point methods for convex optimization and has proven particularly effective in
practice. The method we present here allows infeasible starting points.

Central Path

We start by outlining the basic idea. Most methods track the central path, which we
have encountered already in barrier methods, to the solution set. These methods are
called path-following methods. In the primal-dual space, the central path is defined
as the set of points (z, v, u, s), for which the following relaxed KKT conditions hold:

∇f(z) +A′v +G(z)′u = 0 (3.43a)

Az − b = 0 (3.43b)

g(z) + s = 0 (3.43c)

siui = τ, i = 1, . . . ,m, τ > 0 (3.43d)

(s, u) > 0 (3.43e)

58 3 Numerical Methods for Optimization

In (3.43) as compared to (3.42), the complementarity condition (3.42d) is relaxed
by a scalar τ > 0, the path parameter, and slacks s and multipliers u are required
to be positive instead of nonnegative, i.e., s and u lie in the interior of the
positive orthant. The main idea of primal-dual methods is to solve (3.43) for
successively decreasing values of τ , and thereby to generate iterates (zk, vk, uk, sk)
that approach (z∗, v∗, u∗, s∗) as τ → 0. The similarity with the barrier method in
this regard is evident. However, the Newton step is modified in primal-dual interior
point methods, as we shall see below.

Measure of Progress

Similar to primal barrier methods, the subproblem (3.43) is usually solved only
approximately, here by applying only one Newton step. As a result, the generated
iterates are not exactly on the central path, i.e., siui 	= τ for some i. Hence a more
useful measure than the path parameter τ for the progress of the algorithm is the
average value of the complementarity condition (3.43d),

μ = (s′u)/m (3.44)

evidently, μ → 0 implies τ → 0. In interior point nomenclature, μ is called the
duality measure, as it corresponds to the duality gap scaled by 1/m if all other
equalities in (3.43) are satisfied. To be able to reduce μ substantially (at least by a
constant factor) at each iteration of the method, the pure Newton step is enhanced
with a centering component, as discussed next.

Newton Directions and Centering

A search direction is obtained by linearizing (3.43) at the current iterate (z, v, u, s)
and solving⎡⎢⎢⎣

H(z, u) A′ G(z)′ 0
A 0 0 0

G(z) 0 0 I
0 0 S Z

⎤⎥⎥⎦
⎡⎢⎢⎣
Δz
Δv
Δu
Δs

⎤⎥⎥⎦ = −

⎡⎢⎢⎣
∇f(z) +A′v +G(z)′u

Az − b
g(z) + s
Su− ν

⎤⎥⎥⎦ (3.45)

where S = diag(s1, . . . , sm) and Z = diag(u1, . . . , um), the (1,1) block in the
coefficient matrix is

H(z, u) = ∇2f(z) +

m∑
i=1

ui∇2gi(z) (3.46)

and the vector ν ∈ Rm allows a modification of the right-hand side, thereby
generating different search directions that depend on the particular choice of ν.
For brevity, we denote the solution to (3.45) by Δ[z, v, u, s](ν).

The vector ν can take a value between the following two extremes:

• If ν = 0, the right hand side in (3.45) corresponds to the residual of the
KKT conditions (3.42), i.e., Δ[z, v, u, s](0) is the pure Newton direction

3.3 Constrained Optimization 59

s1

u1

Current iterate
(z,v,u,s)

Newton direction
(predictor)

Δ(z,v,u,s)(0)

Resulting
search direction
Δ(z,v,u,s)(σμ)

Centering direction

Central path C

Optimal point

Figure 3.5 Affine-scaling (pure Newton) and centering search directions of
classic primal-dual methods. The Newton direction makes only progress
towards the solution when it is computed from a point close to the central
path, hence centering must be added to the pure Newton step to ensure that
the iterates stay sufficiently close to the central path.

that aims at satisfying the KKT conditions (3.42) in one step based on a
linearization. This direction is called affine-scaling direction. However, pure
Newton steps usually decrease some products siui prematurely towards zero,
i.e., the generated iterate is close to the boundary of the feasible set (if
siui ≈ 0, either si or ui must be small). This is disadvantageous since
from such points only very small steps can be taken, and convergence is
prohibitively slow. Hence the iterates must be centered by bringing them
closer to the central path.

• If ν = μ1, the complementarity condition (3.43d) is modified such that the
resulting search direction aims at making the individual products siui equal
to their average value μ. This is called centering. A centering step does not
decrease the average value, so no progress towards the solution is made.

A tradeoff between the two goals of progressing towards the solution and centering
is achieved by computing search directions Δ[z, v, u, s](ν) by solving (3.45) for

ν = σμ1 (3.47)

where σ ∈ (0, 1) is called the centering parameter. This is the key difference
from pure Newton steps, and the main ingredient (together with tracking the
central path) in making Newton’s method work efficiently for solving the nonlinear
KKT system (3.42). Figure 3.5 depicts this combination of search directions
schematically, and a principle framework for primal-dual methods is given in
Algorithm (3.10). We will instantiate it with Mehrotra’s method below.

In the discussion above, we have excluded almost all theoretical aspects
concerned with the convergence of primal-dual methods. For example, the terms
“sufficiently close to the central path” and “sufficient reduction in μ” have precise
mathematical counterparts that allow one to analyze the convergence properties.
The book by Wright [290] is a good starting point for the interested reader.

60 3 Numerical Methods for Optimization

Algorithm 3.10 Primal-dual interior point methods for the P-IPM problem (3.30)

Input: Initial iterates z0, v0, u0 > 0, s0 > 0, Centering parameter σ ∈ (0, 1)

Output: Point close to z∗

Repeat

Duality measure: μk ← sk
′
uk/m

Search direction: compute Δ[zk, vk, uk, sk](σμk1) by solving (3.45) at the
current iterate

Choose step length hk such that sk+1 > 0 and uk+1 > 0

Update: (zk+1, vk+1, uk+1, sk+1) ← (zk, vk, uk, sk)+hkΔ[zk, vk, uk, sk](σkμk1)

Until stopping criterion

Predictor-Corrector Methods

Modern methods use the full Newton step Δ[z, v, u, s](0) merely as a predictor to
estimate the error made by using a linear model of the central path. If a full step
along the affine-scaling direction were taken, the complementarity condition would
evaluate to

(S +ΔSaff)(u+Δuaff) = Su+ΔSaffu+ SΔuaff︸ ︷︷ ︸
=0

+ΔSaffΔuaff (3.48)

where capital letters denote diagonal matrices constructed from the corresponding
vectors. The first three terms sum up to zero by the last equality of (3.45).
Hence the full Newton step produces an error of ΔSaffΔuaff in the complemen-
tarity condition. In order to compensate for this error, a corrector direction
Δ[z, v, u, s](−ΔSaffΔuaff) can be added to the Newton direction. This compensa-
tion is not perfect as the predictor direction is only an approximation; nevertheless,
predictor-corrector methods work usually better than single-direction methods. The
principle of predictor-corrector methods is depicted in Figure 3.6.

An important contribution of Mehrotra [206] was to define an adaptive rule for
choosing the centering parameter σ based on the information from the predictor
step. His rule

σ = (μaff/μ)3 (3.49)

increases the centering if the progress would be poor, that is, if the predicted value
of the duality measure, μaff, is not significantly smaller than μ. If good progress
can be made, then σ � 1, and the direction along which the iterate is moved is
closer to the pure Newton direction. The corrector and centering direction can be
calculated in one step because Δ[z, v, u, s](ν) is linear in ν; the final search direction
is therefore given by Δ[z, v, u, s](σμ1−ΔSaffΔuaff).

A variant of Mehrotra’s predictor-corrector method that works well in practice
is given in Algorithm 3.11. The parameter γ is a safeguard against numerical errors,
keeping the iterates away from the boundary. Because of the predictor-corrector
scheme, two linear systems have to be solved in each iteration. Since the coefficient
matrix is the same for both solves, direct methods are preferred to solve the linear
systems in Steps 3 and 7 of the algorithm, as the computational bottleneck of the

3.3 Constrained Optimization 61

s1

u1

Current iterate
(z,y,u,s)

Newton direction
(predictor)

Δ(z,y,u,s)(0)

Centering
+ corrector
 direction

Resulting search
direction (Mehrotra)
Δ(z,y,u,s)(σμ1−ΔSaffΔuaff)

Central path C

Optimal point

Predicted point
(uaff,saff)

Figure 3.6 Search direction generation in predictor-corrector methods. The
affine search direction can be used to correct for linearization errors, which
results in better performance in practice due to closer tracking of the central
path.

method is the factorization of the coefficient matrix. Once it has been factored in
Step 3, the computational cost of the additional solve in Step 7 is negligible, and
is more than compensated by the savings in the number of iterations.

Algorithm 3.11 Mehrotra primal-dual interior point method for (3.30)

Input: Initial iterates z0, v0, u0 > 0, s0 > 0, γ < 1 (typically γ = 0.99)

Output: Point close to z∗

Repeat

Duality measure: μk ← sk
′
uk/m

Newton direction (predictor): compute Δ[zk,aff, vk,aff, uk,aff, sk,aff](0) by
solving (3.45) at the current iterate

Line search: hk,aff ← max{h ∈ [0, 1] | sk + hΔsk,aff ≥ 0, uk + hΔuk,aff ≥ 0}
Predicted (affine) duality measure: μk,aff ← (sk + hk,affΔsk,aff)′(uk + hk,aff

Δuk,aff)/m

Centering parameter: σk ← (μk,aff/μk)3

Final search direction: compute Δ[zk, vk, uk, sk](σkμk1−ΔSk,affΔuk,aff) by
solving (3.45) at current iterate

Line search: hk ← max{h ∈ [0, 1] | sk + hΔsk ≥ 0, uk + hΔuk ≥ 0}
Update: (zk+1, vk+1, uk+1, sk+1) ← (zk, vk, uk, sk) + γhkΔ[zk, vk, uk, sk]
(σkμk1−ΔSk,affΔuk,aff)

Until stopping criterion is satisfied

Relation of Primal-Dual to Primal Barrier Methods

An insightful relation between primal barrier and primal-dual methods can be
established as follows. Writing the optimality conditions for problem P (μ) (3.32)
gives

62 3 Numerical Methods for Optimization

∇f(z) + μ∇Φg(z) +A′v = 0 (3.50a)

Az = b (3.50b)

g(z) ≤ 0 (3.50c)

where g(z) ≤ 0 has been added for the barrier function Φg to be well defined. If
one now defines

u = μ diag(−g(z))−1 1 , (3.51)

the conditions (3.50) become

∇f(z) +
m∑
i=1

ui∇gi(z) +A′v = 0 (3.52a)

Az = b (3.52b)

g(z) + s = 0 (3.52c)

Su = μ1 (3.52d)

(s, u) ≥ 0 (3.52e)

where we have introduced slack variables s and used the expression for the gradient
of the barrier function Φg and the relations s = −g(z), S = diag(s). Using

m∑
i=1

ui∇gi(z) = G(z)′u , (3.53)

where G(z) is the Jacobian of g evaluated at the point z, yields the same relaxed
optimality conditions as (3.43).

Hence if subproblems P (μ) (3.32) and (3.43) were solved exactly assum-
ing (3.51), the primal iterates of the primal-barrier method and the primal-dual
method would coincide (provided that the path parameters coincide, i.e., τ = μ).
However, primal-dual methods are in practice more efficient than primal barrier
methods, since they generate search directions using information from the dual
space, and therefore the iterates generated by the two algorithms do not coincide
in general.

3.3.3 Active Set Methods

In this section we will discuss methods for solving the problem

minz f(z)
subj. to z ∈ S,

where the feasible set S ⊂ Rs is a polyhedron, i.e., a set defined by linear equalities
and inequalities, and the objective f is a linear function (linear programming
(LP)) or a convex quadratic function (quadratic programming (QP)). As the name
indicates, active set methods aim to identify the set of active constraints at the
solution. Once this set is known, a solution to the problem can be easily compted.
Since the number of potentially visited active sets depends combinatorially on

3.3 Constrained Optimization 63

the number of decision variables and constraints, these methods have a worst
case complexity that is exponential in the problem size (as opposed to first-
order and interior point methods presented in Sections 3.3.1 and 3.3.2, which
both have polynomial complexity). However, active set methods work quite well
in practice showing the worst case number of iterations only on pathological
problem instances. Also, their underlying concepts are important ingredients in
multiparametric programming discussed in Chapter 6.

Active Set Method for LP (Simplex Method)

In the following we describe an active set method for the LP

minz c′z
subj. to Gz ≤ w

(3.54)

where for the sake of simplicity we assume that this LP has a solution, i.e., it is
neither unbounded below nor infeasible. Although we consider the case where the
feasible set is described by linear inequalities only, the same method can be used
to solve problems of type

maxu −w′u
subj. to G′u = −c

u ≥ 0,
(3.55)

which is another LP with linear equality and inequality constraints. In particular,
(3.55) is the dual problem associated with (3.54) and plays a central role in the
active set method for the solution of the primal problem. In fact, the dual will be
solved simultaneously with the primal problem as will be shown below.

Central to active set methods for LP is the observation that a solution is always
attained at a vertex of the polyhedral feasible set. This fact is often referred to as
the fundamental theorem of linear programming and gives reason to the methods’
alternative naming simplex methods. A simple strategy would be to enumerate all
vertices of the polyhedron and declare the vertex with the smallest cost as solution.
However, one can do better by only visiting those vertices that improve the cost
over the previous ones. This is the main idea behind active set methods for LP.
Interestingly, it was observed that the simplex method finds a solution in about 2m
to 3m iterations for most practical problems where m ≥ s denotes the number of
inequalities in (3.54). Nevertheless, pathological polyhedral sets exist which require
the method to visit all vertices for certain cost vectors, e.g., the Klee-Minty cube
which is a polyhedral set in Rs with 2s vertices [26].

Before describing the algorithmic scheme of the simplex method for the solution
of (3.54), we state the associated necessary and sufficient KKT conditions

G′u+ c = 0, (3.56a)

ui(Giz − wi) = 0, i = 1, . . . ,m, (3.56b)

u ≥ 0, (3.56c)

Gz − w ≤ 0. (3.56d)

64 3 Numerical Methods for Optimization

These conditions are composed of primal feasibility (3.56d), dual feasibility (3.56a),
(3.56c) and complementarity conditions (3.56b). In the simplex method, primal
feasibility and the complementarity conditions are maintained throughout the
iterations whereas dual feasibility is sacrificed and will only be satisfied whenever a
solution is found. Consequently, the method not only returns a primal minimizer z∗

but also a certificate for optimality u∗ which at the same time is a solution to the
dual problem (3.55).

Initialization
Assume that a vertex z of the feasible set is given. At every vertex, at least s
inequalities are active. For the initial active set A we select exactly s indices
of active inequalities such that the associated submatrix GA is invertible.
The remaining ones are put into the set NA, i.e., A ∪ NA = {1, 2, . . . ,m}
and A ∩NA = ∅. Hence, the vertex z is characterized by

GAz = wA, (3.57a)

GNAz ≤ wNA, (3.57b)

with wA and wNA being defined accordingly. Similarly, the simplex method
initializes a dual multiplier u such that

G′
AuA = −c,

uNA = 0.

Thus, the vertex z and the dual multiplier u fulfill the primal feasibility and
complementarity conditions of the KKT conditions (3.56), but not neces-
sarily dual feasibility as uA = −G′−1

A c is nonnegative only when a solution
is found.

Main Loop

If uA ≥ 0 (Optimal solution found)
The pair (z, u) satisfies the KKT conditions (3.56) and thus is an optimal
primal/dual pair.

Else (Pivoting)
A leaving index l ∈ A is selected such that the related dual variable is
negative, i.e., ul < 0. It can be shown that in this case an entering index
e ∈ NA can be found such that after interchanging these indices, i.e.,

A = A \ {l} ∪ {e},
NA = NA \ {e} ∪ {l},

the next vertex has a cost that is never worse than the cost at the
previous vertex. In fact, if the previous vertex z is nondegenerate, i.e.,
all inequalities in (3.57b) are strict, then the cost improves strictly.
The systematic interchange of indices between sets A and NA is called
pivoting. Pivoting maintains primal feasibility and the complementarity
conditions.

3.3 Constrained Optimization 65

The simplex method described above terminates in a finite number of iterations
if all visited vertices are nondegenerate. This follows from strict improvement of the
cost in every pivoting step, the finite number of vertices and our assumption that
there exists a solution. In the remaining part of this section, we shortly summarize
important aspects for every practical implementation of the simplex method that
were not discussed before in detail and at the end provide links to the literature.

• Initialization and detection of infeasibility For initialization, the simplex
method requires a vertex and an associated set of linearly independent
constraint vectors (we call such an active set admissible from here on). In
general, determining both is as hard as solving the original LP. For this
reason, simplex implementations often resort to a two-phase approach: In
Phase 1, an auxiliary LP is solved for which an initial vertex and admissible
active set are easy to spot and which has an optimal solution and associated
active set that can be used to initialize an LP in Phase 2. From the solution
of the latter, an optimizer for the original LP can then be reconstructed.
For the LP in (3.54), a possible auxiliary Phase 1 LP is

miny,z+,z− y
subj. to Gz+ −Gz− − 1y ≤ w,

z+, z−, y ≥ 0.
(3.58)

It can be easily verified that the vector (z+, z−, y) with z+ = z− = 0
and y = min{y ≥ 0 | y ≥ −wi, i = 1, . . . ,m} is a vertex of the feasible
set in (3.58). In order to find an admissible active set, we distinguish two
cases: If w ≥ 0, then y = 0 and the admissible active set is composed of
all indices referring to the nonnegativity inequalities in (3.58). Otherwise,
there exists at least one index i such that wi < 0 which implies y > 0. In
this case, the admissible active set is determined by all indices referring
to nonnegativity inequalities for variables z+ and z− and a single index
referring to one of the active constraints in Gz+−Gz−−1y ≤ w at the initial
vertex. This active set can be shown to lead to a constraint submatrix that is
always invertible, so, the auxiliary LP can be solved by the simplex method
next.
Let us denote the optimal solution to (3.58) as (y∗, z∗+, z

∗
−). If y

∗ is positive,
then the original LP (3.54) is infeasible. Only if y∗ = 0, a feasible solution
exists and is given by z∗+ − z∗−. Since the solution to the Phase 1 problem is
a vertex and comes with an admissible active set, it can be used right away
for the initialization of the simplex method for solving the Phase 2 problem

miny,z+,z− c′z+ − c′z−
subj. to Gz+ −Gz− − 1y ≤ w,

z+, z−, y ≥ 0
y ≤ 0,

(3.59)

which is equivalent to the original LP (3.54): Every solution (0, z∗∗+ , z∗∗−)
to (3.59) implies a solution z∗∗+ − z∗∗− to the original problem and vice
versa.

66 3 Numerical Methods for Optimization

• Detection of unboundedness An LP is unbounded whenever there exists a
feasible sequence {zk}, Gzk ≤ w, such that c′zk → −∞. The simplex method
can detect unboundedness quite easily by identifying a descent direction
along which the objective decreases without bound.

• Convergence in case of degeneracy A vertex is degenerate whenever more
than s inequalities are active at this point. Degeneracy does not prevent
active set updates but does prevent improving the cost from iterate to iterate
by revisiting the same vertex. In the worst case, this can lead to cycling, i.e.,
the simplex method visits the same vertex infinitely often and thus fails to
find an optimal solution. The main methodology to overcome cycling is to
slightly perturb the problem data such that all visited vertices are guaranteed
to be nondegenerate and to recover the original (nonperturbed) solution in
a final step.

• Pivoting rules In the simplex method presented above, a leaving index is
selected from the active set such that the associated dual variable is negative.
In fact, there can be more than one such index and different selection rules
lead to different next vertices and thus progress in the cost. Many selection
or pivoting rules for the leaving index exist, e.g., choosing the index that
corresponds to the most negative dual variable as proposed in the original
simplex method by Dantzig [92], and consequently lead to a whole family of
different simplex methods.

• Linear algebra Efficiency of the simplex method depends not only on
the number of visited vertices, which is unknown in advance and can be
exponential in the problem size in the worst case, but to a great extent on
efficient linear algebra routines for the computation of new vertices when
doing pivoting steps. Since in the simplex method only a single index is
removed and added to the active set A in every iteration, specific linear
algebra routines can be used to update the factorization of the constraint
submatrix GA.

There is a great amount of literature available on linear programming and the
simplex method. One of the earliest books on this topic is by G.B. Dantzig [92]
who developed the simplex method in 1947 and is generally known as the father of
linear programming. Other references in this field are [217], [280] and [223, Chapter
13]. The material for the Phase 1/Phase 2 part of this section is based on the latter
two references. Finally, it should be noted that the simplex method consistently
ranks among the ten most important algorithms of the 20th century.

Active Set Method for QP

In this section, we consider an active set method for the solution of the convex QP

minz
1

2
z′Hz + q′z

subj. to Gz ≤ w.
(3.60)

We restrict the discussion to the case when the Hessian H is positive definite
and the feasible set determined by the linear inequality constraints is nonempty.

3.3 Constrained Optimization 67

These assumptions imply that both a unique solution z∗ to (3.60) and unique
solutions to all the subproblems encountered in the active set method exist (this
will become clear later in this section). Another consequence of positive definiteness
of the Hessian is that the presented active set method can be shown to never cycle,
i.e., it can be guaranteed that the solution is found in a finite number of iterations
without any safeguard against cycling, in contrast to the LP case. Note that we do
not consider explicit linear equality constraints in order to facilitate a streamlined
presentation of the main concepts.

Active set methods for QP share many features of active set methods for LP.
They too identify the set of active inequality constraints at the optimal solution
and return a certificate of optimality u∗ which is a solution to the dual problem

maxu −1

2
(q +G′u)′H−1(q +G′u)− w′u

subj. to u ≥ 0.

The dual problem is also a QP. If, however, the constraint matrix G has more rows
than columns (this is the usual case) then the Hessian of the concave objective is
negative semi -definite and thus the dual solution might not be unique.

The principal feature that distinguishes the QP from the LP is that the search
for a solution cannot be restricted to the vertices of the polyhedral feasible set.
The solution can also be attained on an edge, a face or even in the interior. These
possibilities, in the nondegenerate case, correspond to differently sized active sets,
i.e., the size is s (solution on a vertex), s − 1 (solution on an edge), s − j where
j ∈ {2, 3, . . . , s − 1} (solution on a face) or the active set might even be empty
(solution in the interior). So, there is a combinatorial number of potential active
sets A, each corresponding to a QP with equality constraints

minz
1

2
z′Hz + q′z

subj. to GAz = wA,
(3.61)

where GA is the submatrix of constraint matrix G according to the active set A.
The r.h.s. vector wA is defined accordingly.

The main idea behind active set methods for QP is to select active sets
in a way such that the corresponding iterates stay primal feasible and lead to
a cost that decreases monotonically. By doing so, one usually circumvents the
brute force approach of checking all possible active sets although there exists no
active set method that excludes this possibility by mathematical analysis,
i.e., no active set method for QP with polynomial complexity is known.

A nonconstant active set size has two important consequences: First of all,
there is no interchange of indices between set A and the complementary set NA
as in the LP case, i.e., in every iteration of the active set method for QP an index
corresponding to a row of constraint matrix G is either added or removed from the
current active set or no action is taken at all. Second, a solution to the equality-
constrained QP (3.61) associated with every active set is not necessarily a feasible
iterate with respect to the original problem (3.60). So, additional measures must
be taken in order to maintain primal feasibility of the iterates.

For the understanding of the active set method presented next, it is instructive
to consider the necessary and sufficient KKT conditions for problem (3.60)

68 3 Numerical Methods for Optimization

Hz + q +G′u = 0, (3.62a)

ui(Giz − wi) = 0, i = 1, . . . ,m, (3.62b)

u ≥ 0, (3.62c)

Gz − w ≤ 0. (3.62d)

The active set method maintains primal feasibility (3.62d) as well as stationa-
rity (3.62a) and the complementarity conditions (3.62b). The dual variable u is
feasible (3.62c) only when the active set at the optimal solution is identified. Note,
however, that no dual iterates are maintained, in contrast to the LP case, since they
are not required in every iteration. Only at times when the termination criterion
needs to be verified or an index removed from the current active set, dual variables
are computed.

Initialization
Assume that a primal feasible point z is given. Define the initial active set A
as a nonempty subset of all indices of active inequalities at z such that the
associated submatrix GA has full row rank. In fact, it suffices to choose only
a single index corresponding to any active inequality. The remaining indices
are put into set NA, i.e., NA = {1, 2, . . . ,m}\A.

Main Loop
Minimize the quadratic cost over the affine set determined by the active
set A, i.e., solve (3.61). For the sake of convenience, we substitute the decision
variable in (3.61) by z + δ, i.e., the sum of the current iterate and an offset,
and obtain the optimal offset δ∗ from

minδ
1
2δ

′Hδ + (q +Hz)′δ
subj. to GAδ = 0.

(3.63)

If δ∗ = 0
Compute the Lagrange multipliers uA for the equality constraints
in (3.63).

If uA ≥ 0 (Optimal solution found)
The pair (z, u), where u is partitioned into uA and uNA = 0, satisfies
the KKT conditions (3.62) and thus is an optimal primal/dual
pair. This follows from the fact that the pair (z, uA) is an optimal
primal/dual solution for (3.63) and so satisfies the stationarity
condition

Hz + q +G′
AuA = 0.

By definition of uNA as the zero vector, this implies that the
stationarity condition for the original QP (3.62a) is satisfied as well.

Else (Remove index from active set)
An index l ∈ A is removed from the active set such that the related
dual variable is negative, i.e., ul < 0, and the next iterate is defined
as the previous one, i.e.,

A = A \ {l},
NA = NA ∪ {l},

z = z.

3.3 Constrained Optimization 69

It can be shown that by choosing the leaving index this way, an
offset δ∗ is obtained in the next iteration from (3.63) that is a
descent direction with respect to the quadratic cost. Also, δ∗ turns
out to be a feasible direction with respect to the removed inequality
constraint, i.e., the leaving constraint will not be added again in the
next iteration.

Else (δ∗ 	= 0)
The minimizer z + δ∗ of the quadratic cost over the affine set might be
infeasible with respect to the original problem (3.60). So, we need to find
the largest step size α∗ ∈ [0, 1] such that z+α∗δ∗ remains feasible. Note
that this step size can be computed explicitly as

α∗ = min

{
1, min

i∈NA:G′
iδ

∗>0

wi −G′
iz

G′
iδ

∗

}
. (3.64)

So, a new primal iterate is obtained from

z = z + α∗δ∗.

If α∗ = 1 (No active set change)

A = A

NA = NA

Else (Add blocking index)
Assume that the inequality corresponding to index e ∈ NA prevents

us from taking a full step, i.e., α∗ =
we−G′

ez
G′

eδ
∗ < 1. Then we update

the active set by adding this index, i.e.,

A = A ∪ {e},
NA = NA \ {e}.

In the following, we shortly describe how to initialize the active set method and
how to obtain a solution to the equality-constrained QP (3.63). Note that this part,
same as the described active set method, is based on [223, Chapter 16].

• Initialization and detection of infeasibility Initialization of the active set
method for QP is less restrictive than for LP since only a feasible point of
the polyhedral feasible set, as opposed to a vertex, is required. Such a point
can be obtained either from practical insight or from solving the Phase 1 LP
in (3.58). An alternative approach is to solve

minz,ε
1

2
z′Hz + q′z + ρ1ε

′ε+ ρ21
′ε

subj. to Gz ≤ w + ε
ε ≥ 0,

for which a feasible point can be spotted easily and which can be shown to
have the same solution as (3.60) if ρ1 ≥ 0 and ρ2 > ‖u∗‖∞, where u∗ is a

70 3 Numerical Methods for Optimization

Lagrange multiplier for the inequality constraint in (3.60). This follows from
the theory of exact penalty functions (Section 12.6, page 264).
Since the Lagrange multiplier is usually unknown, one starts with a guess

for the weight ρ2 and solves the problem. The value was chosen big enough
if at the solution ε∗ = 0, otherwise, the weight needs to be increased and
the problem solved again. If no big enough weight can be found such that
ε∗ = 0, the problem is infeasible.

• Linear algebra Key to good performance of an active set method is an
efficient solution of the equality-constrained QP in (3.63). Notice that a
solution to (3.63) satisfies the KKT conditions[

H G′
A

GA 0

] [
δ∗

uA

]
=

[
−(q +Hz)

0

]
. (3.65)

It turns out that the so-called KKT matrix in (3.65) is invertible if the
Hessian H is positive definite and the submatrix GA has full row rank.
Both conditions are fulfilled in our case. In particular, whenever the method
is initialized with an active set that leads to full row rank of GA, this
property can be shown to be maintained throughout all iterations without
requiring extra checks. In this case, a good way for solving (3.65) is the
Schur complement method. Since H can be inverted, we can express the
primal solution as

δ∗ = −H−1
(
G′

AuA + q +Hz
)
,

which leads to the equation

GAH
−1G′

AuA = −GAH
−1(q +Hz)

for the Lagrange multiplier uA. Since GAH
−1G′

A is positive definite, we can
solve for uA using a Cholesky factorization and compute δ∗ afterwards. Note
that the factorization needs to be updated every time the active set changes.
Since at most one index is added or removed per iteration, efficient update
schemes can be used that circumvent a full factorization.

4

Polyhedra and P-Collections

Polyhedra are the fundamental geometric objects used in this book. There is a
vast body of literature related to polyhedra because they are important for a wide
range of applications. In this chapter we introduce the main definitions and the
algorithms which describe some operations on polyhedra. Our intent is to provide
only the necessary elements for the readers interested in reproducing the control
algorithms reported in this book. Most definitions given here are standard. For
additional details the reader is referred to [296, 135, 112].

4.1 General Set Definitions and Operations

An n-dimensional ball B(xc, ρ) is the set B(xc, ρ) = {x ∈ Rn : ‖x− xc‖2 ≤ ρ}.
The vector xc is the center of the ball and ρ is the radius.

Affine sets are sets described by the solutions of a system of linear equations:

F = {x ∈ Rn : Ax = b, with A ∈ Rm×n, b ∈ Rm}. (4.1)

If F is an affine set and x̄ ∈ F , then the translated set V = {x − x̄ : x ∈ F} is a
subspace.

The affine combination of a finite set of points x1, . . . , xk belonging to Rn is
defined as the point λ1x1 + · · ·+ λkxk where

∑k
i=1 λ

i = 1.
The affine hull of K ⊆ Rn is the set of all affine combinations of points in K

and it is denoted as aff(K):

aff(K) =

{
λ1x1 + · · ·+ λkxk : xi ∈ K, i = 1, . . . , k,

k∑
i=1

λi = 1

}
. (4.2)

The affine hull of K is the smallest affine set that contains K in the following sense:
if S is any affine set with K ⊆ S, then aff(K)⊆ S.

The dimension of an affine set, affine combination or affine hull is the
dimension of the largest ball of radius ρ > 0 included in the set.

72 4 Polyhedra and P-Collections

Example 4.1 The set
F = {x ∈ R2 : x1 + x2 = 1}

is an affine set in R2 of dimension one. The points x1 = [0, 1]′ and x2 = [1, 0]′ belong
to the set F . The point x̄ = −0.2x1 + 1.2x2 = [1.2,−0.2]′ is an affine combination of
points x1 and x2. The affine hull of x1 and x2, aff({x1, x2}), is the set F .

Convex sets have been defined in Section 1.2.
The convex combination of a finite set of points x1, . . . , xk belonging to Rn is

defined as the point λ1x1+ · · ·+λkxk where
∑k

i=1 λ
i = 1 and λi ≥ 0, i = 1, . . . , k.

The convex hull of a set K ⊆ Rn is the set of all convex combinations of points
in K and it is denoted as conv(K):

conv(K) =

{
λ1x1 + · · ·+ λkxk : xi ∈ K, λi ≥ 0, i = 1, . . . , k,

k∑
i=1

λi = 1

}
.

(4.3)

The convex hull of K is the smallest convex set that contains K in the following
sense: if S is any convex set with K ⊆ S, then conv(K)⊆ S.

Example 4.2 Consider three points x1 = [1, 1]′, x2 = [1, 0]′, x3 = [0, 1]′ in R2. The
point x̄ = λ1x1+λ2x2+λ3x3 with λ1 = 0.2, λ2 = 0.2, λ3 = 0.6 is x̄ = [0.4, 0.8]′ and it
is a convex combination of the points {x1, x2, x3}. The convex hull of {x1, x2, x3}
is the triangle plotted in Figure 4.1. Note that any set in R2 strictly contained in the
triangle and containing {x1, x2, x3} is nonconvex. This illustrates that the convex
hull is the smallest set that contains these three points.

A cone spanned by a finite set of points K = {x1, . . . , xk} is defined as

cone(K) =

{
k∑

i=1

λixi, λi ≥ 0, i = 1, . . . , k

}
. (4.4)

We define cone(K) = {0} if K is the empty set.

x1

x
2 x̄

–0.5 0 1 1.5 2
–0.5

0

0.5

1

1.5

2

0.5

Figure 4.1 Example 4.2. Illustration of the convex hull of three points
x1 = [1, 1]′, x1 = [1, 0]′, x3 = [0, 1]′.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/CvxHull3Points.m

4.2 Polyhedra and Representations 73

x1

x2

x
3

0 2 40
2

4

0

2

4

Figure 4.2 Example 4.3. Illustration of a cone spanned by the three points
x1 = [1, 1, 1]′, x2 = [1, 2, 1]′, x3 = [1, 1, 2]′.

Example 4.3 Consider three points x1 = [1, 1, 1]′, x2 = [1, 2, 1]′, x3 = [1, 1, 2]′ in R3.
The cone spanned by {x1, x2, x3} is an unbounded set. It is depicted in Figure 4.2.

The Minkowski sum of two sets P,Q ⊆ Rn is defined as

P ⊕Q = {x+ y : x ∈ P, y ∈ Q}. (4.5)

By definition, any point in P ⊕Q can be written as the sum of two points, one in
P and one in Q. For instance, the Minkowski sum of two balls (P and Q) centered
at the origin and with radius 1, is a ball (P ⊕ Q) centered at the origin and with
radius 2.

4.2 Polyhedra and Representations

Some of the concepts here have been briefly touched in Section 2.1. In the following
we give two definitions of a polyhedron. They are mathematically equivalent but
they lead to two different polyhedron representations. The proof of equivalence is
not trivial and can be found in [296].

An H-polyhedron P in Rn denotes an intersection of a finite set of closed
halfspaces in Rn:

P = {x ∈ Rn : Ax ≤ b}, (4.6)

where Ax ≤ b is the usual shorthand form for a system of inequalities, namely
a′ix ≤ bi, i = 1, . . . ,m, where a1, . . . , am are the rows of A, and b1, . . . , bm are the
components of b. In Figure 4.3 a two-dimensional H-polyhedron is plotted.

A V-polyhedron P in Rn denotes the Minkowski sum (defined in (4.5)) of the
convex hull of a finite set of points {V1, . . . , Vk} of Rn and the cone generated by
a finite set of vectors {y1, . . . , yk′} of Rn:

P = conv(V)⊕ cone(Y), (4.7)

for some V = [V1, . . . , Vk] ∈ Rn×k, Y = [y1, . . . , yk′] ∈ Rn×k′
. The main theorem

for polyhedra states that any H-polyhedron can be converted into a V-polyhedron
and vice-versa [296, p. 30].

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Cone3Points.m

74 4 Polyhedra and P-Collections

a1x≤ b1

a 2
x
≤ b

2

a
3x≤

b3

Figure 4.3 H-polyhedron. The planes (here lines) defining the boundary of
the halfspaces are a′

ix− bi = 0.

a1x≤ b1 a 2
x
≤ b

2

a
3x≤

b3

a 4
x
≤
b 4

Figure 4.4 H-polytope. The planes (here lines) defining the halfspaces are
a′
ix− bi = 0.

An H-polytope is a bounded H-polyhedron (in the sense that it does not contain
any ray {x+ ty : t ≥ 0}). In Figure 4.4 a two-dimensional H-polytope is plotted.

A V-polytope is a bounded V-polyhedron

P = conv(V) = {V λ |λ ≥ 0, 1′λ = 1} . (4.8)

In Section 4.4.4 we show how to convert any H-polytope into a V-polytope and
vice versa.

The dimension of a polytope (polyhedron) P is the dimension of its affine hull
and is denoted by dim(P). We say that a polytope P ⊂ Rn, P = {x ∈ Rn : P xx ≤
P c}, is full-dimensional if dim(P) = n or, equivalently, if it is possible to fit a
nonempty n-dimensional ball in P,

∃x ∈ Rn, ε > 0 : B(x, ε) ⊂ P, (4.9)

4.2 Polyhedra and Representations 75

or, equivalently,

∃x ∈ Rn, ε > 0 : ‖δ‖2 ≤ ε ⇒ P x(x+ δ) ≤ P c. (4.10)

Otherwise, we say that polytope P is lower-dimensional. A polytope is referred to
as empty if

�x ∈ Rn : P xx ≤ P c. (4.11)

Furthermore, if ‖P x
i ‖2 = 1, where P x

i denotes the i-th row of a matrix P x, we say
that the polytope P is normalized.

Let P be a polyhedron. A linear inequality c′z ≤ c0 is said to be valid for P if
it is satisfied for all points z ∈ P. A face of P is any nonempty set of the form

F = P ∩ {z ∈ Rs : c′z = c0}, (4.12)

where c′z ≤ c0 is a valid inequality for P. The dimension of a face is the dimension
of its affine hull. For the valid inequality 0z ≤ 0 we get that P is a face of P. All
faces of P satisfying F ⊂ P are called proper faces and have dimension less than
dim(P). The faces of dimension 0,1, dim(P)-2 and dim(P)-1 are called vertices,
edges, ridges, and facets, respectively. The set V of all the vertices of a polytope P
will be denoted as

V = extreme(P).

The next theorem summarizes basic facts about faces.

Theorem 4.1 Let P be a polytope, V the set of all its vertices and F a face.

1. P is the convex hull of its vertices: P=conv(V).

2. F is a polytope.

3. Every intersection of faces of P is a face of P.

4. The faces of F are exactly the faces of P that are contained in F .

5. The vertices of F are exactly the vertices of P that are contained in F .

A d-simplex is a polytope of Rd with d+ 1 vertices.
In this book we will work mostly with H-polyhedra and H-polytopes. This

choice has important consequences for algorithm implementations and their
complexity. As a simple example, a unit cube in Rd can be described through
2d equalities as an H-polytope, but requires 2d points in order to be described
as a V-polytope. We want to mention here that many efficient algorithms that
work on polyhedra require both H and V representations. In Figure 4.5 the
H-representation and the V-representation of the same polytope in two dimensions
are plotted.

Consider Figure 4.5(b) and notice that no inequality can be removed without
changing the polyhedron. Inequalities which can be removed without changing the
polyhedron described by the original set are called redundant. The representation of
anH-polyhedron isminimal if it does not contain redundant inequalities. Detecting

76 4 Polyhedra and P-Collections

x1

x
2

(a) Example of V-representation.
The vertices V P

1 , . . . , V P
7 are

depicted as dots.

x1

x
2

(b) Example of H-representation.
The hyperplanes Px

i x=P c
i , i =

1, . . . , 7 are depicted as lines.

Figure 4.5 Illustration of a polytope in H- and V-representation.

whether an inequality is redundant for an H-polyhedron requires solving a linear
program, as described in Section 4.4.1.

By definition a polyhedron is a closed set. In this book we will also work with
sets which are not closed but whose closure is a polyhedron. For this reason the
two following nonstandard definitions will be useful.

Definition 4.1 (Open Polyhedron (Polytope)) A set C ⊆Rn is called an
open polyhedron (polytope) if it is open and its closure is a polyhedron (polytope).

Definition 4.2 (Neither Open nor Closed Polyhedron (Polytope)) A set
C ⊆ Rn is called neither an open nor a closed polyhedron (polytope) if it is neither
open nor closed and its closure is a polyhedron (polytope).

4.3 Polytopal Complexes

According to our definition every polytope represents a convex, compact (i.e.,
bounded and closed) set. In this book we will also encounter sets that are disjoint
or nonconvex but can be represented by the union of a finite number of polytopes.
Therefore, it is useful to define the following mathematical concepts.

Definition 4.3 (P-collection) A set C ⊆ Rn is called a P-collection if it is a
collection of a finite number of n-dimensional polyhedra, i.e.,

C = {Ci}NC
i=1, (4.13)

where Ci = {x ∈ Rn : Cx
i x ≤ Cc

i }, dim(Ci) = n, i = 1, . . . , NC , with NC < ∞.

Definition 4.4 (Underlying Set) The underlying set of a P-collection C =
{Ci}NC

i=1 is the

C =
⋃
P∈C

P =

NC⋃
i=1

Ci. (4.14)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/VRepresentation.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/HRepresentation.m

4.3 Polytopal Complexes 77

Example 4.4 A collection C = {[−2,−1], [0, 2], [2, 4]} is a P-collection in R1 with the
underlying set C = [−2,−1] ∪ [0, 4]. As another example, C = {[−2, 0], [−1, 1], [0, 2]}
is a P-collection in R1 with underlying set C = [−2, 2]. Clearly, polytopes that define
a P-collection can overlap, the underlying set can be disconnected and nonconvex.

Usually it is clear from the context if we are talking about the P-collection or
referring to the underlying set of a P-collection. Therefore, for simplicity, we use
the same notation for both.

Definition 4.5 (Strict Polyhedral Partition) A collection of sets {Ci}NC
i=1 is

a strict partition of a set C if (i)
⋃NC

i=1 Ci = C and (ii) Ci∩Cj = ∅, ∀i 	= j. Moreover

{Ci}NC
i=1 is a strict polyhedral partition of a polyhedral set C if {Ci}NC

i=1 is a strict
partition of C and C̄i is a polyhedron for all i, where C̄i denotes the closure of the
set Ci.

Definition 4.6 (Polyhedral Partition) A collection of sets {Ci}NC
i=1 is a parti-

tion of a set C if (i)
⋃NC

i=1 Ci = C and (ii) (Ci\∂Ci)∩ (Cj\∂Cj) = ∅, ∀i 	= j. Moreover

{Ci}NC
i=1 is a polyhedral partition of a polyhedral set C if {Ci}NC

i=1 is a partition of
C and Ci is a polyhedron for all i. The set ∂Cj is the boundary of the set Cj.

Note that in a strict polyhedral partition of a polyhedron some of the sets Ci

must be open or neither open nor closed. In a partition all the sets may be closed
and points on the closure of a particular set may also belong to one or several other
sets. Also, note that a polyhedral partition is a special class of a P-collection.

4.3.1 Functions on Polytopal Complexes

Definition 4.7 A function h(θ) : Θ → R, where Θ ⊆ Rs, is piecewise affine
(PWA) if there exists a strict partition R1,. . . ,RN of Θ and h(θ) = Hiθ + ki,
∀θ ∈ Ri, i = 1, . . . , N .

Definition 4.8 A function h(θ) : Θ → R, where Θ ⊆ Rs, is piecewise affine on
polyhedra (PPWA) if there exists a strict polyhedral partition R1,. . . ,RN of Θ and
h(θ) = Hiθ + ki, ∀θ ∈ Ri, i = 1, . . . , N .

Definition 4.9 A function h(θ) : Θ → R, where Θ ⊆ Rs, is piecewise quadratic

(PWQ) if there exists a strict partition R1,. . . ,RN of Θ and h(θ) = θ′Hiθ+ki
′
θ+li,

∀θ ∈ Ri, i = 1, . . . , N .

Definition 4.10 A function h(θ) : Θ → R, where Θ ⊆ Rs, is piecewise quadratic
on polyhedra (PPWQ) if there exists a strict polyhedral partition R1,. . . ,RN of Θ
and h(θ) = θ′Hiθ + kiθ + li, ∀θ ∈ Ri, i = 1, . . . , N .

As long as the function h(θ) we are defining is continuous it is not important
if the partition constituting the domain of the function is strict or not. If the
function is discontinuous at points on the closure of a set, then this function can

78 4 Polyhedra and P-Collections

only be defined if the partition is strict. Otherwise we may obtain several conflicting
definitions of function values (or set-valued functions). Therefore for the statement
of theoretical results involving discontinuous functions we will always assume that
the partition is strict. For notational convenience, however, when working with
continuous functions we will make use of partitions rather than strict partitions.

4.4 Basic Operations on Polytopes

We will now define some basic operations and functions on polytopes. Note that
although we focus on polytopes and polytopic objects most of the operations
described here are directly (or with minor modifications) applicable to polyhedral
objects. Additional details on polytope computation can be found in [296, 135, 112].
All operations and functions described in this chapter are contained in the
MultiParametric Toolbox (MPT) [149].

4.4.1 Minimal Representation

We say that a polytope P ⊂ Rn, P = {x ∈ Rn : P xx ≤ P c} is in a minimal
representation if the removal of any row in P xx ≤ P c would change it (i.e., if there
are no redundant constraints). The computation of the minimal representation
(henceforth referred to as polytope reduction) of polytopes is discussed in [112]. The
redundancy of each constraint is checked, which generally requires the solution of
one LP for each half-space defining the nonminimal representation of P. We sum-
marize this simple implementation of the polytope reduction in Algorithm 4.1. An
improved algorithm for polytope reduction is discussed in [269] where the authors
combine the procedure outlined in Algorithm 4.1 with heuristic methods, such as
bounding-boxes and ray-shooting, to discard redundant constraints more efficiently.

It is straightforward to see that a normalized, full-dimensional polytope P has
a unique minimal representation. Note that “unique” here means that for P =
{x ∈ Rn : P xx ≤ P c} the matrix [P xP c] consists of the unique set of row vectors,
the rows’ order is irrelevant. This fact is very useful in practice. Normalized, full-
dimensional polytopes in a minimal representation allow us to avoid any ambiguity
when comparing them and very often speed-up other polytope manipulations.

Algorithm 4.1 Polytope in minimal representation

Input P = {x : P xx ≤ P c}, with P x ∈ RnP×n, P c ∈ RnP

Output Q = {x : Qxx ≤ Qc} = minrep(P)

I ← {1, . . . , nP }
For i = 1 to nP

I ← I \ {i}
f∗ ← max

x
P x
i x, subj. to P x

(I)x ≤ P c
(I), P x

i x ≤ P c
i + 1

If f∗ > P c
i Then I ← I ∪ {i}

End

Qx = P x
I , Q

c = P c
I

4.4 Basic Operations on Polytopes 79

x1

x
2 R1 R2

(a) R =
⋃

i∈{1,2} Ri.

x1

x
2 conv(R)

(b) Convex hull of R.

Figure 4.6 Illustration of the convex hull operation.

4.4.2 Convex Hull

The convex hull of a set of points V = {V i}NV
i=1, with V i ∈ Rn, is a polytope

defined as

conv(V) =

{
x ∈ Rn : x =

NV∑
i=1

αiV i, αi ≥ 0,

NV∑
i=1

αi = 1

}
. (4.15)

The convex hull of a union of polytopes Ri ⊂ Rn, i = 1, . . . , NR, is a polytope

conv

(
NR⋃
i=1

Ri

)
=

{
x ∈ Rn : x =

NR∑
i=1

αixi, xi ∈ Ri, α
i ≥ 0,

NR∑
i=1

αi = 1

}
. (4.16)

An illustration of the convex hull operation is given in Figure 4.6. Construction
of the convex hull of a set of polytopes is an expensive operation which is
exponential in the number of facets of the original polytopes. An efficient software
implementation is available in [111] and used in the MPT toolbox [149].

4.4.3 Envelope

The envelope of two H-polyhedra P = {x ∈ Rn : P xx ≤ P c} and Q = {x ∈ Rn :
Qxx ≤ Qc} is an H-polyhedron

env(P,Q) = {x ∈ Rn : P̄ xx ≤ P̄ c, Q̄xx ≤ Q̄c}, (4.17)

where P̄ xx ≤ P̄ c is the subsystem of P xx ≤ P c obtained by removing all the
inequalities not valid for the polyhedron Q, and Q̄xx ≤ Q̄c is defined in a similar
way with respect to Qxx ≤ Qc and P [38]. In a similar fashion, the definition can
be extended to the case of the envelope of a P-collection. An illustration of the
envelope operation is depicted in Figure 4.7.

The computation of the envelope is relatively cheap since it only requires the
solution of one LP for each facet of P and Q. In particular, if a facet of Q

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/CvxHull.m

80 4 Polyhedra and P-Collections

x1

x
2 R1 R2

(a) R =
⋃

i∈{1,2} Ri.

x1

x
2 env(R)

(b) Envelope env(R).

Figure 4.7 Illustration of the envelope operation.

(and P) is found to be “nonredundant” for the polytope P (for the polytope Q)
then it is not part of the envelope. A version of Algorithm 4.1 can be used. Note
that the envelope of two (or more) polytopes is not necessarily a bounded set (e.g.,
when P ∪Q is shaped like a star).

4.4.4 Vertex Enumeration

The operation of extracting the vertices V = {V i}NV
i=1 of a polytope P given in H-

representation is referred to as vertex enumeration and denoted as V = extreme(P).
The necessary computational effort is exponential in the number of facets. The work
in [12] classifies algorithms for vertex enumeration in two groups: graph traversal
and incremental. Graph traversal algorithms construct the graph of vertices and
edges of the polyhedron starting from a vertex and finding the other vertices by
traversing the graph. Going from one vertex to another is equivalent to moving
from one base to another base through pivoting in the simplex algorithm. The
reverse search [11] approach belongs to this class. Incremental algorithms start from
a subset of the polyhedron halfspaces and its associated vertices and iteratively
intersect the remaining halfspaces to compute a new set of vertices. The double
description method [114] belongs to this class. An efficient implementation of the
double description method is available in [111] and is used in the MPT toolbox [149].

Converting a V-polytope into an H-polytope corresponds to the convex hull
computation. It can also be done via vertex enumeration. This procedure is based
upon the polar dual [296, p. 61].

Alternatively, using the polar dual, an H-polytope can be converted into a
V-polytope by a convex hull computation. Because of this “symmetry” we say that
vertex enumeration and convex hull computation are dual to each other.

4.4.5 Chebyshev Ball

The Chebyshev Ball of a polytope P = {x ∈ Rn : P xx ≤ P c}, with P x ∈ RnP×n,
P c ∈ RnP , corresponds to the largest radius ball B(xc, R) with center xc, such that
B(xc, R) ⊂ P. The center and radius of the Chebyshev Ball can be easily found by
solving the following linear optimization problem

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Envelop.m

4.4 Basic Operations on Polytopes 81

max
xc,R

R (4.18a)

subj. to P x
i xc +R‖P x

i ‖2 ≤ P c
i , i = 1, . . . , nP , (4.18b)

where P x
i denotes the i-th row of P x. This can be proven as follows. Any point x of

the ball can be written as x = xc + v where v is a vector of length less or equal to
R. Therefore the center and radius of the Chebyshev Ball can be found by solving
the following optimization problem

max
xc,R

R (4.19a)

subj. to P x
i (xc + v) ≤ P c

i , ∀ v such that ‖v‖2 ≤ R, i = 1, . . . , nP . (4.19b)

Consider the i-th constraint

P x
i (xc + v) ≤ P c

i , ∀ v such that ‖v‖2 ≤ R.

This can be written as

P x
i xc ≤ P c

i − P x
i v, ∀ v such that ‖v‖2 ≤ R. (4.20)

Constraint (4.20) is satisfied ∀ v such that ‖v‖2 ≤ R if and only if it is satisfied

at v =
Px

i
′

‖Px
i ‖2

R. Therefore we can rewrite the optimization problem (4.19) as the

linear program (4.18).
If the radius obtained by solving (4.18) is R = 0, then the polytope is lower-

dimensional. If R < 0, then the polytope is empty. Therefore, an answer to the
question “is polytope P full-dimensional/empty?” is obtained at the cost of only
one linear program. Furthermore, for a full-dimensional polytope we also get a
point xc that is in the strict interior of P. However, the center of a Chebyshev Ball
xc in (4.18) is not necessarily a unique point (e.g., when P is a rectangle). There
are other types of unique interior points one could compute for a full-dimensional
polytope, e.g., center of the largest volume ellipsoid, analytic center, etc., but those
computations involve the solution of Semi-Definite Programs (SDPs) and therefore
may be more expensive than the Chebyshev Ball computation [65]. An illustration
of the Chebyshev Ball is given in Figure 4.8.

4.4.6 Projection

Given a polytope P = {[x′y′]′ ∈ Rn+m : P xx+P yy ≤ P c} ⊂ Rn+m the projection
onto the x-space Rn is defined as

projx(P) = {x ∈ Rn : ∃y ∈ Rm : P xx+ P yy ≤ P c}. (4.21)

An illustration of a projection operation is given in Figure 4.9. Current projection
methods that can operate in general dimensions can be grouped into four classes:
Fourier elimination [82, 169], block elimination [15], vertex based approaches [113]

82 4 Polyhedra and P-Collections

x1

x
2

Figure 4.8 Illustration of the Chebyshev Ball contained in a polytope P.

x2 x1

x
3

Figure 4.9 Illustration of the projection of a three-dimensional polytope P
onto the plane x3 = 0.

and wrapping-based techniques [161]. For a good introduction to projection, we
refer the reader to [161] and the references therein.

4.4.7 Set-Difference

The set-difference of two polytopes Y and R0

R = Y \ R0 = {x ∈ Rn : x ∈ Y, x /∈ R0}, (4.22)

in general, can be a nonconvex and disconnected set and can be described as a
P-collection R =

⋃m
i=1 Ri, where Y =

⋃m
i=1 Ri

⋃
(R0

⋂
Y). The P-collection

R =
⋃m

i=1 Ri can be computed by consecutively inverting the half-spaces defining
R0 as described in the following Theorem 4.2.

Note that here we use the term P-collection in the dual context of both
P-collection and its underlying set (Definitions 4.3 and 4.4). The precise statement
would say that R = Y \ R0, where R is the underlying set of the P-collection
R = {Ri}mi=1. However, whenever it is clear from context, we will use the former,
more compact form.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/ChebBall.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/ProjectionP.m

4.4 Basic Operations on Polytopes 83

Theorem 4.2 [44] Let Y ⊆ Rn be a polyhedron, R0 = {x ∈ Rn : Ax ≤ b}, and
R̄0 = {x ∈ Y : Ax ≤ b} = R0

⋂
Y, where b ∈ Rm, R0 	= ∅ and Ax ≤ b is a minimal

representation of R0. Also let

Ri =

{
x ∈ Y :

Aix > bi

Ajx ≤ bj , ∀j < i

}
, i = 1, . . . ,m, j = 1, . . . ,m− 1.

Let R =
⋃m

i=1 Ri. Then, R is a P-collection and {R̄0,R1, . . . ,Rm} is a strict
polyhedral partition of Y.

Proof: (i) We want to prove that given an x ∈ Y, then either x belongs to
R̄0 or to Ri for some i but not both. If x ∈ R̄0, we are done. Otherwise, there
exists an index i such that Aix > bi. Let i∗ = min

i≤m
{i : Aix > bi}. Then x ∈ Ri∗ , as

Ai∗x > bi
∗
and Ajx ≤ bj , ∀j < i∗, by definition of i∗.

(ii) Let x ∈ R̄0. Then there does not exist any i such that Aix > bi, which
implies that x 	∈ Ri, ∀i ≤ m. Let x ∈ Ri and take i > j. Because x ∈ Ri, by
definition of Ri (i > j) Ajx ≤ bj , which implies that x 	∈ Rj . �

As an illustration for the procedure proposed in Theorem 4.2 consider the two-
dimensional case depicted in Figure 4.10(a). Here Y is defined by the inequalities
{x−

1 ≤ x1 ≤ x+
1 , x

−
2 ≤ x2 ≤ x+

2 }, and R0 by the inequalities {g1 ≤ 0, . . . , g5 ≤ 0}
where g1, . . ., g5 are linear in x. The procedure consists of considering one by one the
inequalities which define R0. Considering, for example, the inequality g1 ≤ 0, the
first set of the rest of the region Y\R0 is given by R1 = {g1 ≥ 0, x1 ≥ x−

1 , x−
2 ≤

x2 ≤ x+
2 }, which is obtained by reversing the sign of the inequality g1 ≤ 0 and

removing redundant constraints in Y (see Figure 4.10(b)). Thus, by considering
the rest of the inequalities we get the partition of the rest of the parameter space
Y\R0 =

⋃5
i=1 Ri, as reported in Figure 4.10(d).

Remark 4.1 The set difference of two intersecting polytopes P and Q (or any closed
sets) is not a closed set. This means that some borders of polytopes Ri from a P-
collection R = P \ Q are open, while other borders are closed. Even though it is
possible to keep track of the origin of particular borders of Ri, thus specifying if they
are open or closed, we are not doing so in the algorithms described in this book nor
in MPT [149]. In computations, we will henceforth only consider the closure of the
sets Ri.

The set difference between two P-collections P and Q can be computed as
described in [22, 134, 243].

4.4.8 Pontryagin Difference

The Pontryagin difference (also known as Minkowski difference) of two polytopes
P and Q is a polytope

P �Q = {x ∈ Rn : x+ q ∈ P, ∀q ∈ Q}. (4.23)

84 4 Polyhedra and P-Collections

R0

x2

x1

x2
+

x1
+x1

−

x2
−

Y

(a) Set of parameters Y and initial
set R0.

x2

x1

x2
+

x1
+x1

−

x2
−

R1
R0

Y

g1≤0g1≥0

(b) Partition of Y\R0 - Step 1.

x2

x1

x2
+

x1
+x1

−

x2
−

Y

R1

R0

R2

g1≤0
g2≥0

(c) Partition of Y\R0 - Step 2.

Y
x2

x1

x2
+

x1
+x1

−

x2
−

R1

R0

R5

R4

R3

R2

(d) Final partition of Y\R0.

Figure 4.10 Two-dimensional example illustrating Theorem 4.2. Partition of
the rest of the space Y\R0.

The Pontryagin difference can be efficiently computed for polytopes by solving a
sequence of LPs as follows. Define the P and Q as

P = {y ∈ Rn : P yy ≤ P b}, Q = {z ∈ Rn : Qzz ≤ Qb}, (4.24)

then

W = P �Q (4.25a)

= {x ∈ Rn : P yx ≤ P b −H(P y,Q)}, (4.25b)

where the i-th element of H(P y,Q) is

Hi(P
y,Q) = max

x∈Q
P y
i x, (4.26)

4.4 Basic Operations on Polytopes 85

P

Q

x1

x
2

–6 –4 –2 2 4 6

–6
–4
–2

2
4
6

P�Q

(a) Illustration of the Pontryagin
difference P �Q.

P⊕Q
P

Q

x1

x
2

–8 –6 –2 2 6 8
–8
–6

–2

2

6
8

(b) Illustration of the Minkowski
sum P ⊕Q.

Figure 4.11 Illustration of the Pontryagin difference and Minkowski sum
operations.

and P y
i is the i-th row of the matrix P y. Note that for special cases (e.g., when Q

is a hypercube), more efficient computational methods exist [175]. An illustration
of the Pontryagin difference is given in Figure 4.11a.

4.4.9 Minkowski Sum

The Minkowski sum of two polytopes P and Q is a polytope

P ⊕Q = {y + z ∈ Rn : y ∈ P, z ∈ Q}. (4.27)

The Minkowski sum is a computationally expensive operation which requires either
vertex enumeration and convex hull computation in n-dimensions or a projection
from 2n down to n dimensions. The implementation of the Minkowski sum via
projection is described below. If the polytopes are defined by

P = {y ∈ Rn : P yy ≤ P c}, Q = {z ∈ Rn : Qzz ≤ Qc},

then it holds that

W = P ⊕Q

=
{
x ∈ Rn : x = y + z, P yy ≤ P c, Qzz ≤ Qc, y, z ∈ Rn

}
=

{
x ∈ Rn : ∃y ∈ Rn, subj. to P yy ≤ P c, Qz(x− y) ≤ Qc

}
=

{
x ∈ Rn : ∃y ∈ Rn, subj. to

[
0 P y

Qz −Qz

] [
x
y

]
≤

[
P c

Qc

]}

= projx

({[
x
y

]
∈ Rn+n :

[
0 P y

Qz −Qz

] [
x
y

]
≤

[
P c

Qc

]})
.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PDiff.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/MSum.m

86 4 Polyhedra and P-Collections

x1

x
2

P

Q

–3 –1 1 3
–3

–1

1

3

(a) Two polytopes P and
Q.

x1

x
2

P

–3 –2 2 3

–3

–2

2

3

P � Q

(b) Polytope P and Pon-
tryagin difference P �Q.

x1

x
2

(P � Q) ⊕ Q

P � Q

–3 –2 2 3

–3

–2

2

3

(c) Polytope P � Q and

the set (P �Q)⊕Q.

Figure 4.12 Illustration that the Minkowski sum is not the complement of
the Pontryagin difference. (P �Q)⊕Q ⊆ P.

Both the projection and vertex enumeration-based methods are implemented
in the MPT toolbox [149]. An illustration of the Minkowski sum is given in
Figure 4.11b.

Remark 4.2 The Minkowski sum is not the complement of the Pontryagin difference.
For two polytopes P and Q, it holds that (P � Q) ⊕ Q ⊆ P. This is illustrated in
Figure 4.12.

4.4.10 Polyhedra Union

Consider the following basic problem in polyhedral computation: given two
polyhedra P ⊂ Rn and Q ⊂ Rn, decide whether their union is convex, and,
if so, compute it. There are three classes of algorithms for the given problem
depending on their representation: (1) P and Q are given in H-representation, (2)
P and Q are given in V-representation and (3) both H- and V-representations
are available for P and Q. Next we present an algorithm for case (1). Case
(2), case (3) and the computational complexity of all three cases are discussed
in [38].

Recall the definition of envelope in Section 4.4.3. By definition, it is easy to see
that env(P,Q) is convex and that

P ∪Q ⊆ env(P,Q). (4.28)

We have the following theorem.

Theorem 4.3 P ∪Q is convex ⇔ P ∪Q = env(P,Q).

Algorithm 4.2 checks for points x∗ ∈ env(P,Q) outside P ∪Q.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PminusQ.m

4.4 Basic Operations on Polytopes 87

Algorithm 4.2 Algorithm for recognizing the convexity of P ∪Q

Input P, Q
Output Flag convex, if convex=true H-representation of P ∪Q

convex ← true

Construct env(P,Q) by removing nonvalid constraints (see Figure 4.7)

Let Ãx ≤ α̃, B̃x ≤ β̃ be the set of removed constraints from P and Q
Let env(P,Q) = {x : Cx ≤ γ} the resulting envelope

Remove from env(P,Q) possible duplicates (Bj , βj) = (σAi, σαi), σ > 0

For each pair Ãix ≤ α̃i, B̃jx ≤ β̃j Do

Determine ε∗ by solving the LP

ε∗ = max(x,ε) ε

subj. to Ãix ≥ α̃i + ε

B̃jx ≥ β̃j + ε
Cx ≤ γ

If ε∗ > 0 Stop, Return convex=false

Return env(P,Q)

Note that if ε∗ = 0 for each i, j, then the union is convex and equals env(P,Q).
On the other hand, ε∗ > 0 indicates the existence of a point x ∈ env(P,Q) outside
P ∪Q.

For recognizing convexity and computing the union of k polyhedra, the test
can be modified by checking each k-tuple of removed constraints. Let m̃1, . . ., m̃k

be the number of removed constrains from the polyhedra P1, . . . ,Pk, respectively.
Then similarly for the loop in Algorithm 4.2,

∏k
i=1 m̃i linear programs need to be

solved in the general case.

4.4.11 Affine Mappings and Polyhedra

This section deals with the composition of affine mappings and polyhedra. Consider
a polyhedron P = {x ∈ Rn : P xx ≤ P c}, with P x ∈ RnP×n and an affine mapping
f(z)

f : z ∈ Rm �→ Az + b, A ∈ RmA×m, b ∈ RmA . (4.29)

Let mA = n. We define the composition of P and f as the following polyhedron

P ◦ f = {z ∈ Rm : P xf(z) ≤ P c} = {z ∈ Rm : P xAz ≤ P c − P xb}. (4.30)

Let m = n. We define the composition of f and P as the following polyhedron

f ◦ P = {y ∈ RmA : ∃x ∈ P and y = Ax+ b }. (4.31)

The polyhedron f ◦ P in (4.31) can be computed as follows. Let us write P in
V-representation

P = conv(V), (4.32)

88 4 Polyhedra and P-Collections

and let us map the set of vertices V = {V1, . . . , Vk} through the transformation f .
Because the transformation is affine, the set f ◦ P is simply the convex hull of the
transformed vertices

f ◦ P = conv(F), F = {AV1 + b, . . . , AVk + b}. (4.33)

The polyhedron f ◦ P in (4.31) can be computed immediately if mA = m = n and
A is invertible. In this case, from the definition in (4.31), x = A−1y − A−1b and
therefore

f ◦ P = {y ∈ RmA : P xA−1y ≤ P c + P xA−1b}. (4.34)

Vertex enumeration can be avoided even if A is not invertible and mA ≥ m = n by
using a QR decomposition of the matrix A.

Remark 4.3 Often in the literature the symbol “◦” is omitted for linear maps
f = Az. Therefore, AP refers to the operation A ◦ P and PA refers to the operation
P ◦A.

4.5 Operations on P-Collections

This section covers some results and algorithms which are specific to operations
with P-collections. P-collections are unions of polytopes (see Definition 4.3) and
therefore the set of points contained in a P-collection can be represented in an
infinite number of ways, i.e., the P-collection representation is not unique. For
example, one can subdivide any polytope P into a number of smaller polytopes
whose union is a P-collection which covers P. Note that the complexity of all
subsequent computations depends strongly on the number of polytopes representing
a P-collection. The smaller the cardinality of a P-collection, the more efficient the
computations. The reader is referred to [243, 242] for proofs and comments on
computational efficiency.

4.5.1 Set-Difference

The first two results given here show how the set difference of a P-collection and a
P-collection (or polyhedron) may be computed.

Lemma 4.1 Let C =
⋃

j∈{1,...,J} Cj be a P-collection, where all the Cj, j ∈
{1, . . . , J}, are nonempty polyhedra. If D is a nonempty polyhedron, then C\D =⋃

j∈{1,...,J}(Cj\D) is a P-collection.

Lemma 4.2 Let the sets C =
⋃

j∈{1,...,J} Cj and D =
⋃

y=1,...,Y Dy be P-

collections, where all the Cj, j ∈ {1, . . . , J}, and Dy, y ∈ {1, . . . , Y }, are nonempty
polyhedra. If E0 = C and Ey = Ey−1\Dy, y ∈ {1, . . . , Y } then C\D = EY is a
P-collection.

4.5 Operations on P-Collections 89

The condition C ⊆ D can be easily verified since C ⊆ D ⇔ C\D = ∅. Similarly
C = D is also easily verified since

C = D ⇔ (C\D = ∅ and D\C = ∅).
Next, an algorithm for computing the Pontryagin difference of a P-collection and

a polytope is presented. If S and B are two subsets of Rn then S�B = [Sc ⊕ (−B)]c
where (·)c denotes the set complement. The following algorithm implements the
computation of the Pontryagin difference of a P-collection C = ∪j∈{1,...,J}Cj , where
Cj , j ∈ {1, . . . , J} are polytopes in Rn, and a polytope B ⊂ Rn.

Algorithm 4.3 Pontryagin Difference for P-collections, C � B

Input: P-collection C, polytope B
Output: P-collection G ← C � B

H ← env(C) (or H ← conv(C))
D ← H� B
E ← H \ C
F ← E ⊕ (−B)
G ← D \ F

Remark 4.4 Note that H in Algorithm 4.3 can be any convex set containing the
P-collection C. The computation of H is generally more efficient if the envelope
operation is used instead of convex hull.

Remark 4.5 It is important to note that (
⋃

j∈{1,...,J} Cj)�B �=
⋃

j∈{1,...,J}(Cj �B),
where B and Cj are polyhedra; hence, the relatively high computational effort of
computing the Pontryagin difference of a P-collection and a polytope.

Theorem 4.4 (Computation of Pontryagin Difference [242]) The output
of Algorithm 4.3 is G = C � B.

Proof: It holds by definition that

D = H� B = {x : x+ w ∈ H, ∀w ∈ B},
E = H \ C = {x : x ∈ H and x /∈ C}.

By the definition of the Minkowski sum:

F = E ⊕ (−B) = {x : x = z + w, z ∈ E , w ∈ (−B)}
= {x : ∃w ∈ (−B), subj. to x− w ∈ E}.

By definition of the set difference:

D \ F = {x : x ∈ D and x /∈ F}
= {x ∈ D : � w ∈ B s.t. x+ w ∈ E}
= {x ∈ D : x+ w /∈ E , ∀w ∈ B}.

90 4 Polyhedra and P-Collections

From the definition of the set D:

D \ F = {x : x+ w ∈ H and x+ w /∈ E , ∀w ∈ B}

and from the definition of the set E and because C ⊆ H:

D \ F = {x : x+ w ∈ H and (x+ w /∈ H or x+ w ∈ C) ∀w ∈ B}
= {x : x+ w ∈ C, ∀w ∈ B}
= C � B. �

Algorithm 4.3 is illustrated on a sample P-collection in Figures 4.13(a) to 4.13(f).

Remark 4.6 It should be noted that Algorithm 4.3 for computation of the Pontryagin
difference is conceptually similar to the algorithm proposed in [263, 172]. The envelope
operation H = env(C) employed in Algorithm 4.3 might reduce the number of
sets obtained when computing H \ C, which in turn results in fewer Minkowski set
additions. Since the computation of a Minkowski set addition is expensive, a runtime
improvement can be expected.

4.5.2 Polytope Covering

The problem of checking if some P polytope is covered with the union of other
polytopes, i.e., a P-collection Q = ∪iQi is discussed in this section. We consider
two related problems:

polycover: Check if P ⊆ Q, and

regiondiff: Compute P-collection R = P \ Q.

Clearly, polycover is just a special case of regiondiff, where the resulting P-
collection R = ∅. Also, it is straightforward to extend the above problems to the
case where both P and Q are both P-collections.

One idea of solving the polycover problem is inspired by the following
observation

P ⊆ Q ⇔ P = ∪i(P ∩Qi).

Therefore, we could create Ri = P ∩ Qi, for i = 1, . . . , NQ and then compute the
union of the collection of polytopes {Ri} by using the polyunion algorithm for
computing the convex union of H-polyhedra reported discussed in Section 4.4.10.
If polyunion succeeds (i.e., the union is a convex set) and the resulting polytope is
equal to P then P is covered by Q, otherwise it is not. However, this approach is
computationally very expensive. More details can be found in [123].

4.5.3 Union of P-Collections

Consider a P-collection P = {Pi}pi=1. We study the problem of finding a minimal
representation of P by merging one or more polyhedra belonging to the P-collection.

4.5 Operations on P-Collections 91

x1

x
2

C2 C1

B

(a)
⋃

j∈{1,...,J} Cj and B.
x1

x
2

(b) H = conv(C).

x1

x
2

H
D

(c) D = H� B.
x1

x
2

E

(d) E = H \ C.

x1

x
2 F

(e) F = E ⊕ (−B).
x1

x
2 DF

(f) G = D \ F .

Figure 4.13 Illustration of Algorithm 4.3. Computing the set difference
G = C � B between the P-collection C = C1 ∪ C2 and the polytope B.

Clearly one could use the polyunion algorithm presented in Section 4.4.10 for
all possible subsets of the P-collection and solve the problem by comparing all
solutions. However this approach is not computationally efficient.

Our interest in this problem will be clear later in this book (Section 11.1) when
computing the PWA state feedback control law to optimal control problems. Once
the PWA state feedback control law has been derived, the memory requirement and
the on-line computation time are linear in the number of polyhedra of the feedback
law when using standard brute force search. Therefore, we will be interested in the

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/MDstep.m

92 4 Polyhedra and P-Collections

problem of finding a minimal representation of piecewise affine (PWA) systems,
or more specifically, for a given PWA system, we solve the problem of deriving a
PWA system, that is both equivalent to the former and minimal in the number of
regions. This is done by associating a different color to a different feedback law,
and then collecting the polyhedra with the same color. Then, for a given color, we
try to merge the corresponding P-collection. If the number of polyhedra with the
same affine dynamic is large, the number of possible polyhedral combinations for
merging explodes. As most of these unions are not convex or even not connected
and thus cannot be merged, trying all combinations using standard techniques
based on linear programming (LP) is prohibitive. Furthermore, our objective here
is not only to reduce the number of polyhedra but rather to find the minimal and
thus optimal number of disjoint polyhedra. This problem is known to be NP-hard.
In [123] details on the solutions of these problems can be found.

Part II

Multiparametric Programming

5

Multiparametric Nonlinear
Programming

The operations research community has addressed parameter variations in math-
ematical programs at two levels: sensitivity analysis, which characterizes the
change of the solution with respect to small perturbations of the parameters,
and parametric programming, where the characterization of the solution for a
full range of parameter values is studied. In this chapter we introduce the
concept of multiparametric programming and recall the main results of nonlinear
multiparametric programming. The main goal is to make the reader aware of
the complexities of general multiparametric nonlinear programming. Later in this
book we will use multiparametric programming to characterize and compute the
state feedback solution of optimal control problems. There we will only make
use of Corollary 5.1 for multiparametric linear programs and Corollary 5.2 for
multiparametric quadratic programs, which show that these specific programs are
“well behaved.”

5.1 Introduction to Multiparametric Programs

Consider the mathematical program

J∗(x) = inf
z

J(z, x)

subj. to g(z, x) ≤ 0

where z is the optimization vector and x is a vector of parameters. We are interested
in studying the behavior of the value function J∗(x) and the optimizer z∗(x) as
we vary the parameter x. Mathematical programs where x is a scalar are referred
to as parametric programs, while programs where x is a vector are referred to as
multiparametric programs.

There are several reasons to look for efficient solvers of multiparametric
programs. Typically, mathematical programs are affected by uncertainties due
to factors that are either unknown or that will be decided later. Parametric

96 5 Multiparametric Nonlinear Programming

programming systematically subdivides the space of parameters into characteristic
regions, which depict the feasibility and corresponding performance as a function
of the uncertain parameters, and hence provide the decision maker with a complete
map of various outcomes.

Our interest in multiparametric programming arises from the field of system
theory and optimal control. For example, for discrete-time dynamical systems, finite
time constrained optimal control problems can be formulated as mathematical
programs where the cost function and the constraints are functions of the initial
state of the dynamical system. In particular, Zadeh and Whalen [293] appear to
have been the first ones to express the optimal control problem for constrained
discrete-time linear systems as a linear program. We can interpret the initial state
as a parameter. By using multiparametric programming we can characterize and
compute the solution of the optimal control problem explicitly as a function of the
initial state.

We are further motivated by the model predictive control (MPC) technique.
MPC is very popular in the process industry for the automatic regulation of process
units under operating constraints, and has attracted a considerable research effort
in the last two decades. MPC requires an optimal control problem to be solved
on-line in order to compute the next command action. This mathematical program
depends on the current sensor measurements. The computation effort can be moved
off-line by solving multiparametric programs, where the control inputs are the
optimization variables and the measurements are the parameters. The solution of
the parametric program problem is a control law describing the control inputs as
function of the measurements. MPC and its multiparametric solution are discussed
in Chapter 12.

In the following we will present several examples that illustrate the parametric
programming problem and hint at some of the issues that need to be addressed by
the solvers.

Example 5.1 Consider the parametric quadratic program

J∗(x) = min
z

J(z, x) =
1

2
z2 + 2xz + 2x2

subj. to z ≤ 1 + x,

where x ∈ R. Our goals are:

1. to find z∗(x) = arg minz J(z, x),

2. to find all x for which the problem has a solution, and

3. to compute the value function J∗(x).

The Lagrangian is

L(z, x, u) =
1

2
z2 + 2xz + 2x2 + u(z − x− 1)

and the KKT conditions are (see Section 2.3.3 for KKT conditions for quadratic
programs)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/intrompqp.m

5.1 Introduction to Multiparametric Programs 97

x

z∗(x)

J ∗(x)

–2 –1 0 1 2
–2

–1

0

1

2

Figure 5.1 Example 5.1. Optimizer z∗(x) and value function J∗(x) as a
function of the parameter x.

z + 2x+ u = 0 (5.1a)

u(z − x− 1) = 0 (5.1b)

u ≥ 0 (5.1c)

z − x− 1 ≤ 0. (5.1d)

Consider (5.1) and the two strictly complementary cases:

A.
z + 2x+ u = 0
z − x− 1 = 0
u ≥ 0

⇒

⎧⎪⎨⎪⎩
z∗ = x+ 1

J∗ = 9
2
x2 + 3x+ 1

2

x ≤ − 1
3

B.
z + 2x+ u = 0
z − x− 1 < 0
u = 0

⇒

⎧⎨⎩
z∗ = −2x
J∗ = 0
x > − 1

3

(5.2)

This solution is depicted in Figure 5.1.

The above simple procedure, which required nothing but the solution of the KKT
conditions, yielded the optimizer z∗(x) and the value function J∗(x) for all values
of the parameter x. The set of admissible parameter values was divided into two
critical regions, defined by x ≤ − 1

3 and x > − 1
3 . In the region x ≤ − 1

3 the inequality
constraint is active and the Lagrange multiplier is greater or equal than zero, in
the other region x > − 1

3 the inequality constraint is not active and the Lagrange
multiplier is equal to zero.

In general, when there are more than one inequality constraints, a critical region
is defined by the set of inequalities that are active in the region. Throughout a
critical region the conditions for optimality derived from the KKT conditions do
not change. For our example, in each critical region the optimizer z∗(x) is affine and
the value function J∗(x) is quadratic. Thus, considering all x, z∗(x) is piecewise
affine and J∗(x) is piecewise quadratic. Both z∗(x) and J∗(x) are continuous, but
z∗(x) is not continuously differentiable.

In much of this book we will be interested in two questions: how to find the value
function J∗(x) and the optimizer z∗(x) and what are their structural properties,

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/intrompqp.m

98 5 Multiparametric Nonlinear Programming

e.g., continuity, differentiability and convexity. Such questions have been addressed
for general nonlinear multiparametric programming by several authors in the past
(see [18] and references therein), by making use of quite involved mathematical
theory based on the continuity of point-to-set maps. The concept of point-to-set
maps will not be much used in this book. However, it represents a key element for a
rigorous mathematical description of the properties of a nonlinear multiparametric
program and hence a few key theoretical results for nonlinear multiparametric
programs based on the point-to-set map formalism, which will be discussed in this
chapter.

5.2 General Results for Multiparametric Nonlinear
Programs

Consider the nonlinear mathematical program dependent on a parameter x
appearing in the cost function and in the constraints

J∗(x) = inf
z

J(z, x)

subj. to g(z, x) ≤ 0,
(5.3)

where z ∈ Z ⊆ Rs is the optimization vector, x ∈ X ⊆ Rn is the parameter vector,
J : Rs × Rn → R is the cost function and g : Rs × Rn → Rng are the constraints.
We denote by gi(z, x) the i-th component of the vector-valued function g(z, x).

A small perturbation of the parameter x in the mathematical program (5.3) can
cause a variety of results. Depending on the properties of the functions J and g the
solution z∗(x) may vary smoothly or change abruptly as a function of x. Denote
by 2Z the set of subsets of Z. We denote by R the point-to-set map which assigns
to a parameter x ∈ X the (possibly empty) set R(x) of feasible variables z ∈ Z,
R : X �→ 2Z

R(x) = {z ∈ Z : g(z, x) ≤ 0}, (5.4)

by K∗ the set of feasible parameters

K∗ = {x ∈ X : R(x) 	= ∅}, (5.5)

by J∗(x) the real-valued function that expresses the dependence of the minimum
value of the objective function over K∗ on x

J∗(x) = inf
z
{J(z, x) : z ∈ R(x)}, (5.6)

and by Z∗(x) the point-to-set map which assigns the (possibly empty) set of
optimizers z∗ ∈ 2Z to a parameter x ∈ X

Z∗(x) = {z ∈ R(x) : J(z, x) = J∗(x)}. (5.7)

J∗(x) will be referred to as optimal value function or simply value function, Z∗(x)
will be referred to as the optimal set. If Z∗(x) is a singleton for all x, then z∗(x) =
Z∗(x) will be called optimizer function. We remark that R and Z∗ are set-valued

5.2 General Results for Multiparametric Nonlinear Programs 99

functions. As discussed in the notation section, with abuse of notation J∗(x) and
Z∗(x) will denote both the functions and the value of the functions at the point x.
The context will make clear which notation is being used.

The book by Bank and coauthors [18] and Chapter 2 of [107] describe conditions
under which the solution of the nonlinear multiparametric program (5.3) is locally
well behaved and establish properties of the optimal value function and of the opti-
mal set. The description of such conditions requires the definition of continuity of
point-to-set maps. Before introducing this concept we will show through two simple
examples that continuity of the constraints gi(z, x) with respect to z and x is not
enough to imply any “regularity” of the value function and the optimizer function.

Example 5.2 [18, p. 12]

Consider the following problem:

J∗(x) = minz x2z2 − 2x(1− x)z
subj. to z ≥ 0

0 ≤ x ≤ 1.
(5.8)

Cost and constraints are continuous and continuously differentiable. For 0 < x ≤ 1 the
optimizer function is z∗ = (1−x)/x and the value function is J∗(x) = −(1−x)2. For
x = 0, the value function is J∗(x) = 0 while the optimal set is Z∗ = {z ∈ R : z ≥ 0}.
Thus, the value function is discontinuous at 0 and the optimal set is single-valued for
all 0 < x ≤ 1 and set-valued for x = 0.

Example 5.3 Consider the following problem:

J∗(x) = inf
z

z

subj. to zx ≥ 0
−10 ≤ z ≤ 10
−10 ≤ x ≤ 10,

(5.9)

where z ∈ R and x ∈ R. For each fixed x the set of feasible z is a segment. The
point-to-set map R(x) is plotted in Figure 5.2(a). The function g1 : (z, x) �→ zx is
continuous. Nevertheless, the value function J∗(x) = z∗(x) has a discontinuity at the
origin as can be seen in Figure 5.2(b).

Example 5.4 Consider the following problem:

J∗(x) = inf
z1,z2

−z1

subj. to g1(z1, z2) + x ≤ 0
g2(z1, z2) + x ≤ 0,

(5.10)

where examples of the functions g1(z1, z2) and g2(z1, z2) are plotted in Figures 5.3(a)–
5.3(c). Figures 5.3(a)–5.3(c) also depict the point-to-set map R(x) = {[z1, z2] ∈
R2|g1(z1, z2) + x ≤ 0, g2(z1, z2) + x ≤ 0} for three fixed x. Starting from x = x̄1,
as x increases, the domain of feasibility in the space z1, z2 shrinks; at the beginning
it is connected (Figure 5.3(a)), then it becomes disconnected (Figure 5.3(b)) and
eventually connected again (Figure 5.3(c)). No matter how smooth one chooses the
functions g1 and g2, the value function J∗(x) = −z∗1(x) will have a discontinuity at
x = x̄3.

100 5 Multiparametric Nonlinear Programming

x

R
(x

)

–10 –5 0 5 10

–10

–5

0

5

10

(a) Point-to-set map R(x).

x

J
∗ (
x
)

–10 –5 0 5 10

–10

–5

0

5

10

(b) Value function J∗(x).

Figure 5.2 Example 5.3. Point-to-set map and value function.

z2

z1

g2(z1, z2) = x1

g1(z1, z2) = x1

(a) Set R(x̄1) shaded in gray.

z2

z1

g1(z1, z2) = x2

g2(z1, z2) = x2

(b) Set R(x̄2) shaded in gray.

z2

z1

g1(z1, z2) = x3

g2(z1, z2) = x3

(c) Set R(x̄3) shaded in gray.

x

J∗(x)

x1 x3

(d) Value function J∗(x).

Figure 5.3 Example 5.4. Problem (5.10). (a)–(c) Projections of the point-to-
set map R(x) for three values of the parameter x: x̄1 < x̄2 < x̄3; (d) Value
function J∗(x).

5.2 General Results for Multiparametric Nonlinear Programs 101

Examples 5.2, 5.3 and 5.4 show the case of simple and smooth constraints which
lead to a discontinuous behavior of value function and in Examples 5.3 and 5.4 we
also observe discontinuity of the optimizer function. The main causes are:

• in Example 5.2 the feasible vector space Z is unbounded (z ≥ 0),

• in Examples 5.3 and 5.4 the feasible point-to-set map R(x) (defined in (5.4))
is discontinuous, as defined precisely below.

In the next sections we discuss both cases in detail.

Continuity of Point-to-Set Maps

Consider a point-to-set map R : x ∈ X �→ R(x) ∈ 2Z . We give the following
definitions of open and closed maps according to Hogan [152]:

Definition 5.1 The point-to-set map R(x) is open at a point x̄ ∈ K∗ if for all
sequences {xk} ⊂ K∗ with xk → x̄ and for all z̄ ∈ R(x̄) there exists an integer m
and a sequence {zk} ∈ Z such that zk ∈ R(xk) for k ≥ m and zk → z̄.

Definition 5.2 The point-to-set map R(x) is closed at a point x̄ ∈ K∗ if for each
pair of sequences {xk} ⊂ K∗, and zk ∈ R(xk) with the properties

xk → x̄, zk → z̄.

it follows that z̄ ∈ R(x̄).

We define the continuity of a point-to-set map according to Hogan [152] as follows:

Definition 5.3 The point-to-set map R(x) is continuous at a point x̄ in K∗ if
it is both open and closed at x̄. R(x) is continuous in K∗ if R(x) is continuous at
every point x in K∗.

The definitions above are illustrated through two examples.

Example 5.5 Consider

R(x) = {z ∈ R : z ∈ [0, 1] if x < 1, z ∈ [0, 0.5] if x ≥ 1.}
The point-to-set map R(x) is plotted in Figure 5.4. It is easy to see that R(x) is not
closed but open. In fact, if one considers a sequence {xk} that converges to x̄ = 1 from
the left and extracts the sequence {zk} plotted in Figure 5.4 converging to z̄ = 0.75,
then z̄ /∈ R(x̄) since R(1) = [0, 0.5].

Example 5.6 Consider

R(x) = {z ∈ R : z ∈ [0, 1] if x ≤ 1, z ∈ [0, 0.5] if x > 1}
The point-to-set map R(x) is plotted in Figure 5.5. It is easy to verify that R(x)
is closed but not open. Choose z̄ = 0.75 ∈ R(x̄). Then, for any sequence {xk} that
converges to x̄ = 1 from the right, one is not able to construct a sequence {zk} ∈ Z
such that zk ∈ R(xk) and zk → z̄. In fact, such sequence zk will always be bounded
between 0 and 0.5.

102 5 Multiparametric Nonlinear Programming

x

z

1

1
{zk}

{xk}

0.5

Figure 5.4 Example 5.5. Open and not closed point-to-set map R(x).

z

1

0.5

x1

{zk}

{xk}

Figure 5.5 Example 5.6. Closed and not open point-to-set map R(x).

Remark 5.1 We remark that “upper semicontinuous” and “lower semicontinuous”
definitions of point-to-set map are sometimes preferred to open and closed defini-
tions [47, p. 109]. In [18, p. 25], nine different definitions for the continuity of point-
to-set maps are introduced and compared. We will not give any details on this subject
and refer the interested reader to [18, p. 25].

The examples above are only illustrative. In general, it is difficult to test if a
set is closed or open by applying the definitions. Several authors have proposed
sufficient conditions on gi which imply the continuity of R(x). In the following we
introduce a theorem which summarizes the main results of [254, 93, 152, 47, 18].

Theorem 5.1 If Z is convex, if each component gi(z, x) of g(z, x) is continuous
on Z×x̄ and convex in z for each x̄ ∈ X and if there exists a z̄ such that g(z̄, x̄) < 0,
then R(x) is continuous at x̄.

The proof is given in [152, Theorems 10 and 12]. An equivalent proof can be also
derived from [18, Theorem 3.1.1 and Theorem 3.1.6]. �

Remark 5.2 Note that convexity in z for each x is not enough to imply the continuity
of R(x) everywhere in K∗. In [18, Example 3.3.1 on p. 53] an example illustrating
this is presented. We remark that in Example 5.3 the origin does not satisfy the last
hypothesis of Theorem 5.1.

5.2 General Results for Multiparametric Nonlinear Programs 103

Remark 5.3 If the assumptions of Theorem 5.1 hold at each x̄ ∈ X then one can
extract a continuous single-valued function (often called a “continuous selection”)
r : X �→ R such that r(x) ∈ R(x), ∀x ∈ X , provided that Z is finite-dimensional.
Note that convexity of R(x) is a critical assumption [18, Corollary 2.3.1]. The
following example shows a point-to-set map R(x) not convex for a fixed x which
is continuous but has no continuous selection [18, p. 29]. Let Λ be the unit disk in R2,
define R(x) as

x ∈ Λ �→ R(x) =

{
z ∈ Λ : ‖z − x‖2 ≥ 1

2

}
. (5.11)

It can be shown that the point-to-set map R(x) in (5.11) is continuous according
to Definition 5.3. In fact, for a fixed x̄ ∈ Λ the set R(x̄) is the set of points in the
unit disk outside the disk centered in x̄ and of radius 0.5 (next called the half disk);
small perturbations of x̄ yield small translations of the half disk inside the unit disk
for all x̄ ∈ Λ. However R(x) has no continuous selection. Assume that there exists a
continuous selection r : x ∈ Λ �→ r(x) ∈ Λ. Then, there exists a point x∗ such that
x∗ = r(x∗). Since r(x) ∈ R(x), ∀x ∈ Λ, there exists a point x∗ such that x∗ ∈ R(x∗).
This is not possible since for all x∗ ∈ Λ, x∗ /∈ R(x∗) (recall that R(x∗) is set of points
in the unit disk outside the disk centered in x∗ and of radius 0.5).

Remark 5.4 Let Λ be the unit disk in R, define R(x) as

x ∈ Λ �→ R(x) =

{
z ∈ Λ : |z − x| ≥ 1

2

}
. (5.12)

R(x) is closed and not open and it has no continuous selection.

Remark 5.5 Based on [18, Theorem 3.2.1-(I) and Theorem 3.3.3], the hypotheses
of Theorem 5.1 can be relaxed for affine gi(z, x). In fact, affine functions are weakly
analytic functions according to [18, p. 47]. Therefore, we can state that if Z is convex,
if each component gi(z, x) of g(z, x) is an affine function, then R(x) is continuous at
x̄ for all x̄ ∈ K∗.

Properties of the Value Function and Optimal Set

Consider the following definition

Definition 5.4 A point-to-set map R(x) is said to be uniformly compact near x̄
if there exist a neighborhood N of x̄ such that the closure of the set

⋃
x∈N R(x) is

compact.

Now we are ready to state the two main theorems on the continuity of the value
function and of the optimizer function.

Theorem 5.2 [152, Theorem 7] Consider problem (5.3)–(5.4). If R(x) is a
continuous point-to-set map at x̄ and uniformly compact near x̄ and if J is
continuous on x̄×R(x̄), then J∗ is continuous at x̄. �

104 5 Multiparametric Nonlinear Programming

Theorem 5.3 [152, Corollary 8.1] Consider problem (5.3)–(5.4). If R(x) is a
continuous point-to-set map at x̄, J is continuous on x̄ × R(x̄), Z∗ is nonempty
and uniformly compact near x̄, and Z∗(x̄) is single valued, then Z∗ is continuous
at x̄. �

Remark 5.6 Equivalent results of Theorems 5.2 and 5.3 can be found in [47, p. 116]
and [18, Chapter 4.2].

Example 5.7 Example 5.2 revisited
Consider Example 5.2. The feasible map R(x) is unbounded and therefore it does not
satisfy the assumptions of Theorem 5.2 (since it is not uniformly compact). Modify
Example 5.2 as follows:

J∗(x) = minz x2z2 − 2x(1− x)z
subj. to 0 ≤ z ≤ M

0 ≤ x ≤ 1
(5.13)

with M ≥ 0. The solution can be computed immediately. For 1/(1+M) < x ≤ 1 the
optimizer function is z∗ = (1 − x)/x and the value function is J∗(x) = −(1 − x)2.
For 0 < x ≤ 1/(1 +M), the value function is J∗(x) = x2M2 − 2Mx(1 − x) and the
optimizer function is z∗ = M . For x = 0, the value function is J∗(x) = 0 while the
optimal set is Z∗ = {z ∈ R : 0 ≤ z ≤ M}.
No matter how large we choose M , the value function and the optimal set are
continuous for all x ∈ [0, 1].

Example 5.8 Example 5.3 revisited
Consider Example 5.3. The feasible map R(x) is not continuous at x = 0 and therefore
it does not satisfy the assumptions of Theorem 5.2. Modify Example 5.3 as follows:

J∗(x) = inf
z

z

subj. to zx ≥ −ε
−10 ≤ z ≤ 10
−10 ≤ x ≤ 10,

(5.14)

where ε > 0. The value function and the optimal set are depicted in Figure 5.2 for
ε = 1. No matter how small we choose ε, the value function and the optimal set are
continuous for all x ∈ [−10, 10]

The following corollaries consider special classes of parametric problems.

Corollary 5.1 (mp-LP) Consider the special case of the multiparametric pro-
gram (5.3). where the objective and the constraints are linear

J∗(x) = min
z

c′z

subj. to Gz ≤ w + Sx,
(5.15)

and assume that there exists an x̄ and z∗(x̄) with a bounded cost J∗(x̄). Then, K∗

is a nonempty polyhedron, J∗(x) is a continuous and convex function on K∗ and
the optimal set Z∗(x) is a continuous point-to-set map on K∗.

Proof: See Theorem 5.5.1 in [18] and the bottom of page 138 in [18]. �

5.2 General Results for Multiparametric Nonlinear Programs 105

x

R
(x

)

–10 –5 0 5 10

–10

–5

0

5

10

(a) Point-to-set map R(x).

J
∗ (
x
)

–10

–5

0

5

10

x
–10 –5 0 5 10

(b) Value function J∗(x).

Figure 5.6 Example 5.8. Point-to-set map and value function.

Corollary 5.2 (mp-QP) Consider the special case of the multiparametric pro-
gram (5.3). where the objective is quadratic and the constraints are linear

J∗(x) = min
z

1

2
z′Hz + z′F

subj. to Gz ≤ w + Sx,
(5.16)

and assume that H � 0 and that there exists (z̄, x̄) such that Gz̄ ≤ w + Sx̄. Then,
K∗ is a nonempty polyhedron, J∗(x) is a continuous and convex function on K∗

and the optimizer function z∗(x) is continuous in K∗.

Proof: See Theorem 5.5.1 in [18] and the bottom of page 138 in [18]. �

Remark 5.7 We remark that Corollary 5.1 requires the existence of optimizer z∗(x̄)
with a bounded cost. This is implicitly guaranteed in the mp-QP case since in
Corollary 5.2 the matrix H is assumed to be strictly positive definite. Moreover,
the existence of an optimizer z∗(x̄) with a bounded cost guarantees that J∗(x) is
bounded for all x in K∗. This has been proven in [115, p. 178, Theorem 1] for the
mp-LP case and it is immediate to prove for the mp-QP case.

Remark 5.8 Both Corollary 5.1 (mp-LP) and Corollary 5.2 (mp-QP) could be
formulated stronger: J∗ and Z∗ are even Lipschitz-continuous. J∗ is also piecewise
affine (mp-LP) or piecewise quadratic (mp-QP), and for the mp-QP z∗(x) is
piecewise affine. For the linear case, Lipschitz continuity is known from Walkup-
Wets [283] as a consequence of Hoffman’s theorem. For the quadratic case, Lipschitz
continuity follows from Robinson [253], as e.g., shown by Klatte and Thiere [178].
The “piecewise” properties are consequences of local stability analysis of parametric
optimization, e.g., [107, 18, 200] and are the main focus of the next chapter.

6

Multiparametric Programming:
A Geometric Approach

In this chapter we will concentrate on multiparametric linear programs (mp-LP),
multiparametric quadratic programs (mp-QP) and multiparametric mixed-integer
linear programs (mp-MILP).

The main idea of the multiparametric algorithms presented in this chapter is
to construct a critical region in a neighborhood of a given parameter by using
necessary and sufficient conditions for optimality, and then to recursively explore
the parameter space outside such a region. For this reason the methods are classified
as “geometric.” All the algorithms are easy to implement once standard solvers are
available: linear programming, quadratic programming and mixed-integer linear
programming for solving mp-LP, mp-QP and mp-MILP, respectively. A literature
review is presented in Section 6.6.

6.1 Multiparametric Programs with Linear Constraints

6.1.1 Formulation

Consider the multiparametric program

J∗(x) = min
z

J(z, x)

subj. to Gz ≤ w + Sx,
(6.1)

where z ∈ Rs are the optimization variables, x ∈ Rn is the vector of parameters,
J(z, x) : Rs+n → R is the objective function and G ∈ Rm×s, w ∈ Rm, and S ∈
Rm×n. Given a closed and bounded polyhedral set K ⊂ Rn of parameters,

K = {x ∈ Rn : Tx ≤ N}, (6.2)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that (6.1) is feasible:

K∗ = {x ∈ K : ∃z satisfying Gz ≤ w + Sx}. (6.3)

108 6 Multiparametric Programming: A Geometric Approach

In this book we assume that

1. the constraint x ∈ K is included in the constraints Gz ≤ w + Sx.

2. the polytope K is full-dimensional. Otherwise we can reformulate the problem
with a smaller set of parameters such that K becomes full-dimensional.

3. S has full column rank. Otherwise we can again reformulate the problem in
a smaller set of parameters.

Theorem 6.1 Consider the multiparametric problem (6.1). If the domain of
J(z, x) is Rs+n then K∗ is a polytope.

Proof: K∗ is the projection of the set Gz − Sx ≤ w on the x space intersected
with the polytope K. �

For any given x̄ ∈ K∗, J∗(x̄) denotes the minimum value of the objective
function in problem (6.1) for x = x̄. The function J∗ : K∗ → R expresses the
dependence of the minimum value of the objective function on x, J∗(x) is called
the value function. The set-valued function Z∗ : K∗ → 2R

s

, where 2R
s

is the set
of subsets of Rs, describes for any fixed x ∈ K∗ the set Z∗(x) of optimizers z∗(x)
yielding J∗(x).

We aim to determine the feasible set K∗ ⊆ K of parameters, the expression of
the value function J∗(x) and the expression of one of the optimizers z∗(x) ∈ Z∗(x).

6.1.2 Definition of Critical Region

Consider the multiparametric program (6.1). Let I = {1, . . . ,m} be the set of
constraint indices. For any A ⊆ I, let GA and SA be the submatrices of G and S,
respectively, comprising the rows indexed by A and denote with Gj , Sj and wj the
j-th row of G, S and w, respectively. We define CRA as the set of parameters x
for which the same set A of constraints is active at the optimum. More formally
we have the following definitions.

Definition 6.1 The optimal partition of I at x is the partition (A(x), NA(x))
where

A(x) = {j ∈ I : Gjz
∗(x)− Sjx = wj for all z∗(x) ∈ Z∗(x)}

NA(x) = {j ∈ I : exists z∗(x) ∈ Z∗(x) satisfying Gjz
∗(x)− Sjx < wj}.

It is clear that A(x) and NA(x) are disjoint and their union is I.

Definition 6.2 Consider a set A ⊆ I. The critical region associated with the set
of active constraints A is defined as

CRA = {x ∈ K∗ : A(x) = A}. (6.4)

The set CRA is the set of all parameters x such that the constraints indexed by
A are active at the optimum of problem (6.1). Our first objective is to work with
full-dimensional critical regions. For this reason, we discuss next how the dimension
of the parameter space can be reduced in case it is not full-dimensional.

6.1 Multiparametric Programs with Linear Constraints 109

6.1.3 Reducing the Dimension of the Parameter Space

It may happen that the set of inequality constraints in (6.1) contains some “hidden”
or “implicit” equality constraints as the following example shows.

Example 6.1
minz J(z, x)

subj. to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 + z2 ≤ 9− x1 − x2

z1 − z2 ≤ 1− x1 − x2

z1 + z2 ≤ 7 + x1 + x2

z1 − z2 ≤ −1 + x1 + x2

−z1 ≤ −4
−z2 ≤ −4
z1 ≤ 20− x2,

(6.5)

where K = {[x1, x2]
′ ∈ R2 : −100 ≤ x1 ≤ 100, −100 ≤ x2 ≤ 100}. The reader can

check that all feasible values of x1, x2, z1, z2 satisfy

z1 + z2 = 9− x1 − x2

z1 − z2 = 1− x1 − x2

z1 + z2 = 7 + x1 + x2

z1 − z2 = −1 + x1 + x2

z1 = 4
z2 = 4
z1 ≤ 20− x2,

(6.6)

where we have identified many of the inequalities to be hidden equalities. This can
be simplified to

x1 + x2 = 1
x2 ≤ 16.

(6.7)

Thus

K∗ =

⎧⎨⎩[x1, x2]
′ ∈ R2 :

x1 + x2 = 1
−100 ≤ x1 ≤ 100
−100 ≤ x2 ≤ 16

⎫⎬⎭ . (6.8)

The example shows that the polytope K∗ is contained in a lower dimensional subspace
of K, namely a line segment in R2.

Our goal is to identify the hidden equality constraints (as in (6.6)) and use
them to reduce the dimension of the parameter space (as in (6.7)) for which the
multiparametric program needs to be solved.

Definition 6.3 A hidden equality of the polyhedron C = {ξ ∈ Rs : Bξ ≤ v} is
an inequality Biξ ≤ vi such that Biξ̄ = vi ∀ξ̄ ∈ C.

To find hidden equalities we need to solve

v∗i = min Biξ
subj. to Bξ ≤ v,

for all constraints i = 1, . . . ,m. If v∗i = vi, then Biξ = vi is a hidden equality.

110 6 Multiparametric Programming: A Geometric Approach

We can apply this procedure with ξ = [xz] to identify the hidden equalities in
the set of inequalities in (6.1)

Gz ≤ w + Sx,

to obtain

Gnhz ≤ wnh + Snhx (6.9a)

Ghz = wh + Shx, (6.9b)

where we have partitioned G, w and S to reflect the hidden equalities. In order to
find the equality constraints involving only the parameter x that allow us to reduce
the dimension of x, we need to project the equalities (6.9b) onto the parameter
space. Let the singular value decomposition of Gh be

Gh = [U1 U2] Σ

[
V ′
1

V ′
2

]
,

where the columns of U2 are the singular vectors associated with the zero singular
values. Then the matrix U ′

2 defines the projection of (6.9b) onto the parameter
space, i.e.,

U ′
2Ghz = 0 = U ′

2wh + U ′
2Shx. (6.10)

We can use this set of equalities to replace the parameter x ∈ Rn with a set of
n′ = n − rank(U ′

2Sh) new parameters in (6.9a) which simplifies the parametric
program (6.1).

In the rest of this book we always assume that the multiparametric program has
been preprocessed using the ideas of this section so that the number of independent
parameters is reduced as much as possible and K∗ is full-dimensional.

6.2 Multiparametric Linear Programming

6.2.1 Formulation

Consider the special case of the multiparametric program (6.1) where the objective
is linear

J∗(x) = min
z

c′z

subj. to Gz ≤ w + Sx.
(6.11)

All the variables were defined in Section 6.1.1. Our goal is to find the value function
J∗(x) and an optimizer function z∗(x) for x ∈ K∗. Note that K∗ can be determined
as discussed in Theorem 6.1. As suggested through Example 5.1 our search for
these functions proceeds by partitioning the set of feasible parameters into critical
regions. This is shown through a simple example next.

Example 6.2 Consider the parametric linear program

J∗(x) = min
z

z + 1

subj. to z ≥ 1 + x
z ≥ 0,

6.2 Multiparametric Linear Programming 111

where z ∈ R and x ∈ R. Our goals are:

1. to find z∗(x) = arg minz, z≥0, z≥1+x z + 1,

2. to find all x for which the problem has a solution, and

3. to compute the value function J∗(x).

The Lagrangian is

L(z, x, u1, u2) = z + u1(−z + x+ 1) + u2(−z)

and the KKT conditions are (see Section 2.2.3 for KKT conditions for linear
programs)

− u1 − u2 = −1 (6.12a)

u1(−z + x+ 1) = 0 (6.12b)

u2(−z) = 0 (6.12c)

u1 ≥ 0 (6.12d)

u2 ≥ 0 (6.12e)

−z + x+ 1 ≤ 0 (6.12f)

−z ≤ 0. (6.12g)

Consider (6.12) and the three complementary cases:

A.

u1 + u2 = 1
−z + x+ 1 = 0
−z < 0
u1 > 0
u2 = 0

⇒

⎧⎪⎪⎨⎪⎪⎩
z∗ = 1 + x
u∗
1 = 1, u∗

2 = 0
J∗ = 2 + x
x > −1

B.

u1 + u2 = 1
−z + x+ 1 < 0
−z = 0
u1 = 0
u2 > 0

⇒

⎧⎪⎪⎨⎪⎪⎩
z∗ = 0
u∗
1 = 0, u∗

2 = 1
J∗ = 1
x < −1

C.

u1 + u2 = 1
−z + x+ 1 = 0
−z = 0
u1 ≥ 0
u2 ≥ 0

⇒

⎧⎪⎪⎨⎪⎪⎩
z∗ = 0
u∗
1 ≥ 0, u2 ≥ 0, u∗

1 + u∗
2 = 1

J∗ = 1
x = −1

(6.13)

This solution is depicted in Figure 6.1.

The above simple procedure, which required nothing but the solution of the KKT
conditions, yielded the optimizer z∗(x) and the value function J∗(x) for all values
of the parameter x. The set of admissible parameters values was divided into three
critical regions, defined by x < −1, x > −1 and x = −1. In the region x > −1
the first inequality constraint is active (z = 1 + x) and the Lagrange multiplier u1

is greater than zero, in the second region x < −1 the second inequality constraint
is active (z = 0) and the Lagrange multiplier u2 is greater than zero. In the third
region x = −1 both constraints are active and the Lagrange multipliers belong to
the set u∗

1 ≥ 0, u2 ≥ 0, u∗
1 + u∗

2 = 1. Throughout a critical region the conditions for
optimality derived from the KKT conditions do not change. For our example, in each
critical region the optimizer z∗(x) is affine and the value function J∗(x) is also affine.

112 6 Multiparametric Programming: A Geometric Approach

z∗(x)

J∗(x)

x
–1

0

1

Figure 6.1 Example 6.2. Optimizer z∗(x) and value function J∗(x) as a
function of the parameter x.

6.2.2 Critical Regions, Value Function and Optimizer: Local Properties

Consider Definition 6.2 of a critical region. In this section we show that critical
regions of mp-LP are polyhedra. We use primal feasibility to derive the H-
polyhedral representation of the critical regions, the complementary slackness
conditions to compute an optimizer z∗(x), and the dual problem of (6.11) to derive
the optimal value function J∗(x) inside each critical region.

Consider the dual problem of (6.11):

min
u

(w + Sx)′u

subj. to G′u = −c
u ≥ 0.

(6.14)

The dual feasibility, complementary slackness and primal feasibility conditions for
problems (6.11), (6.14) are

G′u+ c = 0, u ≥ 0 (6.15a)

ui(Giz − wi − Six) = 0, i = 1, . . . ,m (6.15b)

Gz − w − Sx ≤ 0. (6.15c)

Let us assume that we have determined the optimal partition

(A,NA) = (A(x∗), NA(x∗))

for some x∗ ∈ K∗. The primal feasibility condition (6.15c) can be rewritten as

GAz
∗ − SAx = wA (6.16a)

GNAz
∗ − SNAx < wNA. (6.16b)

Here (6.16a) assigns to a parameter x an optimizer z∗(x) (in general, a set of
optimizers z∗(x)) and (6.16b) defines the critical region CRA in the parameter
space K∗ for which this assignment is valid. In the simplest case assume that GA

is square and of full rank. From (6.16a) we find

z∗ = G−1
A (SAx+ wA), (6.17)

6.2 Multiparametric Linear Programming 113

and substituting in (6.16b) we obtain the set of inequalities that defines the critical
region CRA of parameters x for which the optimizer is (6.17):

CRA =
{
x : GNAG

−1
A (SAx+ wA)− SNAx < wNA

}
. (6.18)

The following derivation deals with the general case when the optimizer z∗(x)
is not necessarily unique and GA is not invertible. We know from (6.16a) that for
x ∈ CRA

GAz
∗ − SAx = wA.

For another x̄ ∈ CRA we require

GAz̄ − SAx̄ = wA,

or for the perturbation x̃ = x− x̄

GAz̃ − SAx̃ = 0.

This equation will have a solution z̃ for arbitrary values of x̃, i.e., a full dimensional
CRA if

rank[GA] = rank[GA SA].

Otherwise the dimension over which x̃ can vary will be restricted to

n− (rank[GA SA]− rank[GA]).

Next we will show how to construct these restrictions on the variation of x.
Let l = rankGA and consider the QR decomposition of GA

GA = Q

[
U1 U2

0|A|−l×l 0|A|−l×|A|−l

]
,

where Q ∈ R|A|×|A| is a unitary matrix, U1 ∈ Rl×l is a full-rank square matrix

and U2 ∈ Rl×|A|−l. Let

[
P
D

]
= −Q−1SA and

[
q
r

]
= Q−1wA. From (6.16a) we

obtain [
U1 U2 P

0|A|−l×l 0|A|−l×|A|−l D

]⎡⎣ z∗1
z∗2
x

⎤⎦ =

[
q
r

]
. (6.19)

We partition (6.16b) accordingly

[
E F

] [z∗1
z∗2

]
− SNAx < wNA. (6.20)

Calculating z∗1 from (6.19) we obtain

z∗1 = U−1
1 (−U2z

∗
2 − Px+ q), (6.21)

which substituted in (6.20) gives:

(F − EU−1
1 U2)z

∗
2 + (SNA − EU−1

1 P)x < wNA − EU−1
1 q. (6.22)

114 6 Multiparametric Programming: A Geometric Approach

The critical region CRA can be equivalently written as:

CRA =

{
x ∈ Px : ∃z2 such that

[
z2
x

]
∈ Pz2x

}
, (6.23)

where:

Px = {x : Dx = r} , (6.24)

Pz2x =

{[
z2
x

]
: (F − EU−1

1 U2)z2 + (SNA − EU−1
1 P)x < wNA − EU−1

1 q

}
.

(6.25)

In other words:
CRA = Px ∩ projx(Pz2x). (6.26)

In summary, if the optimizer z∗(x) is not unique then it can be expressed as
z∗1(x) (6.21), where the set of optimizers is characterized by z∗2(x), which is allowed
to vary within the set Pz2x (6.25). We have also constructed the critical region
CRA (6.26), where z∗1(x) remains optimal. If GA is not invertible and the matrix
D is not empty then the critical region is not full dimensional.

We can now state some fundamental properties of the critical regions, value
function and optimizer inside a critical region.

Theorem 6.2 Let (A,NA) = (A(x∗), NA(x∗)) for some x∗ ∈ K∗

i) CRA is an open polyhedron of dimension d where d = n− rank
[
GA SA

]
+

rankGA. If d = 0 then CRA = {x∗}.

ii) If rankGA = s (recall that z ∈ Rs) then the optimizer z∗(x) is unique and
given by an affine function of the state inside CRA, i.e., z

∗(x) = Fix + gi
for all x ∈ CRA.

iii) If the optimizer is not unique in CRA then Z∗(x) is an open polyhedron for
all x ∈ CRA.

iv) J∗(x) is an affine function of the state, i.e., J∗(x) = c′ix+di for all x ∈ CRA.

Proof:

i) Polytope Pz2x (6.25) is open and nonempty, therefore it is full-dimensional
in the (z2, x) space and dimprojx(Pz2x) = n. Also,

dimPx = n− rankD = n− (rank
[
GA SA

]
− rankGA).

Since the intersection of Px and projx(Pz2x) is nonempty (it contains at least
the point x∗) we can conclude that

dimCRA = n− rank
[
GA SA

]
+ rankGA.

Since we assumed that the set K in (6.2) is bounded, CRA is bounded. This
implies that CRA is an open polytope since it is the intersection of an open
polytope and the subspace Dx = r. In general, if we allow K in (6.2) to be
unbounded, then the critical region CRA can be unbounded.

6.2 Multiparametric Linear Programming 115

ii) Consider (6.21) and recall that l = rankGA. If l = s, then the primal
optimizer is unique, U2 is an empty matrix and

z∗(x) = z∗1(x) = U−1
1 (−Px+ q). (6.27)

iii) If the primal optimizer is not unique in CRA then Z∗(x) in CRA is the
following point-to-set map: Z∗(x) = {[z1, z2] : z2 ∈ Pz2x, U1z1 + U2z2 +
Px = q)}. Z∗(x) is an open polyhedron since Pz2x is open.

iv) Consider the dual problem (6.14) and one of its optimizer u∗
0 for x = x∗. By

definition of a critical region u∗
0 remains optimal for all x ∈ CRA. Therefore

the value function in CRA is

J∗(x) = (w + Sx)′u∗
0, (6.28)

which is an affine function of x on CRA.

�

Remark 6.1 If the optimizer is unique then the computation of CRA in (6.26) does
not require the projection of the set Pz2x in (6.25). In fact, U2 and F are empty
matrices and

CRA = Pz2x =
{
x : Dx = r, (SNA − EU−1P)x < wNA − EU−1q

}
. (6.29)

If D is also empty, then the critical region is full dimensional.

6.2.3 Propagation of the Set of Active Constraints

The objective of this section is to briefly describe the propagation of the set of active
constraints when moving from one full-dimensional critical region to a neighboring
full-dimensional critical region. We will use a simple example in order to illustrate
the main points.

Example 6.3 Consider the mp-LP problem

minz1,z2,z3,z4 z1 + z2

subj. to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−z1 ≤ x1 + x2

−z1 − z3 ≤ x2

−z1 ≤ −x1 − x2

−z1 + z3 ≤ −x2

−z2 − z3 ≤ x1 + 2x2

−z2 − z3 − z4 ≤ x2

−z2 + z3 ≤ −x1 − 2x2

−z2 + z3 + z4 ≤ −x2

z3 ≤ 1
−z3 ≤ 1
z4 ≤ 1

−z4 ≤ 1,

(6.30)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/mplp_example.m

116 6 Multiparametric Programming: A Geometric Approach

Table 6.1 Example 6.3. Critical regions and corresponding
value function.

Critical Region Value function

CR1 = CR{1,4,5,6,7,8} −x1 − x2

CR2 = CR{2,3,5,6,7,8} x1 + x2

CR3 = CR{1,5,6,9} −2x1 − 3x2 − 1
CR4 = CR{4,6,7,10} x1 + 3x2 − 2
CR5 = CR{1,5,8,12} −1.5x1 − 1.5x2 + 0.5
CR6 = CR{2,5,6,9} −x1 − 3x2 − 2
CR7 = CR{3,6,7,10} 2x1 + 3x2 − 1
CR8 = CR{3,6,7,11} 1.5x1 + 1.5x2 − 0.5
CR9 = CR{1,5,9,12} −2x1 − 3x2 − 1
CR10 = CR{4,7,10,12} x1 + 3x2 − 2
CR11 = CR{2,5,9,12} −x1 − 3x2 − 2
CR12 = CR{3,7,10,12} 2x1 + 3x2 − 1

1

2

3

4

5

6

7

8

9

10

11

12

x1

x
2

–2.5 2.5

–2.5

2.5

Figure 6.2 Example 6.3. Polyhedral partition of the parameter space.

where K is given by

−2.5 ≤ x1 ≤ 2.5
−2.5 ≤ x2 ≤ 2.5.

(6.31)

A solution to the mp-LP problem is shown in Figure 6.2 and the constraints, which
are active in each associated critical region are reported in Table 6.1. Clearly, as
z ∈ R4, CR1 = CR{1,4,5,6,7,8} and CR2 = CR{2,3,5,6,7,8} are primal degenerate
full-dimensional critical regions.

By observing Figure 6.2 and Table 6.1 we notice the following. Under no primal
and dual degeneracy, (i) full critical regions are described by a set of active

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/mplp_example.m

6.2 Multiparametric Linear Programming 117

constraints of dimension n; (ii) two neighboring full-dimensional critical regions
CRAi

and CRAj
have Ai and Aj differing only in one constraint; (iii) CRAi

and CRAj
will share a facet which is a primal degenerate critical region CRAp

of dimension n − 1 with Ap = Ai ∪ Aj . In Example 6.3, CR7 and CR12 are two
full-dimensional and neighboring critical regions and the corresponding active set
differs only in one constraint (constraint 6 in CR7 and constraint 12 in CR12).
They share a facet which is a one-dimensional critical region (an open line), CR13
= CR{3,6,7,10,12}. (The solution depicted in Figure 6.2 and detailed in Table 6.1
contains only full-dimensional critical regions.)

If primal and/or dual degeneracy occur, then the situation becomes more
complex. In particular, in the case of primal degeneracy, it might happen that
full-dimensional critical regions are described by more than s active constraints
(CR1 or CR2 in Example 6.3). In case of dual degeneracy, it might happen that
full-dimensional critical regions are described by fewer than s active constraints.
Details on this case are provided in the next section.

6.2.4 Nonunique Optimizer

If rank[GA] < s then Z∗(x) is not a singleton and the projection of the set
Pz2x in (6.25) is required in order to compute the critical region CRA(x∗), which
is “expensive” (see Section 6.1.1 for a discussion of polyhedra projection). It is
preferable to move on the optimal facet to a vertex and to construct the critical
region starting with this optimizer. This is explained next.

If one needs to determine one possible optimizer z∗(·) in the dual degenerate
region CRA(x∗) the following simple method can be used. Choose a particular

optimizer which lies on a vertex of the feasible set, i.e., determine set Â(x∗) ⊃ A(x∗)

of active constraints for which rank(GÂ(x∗)) = s, and compute a subset ĈRÂ(x∗)

of the dual degenerate critical region (namely, the subset of parameters x such

that the constraints Â(x∗) are active at the optimizer, which is not a critical region

in the sense of Definition 6.2). Within ĈRÂ(x∗), the piecewise linear expression of

an optimizers z∗(x) is available from (6.27) and ĈRÂ(x∗) is defined by (6.29).

The algorithm proceeds by exploring the space surrounding ĈRÂ(x∗) until

CRA(x∗) is covered. The arbitrariness in choosing an optimizer leads to different
ways of partitioning CRA(x∗), where the partitions, in general, may overlap. Nev-
ertheless, in each region a unique optimizer is defined. The storing of overlapping
regions can be avoided by intersecting each new region (inside the dual degenerate
region) with the current partition computed so far. This procedure is illustrated in
the following example.

Example 6.4 Consider the following mp-LP reported in [115, p. 152]

min −2z1 − z2

subj. to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z1 + 3z2 ≤ 9− 2x1 + x2

2z1 + z2 ≤ 8 + x1 − 2x2

z1 ≤ 4 + x1 + x2

−z1 ≤ 0
−z2 ≤ 0,

(6.32)

118 6 Multiparametric Programming: A Geometric Approach

Table 6.2 Example 6.4. Critical regions and corresponding optimal value.

Region Optimizer Value Function

CR{2} not single valued −x1 + 2x2 − 8
CR{1,5} z∗1 = −2x1 + x2 + 9, z∗2 = 0 4x1 − 2x2 − 18
CR{1,3} z∗1 = x1 + x2 + 4, z∗2 = −x1 + 5/3 −x1 − 2x2 − 29/3

CR{2}

CR{1,3}

CR{1,5}

x1

x2

Figure 6.3 Example 6.4. Polyhedral partition of the parameter space
corresponding to the solution.

where K is given by:
−10 ≤ x1 ≤ 10
−10 ≤ x2 ≤ 10.

(6.33)

The solution is represented in Figure 6.3 and the critical regions are listed in
Table 6.2.

The critical region CR{2} is related to a dual degenerate solution with non-
unique optimizers. The analytical expression of CR{2} is obtained by projecting
the H-polyhedron

z1 + 3z2 + 2x1 − x2 < 9
2z1 + z2 − x1 + 2x2 = 8
z1 − x1 − x2 < 4
−z1 < 0
−z2 < 0

(6.34)

on the parameter space to obtain:

CR{2} =

⎧⎪⎪⎨⎪⎪⎩[x1, x2] :

2.5x1 − 2x2 ≤ 5
−0.5x1 + x2 ≤ 4
−12x2 ≤ 5
−x1 − x2 ≤ 4

⎫⎪⎪⎬⎪⎪⎭ , (6.35)

which is effectively the result of (6.26). For all x ∈ CR{2}, only one constraint is
active at the optimum, which makes the optimizer not unique.

6.2 Multiparametric Linear Programming 119

x1

x2

z1

z2

x̄1

CR{2,5}

2
5

4

1

c x=const

(a) First region ĈR{2,5} ⊂ CR{2}, and
below the feasible set in the z-space corre-

sponding to x̄1 ∈ ĈR{2,5}.

x1

x2

z1

z2

x̄2

CR{2,4}

2

5

4

c x=const

3

(b) Second region ĈR{2,4} ⊂ CR{2}, and
below the feasible set in the z-space corre-

sponding to x̄2 ∈ ĈR{2,4}.

Figure 6.4 Example 6.4. A possible sub-partitioning of the degenerate region

CR2 where the regions ĈR{2,5} (Figure 6.4(a)), ĈR{2,4} (Figure 6.4(b))

and ĈR{2,1} (Figure 6.5(a)) are overlapping. Note that below each picture
the feasible set and the level set of the value function in the z-space are
depicted for a particular choice of the parameter x indicated by a point
marked with ×.

Figures 6.4, 6.5 and 6.6 show two possible ways of covering CR{2} without using
projection. The generation of overlapping regions is avoided by intersecting each
new region with the current partition computed so far, as shown in Figure 6.7 where
C̃R{2,4} and C̃R{2,1} represent the intersected critical regions. In Figures 6.4 and
6.5 the regions are overlapping, and in Figure 6.7 artificial cuts are introduced at the
boundaries inside the degenerate critical region CR{2}. No artificial cuts are intro-

duced in Figure 6.6 because the C̃R{2,3} and C̃R{2,5} happen to be nonoverlapping.

120 6 Multiparametric Programming: A Geometric Approach

x1

x2

z1

z2

x̄3
CR{2,1}

2

5

4

3

1 c x=const

(a) Third region ĈR{2,1} ⊂ CR{2}, and
below the feasible set in the z-space corre-

sponding to x̄3 ∈ ĈR{2,1}.

x1

x2

CR{2,1}

CR{2,4}
CR{2,5}

(b) Final partition of CR{2}. Note that

the region ĈR{2,5} is hidden by region

ĈR{2,4} and region ĈR{2,1}.

Figure 6.5 Example 6.4. A possible sub-partitioning of the degenerate region

CR2 where the regions ĈR{2,5} (Figure 6.4(a)), ĈR{2,4} (Figure 6.4(b))

and ĈR{2,1} (Figure 6.5(a)) are overlapping. Note that below each picture
the feasible set and the level set of the value function in the z-space are
depicted for a particular choice of the parameter x indicated by a point
marked with ×.

6.2.5 Value Function and Optimizer: Global Properties

In this section we discuss global properties of the value function J∗(x), optimizer
z∗(x), and of the set K∗.

Theorem 6.3 Assume that for a fixed x0 ∈ K there exists a finite optimal
solution z∗(x0) of (6.11). Then, for all x ∈ K, (6.11) has either a finite optimum
or no feasible solution.

6.2 Multiparametric Linear Programming 121

x1

x2
CR{2,5}

(a) First region ĈR{2,5} ⊂ CR{2}.

x1

x2

CR{2,3}

(b) Second region ĈR{2,3} ⊂ CR{2}.

Figure 6.6 Example 6.4. A possible solution where the regions ĈR{2,5} and

ĈR{2,3} are nonoverlapping.

x1

x2
CR{2,5}

CR{2,4}
CR{2,1}

Figure 6.7 Example 6.4. A possible solution where C̃R{2,4} is obtained

by intersecting ĈR{2,4} with the complement of ĈR{2,5}, and C̃R{2,1} by

intersecting ĈR{2,1} with the complement of ĈR{2,5} and ĈR{2,4}.

122 6 Multiparametric Programming: A Geometric Approach

Proof: Consider the mp-LP (6.11) and assume by contradiction that there exist
x0 ∈ K and x̄ ∈ K with a finite optimal solution z∗(x0) and an unbounded solution
z∗(x̄). Then the dual problem (6.14) for x = x̄ is infeasible. This implies that the
dual problem will be infeasible for all real vectors x since x enters only in the cost
function. This contradicts the hypothesis since the dual problem (6.14) for x = x0

has a finite optimal solution. �
Theorem 6.4 The set of all parameters x such that the LP (6.11) has a finite
optimal solution z∗(x) equals K∗.

Proof: It follows directly from from Theorem 6.1 and Theorem 6.3. �

Note that from Definition 6.3 K∗ is the set of feasible parameters. However the
LP (6.11) might be unbounded for some x ∈ K∗. Theorem 6.4 excludes this case.

The following Theorem 6.5 summarizes the properties enjoyed by the multi-
parametric solution.

Theorem 6.5 The function J∗(·) is convex and piecewise affine over K∗. If the
optimizer z∗(x) is unique for all x ∈ K∗, then the optimizer function z∗ : K∗ →
Rs is continuous and piecewise affine. Otherwise it is always possible to define a
continuous and piecewise affine optimizer function z∗ such that z∗(x) ∈ Z∗(x) for
all x ∈ K∗.

Remark 6.2 In Theorem 6.5, the piecewise affine property of optimizer and value
function follows immediately from Theorem 6.2 and from the enumeration of all
possible combinations of active constraint sets. Convexity of J∗(·) and continuity
of Z∗(x) follows from standard results on multiparametric programs (see Corollary
5.1). In the presence of multiple optimizers, the proof of existence of a continuous
and piecewise affine optimizer function z∗ such that z∗(x) ∈ Z∗(x) for all z ∈ K∗ is
more involved, and we refer the reader to [115, p. 180].

6.2.6 mp-LP Algorithm

The goal of an mp-LP algorithm is to determine the partition of K∗ into full
dimensional critical regions CRAi

, and to find the expression of the functions J∗(·)
and z∗(·) for each critical region. An mp-LP algorithm has two components: the
“active set generator” and the “KKT solver.” The active set generator computes
the set of active constraints Ai. The KKT solver computes CRAi

and the expression
of J∗(·) and z∗(·) in CRAi

as explained in Theorem 6.2.
The active set generator is the critical part. In principle, one could simply

generate all the possible combinations of active sets. However, in many problems
only a few active constraints sets generate full-dimensional critical regions inside
the region of interest K. Therefore, the goal is to design an active set generator
algorithm which computes only the active sets Ai with associated full-dimensional
critical regions covering only K∗. This avoids the combinatorial explosion of a
complete enumeration. Also, we will use the technique described in Section 6.2.4
in order to avoid expressions for nonunique optimizers (6.21) with U2 nonempty.
Next we will describe one possible implementation of an mp-LP algorithm.

6.2 Multiparametric Linear Programming 123

In order to start solving the mp-LP problem, we need an initial vector x0

inside the polyhedral set K∗ of feasible parameters. A possible choice for x0 is the
Chebyshev center (see Section 4.4.5) of K∗, i.e., x0 solving the following LP:

maxx,z,ε ε
subj. to Tix+ ε‖Ti‖2 ≤ Ni, i = 1, . . . , nT

Gz − Sx ≤ w,
(6.36)

where nT is the number of rows Ti of the matrix T defining the set K in (6.2).
If ε ≤ 0, then the LP problem (6.11) is infeasible for all x in the interior of K.
Otherwise, we solve the primal and dual problems (6.11), (6.14) for x = x0. Let
z∗0 and u∗

0 be the optimizers of the primal and the dual problem, respectively. The
value z∗0 defines the following optimal partition

A(x0) = {j ∈ I : Gjz
∗
0 − Sjx0 − wj = 0}

NA(x0) = {j ∈ I : Gjz
∗
0 − Sjx0 − wj < 0} (6.37)

and consequently the critical region CRA(x0). Once the critical region CRA(x0) has
been defined, the rest of the space Rrest = K\CRA(x0) has to be explored and
new critical regions generated. An approach for generating a polyhedral partition
{R1, . . . , Rnrest} of the rest of the space Rrest is described in Theorem 4.2 in
Section 4.4.7. The procedure proposed in Theorem 4.2 for partitioning the set of
parameters allows one to recursively explore the parameter space. Such an iterative
procedure terminates after a finite time, as the number of possible combinations of
active constraints decreases with each iteration. The following two issues need to
be considered:

1. The partitioning in Theorem 4.2 defines new polyhedral regions Rk to be
explored that are not related to the critical regions which still need to be
determined. This may split some of the critical regions, due to the artificial
cuts induced by Theorem 4.2. Postprocessing can be used to join cut critical
regions [44]. As an example, in Figure 6.8 the critical region CR{3,7} is
discovered twice, one part during the exploration of R1 and the second part
during the exploration of R2.

Although algorithms exist for convexity recognition and computation of
the union of polyhedra, the postprocessing operation is computationally
expensive. Therefore, it is more efficient not to intersect the critical region
obtained by (6.29) with halfspaces generated by Theorem 4.2, which is only
used to drive the exploration of the parameter space. Then, no postprocessing
is needed to join subpartitioned critical regions.
On the other hand, some critical regions may appear more than once.

Duplicates can be uniquely identified by the set of active constraints A(x) and
can be easily eliminated. To this aim, in the implementation of the algorithm
we keep a list of all the critical regions which have already been generated
in order to avoid duplicates. In Figure 6.8 the critical region CR{3,7} is
discovered twice but stored only once.

2. If a region is generated which is not full-dimensional we want to avoid further
recursion of the algorithm not producing any full-dimensional critical region,

124 6 Multiparametric Programming: A Geometric Approach

x1
– x1

+

x2
–

x2
+

x1

x2

R2

R1

CR{6,7}

CR{3,7}

Figure 6.8 Example of a critical region explored twice.

and therefore lengthening the number of steps required to determine the
solution to the mp-LP. We perturb the parameter x0 by a random vector
with length smaller than the Chebyshev radius of the polyhedral region Rk

where we are looking for a new critical region. This will ensure that the
perturbed vector is still contained in Rk.

Based on the above discussion, the mp-LP solver can be summarized in the
following recursive Algorithm 6.1. Note that the algorithm generates a partition
of the state space which is not strict. The algorithm could be modified to store
the critical regions as defined in (6.4) which are open sets, instead of storing
their closure. In this case the algorithm would have to explore and store all the
critical regions that are not full-dimensional in order to generate a strict polyhedral
partition of the set of feasible parameters. From a practical point of view such a
procedure is not necessary since the value function and the optimizer are continuous
functions of x.

Algorithm 6.1 mp-LP Algorithm (nondegenerate case)

Input: Matrices c, G, w, S of the mp-LP (6.11) and set K in (6.2)

Output: Multiparametric solution to the mp-LP (6.11)

Execute partition(K)

End

Function partition(Y)

Let x0 ∈ Y and ε be the solution to the LP (6.36)

If ε ≤ 0 Then exit (no full-dimensional CR is in Y)

Solve the LP (6.11), (6.14) for x = x0

Let A(x0) be the set of active constraints as in (6.37)

Determine z∗(x) from (6.17) and CRA(x0) from (6.18)

Partition the rest of the region as in Theorem 4.2

For each new sub-region Ri, Do partition(Ri)

End function

6.3 Multiparametric Quadratic Programming 125

Remark 6.3 In the degenerate case z∗(x) and CRA(x0) are given by (6.21) and (6.26),
respectively. As remarked in Section 6.2.2, if rank(D) > 0 the region CRA(x0) is not
full-dimensional and therefore not of interest. To use Algorithm 6.1 after computing
U, P,D if D �= 0 one should compute a random vector ε ∈ Rn smaller than the
Chebyshev radius of Y and such that the LP (6.11) is feasible for x0 + ε and then
repeat step where A(x0) is computed with x0 ← x0 + ε.

Remark 6.4 The algorithm determines the partition of K recursively. After the first
critical region is found, the rest of the region in K is partitioned into polyhedral sets
{Ri} as in Theorem 4.2. By using the same method, each set Ri is further partitioned,
and so on.

6.3 Multiparametric Quadratic Programming

6.3.1 Formulation

In this section we investigate multiparametric quadratic programs (mp-QP), a
special case of the multiparametric program (6.1) where the objective is a quadratic
function

J∗(x) = min
z

J(z, x) = 1
2z

′Hz

subj. to Gz ≤ w + Sx.
(6.38)

All the variables were defined in Section 6.1.1. We assumeH � 0. Our goal is to find
the value function J∗(x) and the optimizer function z∗(x) in K∗. Note that K∗ can
be determined by projection as discussed in Theorem 6.1. As suggested through
Example 5.1 our search for these functions proceeds by partitioning the set of
feasible parameters into critical regions. Note that the more general problem with
J(z, x) = 1

2z
′Hz + x′Fz can always be transformed into an mp-QP of form (6.38)

by using the variable substitution z̃ = z +H−1F ′x.
As in the previous sections, we denote with the subscript j the j-th row of a

matrix or j-th element of a vector. Also, J = {1, . . . ,m} is the set of constraint
indices and for any A ⊆ J , GA, wA and SA are the submatrices of G, w and S,
respectively, consisting of the rows indexed by A. Without loss of generality we
will assume that K∗ is full-dimensional (if it is not, then the procedure described in
Section 6.1.3 can be used to obtain a full-dimensional K∗ in a reduced parameter
space).

Example 6.5 Consider the parametric quadratic program

J∗(x) = min
z

J(z, x) = 1
2
z2

subj. to z ≤ 1 + 3x,

where z ∈ R and x ∈ R. Our goals are:

1. to find z∗(x) = arg minz, z≤1+3x J(z, x),

126 6 Multiparametric Programming: A Geometric Approach

2. to find all x for which the problem has a solution, and

3. to compute the value function J∗(x).

The Lagrangian function is

L(z, x, u) =
1

2
z2 + u(z − 3x− 1)

and the KKT conditions are (see Section 2.3.3 for KKT conditions for quadratic
programs)

z + u = 0 (6.39a)

u(z − 3x− 1) = 0 (6.39b)

u ≥ 0 (6.39c)

z − 3x− 1 ≤ 0. (6.39d)

Consider (6.39) and the two strictly complementary cases:

A.
z + u = 0
z − 3x− 1 = 0
u ≥ 0

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z∗ = 3x+ 1

u∗ = −3x− 1

J∗ = 9
2
x2 + 3x+ 1

2

x ≤ − 1
3

B.

z + u = 0

z − 3x− 1 < 0

u = 0

⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z∗ = 0

u∗ = 0

J∗ = 0

x > − 1
3
.

(6.40)

This solution is depicted in Figure 6.9. The above simple procedure, which required
nothing but the solution of the KKT conditions, yielded the optimizer z∗(x) and
the value function J∗(x) for all values of the parameter x. The set of admissible
parameters values was divided into two critical regions, defined by x ≤ − 1

3
and

x > − 1
3
. In the region x ≤ − 1

3
the inequality constraint is active and the Lagrange

multiplier is greater or equal than zero, in the other region x > − 1
3
the inequality

constraint is not active and the Lagrange multiplier is equal to zero. Note that for

x

J∗(x)

–2 –1 0 1 2
–2

–1

0

1

2

z∗(x)

Figure 6.9 Example 6.5. Optimizer z∗(x) and value function J∗(x) as a
function of the parameter x.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/intrompqpv2.m

6.3 Multiparametric Quadratic Programming 127

x = − 1
3
the inequality constraint z − 3x − 1 ≤ 0 is active at z∗ and the Lagrange

multiplier is equal to zero.

Throughout a critical region the conditions for optimality derived from the KKT
conditions do not change. In each critical region the optimizer z∗(x) is affine and the
value function J∗(x) is quadratic. Both z∗(x) and J∗(x) are continuous.

6.3.2 Critical Regions, Value Function and Optimizer: Local Properties

Consider the definition of a critical region given in Section 6.1.2. We show next that
critical regions of mp-QP are polyhedra. We use the KKT conditions (Section 1.6)
to derive the H-polyhedral representation of the critical regions and to compute the
optimizer function z∗(x) and the value function J∗(x) inside each critical region.

The following theorem introduces fundamental properties of critical regions, the
value function and the optimizer inside a critical region.

Theorem 6.6 Let (A,NA) = (A(x̄), NA(x̄)) for some x̄ ∈ K∗, Then

i) the closure of CRA is a polyhedron.

ii) z∗(x) is an affine function of the state inside CRA, i.e., z
∗(x) = Fix + gi

for all x ∈ CRA.

iii) J∗(x) is a quadratic function of the state inside CRA, i.e., J
∗(x) = x′Mix+

c′ix+ di for all x ∈ CRA.

Proof: The first-order Karush-Kuhn-Tucker (KKT) optimality conditions (see
Section 2.3.3) for the mp-QP are given by

Hz∗ +G′u∗ = 0, u ∈ Rm (6.41a)

u∗
i (Giz

∗ − wi − Six) = 0, i = 1, . . . ,m (6.41b)

u∗ ≥ 0 (6.41c)

Gz∗ − w − Sx ≤ 0. (6.41d)

Let us assume that we have determined the optimal partition

(A,NA) = (A(x̄), NA(x̄))

for some x̄ ∈ K∗. The primal feasibility condition (6.41d) can be rewritten as

GAz
∗ − SAx = wA (6.42a)

GNAz
∗ − SNAx < wNA. (6.42b)

We solve (6.41a) for z∗

z∗ = −H−1G′u∗ (6.43)

and substitute the result into (6.41b) to obtain the complementary slackness
conditions

u∗
i (−GiH

−1G′u∗ − wi − Six) = 0, i = 1, . . . ,m. (6.44)

128 6 Multiparametric Programming: A Geometric Approach

Let u∗
NA and u∗

A denote the Lagrange multipliers corresponding to inactive and
active constraints, respectively. For inactive constraints u∗

NA = 0. For active
constraints:

(−GAH
−1GA

′)u∗
A − wA − SAx = 0. (6.45)

If the set of active constraint A is empty, then u∗ = u∗
NA = 0 and therefore z∗ = 0

which implies that the critical region CRA is

CRA = {x : Sx+ w > 0}. (6.46)

Otherwise we distinguish two cases.
Case 1: LICQ holds, i.e., the rows of GA are linearly independent. This implies
that (GAH

−1GA
′) is a square full rank matrix and therefore

u∗
A = −(GAH

−1GA
′)−1(wA + SAx), (6.47)

where GA, wA, SA correspond to the set of active constraints A. Thus u∗ is an affine
function of x. We can substitute u∗

A from (6.47) into (6.43) to obtain

z∗ = H−1GA
′(GAH

−1GA
′)−1(wA + SAx) (6.48)

and note that z∗ is also an affine function of x. J∗(x) = 1
2z

∗(x)′Hz∗(x) and
therefore it is a quadratic function of x. The critical region CRA is computed
by substituting z∗ from (6.48) in the primal feasibility conditions (6.42b)

Pp = {x : GNAH
−1GA

′(GAH
−1GA

′)−1(wA + SAx) < wNA + SNAx}, (6.49)

and the Lagrange multipliers from (6.47) in the dual feasibility conditions (6.41c)

Pd = {x : −(GAH
−1GA

′)−1(wA + SAx) ≥ 0}. (6.50)

In conclusion, the critical region CRA is the intersection of Pp and Pd:

CRA = {x : x ∈ Pp, x ∈ Pd}. (6.51)

Obviously, the closure of CRA is a polyhedron in the x-space.
The polyhedron Pp is open and non empty (it contains at least the point x̄).

Therefore it is full-dimensional in the x space. This implies that dimCRA = dimPd.

Case 2: LICQ does not hold, the rows of GA are not linearly independent. For
instance, this happens when more than s constraints are active at the optimizer
z∗(x̄) ∈ Rs, i.e., in a case of primal degeneracy. In this case the vector of Lagrange
multipliers u∗ might not be uniquely defined, as the dual problem of (6.38) is
not strictly convex. Note that dual degeneracy and nonuniqueness of z∗(x̄) cannot
occur, as H � 0.

Using the same arguments as in Section 6.2.2, equation (6.45) will allow a
full-dimensional critical region only if rank[(GAH

−1GA
′) SA] = rank[GAH

−1GA
′].

Indeed the dimension of the critical region will be

n− (rank[(GAH
−1GA

′) SA]− rank[GAH
−1GA

′]).

6.3 Multiparametric Quadratic Programming 129

We will now show how to compute the critical region.
Let l = rankGA and consider the QR decomposition of −GAH

−1G′
A

−GAH
−1G′

A = Q

[
U1 U2

0|A|−l×l 0|A|−l×|A|−l

]
,

where Q ∈ R|A|×|A| is a unitary matrix, U1 ∈ Rl×l is a full-rank square matrix and

U2 ∈ Rl×|A|−l. Let

[
P
D

]
= −Q−1SA and

[
q
r

]
= Q−1wA. From (6.45) we obtain

[
U1 U2 P

0|A|−l×l 0|A|−l×|A|−l D

]⎡⎣ u∗
A,1

u∗
A,2

x

⎤⎦ =

[
q
r

]
. (6.52)

We compute u∗
A,1 from (6.52)

u∗
A,1 = U−1

1 (−U2u
∗
A,2 − Px+ q). (6.53)

Finally, we can substitute u∗
A =

[
u∗
A,1

′ u∗
A,2

′]′ from (6.53) into (6.43) to obtain

z∗ = H−1GA
′
[
U−1
1 (U2u

∗
A,2 + Px− q)

u∗
A,2

]
. (6.54)

The optimizer z∗ is unique and therefore independent of the choice of u∗
A,2 ≥ 0.

Setting u∗
A,2 = 0 we obtain

z∗ = H−1GA,1
′U−1

1 (Px− q), (6.55)

where we have partitioned GA as GA =
[
G′

A,1 G′
A,2

]′
and GA,1 ∈ Rl×s.

Note that z∗ is an affine function of x. J∗(x) = 1
2z

∗(x)′Hz∗(x) and therefore is
a quadratic function of x.

The critical region CRA is computed by substituting z∗ from (6.55) in the
primal feasibility conditions (6.42b)

Pp = {x : GNA(H
−1GA,1

′U−1
1 (Px− q)) < wNA + SNAx}, (6.56)

and the Lagrange multipliers from (6.53) in the dual feasibility conditions (6.41c)

Pu∗
A,2,x

= {[u∗
A,2, x] : U

−1
1 (−U2u

∗
A,2 − Px+ q) ≥ 0, u∗

A,2 ≥ 0}. (6.57)

The critical region CRA is the intersection of the sets Dx = r, Pp and
projx(Pu∗

A,2,x
):

CRA = {x : Dx = r, x ∈ Pp, x ∈ projx(Pu∗
A,2,x

)}. (6.58)

The closure of CRA is a polyhedron in the x-space. �

Remark 6.5 In general, the critical region polyhedron (6.49)–(6.51) is open on facets
arising from primal feasibility and closed on facets arising from dual feasibility.

Remark 6.6 If D in (6.52) is nonzero, then from (6.58), CRA is a lower dimensional
region, which, in general, corresponds to a common boundary between two or more
full-dimensional regions.

130 6 Multiparametric Programming: A Geometric Approach

6.3.3 Propagation of the Set of Active Constraints

The objective of this section is to briefly describe the propagation of the set of active
constraints when moving from one full-dimensional critical region to a neighboring
full-dimensional critical region. We will use a simple example in order to illustrate
the main points.

Example 6.6 Consider the mp-QP problem

J∗(x) = min
z

1
2
z′Hz + x′Fz

subj. to Gz ≤ w + Sx,
(6.59)

with
H = [1 0

0 1] , F =
[
1 1
1 −1

]
(6.60)

and

G =

⎡⎣ 1 0
−1 0
0 1
0 −1
1 −1
−1 1

⎤⎦, S =

⎡⎣ 0 0
0 0
0 0
0 0
1 1
−2 1

⎤⎦, w =

⎡⎣ 1
1
1
1
0
0

⎤⎦, (6.61)

where K is given by
−1 ≤ x1 ≤ 1
−1 ≤ x2 ≤ 1.

(6.62)

A solution to the mp-QP problem is shown in Figure 6.10 and the constraints
which are active in each associated full-dimensional critical region are reported in
Table 6.3.

Since A3 is empty in CR3 we can conclude from (6.46) that the facets of CR3
are facets of primal feasibility and therefore do not belong to CR3. In general,
as discussed in Remark 6.5 critical regions are open on facets arising from primal

1

2

3

4
5

6

7

x1

x
2

–1 1

–1

1

Figure 6.10 Example 6.6. Polyhedral partition of the parameter space.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/mpqp_example.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/mpqp_example.m

6.3 Multiparametric Quadratic Programming 131

Table 6.3 Example 6.6. Critical regions and
corresponding set of active constraints.

Critical Region Active Constraints

CR1 {5}
CR2 {3,5}
CR3 {}
CR4 {3}
CR5 {6}
CR6 {3,6}
CR7 {4,6}

feasibility and closed on facets arising from dual feasibility. Next we focus on the
closure of the critical regions.

By observing Figure 6.10 and Table 6.3 we notice that as we move away
from region CR3 (corresponding to no active constraints), the number of active
constraints increases. In particular, for any two neighboring full-dimensional critical
regions CRAi

and CRAj
we have Ai ⊂ Aj and |Ai| = |Aj | − 1 or Aj ⊂ Ai and

|Ai| = |Aj | + 1. This means that as one moves from one full-dimensional region
to a neighboring full-dimensional region, one constraint is either added to the list
of active constraints or removed from it. This happens for instance when moving
from CR3 to CR4, CR5, CR1 or from CR1 to CR2, or from CR5 to CR7.

The situation is more complex if LICQ does not hold everywhere in K∗. In
particular, there might exist two neighboring full-dimensional critical regions CRAi

and CRAj
where Ai and Aj do not share any constraint and with |Ai| = |Aj |. Also,

CRAi
might have multiple neighboring region on the same facet. In other words,

it can happen that the intersection of the closures of two adjacent full-dimensional
critical regions is a not a facet of both regions but only a subset of it. We refer the
reader to [268] for more details on such a degenerate condition.

6.3.4 Value Function and Optimizer: Global Properties

The convexity of the value function J∗(x) and the continuity of the solution z∗(x)
follow from the general results on multiparametric programming (Corollary 5.2).
In the following we present an alternate simple proof.

Theorem 6.7 Consider the multiparametric quadratic program (6.38) and let
H � 0. Then the optimizer z∗(x) : K∗ → Rs is continuous and piecewise affine on
polyhedra, in particular it is affine in each critical region, and the optimal solution
J∗(x) : K∗ → R is continuous, convex and piecewise quadratic on polyhedra.

Proof: We first prove convexity of J∗(x). Take generic x1, x2 ∈ K∗, and let
J∗(x1), J

∗(x2) and z1, z2 the corresponding optimal values and minimizers. Let
xα = αx1 + (1− α)x2 and zα = αz1 + (1− α)z2. By optimality of J∗(xα),

J∗(xα) ≤
1

2
z′αHzα.

132 6 Multiparametric Programming: A Geometric Approach

Hence

J∗(xα)−
1

2
[αz′1Hz1 + (1− α)z′2Hz2] ≤

1

2
z′αHzα − 1

2
[αz′1Hz1 + (1− α)z′2Hz2].

We can upperbound the latter term as follows:

1

2
z′αHzα − 1

2
[αz′1Hz1 + (1− α)z′2Hz2] =

1

2
[α2z′1Hz1 + (1− α)2z′2Hz2+

+2α(1− α)z′2Hz1 − αz′1Hz1 − (1− α)z′2Hz2] =

= −1

2
α(1− α)(z1 − z2)

′H(z1 − z2) ≤ 0.

In conclusion

J∗(αx1 + (1− α)x2) ≤ αJ∗(x1) + (1− α)J∗(x2), ∀x1, x2 ∈ K, ∀α ∈ [0, 1],

which proves the convexity of J∗(x) on K∗.
Within the closed polyhedral regions CRi inK∗ the solution z∗(x) is affine (6.48)

by Theorem 6.6. The boundary between two regions belongs to both closed regions.
Since H � 0, the optimum is unique and hence the solution must be continuous
across the boundary. Therefore z∗(x) : K∗ → Rs is continuous and piecewise affine
on polyhedra. The fact that J∗(x) is continuous and piecewise quadratic follows
trivially. �

We can easily derive a result similar to Theorem 6.7 for the dual function d∗(x)
(see (6.38) and (2.28))

d∗(x) = max
u≥0

[
d(u) = −1

2
u′(GH−1G′)u− u′(w + Sx)

]
. (6.63)

Theorem 6.8 Consider the multiparametric quadratic program (6.38) with H �
0 and assume that LICQ holds ∀ x ∈ K∗. Then the optimizer u∗(x) : K∗ → Rm

of the dual (6.63) is continuous and piecewise affine on polyhedra, in particular
it is affine in each critical region, and the optimal solution d∗(x) : K∗ → R is
continuous, convex and piecewise quadratic on polyhedra.

Proof: The proof follows along the lines of the proof of Theorem 6.7 once we
know that the optimizer u∗(x) is unique because of the LICQ assumptions. �
Theorem 6.9 Assume that the mp-QP problem (6.38) is not degenerate, then
the value function J∗(x) in (6.38) is continuously differentiable (C(1)).

Proof: The dual of (6.38) is

d∗(x) = max
u≥0

−1

2
u′(GH−1G′)u− u′(w + Sx). (6.64)

By strong duality we have

J∗(x) = d∗(x) = −1

2
u∗(x)′(GH−1G′)u∗(x)− u∗(x)′(w + Sx). (6.65)

6.3 Multiparametric Quadratic Programming 133

For the moment let us restrict our attention to the interior of a critical region.
From (6.47) we know that u∗(x) is continuously differentiable. Therefore

∇xJ(x) = −
[
∂u∗

∂x
(x)

]′
GH−1G′u∗(x)−

[
∂u∗

∂x
(x)

]′
(w + Sx)− S′u∗(x) =

=

[
∂u∗

∂x
(x)

]′
(−GH−1G′u∗(x)− w − Sx)− S′u∗(x).

(6.66)
Using (6.43)

z∗ = −H−1G′u∗, (6.67)

we get

∇xJ(x) = −S′u∗(x) +

[
∂u∗

∂x
(x)

]′
(Gz∗ − w − Sx) =

= −S′u∗(x) +
∑
i∈A

[
∂u∗

i

∂x
(x)

]′
(Giz

∗ − wi − Six)︸ ︷︷ ︸
0

+

+
∑

i∈NA

[
∂u∗

i

∂x
(x)

]′
︸ ︷︷ ︸

0

(Giz
∗ − wi − Six) =

= −S′u∗(x).

(6.68)

Continuous differentiability of J∗ in the interior of a critical region follows
from (6.47). Continuous differentiability of J∗ at the boundary follows from the
fact that u∗(x) is continuous (Theorem 6.8) for all x in the interior of K∗[20]. �

Note that in case of degeneracy the value function J∗(x) in (6.38) may not be C(1).
The following counterexample was given in [48].

Example 6.7

Consider the mp-QP (6.38) with

H =

⎡⎣ 3 3 −1
3 11 23
−1 23 75

⎤⎦

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
1 3 5
−1 −1 −1
−1 −3 −5
−1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
w =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
−1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
−1
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.69)

and K = {x ∈ R|1 ≤ x ≤ 5}.
The problem was solved by using Algorithm 6.2 described next. The solution
comprises five critical regions. The critical regions and the expression of the value
function are reported in Table 6.4. The reader can verify that the value function is
not continuously differentiable at x = 3. Indeed, at x = 3 the LICQ condition does
not hold and therefore, the hypothesis of Theorem 6.9 is not fulfilled.

134 6 Multiparametric Programming: A Geometric Approach

Table 6.4 Critical regions and value function corresponding
to the solution of Example 6.7.

Region Optimal value

CR{1,2,3,4,6} = {x : 1 ≤ x < 1.5} 2.5x2 − 6x+ 5
CR{1,2,3,4} = {x : 1.5 ≤ x ≤ 2} 0.5x2 + 0.5
CR{1,2,3,4,7} = {x : 2 < x < 3} x2 − 2x+ 2.5
CR{1,2,3,4,5,7} = {x : x = 3} x2 − 2x+ 2.5
CR{1,2,3,4,5} = {x : 3 < x ≤ 5} 5x2 − 24x+ 32.5

6.3.5 mp-QP Algorithm

The goal of an mp-QP algorithm is to determine the partition of K∗ into critical
regions CRi, and find the expression of the functions J∗(·) and z∗(·) for each critical
region. An mp-QP algorithm has two components: the “active set generator”
and the “KKT solver.” The active set generator computes the set of active
constraints Ai. The KKT solver computes CRAi

and the expression of J∗(·)
and z∗(·) in CRAi

as explained in Theorem 6.6. The active set generator is the
critical part. In principle, one could simply generate all the possible combinations
of active sets. However, in many problems only a few active constraints sets
generate full-dimensional critical regions inside the region of interest K. Therefore,
the goal is to design an active set generator algorithm which computes only
the active sets Ai with the associated full-dimensional critical regions covering
only K∗.

Next an implementation of an mp-QP algorithm is described. See Section 6.6
for a literature review on alternative approaches to the solution of an mp-QP.

In order to start solving the mp-QP problem, we need an initial vector x0

inside the polyhedral set K∗ of feasible parameters. A possible choice for x0 is the
Chebyshev center (see Section 4.4.5) of K∗ obtained as a solution of

maxx,z̄,ε ε
subj. to Tix+ ε‖Ti‖2 ≤ Ni, i = 1, . . . , nT

Gz̄ − Sx ≤ w
(6.70)

where nT is the number of rows Ti of the matrix T defining the set K in (6.2).
If ε ≤ 0, then the QP problem (6.38) is infeasible for all x in the interior of K.
Otherwise, we set x = x0 and solve the QP problem (6.38), in order to obtain the
corresponding optimal solution z∗0 . Such a solution is unique, because H � 0. The
value of z∗0 defines the following optimal partition

A(x0) = {j ∈ J : Gjz
∗
0 − Sjx0 − wj = 0}

NA(x0) = {j ∈ J : Gjz
∗
0 − Sjx0 − wj < 0} (6.71)

and consequently the critical region CRA(x0). Once the critical region CRA(x0)

has been defined, the rest of the space Rrest = K\CRA(x0) has to be explored
and new critical regions generated. An approach for generating a polyhedral
partition {R1, . . . , Rnrest

} of the rest of the space Rrest is described in Theorem 4.2.

6.3 Multiparametric Quadratic Programming 135

Theorem 4.2 provides a way of partitioning the nonconvex set K \ CR0 into
polyhedral subsets Ri. For each Ri, a new vector xi is determined by solving the
LP (6.70), and, correspondingly, an optimum z∗i , a set of active constraints Ai,
and a critical region CRi. The procedure proposed in Theorem 4.2 for partitioning
the set of parameters allows one to recursively explore the parameter space. Such
an iterative procedure terminates after a finite time, as the number of possible
combinations of active constraints decreases with each iteration. Two main elements
need to be considered:

1. As for the mp-LP algorithm, the partitioning in Theorem 4.2 defines new
polyhedral regions Rk to be explored that are not related to the critical
regions which still need to be determined. This may split some of the critical
regions, due to the artificial cuts induced by Theorem 4.2. Postprocessing
can be used to join cut critical regions [44]. As an example, in Figure 6.8 the
critical region CR{3,7} is discovered twice, one part during the exploration
of R1 and the second part during the exploration of R2.

Although algorithms exist for convexity recognition and computation of
the union of polyhedra, the postprocessing operation is computationally
expensive. Therefore, it is more efficient not to intersect the critical region
obtained by (6.29) with halfspaces generated by Theorem 4.2, which is only
used to drive the exploration of the parameter space. Then, no postprocessing
is needed to join subpartitioned critical regions. On the other hand, some
critical regions may appear more than once. Duplicates can be uniquely
identified by the set of active constraints A(x) and can be easily eliminated.
To this aim, in the implementation of the algorithm we keep a list of all
the critical regions which have already been generated in order to avoid
duplicates. In Figure 6.8 the critical region CR{3,7} is discovered twice but
stored only once.

2. If Case 2 occurs in Section 6.3.2 andD is nonzero, CRA is a lower dimensional
critical region (see Remark 6.6). Therefore we do not need to explore
the actual combination GA, SA, wA. On the other hand, if D = 0 the
KKT conditions do not lead directly to (6.49)–(6.50). In this case, a full-
dimensional critical region can be obtained from (6.58) by projecting the set
Px,u∗

A,2
in (6.57).

Based on the discussion and results above, the main steps of the mp-QP solver
are outlined in the following algorithm.

Algorithm 6.2 mp-QP Algorithm

Input: Matrices H, G,w, S of problem (6.38) and set K in (6.2)

Output: Multiparametric solution to problem (6.38)

Execute partition(K)

end

Function partition(Y)

Let x0 ∈ Y and ε be the solution to the LP (6.70);

If ε ≤ 0 Then exit (no full-dimensional CR is in Y)

136 6 Multiparametric Programming: A Geometric Approach

Solve the QP (6.38) for x = x0 to obtain (z∗0 , u
∗
0)

Determine the set of active constraints A when z = z∗0 , x = x0, and build
GA, wA, SA

If GA has full row rank Then

Determine u∗
A(x), z

∗(x) from (6.47) and (6.48)

Characterize the CR from (6.49) and (6.50)

Else

Determine z∗(x) from (6.55)

Characterize the CR from (6.58)

End

Partition the rest of the region as in Theorem 4.2

For each new sub-region Ri, Do partition(Ri)

End function

Remark 6.7 If rank(D) > 0 in Algorithm 6.2, the region CRA(x0) is not full-
dimensional. To avoid further recursion in the algorithm which does not produce any
full-dimensional critical region, one should compute a random vector ε ∈ Rn smaller
than the Chebyshev radius of Y and such that the QP (6.38) is feasible for x0 + ε
and then repeat step where A(x0) is computed with x0 ← x0 + ε.

Remark 6.8 The algorithm solves the mp-QP problem by partitioning the given
parameter set K into Nr closed polyhedral regions. Note that the algorithm generates
a partition of the state space which is not strict. The algorithm could be modified
to store the critical regions as defined in Section 6.1.2 (which are neither closed nor
open as proven in Theorem 6.6) instead of storing their closure. This can be done by
keeping track of which facet belongs to a certain critical region and which not. From
a practical point of view, such a procedure is not necessary since the value function
and the optimizer are continuous functions of x.

Remark 6.9 The proposed algorithm does not apply to the case when H � 0 and
when the optimizer may not be unique. In this case one may resort to “regularization,”
i.e., adding an appropriate “small” quadratic term, or follow the ideas of [231].

6.4 Multiparametric Mixed-Integer Linear Programming

6.4.1 Formulation and Properties

Consider the mp-LP
J∗(x) = min

z
{J(z, x) = c′z}

subj. to Gz ≤ w + Sx,
(6.72)

where z ∈ Rs are the optimization variables, x ∈ Rn is the vector of parameters,
G ∈ Rm×s, w ∈ Rm, and S ∈ Rm×n. When we restrict some of the optimization

6.4 Multiparametric Mixed-Integer Linear Programming 137

variables to be 0 or 1, z = {zc, zd}, zc ∈ Rsc , zd ∈ {0, 1}sd and s = sc + sd, we
refer to (6.72) as a (right-hand side) multiparametric mixed-integer linear program
(mp-MILP).

6.4.2 Geometric Algorithm for mp-MILP

Consider the mp-MILP (6.72). Given a closed and bounded polyhedral set K ⊂ Rn

of parameters,
K = {x ∈ Rn : Tx ≤ N}, (6.73)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that the MILP (6.72) is
feasible and the optimum J∗(x) is finite. For any given x̄ ∈ K∗, J∗(x̄) denotes the
minimum value of the objective function in problem (6.72) for x = x̄. The function
J∗ : K∗ → R will denote the function which expresses the dependence on x of
the minimum value of the objective function over K∗, J∗ will be called the value
function. The set-valued function Z∗ : K∗ → 2R

sc × 2{0,1}
sd will describe for any

fixed x ∈ K∗ the set of optimizers z∗(x) related to J∗(x).
We aim to determine the region K∗ ⊆ K of feasible parameters x and to find the

expression of the value function J∗(x) and the expression of an optimizer function
z∗(x) ∈ Z∗(x).

Two main approaches have been proposed for solving mp-MILP problems. In
[1], the authors develop an algorithm based on branch and bound (B&B) methods.
At each node of the B&B tree an mp-LP is solved. The solution at the root
node where all the binary variables are relaxed to the interval [0,1] represents
a valid lower bound, while the solution at a node where all the integer variables
have been fixed represents a valid upper bound. As in standard B&B methods,
the complete enumeration of combinations of 0–1 integer variables is avoided by
comparing the multiparametric solutions, and by fathoming the nodes where there
is no improvement of the value function.

In [101] an alternative algorithm was proposed, which will be detailed in this
section. Problem (6.72) is alternatively decomposed into an mp-LP and an MILP
subproblem. In one step the values of the binary variable are fixed for a region
and an mp-LP is solved. Its solution provides a parametric upper bound to the
value function J∗(x) in the region. In the other step, the parameters x are treated
as additional free variables and an MILP is solved. In this way a parameter x is
found and an associated new integer vector which improves the value function at
this point.

The algorithm is composed of an initialization step, and a recursion between
the solution of an mp-LP subproblem and an MILP subproblem.

Initialization

Solve the following MILP problem

min
{z,x}

c′z

subj. to Gz − Sx ≤ w
x ∈ K,

(6.74)

138 6 Multiparametric Programming: A Geometric Approach

where x is treated as an independent variable. If the MILP (6.74) is infeasible then
the mp-MILP (6.72) admits no solution, i.e., K∗ = ∅; otherwise its solution z∗, x∗

provides an integer variable z∗ that is feasible at point x∗.
At step j = 0, set: N0 = 1, CR1 = K, Z1 = ∅, J̄1 = +∞, Nbi = 0, z̄1d1

= z̄d.

mp-LP Subproblem

For each CRi we solve the following mp-LP problem

J̃i(x) = min
z

c′z

subj. to Gz ≤ w + Sx

zd = z̄Nbi+1
di

x ∈ CRi.

(6.75)

By Theorem 6.5, the solution of mp-LP (6.75) provides a partition of CRi into
polyhedral regions Rk

i , k = 1, . . . , NRi
and a PWA value function

J̃i(x) = (J̃R
k

i (x) = cki
′
x+ pki) if x ∈ Rk

i , k = 1, . . . , NRi
(6.76)

where J̃R
j

i (x) = +∞ in Rj
i if the integer variable z̄di

is not feasible in Rj
i and a

PWA continuous optimizer z∗(x) (z∗(x) is not defined in Rj
i if J̃R

j

i (x) = +∞).
The function J̃i(x) will be an upper bound of J∗(x) for all x ∈ CRi. Such a

bound J̃i(x) on the value function has to be compared with the current bound
J̄i(x) in CRi in order to obtain the lowest of the two parametric value functions
and to update the bound.

While updating J̄i(x) three cases are possible:

1. J̄i(x) = J̃R
k

i (x) ∀x ∈ Rk
i if (J̃R

k

i (x) ≤ J̄i(x) ∀ x ∈ Rk
i).

2. J̄i(x) = J̄i(x) ∀x ∈ Rk
i (if J̃R

k

i (x) ≥ J̄i(x) ∀ x ∈ Rk
i).

3. J̄i(x) =

{
J̄i(x) ∀x ∈ (Rk

i)1 = {x ∈ Rk
i : J̃R

k

i (x) ≥ J̄i(x)}
J̃R

k

i (x) ∀x ∈ (Rk
i)2 = {x ∈ Rk

i : J̃R
k

i (x) ≤ J̄i(x)}.

The three cases above can be distinguished by using a simple linear program. We

add the constraint J̃R
k

i (x) ≤ J̄i(x) to the constraints defining Rk
i and tests its

redundancy (Section 4.4.1). If it is redundant we have Case 1, if it is infeasible

we have Case 2. Otherwise J̃R
k

i (x) = J̄i(x) defines the facet separating (Rk
i)1

and (Rk
i)2. In the third case, the region Rk

i is partitioned into two regions

(Rk
i)1 and (Rk

i)2 which are convex polyhedra since J̃R
k

i (x) and J̄i(x) are affine
functions of x.

After the mp-LP (6.75) has been solved for all i = 1, . . . , Nj (the subindex
j denotes that we are at step j of the recursion) and the value function has been
updated, each initial region CRi has been subdivided into at most 2NRi

polyhedral
regions Rk

i and possibly (Rk
i)1 and (Rk

i)2 with a corresponding updated parametric
bound on the value function J̄i(x). For each Rk

i , (R
k
i)1 and (Rk

i)2 we define the set
of integer variables already explored as Zi = Zi

⋃
z̄Nbi+1
di

, Nbi = Nbi + 1. In the
sequel the polyhedra of the new partition will be referred to as CRi.

6.4 Multiparametric Mixed-Integer Linear Programming 139

MILP Subproblem

At step j for each critical region CRi (note that these CRi are the output of the
previous phase) we solve the following MILP problem

min
{z,x}

c′z (6.77)

subj. to Gz − Sx ≤ w (6.78)

c′z ≤ J̄i(x) (6.79)

zd 	= z̄kdi
, k = 1, . . . , Nbi (6.80)

x ∈ CRi, (6.81)

where constraints (6.80) prohibit integer solutions that have been already analyzed
in CRi from appearing again and constraint (6.79) excludes integer solutions with
higher values than the current upper bound. If problem (6.81) is infeasible then
the region CRi is excluded from further recursion and the current upper bound
represents the final solution. If problem (6.81) is feasible, then the discrete optimal
component z∗di

is stored and represents a feasible integer variable that is optimal
at least in one point of CRi.

Recursion

At step j we have stored

1. A list of Nj polyhedral regions CRi and for each of them an associated
parametric affine upper bound J̄i(x) (J̄i(x) = +∞ if no integer solution has
been found yet in CRi).

2. For each CRi a set of integer variables Zi = z̄0di
, . . . , z̄Nbi

di
, that have already

been explored in the region CRi.

3. For each CRi an integer feasible variable z̄Nbi+1
di

/∈ Zi such that there exists zc

and x̂ ∈ CRi for which Gz ≤ w+Sx̂ and c′z < J̄i(x̂) where z = {zc, z̄Nbi+1
di

}.
That is, z̄Nbi+1

di
is an integer variable that improves the current bound for at

least one point of the current polyhedron.

For all the regions CRi not excluded from the MILP’s subproblem (6.77)–(6.81)
the algorithm continues to iterate between the mp-LP (6.75) with z̄Nbi+1

di
= z∗di

and the MILP (6.77)–(6.81). The algorithm terminates when all the MILPs (6.77)–
(6.81) are infeasible.

Note that the algorithm generates a partition of the state space. Some parameter
x could belong to the boundary of several regions. Differently from the LP and QP
case, the value function may be discontinuous and therefore such a case has to be
treated carefully. If a point x belongs to different critical regions, the expressions
of the value function associated with such regions have to be compared in order
to assign to x the right optimizer. Such a procedure can be avoided by keeping
track of which facet belongs to a certain critical region and which not. Moreover,
if the value functions associated with the regions containing the same parameter x
coincide this may imply the presence of multiple optimizers.

140 6 Multiparametric Programming: A Geometric Approach

6.4.3 Solution Properties

The following properties of J∗(x) and Z∗(x) follow easily from the algorithm
described above.

Theorem 6.10 Consider the mp-MILP (6.72). The set K∗ is the union of a finite
number of (possibly open) polyhedra and the value function J∗ is piecewise affine
on polyhedra. If the optimizer z∗(x) is unique for all x ∈ K∗, then the optimizer
functions z∗c : K∗ → Rsc and z∗d : K∗ → {0, 1}sd are piecewise affine and piecewise
constant, respectively, on polyhedra. Otherwise, it is always possible to define a
piecewise affine optimizer function z∗(x) ∈ Z∗(x) for all x ∈ K∗.

Note that, differently from the mp-LP case, the set K∗ can be nonconvex and
even disconnected.

6.5 Multiparametric Mixed-Integer Quadratic
Programming

6.5.1 Formulation and Properties

Consider the mp-QP

J∗(x) = min
z

J(z, x) = z′H1z + c′1z

subj. to Gz ≤ w + Sx,
(6.82)

When we restrict some of the optimization variables to be 0 or 1, z = [z′c, z
′
d]

′,
where zc ∈ Rsc , zd ∈ {0, 1}sd , we refer to (6.82) as a multiparametric mixed-integer
quadratic program (mp-MIQP). Given a closed and bounded polyhedral set K ⊂ Rn

of parameters,

K = {x ∈ Rn : Tx ≤ N}, (6.83)

we denote by K∗ ⊆ K the region of parameters x ∈ K such that the MIQP (6.82) is
feasible and the optimum J∗(x) is finite. For any given x̄ ∈ K∗, J∗(x̄) denotes the
minimum value of the objective function in problem (6.82) for x = x̄. The value
function J∗ : K∗ → R denotes the function which expresses the dependence on x
of the minimum value of the objective function over K∗. The set-valued function
Z∗ : K∗ → 2R

sc ×2{0,1}
sd describes for any fixed x ∈ K∗ the set of optimizers z∗(x)

related to J∗(x).
We aim at determining the region K∗ ⊆ K of feasible parameters x and at

finding the expression of the value function J∗(x) and the expression of an optimizer
function z∗(x) ∈ Z∗(x).

We show with a simple example that the geometric approach discussed in this
chapter cannot be used for solving mp-MIQPs.

6.5 Multiparametric Mixed-Integer Quadratic Programming 141

Example 6.8 Suppose z1, z2, x1, x2 ∈ R and δ ∈ {0, 1}, then the following mp-MIQP

J∗(x1, x2) = minz1,z2,δ z21 + z22 − 25δ + 100

subj. to

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 10
−1 0 10
0 1 10
0 −1 10
1 0 −10

−1 0 −10
0 1 −10
0 −1 −10
0 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣ z1
z2
δ

⎤⎦ ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 0
0 1
0 −1
0 0
0 0
0 0
0 0
1 0

−1 0
0 1
0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
x1

x2

]
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
10
10
10
0
0
0
0
10
10
10
10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6.84)

can be simply solved by noting that for δ = 1 z1 = x1 and z2 = x2 while for δ = 0
z1 = z2 = 0. By comparing the value functions associated with δ = 0 and δ = 1 we
obtain two critical regions

CR1 = {x1, x2 ∈ R : x2
1 + x2

2 ≤ 25}
CR2 = {x1, x2 ∈ R : − 10 ≤ x1 ≤ 10, − 10 ≤ x2 ≤ 10, x2

1 + x2
2 > 25}, (6.85)

z∗1(x1, x2) =

{
x1 if [x1, x2] ∈ CR1

0 if [x1, x2] ∈ CR2

z∗2(x1, x2) =

{
x2 if [x1, x2] ∈ CR1

0 if [x1, x2] ∈ CR2 ,

(6.86)

and the parametric value function

J∗(x1, x2) =

{
x2
1 + x2

2 + 75 if [x1, x2] ∈ CR1

100 if [x1, x2] ∈ CR2.
(6.87)

The two critical regions and the value function are depicted in Figure 6.11.

CR1

CR2

x1

x
2

(a) Critical regions.

x1
x2

J
∗ (
x
)

(b) Value function.

Figure 6.11 Example 6.8. Solution to the mp-MIQP (6.84).

142 6 Multiparametric Programming: A Geometric Approach

Example 6.8 demonstrates that, in general, the critical regions of an mp-MIQP
cannot be decomposed into convex polyhedra. Therefore the method of partitioning
the rest of the space presented in Theorem 4.2 cannot be applied here. In Chapter
17 we will present an algorithm that efficiently solves specific mp-MIQPs that stem
from the optimal control of discrete-time hybrid systems.

6.6 Literature Review

Many of the theoretical results on parametric programming can be found in
[18, 107, 47, 116].

The first method for solving parametric linear programs was proposed by Gass
and Saaty [120], and since then extensive research has been devoted to sensitivity
and multiparametric linear analysis, as attested by the hundreds of references
in [115] (see also [116] for recent advances in the field). One of the first methods
for solving multiparametric linear programs (mp-LPs) was formulated by Gal and
Nedoma [117]. The method constructs the critical regions iteratively, by visiting
the graph of bases associated with the LP tableau of the original problem. Many
of the results on mp-LP presented in this book can be found in [115, p. 178–180].

Note that in [117, 115] a critical region is defined as a subset of the
parameter space on which a certain basis of the linear program is optimal. The
algorithm proposed in [117] for solving multiparametric linear programs generates
nonoverlapping critical regions by generating and exploring the graph of bases. In
the graph of bases the nodes represent optimal bases of the given multiparametric
problem and two nodes are connected by an edge if it is possible to pass from one
basis to another by one pivot step (in this case the bases are called neighbors).
In this book we use the definition (6.4) of critical regions which is not associated
with the bases but with the set of active constraints and it is directly related to
the definition given in [2, 207, 116].

The solution to multiparametric quadratic programs has been studied in detail
in [18, Chapter 5]. In [44] Bemporad and coauthors presented a simple method
for solving mp-QPs. The method constructs a critical region in a neighborhood of
a given parameter, by using the KKT conditions for optimality, and then recursively
explores the parameter space outside such a region. Other algorithms for solving
mp-QPs have been proposed by Seron, DeDoná and Goodwin in [262, 99] in
parallel with the study of Bemporad and coauthors in [44], by Tøndel, Johansen
and Bemporad in [274] and by Baotic in [19]. All these algorithms are based on
an iterative procedure that builds up the parametric solution by generating new
polyhedral regions of the parameter space at each step. The methods differ in
the way they explore the parameter space, that is, the way they identify active
constraints corresponding to the critical regions neighboring to a given critical
region, i.e., in the “active set generator” component.

6.6 Literature Review 143

In [262, 99] the authors construct the unconstrained critical region and then
generate neighboring critical regions by enumerating all possible combinations of
active constraints.

In [274] the authors explore the parameter space outside a given region CRi

by examining its set of active constraints Ai. The critical regions neighboring to
CRi are constructed by elementary operations on the active constraints set Ai

that can be seen as an equivalent “pivot” for the quadratic program. For this
reason the method can be considered as an extension of the method of Gal [115]
to multiparametric quadratic programming.

In [19] the author uses a direct exploration of the parameter space as in [44]
but he avoids the partition of the state space described in Theorem 4.2. Given
a polyhedral critical region CRi, the procedure goes through all its facets and
generates the Chebyshev center of each facet. For each facet Fi a new parameter
xi
ε is generated, by moving from the center of the facet in the direction of the normal

to the facet by a small step. If such parameter xi
ε is infeasible or is contained in

a critical region already stored, then the exploration in the direction of Fi stops.
Otherwise, the set of active constraints corresponding to the critical region sharing
the facet Fi with the region CRi is found by solving a QP for the new parameter xi

ε.

In [1, 101] two approaches were proposed for solving mp-MILP problems. In
both methods the authors use an mp-LP algorithm and a branch and bound
strategy that avoids the complete enumeration of combinations of 0–1 integer
variables by comparing the available bounds on the multiparametric solutions.

Part III

Optimal Control

7

General Formulation
and Discussion

In this chapter we introduce the optimal control problem we will be studying in
a very general form. We want to communicate the basic definitions and essential
concepts. We will sacrifice mathematical precision for the sake of simplicity. In later
chapters we will study specific versions of this problem for specific cost functions
and system classes in greater detail.

7.1 Problem Formulation

We consider the nonlinear time-invariant system

x(t+ 1) = g(x(t), u(t)), (7.1)

subject to the constraints
h(x(t), u(t)) ≤ 0 (7.2)

at all time instants t ≥ 0. In (7.1)–(7.2), x(t) ∈ Rn and u(t) ∈ Rm are the state and
input vector, respectively. Inequality (7.2) with h : Rn × Rm → Rnc expresses the
nc constraints imposed on the input and the states. These may be simple upper
and lower bounds or more complicated expressions. We assume that the origin is
an equilibrium point (g(0, 0) = 0) in the interior of the feasible set, i.e., h(0, 0) < 0.

We assumed the system to be specified in discrete time. One reason is that we
are looking for solutions to engineering problems. In practice, the controller will
almost always be implemented through a digital computer by sampling the variables
of the system and transmitting the control action to the system at discrete time
points. Another reason is that for the solution of the optimal control problems for
discrete-time systems we will be able to make ready use of powerful mathematical
programming software.

We want to caution the reader, however, that in many instances the discrete
time model is an approximation of the continuous time model. It is generally
difficult to derive “good” discrete time models from nonlinear continuous time

148 7 General Formulation and Discussion

models, and especially so when the nonlinear system has discontinuities as would
be the case for switched systems. We also note that continuous time switched
systems can exhibit behavioral characteristics not found in discrete-time systems,
for example, an ever increasing number of switches in an ever decreasing time
interval (Zeno behavior [127]).

We define the following performance objective or cost function from time instant
0 to time instant N

J0→N (x0, U0→N) = p(xN) +

N−1∑
k=0

q(xk, uk), (7.3)

where N is the time horizon and xk denotes the state vector at time k obtained by
starting from the measured state x0 = x(0) and applying to the system model

xk+1 = g(xk, uk), (7.4)

the input sequence u0, . . . , uk−1. From this sequence we define the vector of future
inputs U0→N = [u′

0, . . . , u
′
N−1]

′ ∈ Rs, s = mN . The terms q(xk, uk) and p(xN)
are referred to as stage cost and terminal cost, respectively, and are assumed to be
positive definite (q � 0, p � 0):

p(x, u) > 0 ∀x 	= 0, u 	= 0, p(0, 0) = 0
q(x, u) > 0 ∀x 	= 0, u 	= 0, q(0, 0) = 0.

The form of the cost function (7.3) is very general. If a practical control objective
can be expressed as a scalar function then this function usually takes the indicated
form. Specifically, we consider the following constrained finite time optimal control
(CFTOC) problem.

J∗
0→N (x0) = minU0→N

J0→N (x0, U0→N)

subj. to xk+1 = g(xk, uk), k = 0, . . . , N − 1

h(xk, uk) ≤ 0, k = 0, . . . , N − 1

xN ∈ Xf

x0 = x(0).

(7.5)

Here Xf ⊆ Rn is a terminal region that we want the system states to reach at the
end of the horizon. The terminal region could be the origin, for example. We define
X0→N ⊆ Rn to be the set of initial conditions x(0) for which there exists an input
vector U0→N so that the inputs u0, . . . , uN−1 and the states x0, . . . , xN satisfy the
model xk+1 = g(xk, uk) and the constraints h(xk, uk) ≤ 0 and that the state xN

lies in the terminal set Xf .
We can determine this set of feasible initial conditions in a recursive manner.

Let us denote with Xj→N the set of states xj at time j which can be steered
into Xf at time N , i.e., for which the model xk+1 = g(xk, uk) and the constraints
h(xk, uk) ≤ 0 are feasible for k = j, . . . , N−1 and xN ∈ Xf . This set can be defined
recursively by

Xj→N = {x ∈ Rn : ∃u such that (h(x, u) ≤ 0, and g(x, u) ∈ Xj+1→N)},
j = 0, . . . , N − 1 (7.6)

XN→N = Xf . (7.7)

The set X0→N is the final result of these iterations starting with Xf .

7.2 Solution via Batch Approach 149

The optimal cost J∗
0→N (x0) is also called value function. In general, the problem

(7.3)–(7.5) may not have a minimum. We will assume that there exists a minimum.
This is the case, for example, when the set of feasible input vectors U0→N (defined
by h and Xf) is compact and when the functions g, p and q are continuous. Also,
there might be several input vectors U∗

0→N which yield the minimum (J∗
0→N (x0) =

J0→N (x0, U
∗
0→N)). In this case we will define one of them as the minimizer U∗

0→N .
Note that throughout the book we will distinguish between the current state

x(k) of system (7.1) at time k and the variable xk in the optimization problem (7.5),
that is the predicted state of system (7.1) at time k obtained by starting from the
state x0 and applying to system (7.4) the input sequence u0, . . . , uk−1. Analogously,
u(k) is the input applied to system (7.1) at time k while uk is the k-th optimization
variable of the optimization problem (7.5). Clearly, x(k) = xk for any k if u(k) = uk

for all k (under the assumption that our model is perfect).
In the rest of this chapter we will be interested in the following questions related

to the general optimal control problem (7.3)–(7.5).

• Solution. We will show that the problem can be expressed and solved either
as one general nonlinear programming problem, or in a recursive manner by
invoking Bellman’s Principle of Optimality.

• Infinite horizon. We will investigate if a solution exists as N → ∞,
the properties of this solution and how it can be obtained or at least
approximated by using a receding horizon technique.

7.2 Solution via Batch Approach

If we write the equality constraints appearing in (7.5) explicitly

x1 = g(x(0), u0)
x2 = g(x1, u1)
...
xN = g(xN−1, uN−1),

(7.8)

then the optimal control problem (7.3)–(7.5), rewritten below

J∗
0→N (x0) = minU0→N

p(xN) +

N−1∑
k=0

q(xk, uk)

subj. to x1 = g(x0, u0)
x2 = g(x1, u1)
...
xN = g(xN−1, uN−1)
h(xk, uk) ≤ 0, k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

(7.9)

is recognized more easily as a general nonlinear programming problem with
variables u0, . . . , uN−1 and x1, . . . , xN .

150 7 General Formulation and Discussion

As an alternative we may try to eliminate the state variables and equality
constraints (7.8) by successive substitution so that we are left with u0, . . . , uN−1 as
the only decision variables. For example, we can express x2 as a function of x(0), u0

and u1 only, by eliminating the intermediate state x1

x2 = g(x1, u1)
x2 = g(g(x(0), u0), u1).

(7.10)

Except when the state equations are linear this successive substitution may become
complex. Even when they are linear it may be bad from a numerical point of view.

Either with or without successive substitution the solution of the nonlinear
programming problem is a sequence of present and future inputs U∗

0→N =

[u∗′

0 , . . . , u∗′

N−1]
′ determined for the particular initial state x(0).

7.3 Solution via Recursive Approach

The recursive approach, Bellman’s dynamic programming technique, rests on a
simple idea, the principle of optimality. It states that for a trajectory x0, x

∗
1, . . . , x

∗
N

to be optimal, the trajectory starting from any intermediate point x∗
j , i.e.,

x∗
j , x

∗
j+1, . . . , x

∗
N , 0 ≤ j ≤ N − 1, must be optimal.

Consider the following example to provide an intuitive justification [53]. Suppose
that the fastest route from Los Angeles to Boston passes through Chicago. Then
the principle of optimality formalizes the obvious fact that the Chicago to Boston
portion of the route is also the fastest route for a trip that starts from Chicago and
ends in Boston.

We can utilize the principle of optimality for the optimal control problem we
are investigating. We define the cost over the reduced horizon from j to N

Jj→N (xj , uj , uj+1, . . . , uN−1) = p(xN) +
N−1∑
k=j

q(xk, uk), (7.11)

also called the cost-to-go. Then the optimal cost-to-go J∗
j→N is

J∗
j→N (xj) = minuj ,uj+1,...,uN−1

Jj→N (xj , uj , uj+1, . . . , uN−1)

subj. to xk+1 = g(xk, uk), k = j, . . . , N − 1
h(xk, uk) ≤ 0, k = j, . . . , N − 1
xN ∈ Xf .

(7.12)

Note that the optimal cost-to-go J∗
j→N (xj) depends only on the initial state xj .

The principle of optimality implies that the optimal cost-to-go J∗
j−1→N from

time j − 1 to the final time N can be found by minimizing the sum of the stage
cost q(xj−1, uj−1) and the optimal cost-to-go J∗

j→N (xj) from time j onwards:

J∗
j−1→N (xj−1) = min

uj−1

q(xj−1, uj−1) + J∗
j→N (xj)

subj. to xj = g(xj−1, uj−1)
h(xj−1, uj−1) ≤ 0
xj ∈ Xj→N .

(7.13)

7.3 Solution via Recursive Approach 151

Here the only decision variable left for the optimization is uj−1, the input at time
j − 1. All the other inputs u∗

j , . . . , u
∗
N−1 have already been selected optimally to

yield the optimal cost-to-go J∗
j→N (xj). We can rewrite (7.13) as

J∗
j−1→N (xj−1) = min

uj−1

q(xj−1, uj−1) + J∗
j→N (g(xj−1, uj−1))

subj. to h(xj−1, uj−1) ≤ 0
g(xj−1, uj−1) ∈ Xj→N ,

(7.14)

making the dependence of xj on the initial state xj−1 explicit.
The optimization problem (7.14) suggests the following recursive algorithm

backwards in time to determine the optimal control law. We start with the terminal
cost and constraint

J∗
N→N (xN) = p(xN) (7.15)

XN→N = Xf , (7.16)

and then proceed backwards

J∗
N−1→N (xN−1) = min

uN−1

q(xN−1, uN−1) + J∗
N→N (g(xN−1, uN−1))

subj. to h(xN−1, uN−1) ≤ 0,
g(xN−1, uN−1) ∈ XN→N

...
J∗
0→N (x0) = min

u0

q(x0, u0) + J∗
1→N (g(x0, u0))

subj. to h(x0, u0) ≤ 0,
g(x0, u0) ∈ X1→N

x0 = x(0).

(7.17)

This algorithm, popularized by Bellman, is referred to as dynamic programming.
The dynamic programming problem is appealing because it can be stated compactly
and because at each step the optimization takes place over one element uj of the
optimization vector only. This optimization is rather complex, however. It is not a
standard nonlinear programming problem, since we have to construct the optimal
cost-to-go J∗

j→N (xj), a function defined over the subset Xj→N of the state space.
In a few special cases we know the type of function and we can find it efficiently.

For example, in the next chapter we will cover the case when the system is linear
and the cost is quadratic. Then the optimal cost-to-go is also quadratic and can be
constructed rather easily. Later in the book we will show that, when constraints
are added to this problem, the optimal cost-to-go becomes piecewise quadratic and
efficient algorithms for its construction are also available.

In general, however, we may have to resort to a “brute force” approach to
construct the cost-to-go function J∗

j−1→N and to solve the dynamic program. Let us
assume that at time j−1 the cost-to-go J∗

j→N is known and discuss how to construct
an approximation of J∗

j−1→N . With J∗
j→N known, for a fixed xj−1 the optimization

problem (7.14) becomes a standard nonlinear programming problem. Thus, we
can define a grid in the set Xj−1→N of the state space and compute the optimal
cost-to-go function on each grid point. We can then define an approximate value

152 7 General Formulation and Discussion

function J̃∗
j−1→N (xj−1) at intermediate points via interpolation. The complexity

of constructing the cost-to-go function in this manner increases rapidly with the
dimension of the state space (“curse of dimensionality”).

The extra benefit of solving the optimal control problem via dynamic pro-
gramming is that we do not only obtain the vector of optimal inputs U∗

0→N for a
particular initial state x(0) as with the batch approach. At each time j the optimal
cost-to-go function defines implicitly a nonlinear feedback control law.

u∗
j (xj) = arg min

uj

q(xj , uj) + J∗
j+1→N (g(xj , uj))

subj. to h(xj , uj) ≤ 0,
g(xj , uj) ∈ Xj+1→N .

(7.18)

For a fixed xj this nonlinear programming problem can be solved quite easily in
order to find u∗

j (xj). Because the optimal cost-to-go function J∗
j→N (xj) changes

with time j, the nonlinear feedback control law is time-varying.

7.4 Optimal Control Problem with Infinite Horizon

We are interested in the optimal control problem (7.3)–(7.5) as the horizon N
approaches infinity.

J∗
0→∞(x0) = minu0,u1,...

∞∑
k=0

q(xk, uk)

subj. to xk+1 = g(xk, uk), k = 0, . . . ,∞
h(xk, uk) ≤ 0, k = 0, . . . ,∞
x0 = x(0).

(7.19)

We define the set of initial conditions for which this problem has a solution.

X0→∞ = {x(0) ∈ Rn : Problem (7.19) is feasible and J∗
0→∞(x(0)) < +∞}.

(7.20)

For the value function J∗
0→∞(x0) to be finite it must hold that

lim
k→∞

q(xk, uk) = 0,

and because q(xk, uk) > 0 for all (xk, uk) 	= 0

lim
k→∞

xk = 0

and
lim
k→∞

uk = 0.

Thus the sequence of control actions generated by the solution of the infinite horizon
problem drives the system to the origin. For this solution to exists the system must
be, loosely speaking, stabilizable.

7.4 Optimal Control Problem with Infinite Horizon 153

Using the recursive dynamic programming approach we can seek the solution
of the infinite horizon optimal control problem by increasing N until we observe
convergence. If the dynamic programming algorithm converges as N → ∞ then
(7.14) becomes the Bellman equation

J∗(x) = minu q(x, u) + J∗(g(x, u))
subj. to h(x, u) ≤ 0

g(x, u) ∈ X0→∞

(7.21)

This procedure of simply increasing N may not be well behaved numerically
and it may also be difficult to define a convergence criterion that is meaningful for
the control problem. We will describe a method, called Value Function Iteration,
in the next section.

An alternative is receding horizon control which can yield a time invariant
controller guaranteeing convergence to the origin without requiring N → ∞. We
will describe this important idea later in this chapter.

7.4.1 Value Function Iteration

Once the value function J∗(x) is known, the nonlinear feedback control law u∗(x)
is defined implicitly by (7.21)

u∗(x) = arg minu q(x, u) + J∗(g(x, u))
subj. to h(x, u) ≤ 0

g(x, u) ∈ X0→∞.
(7.22)

It is time invariant and guarantees convergence to the origin for all states in X0→∞.
For a given x ∈ X0→∞, u∗(x) can be found from (7.21) by solving a standard
nonlinear programming problem.

In order to find the value function J∗(x) we need to solve (7.21). We can start
with some initial guess J̃∗

0 (x) for the value function and an initial guess X̃0 for the
region in the state space where we expect the infinite horizon problem to converge
and iterate. Then at iteration i+ 1 solve

J̃∗
i+1(x) = minu q(x, u) + J̃∗

i (g(x, u))
subj. to h(x, u) ≤ 0

g(x, u) ∈ X̃i

(7.23)

X̃i+1 = {x ∈ Rn : ∃u (h(x, u) ≤ 0, and g(x, u) ∈ X̃i)}. (7.24)

Again, here i is the iteration index and does not denote time. This iterative
procedure is called value function iteration. It can be executed as follows. Let us
assume that at iteration step i we gridded the set X̃i and that J̃∗

i (x) is known at each
grind point from the previous iteration. We can approximate J̃∗

i (x) at intermediate
points via interpolation. For a fixed point x̄ the optimization problem (7.23) is a
nonlinear programming problem yielding J̃∗

i (x̄). In this manner the approximate
value function J̃∗

i (x) can be constructed at all grid points and we can proceed to
the next iteration step i+ 1.

154 7 General Formulation and Discussion

7.4.2 Receding Horizon Control

Receding Horizon Control will be covered in detail in Chapter 12. Here we illustrate
the main idea and discuss the fundamental properties.

Assume that at time t = 0 we determine the control action u0 by solving
the finite horizon optimal control problem (7.3)–(7.5). If J∗

0→N (x0) converges to
J∗
0→∞(x0) as N → ∞ then the effect of increasing N on the value of u0 should

diminish as N → ∞. Thus, intuitively, instead of making the horizon infinite
we can get a similar behavior when we use a long, but finite horizon N, and
repeat this optimization at each time step, in effect moving the horizon forward
(moving horizon or receding horizon control). We can use the batch or the dynamic
programming approach.

Batch approach. We solve an optimal control problem with horizon N yielding a
sequence of optimal inputs u∗

0, . . . , u
∗
N−1, but we would implement only the first one

of these inputs u∗
0. At the next time step we would measure the current state and

then again solve the N -step problem with the current state as new initial condition
x0. If the horizon N is long enough then we expect that this approximation of the
infinite horizon problem should not matter and the implemented sequence should
drive the states to the origin.

Dynamic programming approach. We always implement the control u0 obtained
from the optimization problem

J∗
0→N (x0) = min

u0

q(x0, u0) + J∗
1→N (g(x0, u0))

subj. to h(x0, u0) ≤ 0,
g(x0, u0) ∈ X1→N ,
x0 = x(0)

(7.25)

where J∗
1→N (g(x0, u0)) is the optimal cost-to-go from the state x1 = g(x0, u0) at

time 1 to the end of the horizon N .
If the dynamic programming iterations converge as N → ∞, then for a long,

but finite horizon N we expect that this receding horizon approximation of the
infinite horizon problem should not matter and the resulting controller will drive
the system asymptotically to the origin.

In both the batch and the recursive approach, however, it is not obvious how
long N must be for the receding horizon controller to inherit these desirable
convergence characteristics. Indeed, for computational simplicity we would like to
keep N small. We will argue next that the proposed control scheme guarantees
convergence just like the infinite horizon variety if we impose a specific terminal
constraint, for example, if we require the terminal region to be the origin Xf = 0.

From the principle of optimality we know that

J∗
0→N (x0) = min

u0

q(x0, u0) + J∗
1→N (x1). (7.26)

Assume that we are at x(0) at time 0 and implement the optimal u∗
0 that takes us

to the next state x1 = g(x(0), u∗
0). At this state at time 1 we postulate to use over

the next N steps the sequence of optimal moves determined at the previous step
followed by zero: u∗

1, . . . , u
∗
N−1, 0. This sequence is not optimal but the associated

cost over the shifted horizon from 1 to N + 1 can be easily determined. It consists

7.4 Optimal Control Problem with Infinite Horizon 155

of three parts: (1) the optimal cost J∗
0→N (x0) from time 0 to N computed at time

0, minus (2) the stage cost q(x0, u0) at time 0 plus (3) the cost at time N + 1.
But this last cost is zero because we imposed the terminal constraint xN = 0 and
assumed uN = 0. Thus the cost over the shifted horizon for the assumed sequence
of control moves is

J∗
0→N (x0)− q(x0, u0).

Because this postulated sequence of inputs is not optimal at time 1

J∗
1→N+1(x1) ≤ J∗

0→N (x0)− q(x0, u0).

Because the system and the objective are time invariant J∗
1→N+1(x1) = J∗

0→N (x1)
so that

J∗
0→N (x1) ≤ J∗

0→N (x0)− q(x0, u0).

As q � 0 for all (x, u) 	= (0, 0), the sequence of optimal costs J∗
0→N (x0),

J∗
0→N (x1), . . . is strictly decreasing for all (x, u) 	= (0, 0). Because the cost

J∗
0→N ≥ 0 the sequence J∗

0→N (x0), J
∗
0→N (x1), . . . (and thus the sequence x0, x1,. . .)

is converging. Thus we have established the following important theorem.

Theorem 7.1 (Convergence of Receding Horizon Control) At time step
j consider the cost function

Jj→j+N (xj , uj , uj+1, . . . , uj+N−1) =

j+N∑
k=j

q(xk, uk), q � 0 (7.27)

and the CFTOC problem

J∗
j→j+N (xj) = minuj ,uj+1,...,uj+N−1

Jj→j+N (xj , uj , uj+1, . . . , uj+N−1)

subj. to xk+1 = g(xk, uk)
h(xk, uk) ≤ 0, k = j, . . . , j +N − 1
xN = 0

(7.28)

Assume that only the optimal u∗
j is implemented. At the next time step j + 1 the

CFTOC problem is solved again starting from the resulting state xj+1 = g(xj , u
∗
j).

Assume that the CFTOC problem (7.28) has a solution for every state xj , xj+1, . . .
resulting from the control policy. Then the system will converge to the origin as
j → ∞. �

Thus we have established that a receding horizon controller with terminal
constraint xN = 0 has the same desirable convergence characteristics as the
infinite horizon controller. At first sight the theorem appears very general and
powerful. It is based on the implicit assumption, however, that at every time step
the CFTOC problem has a solution. Infeasibility would occur, for example, if the
underlying system is not stabilizable. It could also happen that the constraints on
the inputs which restrict the control action prevent the system from reaching the
terminal state in N steps. In Chapter 12 we will present special formulations of
problem (7.28) such that feasibility at the initial time guarantees feasibility for
all future times. Furthermore, in addition to asymptotic convergence to the origin
we will establish stability for the closed-loop system with the receding horizon
controller.

156 7 General Formulation and Discussion

Remark 7.1 For the sake of simplicity in the rest of the book we will use the following
shorter notation

J∗
j (xj) = J∗

j→N (xj), j = 0, . . . , N

J∗
∞(x0) = J∗

0→∞(x0)

Xj = Xj→N , j = 0, . . . , N

X∞ = X0→∞

U0 = U0→N

(7.29)

and use the original notation only if needed.

7.5 Lyapunov Stability

While asymptotic convergence limk→∞ xk = 0 is a desirable property, it is
generally not sufficient in practice. We would also like a system to stay in a small
neighborhood of the origin when it is disturbed slightly. Formally, this is expressed
as Lyapunov stability.

7.5.1 General Stability Conditions

Consider the autonomous system

xk+1 = g(xk) (7.30)

with g(0) = 0.

Definition 7.1 (Lyapunov Stability) The equilibrium point x = 0 of
system (7.30) is

– stable (in the sense of Lyapunov) if, for each ε > 0, there is δ > 0 such that

‖x0‖ < δ ⇒ ‖xk‖ < ε, ∀k ≥ 0 (7.31)

– unstable if not stable

– asymptotically stable in Ω ⊆ Rn if it is stable and

lim
k→∞

xk = 0, ∀x0 ∈ Ω (7.32)

– globally asymptotically stable if it is asymptotically stable and Ω = Rn

– exponentially stable if it is stable and there exist constants α > 0 and γ ∈
(0, 1) such that

‖x0‖ < δ ⇒ ‖xk‖ ≤ α‖x0‖γk, ∀k ≥ 0. (7.33)

The ε-δ requirement for stability (7.31) takes a challenge–answer form. To
demonstrate that the origin is stable, for any value of ε that a challenger may
chose (however small), we must produce a value of δ such that a trajectory starting
in a δ neighborhood of the origin will never leave the ε neighborhood of the origin.

7.5 Lyapunov Stability 157

Remark 7.2 If in place of system (7.30), we consider the time-varying system xk+1 =
g(xk, k), then δ in Definition 7.1 is a function of ε and k, i.e., δ = δ(ε, k) > 0. In this
case, we introduce the concept of “uniform stability.” The equilibrium point x = 0 is
uniformly stable if, for each ε > 0, there is δ = δ(ε) > 0 (independent from k) such
that

‖x0‖ < δ ⇒ ‖xk‖ < ε, ∀k ≥ 0. (7.34)

The following example shows that Lyapunov stability and convergence are, in
general, different properties.

Example 7.1 Consider the following system with one state x ∈ R:

xk+1 = xk(xk − 1− |xk − 1|). (7.35)

The state x = 0 is an equilibrium for the system. For any state x ∈ [−1, 1] we have
(x− 1) ≤ 0 and the system dynamics (7.35) become

xk+1 = 2x2
k − 2xk. (7.36)

System (7.36) generates oscillating and diverging trajectories for any x0 ∈
(−1, 1)\{0}. Any such trajectory will enter in finite time T the region with x ≥ 1. In
this region the system dynamics (7.35) become

xk+1 = 0, ∀ k ≥ T. (7.37)

Therefore the origin is not Lyapunov stable, however the system converges to the
origin for all x0 ∈ (−∞,+∞).

Usually, to show Lyapunov stability of the origin for a particular system one
constructs a so called Lyapunov function, i.e., a function satisfying the conditions
of the following theorem.

Theorem 7.2 Consider the equilibrium point x = 0 of system (7.30). Let Ω ⊂ Rn

be a closed and bounded set containing the origin. Assume there exists a function
V : Rn → R continuous at the origin, finite for every x ∈ Ω, and such that

V (0) = 0 and V (x) > 0, ∀x ∈ Ω \ {0} (7.38a)

V (xk+1)− V (xk) ≤ −α(xk) ∀xk ∈ Ω \ {0} (7.38b)

where α : Rn → R is a continuous positive definite function. Then x = 0 is
asymptotically stable in Ω.

Definition 7.2 A function V (x) satisfying conditions (7.38a)–(7.38b) is called
a Lyapunov Function.

The main idea of Theorem 7.2 can be explained as follows. We aim to find a scalar
function V (x) that captures qualitative characteristics of the system response, and,
in particular, its stability. We can think of V as an energy function that is zero at
the origin and positive elsewhere (condition (7.38a)). Condition (7.38b) of Theorem
7.2 requires that for any state xk ∈ Ω, xk 	= 0 the energy decreases as the system
evolves to xk+1.

158 7 General Formulation and Discussion

A proof of Theorem 7.2 for continuous dynamical systems can be found in [184].
The continuity assumptions on the dynamical system g is not used in the proof
in [247, p. 609]. Assumption in equation (7.38b), however, together with the
continuity of V (·) at the origin, implies that g(·) must be continuous at the origin.

Theorem 7.2 states that if we find an energy function which satisfies the two
conditions (7.38a)–(7.38b), then the system states starting from any initial state
x0 ∈ Ω will eventually settle to the origin.

Note that Theorem 7.2 is only sufficient. If condition (7.38b) is not satisfied
for a particular choice of V nothing can be said about stability of the origin.
Condition (7.38b) of Theorem 7.2 can be relaxed to allow α to be a continuous
positive semi-definite (psd) function:

V (xk+1)− V (xk) ≤ −α(xk), ∀xk 	= 0, α continuous and psd. (7.39)

Condition (7.39) along with condition (7.38a) are sufficient to guarantee stability of
the origin as long as the set {xk : V (g(xk))− V (xk) = 0} contains no trajectory of
the system xk+1 = g(xk) except for xk = 0 for all k ≥ 0. This relaxation of Theorem
7.2 is the so called Barbashin-Krasovski-LaSalle principle [183]. It basically means
that V (xk) may stay constant and non zero at one or more time instants as long
as it does not do so at an equilibrium point or periodic orbit of the system.

A similar result as Theorem 7.2 can be derived for global asymptotic stability,
i.e., Ω = Rn.

Theorem 7.3 Consider the equilibrium point x = 0 of system (7.30). Assume
there exists a function V : Rn → R continuous at the origin, finite for every x ∈ Rn,
and such that

‖x‖ → ∞ ⇒ V (x) → ∞ (7.40a)

V (0) = 0 and V (x) > 0, ∀x 	= 0 (7.40b)

V (xk+1)− V (xk) ≤ −α(xk) ∀xk 	= 0 (7.40c)

where α : Rn → R is a continuous positive definite function. Then x = 0 is globally
asymptotically stable. �

Definition 7.3 A function V (x) satisfying condition (7.40a) is said to be
radially unbounded.

Definition 7.4 A radially unbounded Lyapunov function is called a Global
Lyapunov function.

Note that it was not enough just to restate Theorem 7.2 with Ω = Rn but we
also have to require V (x) to be radially unbounded to guarantee global asymptotic
stability. To motivate this condition consider the candidate Lyapunov function for
a system in R2[176]

V (x) =
x2
1

1 + x2
1

+ x2
2, (7.41)

7.5 Lyapunov Stability 159

x1
x2

V

(x

)

(a) Lyapunov function V (x).

x1

x
2

–4 –2 0 2
–1

0

1

4

(b) Level curves of V (x).

Figure 7.1 Lyapunov function (7.41).

which is depicted in Figure 7.1, where x1 and x2 denote the first and second
components of the state vector x, respectively. V (x) in (7.41) is not radially
unbounded as for x2 = 0

lim
x1→∞

V (x) = 1.

For this Lyapunov function even if condition (7.40c) is satisfied, the state x may
escape to infinity. Condition (7.40c) of Theorem 7.3 guarantees that the level sets
Ωc of V (x) (Ωc = {x ∈ Rn : V (x) ≤ c}) are closed.

The construction of suitable Lyapunov functions is a challenge except for linear
systems. First of all one can quite easily show that for linear systems Lyapunov
stability agrees with the notion of stability based on eigenvalue location.

Theorem 7.4 A linear system xk+1 = Axk is globally asymptotically stable in
the sense of Lyapunov if and only if all its eigenvalues are strictly inside the unit
circle.

We also note that stability is always “global” for linear systems.

7.5.2 Quadratic Lyapunov Functions for Linear Systems

A simple effective Lyapunov function for linear systems is

V (x) = x′Px, P � 0 (7.42)

which satisfies conditions (7.40a)–(7.40b) of Theorem 7.3. In order to test
condition (7.40c) we compute

V (xk+1)−V (xk) = x′
k+1Pxk+1−x′

kPxk = x′
kA

′PAxk−x′
kPxk = x′

k(A
′PA−P)xk.

(7.43)
Therefore condition (7.40c) is satisfied if P � 0 can be found such that

A′PA− P = −Q, Q � 0. (7.44)

160 7 General Formulation and Discussion

Equation (7.44) is referred to as discrete-time Lyapunov equation. The following
Theorem [75, p. 211] shows that P � 0 satisfying (7.44) exists if and only if the
linear system is asymptotically stable.

Theorem 7.5 Consider the linear system xk+1 = Axk. Equation (7.44) has a
unique solution P � 0 for any Q � 0 if and only if A has all eigenvalues strictly
inside the unit circle.

Thus, a quadratic form x′Px is always a suitable Lyapunov function for
linear systems and an appropriate P can be found by solving (7.44) for a chosen
Q � 0 iff the system’s eigenvalues lie inside the unit circle. For nonlinear systems,
determining a suitable form for V (x) is generally difficult.

For a stable linear system xk+1 = Axk, P turns out to be the infinite time cost
matrix

J∞(x0) =

∞∑
k=0

x′
kQxk = x′

0Px0 (7.45)

as we can easily show. From

J∞(x1)− J∞(x0) = x′
1Px1 − x′

0Px0 = x′
0A

′PAx0 − x′
0Px0 = −x′

0Qx0 (7.46)

we recognize that P is the solution of the Lyapunov equation (7.44). In other
words the infinite time cost (7.45) is a Lyapunov function for the linear system
xk+1 = Axk.

The conditions of Theorem 7.5 can be relaxed as follows.

Theorem 7.6 Consider the linear system xk+1 = Axk. Equation (7.44) has a
unique solution P � 0 for any Q = C ′C � 0 if and only if A has all eigenvalues
inside the unit circle and (C,A) is observable.

We can prove Theorem 7.6 in the same way as Callier and Desoer [75, p. 211]
proved Theorem 7.5. In Theorem 7.6 we do not require that the Lyapunov function
decreases at every time step, i.e., we allow Q to be positive semidefinite. To
understand this, let us assume that for a particular system state x̄, V does not
decrease, i.e., x̄′Qx̄ = (Cx̄)′(Cx̄) = 0. Then at the next time steps we have the rate
of decrease (CAx̄)′(CAx̄), (CA2x̄)′(CA2x̄), If the system (C,A) is observable,
then for all x̄ 	= 0

x̄′ [C (CA)′ (CA2)′ · · · (CAn−1)′
]
	= 0, (7.47)

which implies that after at most (n − 1) steps the rate of decrease will become
nonzero. This is a special case of the Barbashin-Krasovski-LaSalle principle. Note
that for C square and nonsingular Theorem 7.6 reduces to Theorem 7.5.

Similarly, we can analyze the controlled system xk+1 = Axk + Buk with uk =
Fxk and the infinite time cost

J∞(x0) =

∞∑
k=0

x′
kQxk + u′

kRuk (7.48)

7.5 Lyapunov Stability 161

with Q = C ′C and R = D′D with det(D) 	= 0. We can rewrite the cost as

J∞(x0) =

∞∑
k=0

x′
k(Q+ F ′RF)xk =

∞∑
k=0

x′
k

[
C
DF

]′ [
C DF

]
xk (7.49)

for the controlled system xk+1 = (A+BF)xk. The infinite time cost matrix P can
now be found from the Lyapunov equation

(A+BF)′P (A+BF)− P =

[
C
DF

]′ [
C DF

]
. (7.50)

According to Theorem 7.6 the solution P is unique and positive definite iff (A+BF)

is stable and

[(
C
DF

)
, (A+BF)

]
is observable. This follows directly from the

observability of (C,A). If (C,A) is observable, then so is (C,A + BF) because
feedback does not affect observability. Observability is also not affected by adding
the observed outputs DFx.

From (7.44) it follows that for stable systems and for a chosen Q � 0 one can
always find P � 0 solving

A′PA− P +Q � 0. (7.51)

This Lyapunov inequality shows that for a stable system we can always find a P
such that V (x) = x′Px decreases at a desired “rate” indicated by Q. We will need
this result later to prove stability of receding horizon control schemes.

7.5.3 1/∞ Norm Lyapunov Functions for Linear Systems

For p = {1,∞} the function
V (x) = ‖Px‖p

with P ∈ Rl×n of full column rank satisfies the requirements (7.40a), (7.40b)
of a Lyapunov function. It can be shown that a matrix P can be found such
that condition (7.40c) is satisfied for the system xk+1 = Axk if and only if the
eigenvalues of A are inside the unit circle. The number of rows l necessary in P
depends on the system. The techniques to construct P are based on the following
theorem [177, 237].

Theorem 7.7 Let P ∈ Rl×n with rank(P) = n and p ∈ {1, ∞}. The function

V (x) = ‖Px‖p (7.52)

is a Lyapunov function for the discrete-time system

xk+1 = Axk, k ≥ 0, (7.53)

if and only if there exists a matrix H ∈ Rl×l, such that

PA = HP, (7.54a)

‖H‖p < 1. (7.54b)

An effective method to find both H and P was proposed by Christophersen and
Morari in [88].

162 7 General Formulation and Discussion

To prove the stability of receding horizon control, later in this book, we will
need to find a P̃ such that

‖P̃Ax‖∞ − ‖P̃ x‖∞ + ‖Qx‖∞ ≤ 0, ∀x ∈ Rn. (7.55)

Note that the inequality (7.55) is equivalent to the Lyapunov inequality (7.51) when
the squared two-norm is replaced by the 1− or ∞−norm. Once we have constructed
a P and H to fulfill the conditions of Theorem 7.7 we can easily find P̃ to satisfy
(7.55) according to the following lemma.

Lemma 7.1 Let P and H be matrices satisfying conditions (7.54), with P full
column rank. Let σ = 1−‖H‖∞, ρ = ‖QP#‖∞, where P# = (P ′P)−1P ′ is the left
pseudoinverse of P . Then, the square matrix

P̃ =
ρ

σ
P (7.56)

satisfies condition (7.55).

Proof: Since P̃ satisfies P̃A = HP̃ , we obtain −‖P̃ x‖∞+‖P̃Ax‖∞+‖Qx‖∞ =
−‖P̃ x‖∞ + ‖HP̃x‖∞ + ‖Qx‖∞ ≤ (‖H‖∞ − 1)‖P̃ x‖∞ + ‖Qx‖∞ ≤ (‖H‖∞ − 1)
‖P̃ x‖∞ + ‖QP#‖∞‖Px‖∞ = 0. Therefore, (7.55) is satisfied. �

8

Linear Quadratic Optimal
Control

In this chapter we study the finite time and infinite time optimal control problem
for unconstrained linear systems with quadratic objective functions. We derive the
structure of the optimal control law by using two approaches: the batch approach
and the dynamic programming approach. For problems with quadratic objective
functions we obtain the well-known Algebraic Riccati Equations.

8.1 Problem Formulation

We consider a special case of the problem stated in the last chapter, where the
system is linear and time-invariant

x(t+ 1) = Ax(t) +Bu(t). (8.1)

Again, x(t) ∈ Rn and u(t) ∈ Rm are the state and input vectors respectively.
We define the following quadratic cost function over a finite horizon of N steps

J0(x0, U0) = x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk, (8.2)

where xk denotes the state vector at time k obtained by starting from the state
x0 = x(0) and applying to the system model

xk+1 = Axk +Buk (8.3)

the input sequence u0, . . . , uk−1. Consider the finite time optimal control problem

J∗
0 (x(0)) = minU0

J0(x(0), U0)
subj. to xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1

x0 = x(0).
(8.4)

164 8 Linear Quadratic Optimal Control

In (8.4) U0 = [u′
0, . . . , u

′
N−1]

′ ∈ Rs, s = mN is the decision vector containing
all future inputs. We will assume that the state penalty is positive semi-definite
Q = Q′ � 0, P = P ′ � 0 and the input penalty is positive definite R = R′ � 0.

As introduced in the previous chapter we will present two alternate approaches
to solve problem (8.4), the batch approach and the recursive approach using
dynamic programming.

8.2 Solution via Batch Approach

First we write the equality constraints (8.4) explicitly to express all future states
x1, x2, . . . as a function of the future inputs u0, u1, . . . and then we eliminate all
intermediate states by successive substitution to obtain⎡⎢⎢⎢⎢⎢⎢⎣

x(0)
x1

...

...
xN

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

X

=

⎡⎢⎢⎢⎢⎢⎢⎣

I
A
...
...

AN

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Sx

x(0) +

⎡⎢⎢⎢⎢⎢⎢⎣

0 0
B 0 . . . 0

AB
. . .

. . .
...

...
. . .

. . .
...

AN−1B B

⎤⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Su

⎡⎢⎢⎢⎢⎣
u0

...

...
uN−1

⎤⎥⎥⎥⎥⎦ . (8.5)

Here all future states are explicit functions of the present state x(0) and the future
inputs u0, u1, u2, . . . only. By defining the appropriate quantities we can rewrite
this expression compactly as

X = Sxx(0) + SuU0. (8.6)

Using the same notation the objective function can be rewritten as

J(x(0), U0) = X ′Q̄X + U0
′R̄U0, (8.7)

where Q̄ = blockdiag{Q, . . . , Q, P}, Q̄ � 0, and R̄ = blockdiag{R, . . . , R}, R̄ � 0.
Substituting (8.6) into the objective function (8.7) yields

J0(x(0), U0) = (Sxx(0) + SuU0)
′
Q̄ (Sxx(0) + SuU0) + U0

′R̄U0

= U0
′ (Su′Q̄Su+R̄)︸ ︷︷ ︸

H

U0+2x′(0) (Sx′Q̄Su)︸ ︷︷ ︸
F

U0 + x′(0) (Sx′Q̄Sx)︸ ︷︷ ︸
Y

x(0)

= U0
′HU0 + 2x′(0)FU0 + x′(0)Y x(0).

(8.8)

Because R̄ � 0, also H � 0. Thus J0(x(0), U0) is a positive definite quadratic
function of U0. Therefore, its minimum can be found by computing its gradient
and setting it to zero. This yields the optimal vector of future inputs

U∗
0 (x(0)) = −H−1F ′x(0)

= −
(
Su′Q̄Su + R̄

)−1 Su′Q̄Sxx(0).
(8.9)

8.3 Solution via Recursive Approach 165

With this choice of U0 the optimal cost is

J∗
0 (x(0)) = −x(0)′FH−1F ′x(0) + x(0)′Y x(0)

= x(0)′
[
Sx′Q̄Sx − Sx′Q̄Su

(
Su′Q̄Su + R̄

)−1 Su′Q̄Sx
]
x(0).

(8.10)

Note that the optimal vector of future inputs U∗
0 (x(0)) is a linear function (8.9) of

the initial state x(0) and the optimal cost J∗
0 (x(0)) is a quadratic function (8.10)

of the initial state x(0).

8.3 Solution via Recursive Approach

Alternatively, we can use dynamic programming to solve the same problem in a
recursive manner. We define the optimal cost J∗

j (xj) for the N − j step problem
starting from state xj by

J∗
j (xj)

Δ
= min

uj ,...,uN−1

x′
NPxN +

N−1∑
k=j

x′
kQxk + u′

kRuk. (8.11)

According to the principle of optimality, the optimal one-step cost-to-go can be
obtained from

J∗
N−1(xN−1) = min

uN−1

x′
NPNxN + x′

N−1QxN−1 + u′
N−1RuN−1 (8.12)

subj. to
xN = AxN−1 +BuN−1

PN = P.
(8.13)

Substituting (8.13) into the objective function (8.12),

J∗
N−1(xN−1) = minuN−1

{
x′
N−1(A

′PNA+Q)xN−1

+ 2x′
N−1A

′PNBuN−1

+ u′
N−1(B

′PNB +R)uN−1

}
.

(8.14)

We note that the cost-to-go JN−1(xN−1) is a positive definite quadratic function
of the decision variable uN−1. We find the optimum by setting the gradient to zero
and obtain the optimal input

u∗
N−1 = −(B′PNB +R)−1B′PNA︸ ︷︷ ︸

FN−1

xN−1 (8.15)

and the one-step optimal cost-to-go

J∗
N−1(xN−1) = x′

N−1PN−1xN−1, (8.16)

where we have defined

PN−1 = A′PNA+Q−A′PNB(B′PNB +R)−1B′PNA. (8.17)

166 8 Linear Quadratic Optimal Control

At the next stage, consider the two-step problem from time N − 2 forward:

J∗
N−2(xN−2) = min

uN−2

x′
N−1PN−1xN−1 + x′

N−2QxN−2 + u′
N−2RuN−2 (8.18)

xN−1 = AxN−2 +BuN−2. (8.19)

We recognize that (8.18), (8.19) has the same form as (8.12), (8.13). Therefore, we
can state the optimal solution directly.

u∗
N−2 = −(B′PN−1B +R)−1B′PN−1A︸ ︷︷ ︸

FN−2

xN−2. (8.20)

The optimal two-step cost-to-go is

J∗
N−2(xN−2) = x′

N−2PN−2xN−2, (8.21)

where we defined

PN−2 = A′PN−1A+Q−A′PN−1B(B′PN−1B +R)−1B′PN−1A. (8.22)

Continuing in this manner, at some arbitrary time k the optimal control action is

u∗(k) = −(B′Pk+1B +R)−1B′Pk+1Ax(k),
= Fkx(k), for k = 0, . . . , N − 1,

(8.23)

where
Pk = A′Pk+1A+Q−A′Pk+1B(B′Pk+1B +R)−1B′Pk+1A (8.24)

and the optimal cost-to-go starting from the measured state x(k) is

J∗
k (x(k)) = x′(k)Pkx(k). (8.25)

Equation (8.24) (called Discrete Time Riccati Equation or Riccati Difference
Equation – RDE) is initialized with PN = P and is solved backwards, i.e., starting
with PN and solving for PN−1, etc. Note from (8.23) that the optimal control action
u∗(k) is obtained in the form of a feedback law as a linear function of the measured
state x(k) at time k. The optimal cost-to-go (8.25) is found to be a quadratic
function of the state at time k.

Remark 8.1 According to Section 7.4.2, the receding horizon control policy is
obtained by solving problem (8.4) at each time step t with x0 = x(t). Consider
the state feedback solution u∗(k) in (8.23) to problem (8.4). Then, the receding
horizon control policy is:

u∗(t) = F0x(t), t ≥ 0 (8.26)

8.4 Comparison of the Two Approaches

We will compare the batch and the recursive dynamic programming approach in
terms of the results and the methods used to obtain the results.

8.4 Comparison of the Two Approaches 167

Most importantly we observe that the results obtained by the two methods are
fundamentally different. The batch approach yields a formula for the sequence of
inputs as a function of the initial state.

U∗
0 = −

(
Su′Q̄Su + R̄

)−1 Su′Q̄Sxx(0). (8.27)

The recursive dynamic programming approach yields a feedback policy, i.e., a
sequence of feedback laws expressing at each time step the control action as a
function of the state at that time.

u∗(k) = Fkx(k), for k = 0, . . . , N − 1. (8.28)

As this expression implies, we determine u(k) at each time k as a function of the
current state x(k) rather than use a u(k) precomputed at k = 0 as in the batch
method. If the state evolves exactly according to the linear model (8.3) then the
sequence of control actions u(k) obtained from the two approaches is identical. In
practice, the result of applying the sequence (8.27) in an open-loop fashion may
be rather different from applying the time-varying feedback law (8.28) because the
model (8.1) for predicting the system states may be inaccurate and the system may
be subject to disturbances not included in the model. We expect the application
of the feedback law to be more robust because at each time step the observed state
x(k) is used to determine the control action rather than the state xk predicted at
time t = 0.

We note that we can get the same feedback effect with the batch approach
if we recalculate the optimal open-loop sequence at each time step j with the
current measurement as initial condition. In this case we need to solve the following
optimization problem

J∗
j (x(j)) = minuj ,...,uN−1

x′
NPxN +

N−1∑
k=j

x′
kQxk + u′

kRuk

subj. to xj = x(j),

(8.29)

where we note that the horizon length is shrinking at each time step.
As seen from (8.27) the solution to (8.29) relates the sequence of inputs

u∗
j , u

∗
j+1, . . . to the state x(j) through a linear expression. The first part of this

expression yields again the optimal feedback law (8.28) at time j, u∗(j) = Fjx(j).
Here the dynamic programming approach is clearly a more efficient way to

generate the feedback policy because it only uses a simple matrix recursion (8.24).
Repeated application of the batch approach, on the other hand, requires the
repeated inversion of a potentially large matrix in (8.27). For such inversion,
however, one can take advantage of the fact that only a small part of the matrix
H changes at every time step.

What makes dynamic programming so effective here is that in this special case,
where the system is linear and the objective is quadratic, the optimal cost-to-go,
the value function J∗

j (x(j)) has a very simple form: it is quadratic. If we make the
problem only slightly more complicated, e.g., if we add constraints on the inputs or
states, the value function can still be constructed, but it is much more complex. In
general, the value function can only be approximated as discussed in the previous
chapter. Then a repeated application of the batch policy, where we resolve the
optimization problem at each time step is an attractive alternative.

168 8 Linear Quadratic Optimal Control

8.5 Infinite Horizon Problem

For continuous processes operating over a long time period it would be interesting
to solve the following infinite horizon problem.

J∗
∞(x(0)) = min

u0,u1,...

∞∑
k=0

x′
kQxk + u′

kRuk. (8.30)

Since the prediction must be carried out to infinity, application of the batch method
becomes impossible. On the other hand, derivation of the optimal feedback law via
dynamic programming remains viable. We can initialize the RDE (8.24)

Pk = A′Pk+1A+Q−A′Pk+1B(B′Pk+1B +R)−1B′Pk+1A (8.31)

with the terminal cost matrix P0 = Q and solve it backwards for k → −∞. Let
us assume for the moment that the iterations converge to a solution P∞. Such P∞
would then satisfy the Algebraic Riccati Equation (ARE)

P∞ = A′P∞A+Q−A′P∞B(B′P∞B +R)−1B′P∞A. (8.32)

Then the optimal feedback control law is

u∗(k) = −(B′P∞B +R)−1B′P∞A︸ ︷︷ ︸
F∞

x(k), k = 0, · · · ,∞ (8.33)

and the optimal infinite horizon cost is

J∗
∞(x(0)) = x(0)′P∞x(0). (8.34)

Controller (8.33) is referred to as the asymptotic form of the Linear Quadratic
Regulator (LQR) or the ∞-horizon LQR.

Convergence of the RDE has been studied extensively. A nice summary of the
various results can be found in Appendix E of the book by Goodwin and Sin [129].
Intuitively we expect that the system (8.3) must be controllable so that all states
can be affected by the control and that the cost function should capture the
behavior of all the states, e.g., that Q � 0. These conditions are indeed sufficient for
the RDE to converge and to yield a stabilizing feedback control law. Less restrictive
conditions are possible as stated in the following theorem.

Theorem 8.1 [190, Theorem 2.4-2] If (A,B) is a stabilizable pair and (Q1/2, A)
is an observable pair, then the Riccati difference equation (8.31) with P0 � 0
converges to the unique positive definite solution P∞ of the ARE (8.32) and all
the eigenvalues of (A+BF∞) lie strictly inside the unit circle.

The first condition is clearly necessary for J∗
∞ (and P∞) to be finite. To

understand the second condition, we write the state dependent term in the objective
function as x′Qx = (x′Q1/2)(Q1/2x). Thus not the state but the “output” (Q1/2x)
is penalized in the objective. Therefore the second condition ((Q1/2, A) observable)
requires that this output captures all system modes. In this manner convergence
of the output (Q1/2x) implies convergence of the state to zero.

8.5 Infinite Horizon Problem 169

From Section 7.5.2 we know that the optimal infinite horizon cost (8.34) is a
Lyapunov function for the system xk+1 = Axk+Buk with uk = F∞xk and satisfies

(A+BF∞)′P∞(A+BF∞)− P∞ = Q+ F ′
∞RF∞.

The reader can verify that substituting F∞ from (8.33) we recover the Riccati
equation (8.32).

9

Linear 1/∞ Norm Optimal
Control

In this chapter, we study the finite time and infinite time optimal control problem
for unconstrained linear systems with convex piecewise linear objective functions.
We derive the structure of the optimal control law by using two approaches: the
Batch approach and the Dynamic Programming approach.

9.1 Problem Formulation

We consider a special case of the problem stated in Chapter 7, where the system
is linear and time-invariant

x(t+ 1) = Ax(t) +Bu(t). (9.1)

Again, x(t) ∈ Rn and u(t) ∈ Rm are the state and input vector respectively.
We define the following piecewise linear cost function over a finite horizon of N

steps

J0(x0, U0) = ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p (9.2)

with p = 1 or p = ∞ and where xk denotes the state vector at time k obtained by
starting from the state x0 = x(0) and applying to the system model

xk+1 = Axk +Buk (9.3)

the input sequence u0, . . . , uk−1. The weighting matrices in (9.2) could have an
arbitrary number of rows. For simplicity of notation we will assume Q ∈ Rn×n,
R ∈ Rm×m and P ∈ Rr×n. Consider the finite time optimal control problem

172 9 Linear 1/∞ Norm Optimal Control

J∗
0 (x(0)) = minU0

J0(x(0), U0)
subj. to xk+1 = Axk +Buk, k = 0, 1, . . . , N − 1

x0 = x(0).
(9.4)

In (9.4) U0 = [u′
0, . . . , u

′
N−1]

′ ∈ Rs, s = mN is the decision vector containing all
future inputs.

We will present two different approaches to solve problem (9.2)–(9.4), the batch
approach and the recursive approach using dynamic programming. Unlike in the
2-norm case presented in the previous chapter, there does not exist a simple closed-
form solution of problem (9.2)–(9.4). In this chapter we will show how to use
multiparametric linear programming to compute the solution to problem (9.2)–
(9.4). We will concentrate on the use of the ∞-norm, the results can be extended
easily to cost functions based on the 1-norm or mixed 1/∞ norms.

9.2 Solution via Batch Approach

First we write the equality constraints (9.4) explicitly to express all future states
x1, x2, . . . as a function of the future inputs u1, u2, . . . and then we eliminate all
intermediate states by using

xk = Akx0 +
k−1∑
j=0

AjBuk−1−j (9.5)

so that all future states are explicit functions of the present state x(0) and the
future inputs u0, u1, u2, . . . only.

The optimal control problem (9.4) with p = ∞ can be rewritten as a linear
program by using the following standard approach (see e.g., [79]). The sum of
components of any vector {εx0 , . . . , εxN , εu0 , . . . , ε

u
N−1} that satisfies

−1nε
x
k ≤ Qxk, k = 0, 1, . . . , N − 1

−1nε
x
k ≤ −Qxk, k = 0, 1, . . . , N − 1

−1rε
x
N ≤ PxN ,

−1rε
x
N ≤ −PxN ,

−1mεuk ≤ Ruk, k = 0, 1, . . . , N − 1

−1mεuk ≤ −Ruk, k = 0, 1, . . . , N − 1

(9.6)

forms an upper bound on J0(x(0), U0), where 1k = [1 . . . 1︸ ︷︷ ︸
k

]′, and the inequali-

ties (9.6) hold componentwise. It is easy to prove that the vector z0 = {εx0 , . . . ,
εxN , εu0 , . . . , ε

u
N−1, u

′
0, . . . , u

′
N−1} ∈ Rs, s = (m + 2)N + 1, that satisfies

9.2 Solution via Batch Approach 173

equations (9.6) and simultaneously minimizes J(z0) = εx0+· · ·+εxN+εu0+· · ·+εuN−1

also solves the original problem (9.4), i.e., the same optimum J∗
0 (x(0)) is

achieved [293, 79]. Therefore, problem (9.4) can be reformulated as the following
LP problem

min
z0

εx0 + · · ·+ εxN + εu0 + · · ·+ εuN−1 (9.7a)

subj. to −1nε
x
k ≤ ±Q

⎡⎣Akx0 +
k−1∑
j=0

AjBuk−1−j

⎤⎦ (9.7b)

−1rε
x
N ≤ ±P

⎡⎣ANx0 +
N−1∑
j=0

AjBuN−1−j

⎤⎦ (9.7c)

−1mεuk ≤ ±Ruk (9.7d)

k = 0, . . . , N − 1

x0 = x(0), (9.7e)

where constraints (9.7c)–(9.7d) are componentwise, and ± means that the con-
straint appears once with each sign, as in (9.6).

Remark 9.1 The cost function (9.2) with p = ∞ can be interpreted as a special case
of a cost function with 1-norm over time and ∞-norm over space. For instance, the
dual choice (∞-norm over time and 1-norm over space) leads to the following cost
function

J0(x(0), U0) = max
k=0,...,N

{‖Qxk‖1 + ‖Ruk‖1}. (9.8)

We remark that any combination of 1- and ∞-norms leads to a linear program.
In general, ∞-norm over time could result in a poor closed-loop performance (only
the largest state deviation and the largest input would be penalized over the
prediction horizon), while 1-norm over space leads to an LP with a larger number of
variables.

The results of this chapter hold for any combination of 1- and ∞-norms over time
and space. Clearly the LP formulation will differ from the one in (9.7). For instance,
the 1−norm in space requires the introduction of nN slack variables for the terms
‖Qxk‖1, εk,i ≥ ±Qixk k = 0, 2, . . . , N − 1, i = 1, 2, . . . , n, plus r slack variables for
the terminal penalty ‖PxN‖1, εN,i ≥ ±PixN i = 1, 2, . . . , r, plus mN slack variables
for the input terms ‖Ruk‖1, εuk,i ≥ ±Riuk k = 0, 1, . . . , N − 1, i = 1, 2, . . . ,m. Here
we have used the notation Mi to denote the i-th row of matrix M .

Problem (9.7) can be rewritten in the more compact form

min
z0

c′0z0

subj. to Gεz0 ≤ wε + Sεx(0),
(9.9)

174 9 Linear 1/∞ Norm Optimal Control

where c0 ∈ Rs and Gε ∈ Rq×s, Sε ∈ Rq×n and wε ∈ Rq are

c0 = [

N+1︷ ︸︸ ︷
1 . . . 1

N︷ ︸︸ ︷
1 . . . 1

mN︷ ︸︸ ︷
0 . . . 0]′

Gε =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N+1︷ ︸︸ ︷
−1n 0 . . . 0
−1n 0 . . . 0
0 −1n . . . 0
0 −1n . . . 0
.
0 . . . −1n 0
0 . . . −1n 0
0 . . . 0 −1r

0 . . . 0 −1r

0 0 . . . 0
0 0 . . . 0
.
0 0 . . . 0
0 0 . . . 0

N︷ ︸︸ ︷
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0
.
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0

−1m . . . 0
−1m . . . 0
.
0 . . . −1m

0 . . . −1m

mN︷ ︸︸ ︷
0 0 . . . 0
0 0 . . . 0

QB 0 . . . 0
−QB 0 . . . 0
.

QAN−2B QAN−3B . . . 0
−QAN−2B −QAN−3B . . . 0
PAN−1B PAN−2B . . . PB
−PAN−1B −PAN−2B . . . −PB

R 0 . . . 0
−R 0 . . . 0
.
0 0 . . . R
0 0 . . . −R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
wε = [

2nN+2r︷ ︸︸ ︷
0 . . . 0

2mN︷ ︸︸ ︷
0 . . . 0]′

Sε = [

2nN︷ ︸︸ ︷
−Q′ Q′ (−QA)′ (QA)′ (−QA2)′ . . . (−QAN−1)′ (QAN−1)′)′

2r︷ ︸︸ ︷
(−PAN)′ (PAN)′

2mN︷ ︸︸ ︷
0′m . . . 0′m]′.

(9.10)

Note that in (9.10) we include the zero vector wε to make the notation consistent
with the one used in Section 6.2.

9.3 Solution via Recursive Approach 175

By treating x(0) as a vector of parameters, the problem (9.9) becomes a multi-
parametric linear program (mp-LP) that can be solved as described in Section 6.2.
Once the multiparametric problem (9.7) has been solved, the explicit solution
z∗0(x(0)) of (9.9) is available as a piecewise affine function of x(0), and the optimal
control law U∗

0 is also available explicitly, as the optimal input U∗
0 consists simply

of the last part of z∗0(x(0))

U∗
0 (x(0)) = [0 . . . 0 Im Im . . . Im]z∗0(x(0)). (9.11)

Theorem 6.5 states that there exists a continuous and PPWA solution z∗0(x)
of the mp-LP problem (9.9). Clearly the same properties are inherited by the
controller. The following Corollaries of Theorem 6.5 summarize the analytical
properties of the optimal control law and the value function.

Corollary 9.1 There exists a control law U∗
0 = f̄0(x(0)), f̄0 : Rn → Rm, obtained

as a solution of the optimal control problem (9.2)–(9.4) with p = 1 or p = ∞, which
is continuous and PPWA

f̄0(x) = F̄ i
0x if x ∈ CRi

0, i = 1, . . . , Nr
0 , (9.12)

where the polyhedral sets CRi
0 = {Hi

0x ≤ 0}, i = 1, . . . , Nr
0 , are a partition of Rn.

Note that in Corollary 9.1 the control law is linear (not affine) and the critical
regions have a conic shape (CRi

0 = {Hi
0x ≤ 0}). This can be proven immediately

from the results in Section 6.2 by observing that the constant term wε at the
right-hand side on the mp-LP problem (9.9) is zero.

Corollary 9.2 The value function J∗(x) obtained as a solution of the optimal
control problem (9.2)–(9.4) is convex and PPWA.

Remark 9.2 Note that if the optimizer of problem (9.4) is unique for all x(0) ∈ Rn,
then Corollary 9.1 reads: “The control law U∗(0) = f̄0(x(0)), f̄0 : Rn → Rm, obtained
as a solution of the optimal control problem (9.2)–(9.4) with p = 1 or p = ∞, is
continuous and PPWA,. . .”. From the results of Section 6.2 we know that in case of
multiple optimizers for some x(0) ∈ Rn, a control law of the form (9.12) can always
be computed.

9.3 Solution via Recursive Approach

Alternatively we can use dynamic programming to solve the same problem in a
recursive manner. We define the optimal cost J∗

j (xj) for the N − j step problem
starting from state xj by

J∗
j (xj) = min

uj ,··· ,uN−1

‖PxN‖∞ +
N−1∑
k=j

‖Qxk‖∞ + ‖Ruk‖∞.

176 9 Linear 1/∞ Norm Optimal Control

According to the principle of optimality the optimal one step cost-to-go can be
obtained from

J∗
N−1(xN−1) = min

uN−1

‖PNxN‖∞ + ‖QxN−1‖∞ + ‖RuN−1‖∞ (9.13)

xN = AxN−1 +BuN−1

PN = P. (9.14)

Substituting (9.14) into the objective function (9.13), we have

J∗
N−1(xN−1) = min

uN−1

‖PN (AxN−1+BuN−1)‖∞+‖QxN−1‖∞+‖RuN−1‖∞. (9.15)

We find the optimum by solving the mp-LP

min
εxN−1,ε

x
N ,εuN−1,uN−1

εxN−1 + εxN + εuN−1 (9.16a)

subj. to −1nε
x
N−1 ≤ ±QxN−1 (9.16b)

−1rN εxN ≤ ±PN [AxN−1 +BuN−1] (9.16c)

−1mεuN−1 ≤ ±RuN−1, (9.16d)

where rN is the number of rows of the matrix PN . By Theorem 6.5, J∗
N−1 is a

convex and piecewise affine function of xN−1, the corresponding optimizer u∗
N−1

is piecewise affine and continuous, and the feasible set XN−1 is Rn. We use the
equivalence of representation between convex and PPWA functions and infinity
norm (see Section 2.2.5) to write the one-step optimal cost-to-go as

J∗
N−1(xN−1) = ‖PN−1xN−1‖∞ (9.17)

with PN−1 defined appropriately. At the next stage, consider the two-step problem
from time N − 2 forward:

J∗
N−2(xN−2) = min

uN−2

‖PN−1xN−1‖∞ + ‖QxN−2‖∞ + ‖RuN−2‖∞ (9.18)

xN−1 = AxN−2 +BuN−2. (9.19)

We recognize that (9.18), (9.19) has the same form as (9.13), (9.14). Therefore
we can compute the optimal solution again by solving the mp-LP

min
εxN−2,ε

x
N−1,ε

u
N−2,uN−2

εxN−2 + εxN−1 + εuN−2 (9.20a)

subj. to −1nε
x
N−2 ≤ ±QxN−2 (9.20b)

−1rN−1
εxN−1 ≤ ±PN−1 [AxN−2 +BuN−2] (9.20c)

−1mεuN−2 ≤ ±RuN−2, (9.20d)

where rN−1 is the number of rows of the matrix PN−1. The optimal two-step cost-
to-go is

J∗
N−2(xN−2) = ‖PN−2xN−2‖∞, (9.21)

Continuing in this manner, at some arbitrary time k the optimal control action is

u∗(k) = fk(x(k)), (9.22)

9.4 Comparison of the two Approaches 177

where fk(x) is continuous and PPWA

fk(x) = F i
kx if Hi

kx ≤ 0, i = 1, . . . , Nr
k , (9.23)

where the polyhedral sets {Hi
kx ≤ 0}, i = 1, . . . , Nr

k , are a partition of Rn. The
optimal cost-to-go starting from the measured state x(k) is

J∗
k (x(k)) = ‖Pkx(k)‖∞. (9.24)

Here we have introduced the notation Pk to express the optimal cost-to-go
J∗
k (x(k)) = ‖Pkx(k)‖∞ from time k to the end of the horizon N . We also remark

that the rows of Pk correspond to the different affine functions constituting J∗
k and

thus their number varies with the time index k. Clearly, we do not have a closed
form as for the 2-norm with the Riccati Difference Equation (8.24) linking cost and
control law at time k given their value at time k − 1.

9.4 Comparison of the two Approaches

We will compare the batch and the recursive dynamic programming approach in
terms of the results and the methods used to obtain the results. Most importantly
we observe that the results obtained by the two methods are fundamentally
different. The batch approach yields a formula for the sequence of inputs as a
function of the initial state.

U∗
0 = F̄ i

0x(0) if H̄i
0x(0) ≤ 0, i = 1, . . . , N̄r

0 . (9.25)

The recursive dynamic programming approach yields a feedback policy, i.e., a
sequence of feedback laws expressing at each time step the control action as a
function of the state at that time.

u∗(k) = F i
kx(k) if Hi

kx(k) ≤ 0, i = 1, . . . , Nr
k for k = 0, . . . , N − 1. (9.26)

As this expression implies, we determine u(k) at each time k as a function of the
current state x(k) rather than use a u(k) precomputed at k = 0 as in the batch
method. If the state evolves exactly according to the linear model (9.3) then the
sequence of control actions u(k) obtained from the two approaches is identical. In
practice, the result of applying the sequence (9.25) in an open-loop fashion may
be rather different from applying the time-varying feedback law (9.26) because the
model (9.3) for predicting the system states may be inaccurate and the system may
be subject to disturbances not included in the model. We expect the application
of the feedback law to be more robust because at each time step the observed state
x(k) is used to determine the control action rather than the state xk predicted at
time t = 0.

We note that we can get the same feedback effect with the batch approach
if we recalculate the optimal open-loop sequence at each time step j with the
current measurement as initial condition. In this case we need to solve the following
optimization problem

178 9 Linear 1/∞ Norm Optimal Control

J∗
j (x(j)) = minuj ,...,uN−1

‖PxN‖∞ +
N−1∑
k=j

‖Qxk‖∞ + ‖Ruk‖∞

subj. to xj = x(j),

(9.27)

where we note that the horizon length is shrinking at each time step.
As seen from (9.25) the solution to (9.27) relates the sequence of inputs

u∗
j , u

∗
j+1, . . . to the state x(j) through a linear expression. The first part of this

expression yields again the optimal feedback law (9.26) at time j, u∗(j) = fj(x(j)).
Here the dynamic programming approach is clearly a more efficient way to

generate the feedback policy because it requires the solution of a small mp-LP
problem (9.7) for each time step. Repeated application of the batch approach,
on the other hand, requires repeatedly the solution of a larger mp-LP for each
time step.

9.5 Infinite Horizon Problem

For continuous processes operating over a long time period it would be interesting
to solve the following infinite horizon problem.

J∗
∞(x(0)) = min

u(0),u(1),...

∞∑
k=0

‖Qxk‖∞ + ‖Ruk‖∞. (9.28)

Since the prediction must be carried out to infinity, application of the batch method
becomes impossible. On the other hand, derivation of the optimal feedback law
via dynamic programming remains viable. We can use the dynamic programming
formulation

‖Pjxj‖∞ = min
uj

‖Pj+1xj+1‖∞ + ‖Qxj‖∞ + ‖Ruj‖∞ (9.29)

xj+1 = Axj +Buj (9.30)

with the terminal cost matrix P0 = Q and solve it backwards for k → −∞. Let
us assume for the moment that the iterations converge to a solution P∞ in a finite
number of iterations. Then the optimal feedback control law is time-invariant and
piecewise linear

u∗(k) = F ix(k) if Hix ≤ 0, i = 1, . . . , Nr (9.31)

and the optimal infinite horizon cost is

J∗
∞(x(0)) = ‖P∞x(0)‖∞. (9.32)

In general, the infinite time optimal cost J∗
∞(x(0)) and the optimal feedback

control law are not necessarily piecewise linear (with a finite number of regions).
Convergence of the recursive scheme (9.29) has been studied in detail in [87]. If this
recursive scheme converges and Q and R are of full column rank, then the resulting
control law (9.31) stabilizes the system (see Section 7.4).

9.5 Infinite Horizon Problem 179

Example 9.1 Consider the double integrator system{
x(t+ 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t) (9.33)

The aim is to compute the infinite horizon optimal controller that solves the

optimization problem (9.28) with Q =

[
1 0
0 1

]
and R = 20.

The dynamic programming iteration (9.29) converges after 18 iterations to the
following optimal solution:

u =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

[9.44 29.44]x if
[−0.10 −1.00
−0.71 −0.71

]
x ≤ [00] (Region #1)

[9.00 25.00]x if
[

0.10 1.00
−0.11 −0.99

]
x ≤ [00] (Region #2)

[−1.00 19.00]x if
[−0.45 −0.89

0.71 0.71

]
x ≤ [00] (Region #3)

[8.00 16.00]x if
[

0.11 0.99
−0.12 −0.99

]
x ≤ [0

0] (Region #4)

[−2.00 17.00]x if
[−0.32 −0.95

0.45 .89

]
x ≤ [00] (Region #5)

[7.00 8.00]x if
[

0.12 0.99
−0.14 −0.99

]
x ≤ [00] (Region #6)

[−3.00 14.00]x if
[

0.32 0.95
−0.24 −0.97

]
x ≤ [00] (Region #7)

[6.00 1.00]x if
[

0.14 0.99
−0.16 −0.99

]
x ≤ [00] (Region #8)

[−4.00 10.00]x if
[

0.24 0.97
−0.20 −0.98

]
x ≤ [00] (Region #9)

[5.00 −5.00]x if
[

0.16 0.99
−0.20 −0.98

]
x ≤ [00] (Region #10)

[−5.00 5.00]x if
[

0.20 0.98
−0.16 −0.99

]
x ≤ [00] (Region #11)

[4.00 −10.00]x if
[

0.20 0.98
−0.24 −0.97

]
x ≤ [00] (Region #12)

[−6.00 −1.00]x if
[

0.16 v0.99
−0.14 −0.99

]
x ≤ [00] (Region #13)

[3.00 −14.00]x if
[

0.24 0.97
−0.32 −0.95

]
x ≤ [00] (Region #14)

[−7.00 −8.00]x if
[

0.14 0.99
−0.12 −0.99

]
x ≤ [00] (Region #15)

[2.00 −17.00]x if
[

0.32 0.95
−0.45 −0.89

]
x ≤ [00] (Region #16)

[−8.00 −16.00]x if
[

0.12 0.99
−0.11 −0.99

]
x ≤ [00] (Region #17)

[1.00 −19.00]x if
[

0.45 0.89
−0.71 −0.71

]
x ≤ [00] (Region #18)

[−9.00 −25.00]x if
[

0.11 0.99
−0.10 −1.00

]
x ≤ [00] (Region #19)

[−9.44 −29.44]x if
[
0.10 1.00
0.71 0.71

]
x ≤ [00] (Region #20)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/dint_inftynorm_unconstrained.m

180 9 Linear 1/∞ Norm Optimal Control

x1
x2

J
∗ (
x
)

Figure 9.1 Example 9.1. ∞-norm objective function, ∞-horizon controller.
Piecewise linear optimal cost (value function) and corresponding polyhedral
partition.

with P∞ equal to

P∞ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9.44 29.44
9.00 25.00

−1.00 19.00
8.00 16.00

−2.00 17.00
7.00 8.00

−3.00 14.00
6.00 1.00

−4.00 10.00
5.00 − 5.00

−5.00 5.00
4.00 −10.00

−6.00 − 1.00
3.00 −14.00

−7.00 − 8.00
2.00 −17.00

−8.00 −16.00
1.00 −19.00

−9.00 −25.00
−9.44 −29.44

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.34)

Note that P∞ in (9.34) has 20 rows corresponding to the 20 linear terms (or pieces)
of the piecewise linear value function J∗

∞(x) = ‖P∞x‖∞ for x ∈ R2. For instance,
J∗
∞(x) in region 1 is J∗

∞(x) = 9.44x1 + 29.44x2, where x1 and x2 denote the first
and second component of the state vector x, respectively. Note that each linear term
appears twice, with positive and negative sign. Therefore J∗

∞(x) can be written in
minimal form as the infinity norm of a matrix ‖P̃∞x‖∞ with P̃∞ being a matrix with
ten rows. The value function J∗

∞(x) = ‖P∞x‖∞ is plotted in Figure 9.1.

Part IV

Constrained Optimal Control of
Linear Systems

10

Controllability, Reachability
and Invariance

This chapter is a self-contained introduction to controllability, reachability and
invariant set theory. N -steps reachable sets are defined for autonomous systems.
They represent the set of states which a system can evolve to after N steps. N -steps
controllable sets are defined for systems with inputs. They represent the set of states
which a system can be steered to after N steps.

Invariant sets are the infinite time versions ofN -steps controllable and reachable
sets. Invariant sets are computed for autonomous systems. These types of sets are
useful to answer questions such as: “For a given feedback controller u = k(x), find
the set of states whose trajectory will never violate the system constraints.” Control
invariant sets are defined for systems subject to external inputs. These types of
sets are useful to answer questions such as: “Find the set of states for which there
exists a controller such that the system constraints are never violated.”

This chapter focuses on computational tools for constrained linear systems
and constrained linear systems subject to additive and parametric uncertainty.
A thorough presentation of the basic notions and algorithms presented in this
chapter can be found in the book by Blanchini and Miani [59].

10.1 Controllable and Reachable Sets

In this section we deal with two types of systems, namely, autonomous systems:

x(t+ 1) = ga(x(t)), (10.1)

and systems subject to external inputs:

x(t+ 1) = g(x(t), u(t)). (10.2)

Both systems are subject to state and input constraints

x(t) ∈ X , u(t) ∈ U , ∀ t ≥ 0. (10.3)

The sets X and U are polyhedra.

184 10 Controllability, Reachability and Invariance

Definition 10.1 For the autonomous system (10.1) we denote the precursor set
to the set S as

Pre(S) = {x ∈ Rn : ga(x) ∈ S}. (10.4)

Pre(S) is the set of states which evolve into the target set S in one time step.

Definition 10.2 For the system (10.2) we denote the precursor set to the
set S as

Pre(S) = {x ∈ Rn : ∃u ∈ U s.t. g(x, u) ∈ S}. (10.5)

For a system with inputs, Pre(S) is the set of states which can be driven into the
target set S in one time step while satisfying input and state constraints.

Definition 10.3 For the autonomous system (10.1) we denote the successor set
from the set S as

Suc(S) = {x ∈ Rn : ∃ x(0) ∈ S s.t. x = ga(x(0))}.

Definition 10.4 For the system (10.2) with inputs we will denote the successor
set from the set S as

Suc(S) = {x ∈ Rn : ∃ x(0) ∈ S, ∃ u(0) ∈ U s.t. x = g(x(0), u(0))}.

Therefore, all the states contained in S are mapped into the set Suc(S) under the
map ga or under the map g for some input u ∈ U .

Remark 10.1 The sets Pre(S) and Suc(S) are also denoted as ‘one-step backward-
reachable set’ and ‘one-step forward-reachable set’, respectively, in the literature.

N -step controllable and reachable sets are defined by iterating Pre(·) and Suc(·)
computations, respectively.

Definition 10.5 (N-Step Controllable Set KN (S)) For a given target set
S ⊆ X , the N -step controllable set KN (S) of the system (10.1) or (10.2) subject to
the constraints (10.3) is defined recursively as:

Kj(S) = Pre(Kj−1(S)) ∩ X , K0(S) = S, j ∈ {1, . . . , N} (10.6)

From Definition 10.5, all states x0 of the system (10.1) belonging to the N -Step
Controllable Set KN (S) will evolve to the target set S in N steps, while satisfying
state constraints.

Also, all states x0 of the system (10.2) belonging to the N -Step Controllable
Set KN (S) can be driven, by a suitable control sequence, to the target set S in N
steps, while satisfying input and state constraints.

Definition 10.6 (N-Step Reachable Set RN (X0)) For a given initial set
X0 ⊆ X , the N -step reachable set RN (X0) of the system (10.1) or (10.2) subject
to the constraints (10.3) is defined as:

Ri+1(X0) = Suc(Ri(X0)) ∩ X , R0(X0) = X0, i = 0, . . . , N − 1 (10.7)

From Definition 10.6, all states x0 belonging to X0 will evolve to the N -step
reachable set RN (X0) in N steps.

10.1 Controllable and Reachable Sets 185

10.1.1 Computation of Controllable and Reachable Sets

Next, we will show through simple examples the main steps involved in the comp-
utation of controllable and reachable sets for constrained linear systems. Later in
this section we will provide compact formulas based on polyhedral operations.

Example 10.1 Consider the second order autonomous stable system

x(t+ 1) = Ax(t) =

[
0.5 0
1 −0.5

]
x(t) (10.8)

subject to the state constraints

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0. (10.9)

The set Pre(X) can be obtained as follows: Since the set X is a polytope, it can be
represented as a H-polytope (Section 4.2)

X = {x : Hx ≤ h}, (10.10)

where

H =

⎡⎢⎢⎣
1 0
0 1
−1 0
0 −1

⎤⎥⎥⎦ and h =

⎡⎢⎢⎣
10
10
10
10

⎤⎥⎥⎦ .

By using this H-presentation and the system equation (10.8), the set Pre(X) can be
derived:

Pre(X) = {x : Hga(x) ≤ h} (10.11)

= {x : HAx ≤ h} . (10.12)

The set (10.12) may contain redundant inequalities which can be removed by using
Algorithm 4.1 in Section 4.4.1 to obtain its minimal representation. Note that by
using the notation in Section 4.4.11, the set Pre(X) in (10.12) is simply X ◦A.

The set Pre(X) is

Pre(X) =

⎧⎪⎪⎨⎪⎪⎩x :

⎡⎢⎢⎣
1 0
1 −0.5
−1 0
−1 −0.5

⎤⎥⎥⎦x ≤

⎡⎢⎢⎣
20
10
20
10

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .

The one-step controllable set to X , K1(X) = Pre(X) ∩ X is

Pre(X) ∩ X =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x :

⎡⎢⎢⎢⎢⎢⎢⎣
1 0
0 1
−1 0
0 −1
1 −0.5
−1 0.5

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
10
10
10
10
10
10

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and it is depicted in Figure 10.1.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReachAut.m

186 10 Controllability, Reachability and Invariance

X

Pre(X) ∩ Xx
2

x1

–10 0 5 10
–10

–5

0

5

10

–5

Figure 10.1 Example 10.1. One-step controllable set Pre(X)∩X for system
(10.8) under constraints (10.9).

x1

Su
c(

X)

x
2

X

–10 –5 0 5

–10

–5

0

5

10

10

Figure 10.2 Example 10.1. Successor set for system (10.8).

The set Suc(X) is obtained by applying the map A to the set X . Let us write X in
V-representation (see Section 4.1)

X = conv(V), (10.13)

and let us map the set of vertices V through the transformation A. Because the
transformation is linear, the successor set is simply the convex hull of the transformed
vertices

Suc(X) = A ◦ X = conv(AV). (10.14)

We refer the reader to Section 4.4.11 for a detailed discussion on linear transforma-
tions of polyhedra.

The set Suc(X) in H-representation is

Suc(X) =

⎧⎪⎪⎨⎪⎪⎩x :

⎡⎢⎢⎣
1 0
−1 0
1 −0.5
−1 0.5

⎤⎥⎥⎦x ≤

⎡⎢⎢⎣
5
5
2.5
2.5

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

and is depicted in Figure 10.2.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReachAut.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReachAut.m

10.1 Controllable and Reachable Sets 187

Example 10.2 Consider the second order unstable system

x(t+ 1) = Ax+Bu =

[
1.5 0
1 −1.5

]
x(t) +

[
1
0

]
u(t) (10.15)

subject to the input and state constraints

u(t) ∈ U = {u : − 5 ≤ u ≤ 5} , ∀t ≥ 0 (10.16a)

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0. (10.16b)

For the nonautonomous system (10.15), the set Pre(X) can be computed using the
H-representation of X and U ,

X = {x : Hx ≤ h}, U = {u : Huu ≤ hu}, (10.17)

to obtain

Pre(X) =
{
x ∈ R2 : ∃u ∈ U s.t. g(x, u) ∈ X ,

}
(10.18)

=

{
x ∈ R2 : ∃u ∈ R s.t.

[
HA HB
0 Hu

](
x
u

)
≤
[
h
hu

]}
. (10.19)

The half-spaces in (10.19) define a polytope in the state-input space, and a projection
operation (see Section 4.4.6) is used to derive the half-spaces which define Pre(X) in
the state space. The one-step controllable set Pre(X) ∩ X⎡⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
−1 0
0 −1
1 −1.5
−1 1.5

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
10
10
10
10
10
10

⎤⎥⎥⎥⎥⎥⎥⎦
is depicted in Figure 10.3.

Note that by using the definition of the Minkowski sum given in Section 4.4.9 and
the affine operation on polyhedra in Section 4.4.11 we can write the operations in
(10.19) compactly as follows:

Pre(X) = {x : ∃u ∈ U s.t. Ax+Bu ∈ X}
{x : y = Ax+Bu, y ∈ X , u ∈ U}
{x : Ax = y + (−Bu), y ∈ X , u ∈ U}
{x : Ax ∈ C, C = X ⊕ (−B) ◦ U}
{x : x ∈ C ◦A, C = X ⊕ (−B) ◦ U}
{x : x ∈ (X ⊕ (−B) ◦ U) ◦A} .

(10.20)

The set Suc(X) = {Ax+Bu ∈ R2 : x ∈ X , u ∈ U} is obtained by applying the map
A to the set X and then considering the effect of the input u ∈ U . As shown before,

A ◦ X = conv(AV) (10.21)

and therefore
Suc(X) = {y +Bu : y ∈ A ◦ X , u ∈ U}.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReach.m

188 10 Controllability, Reachability and Invariance

x
2

x1

Pre(X) ∩ X

X

–10 –5 0 5
–10

–5

0

5

10

10

Figure 10.3 Example 10.2. One-step controllable set Pre(X)∩X for system
(10.15) under constraints (10.16).

x1

Suc(X)x
2

–30 –20 0 10 20
–30

–20

–10

0

10

20

30

–10 30

Figure 10.4 Example 10.2. Successor set for system (10.15) under constraints
(10.16).

We can use the definition of the Minkowski sum given in Section 4.4.9 and rewrite
the set Suc(X) as

Suc(X) = (A ◦ X)⊕ (B ◦ U).

We can compute the Minkowski sum via projection or vertex enumeration as
explained in Section 4.4.9 and obtain the set Suc(X) in H-representation

Suc(X) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x :

⎡⎢⎢⎢⎢⎢⎢⎣
1 0
−1 0
0 1
0 −1
1 −1.5
−1 1.5

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
20
20
25
25
27.5
27.5

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

which is depicted in Figure 10.4.

In summary, the sets Pre(X) and Suc(X) are the results of linear operations
on the polyhedra X and U and therefore are polyhedra. By using the definition of
the Minkowski sum given in Section 4.4.9 and of affine operation on polyhedra in
Section 4.4.11 we can compactly summarize the Pre and Suc operations on linear
systems in Table 10.1.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReach.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReach.m

10.1 Controllable and Reachable Sets 189

Table 10.1 Pre and Suc operations for linear systems subject to
polyhedral state and input constraints x(t) ∈ X , u(t) ∈ U

x(t+ 1) = Ax(t) x(t+ 1) = Ax(t) +Bu(t)

Pre(X) X ◦A (X ⊕ (−B ◦ U)) ◦A
Suc(X) A ◦ X (A ◦ X)⊕ (B ◦ U)

K3(S) K2(S)K4(S) SK1(S)

Figure 10.5 Example 10.3. Controllable sets Kj(S) for system (10.15) under
constraints (10.16) for j = 1, 2, 3, 4. Note that the sets are shifted along the
x-axis for a clearer visualization.

The N -step controllable set KN (S) and the N -step reachable set RN (X0) can
be computed by using their recursive formulas (10.6), (10.7) and computing the
Pre and Suc operations as in Table 10.1.

Example 10.3 Consider the second order unstable system (10.15) subject to the
input and state constraints (10.16). Consider the target set

S =

{
x :

[
−1
−1

]
≤ x ≤

[
1
1

]}
.

The N -step controllable set KN (S) of the system (10.15) subject to the con-
straints (10.16) can be computed by using the recursive formula (10.6)

Kj(S) = Pre(Kj−1(S)) ∩ X , K0(S) = S, j = 1, . . . , N

and the steps described in Example 10.2 to compute the Pre(·) set.
The sets Kj(S) for j = 1, 2, 3, 4 are depicted in Figure 10.5.

Example 10.4 Consider the second order unstable system (10.15) subject to the
input and state constraints (10.16). Consider the initial set

X0 =

{
x :

[
−1
−1

]
≤ x ≤

[
1
1

]}
.

The N -step reachable set RN (X0) of the system (10.15) subject to the con-
straints (10.16) can be computed by using the recursively formula (10.7)

Rj+1(X0) = Suc(Rj(X0)) ∩ X , R0(X0) = X0, j = 0, . . . , N − 1

and the steps described in Example 10.2 to compute the Suc(·) set.
The sets Rj(X0)) for j = 1, 2, 3, 4 are depicted in Figure 10.6. The sets are shifted
along the x-axis for a clearer visualization.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReachNSteps.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReachNSteps.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReachNSteps.m

190 10 Controllability, Reachability and Invariance

R1(X0)X0 R2(X0) R4(X0)R3(X0)

Figure 10.6 Example 10.3. Reachable sets Rj(X0)) for system (10.15) under
constraints (10.16) for j = 1, 2, 3, 4.

10.2 Invariant Sets

Consider the constrained autonomous system (10.1) and the constrained system
subject to external inputs (10.2) defined in Section 10.1.

Two different types of sets are considered in this section: invariant sets and
control invariant sets. We will first discuss invariant sets.

Positive Invariant Sets

Invariant sets are used for characterizing the behavior of autonomous systems.
These types of sets are useful to answer questions such as: “For a given feedback
controller u = f(x), find the set of initial states whose trajectory will never violate
the system constraints.” The following definitions, derived from [172, 58, 54, 49,
179, 137, 139, 140], introduce the different types of invariant sets.

Definition 10.7 (Positive Invariant Set) A set O ⊆ X is said to be a positive
invariant set for the autonomous system (10.1) subject to the constraints in
(10.3), if

x(0) ∈ O ⇒ x(t) ∈ O, ∀t ∈ N+.

Definition 10.8 (Maximal Positive Invariant Set O∞) The set O∞ ⊆ X
is the maximal invariant set of the autonomous system (10.1) subject to the
constraints in (10.3) if O∞ is invariant and O∞ contains all the invariant sets
contained in X .

Remark 10.2 The maximal invariant sets defined here are often referred to as
“maximal admissible sets” or “maximal output admissible sets” in the literature
(e.g., [124]), depending on whether the system state or output is constrained.

Remark 10.3 Note that, in general, the nonlinear system (10.1) may have multiple
equilibrium points, and thus O∞ might be the union of disconnected sets each
containing an equilibrium point.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PreReach.m

10.2 Invariant Sets 191

Theorem 10.1 (Geometric condition for invariance [100]) A set O ⊆ X
is a positive invariant set for the autonomous system (10.1) subject to the
constraints in (10.3), if and only if

O ⊆ Pre(O). (10.22)

Proof: We prove both the necessary and sufficient parts by contradiction. (⇐:)
If O � Pre(O) then ∃x̄ ∈ O such that x̄ /∈ Pre(O). From the definition of Pre(O),
ga(x̄) /∈ O and thus O is not positive invariant. (⇒:) If O is not a positive invariant
set then ∃x̄ ∈ O such that ga(x̄) /∈ O. This implies that x̄ ∈ O and x̄ /∈ Pre(O) and
thus O � Pre(O) �

It is immediate to prove that condition (10.22) of Theorem 10.1 is equivalent
to the following condition

Pre(O) ∩ O = O. (10.23)

Based on condition (10.23), the following algorithm provides a procedure for
computing the maximal positive invariant subset O∞ for system (10.1),(10.3)
[10, 49, 172, 124].

Algorithm 10.1 Computation of O∞

Input: ga, X
Output: O∞

Ω0 ← X , k ← −1

Repeat

k ← k + 1

Ωk+1 ← Pre(Ωk) ∩ Ωk

Until Ωk+1 = Ωk

O∞ ← Ωk

Algorithm 10.1 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk, ∀k ∈ N and
it terminates when Ωk+1 = Ωk. If it terminates, then Ωk is the maximal positive
invariant set O∞ for the system (10.1)–(10.3). If Ωk = ∅ for some integer k then
the simple conclusion is that O∞ = ∅.

In general, Algorithm 10.1 may never terminate. If the algorithm does not
terminate in a finite number of iterations, it can be proven that [179]

O∞ = lim
k→+∞

Ωk.

Conditions for finite time termination of Algorithm 10.1 can be found in [124].
A simple sufficient condition for finite time termination of Algorithm 10.1 requires
the system ga(x) to be linear and stable, and the constraint set X to be bounded
and to contain the origin.

192 10 Controllability, Reachability and Invariance

x1

x
2

X

O∞

–10 –5 0 5 10
–10

–5

0

5

10

Figure 10.7 Example 10.5. Maximal Positive Invariant Set of system (10.8)
under constraints (10.9).

Example 10.5 Consider the second order stable system in Example 10.1. The
maximal positive invariant set of system (10.8) subject to constraints (10.9)⎡⎢⎢⎢⎢⎢⎢⎣

1 0
0 1
−1 0
0 −1
1 −0.5
−1 0.5

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
10
10
10
10
10
10

⎤⎥⎥⎥⎥⎥⎥⎦
is depicted in Figure 10.7.

Note from the previous discussion of the example and from Figure 10.1
that here the maximal positive invariant set O∞ is obtained after a single step
of Algorithm 10.1, i.e.,

O∞ = Ω1 = Pre(X) ∩ X .

Control Invariant Sets

Control invariant sets are defined for systems subject to external inputs. These
types of sets are useful to answer questions such as: “Find the set of initial states for
which there exists a controller such that the system constraints are never violated.”
The following definitions, adopted from [172, 58, 54, 49, 179], introduce the different
types of control invariant sets.

Definition 10.9 (Control Invariant Set) A set C ⊆ X is said to be a control
invariant set for the system (10.2) subject to the constraints in (10.3), if

x(t) ∈ C ⇒ ∃u(t) ∈ U such that g(x(t), u(t)) ∈ C, ∀t ∈ N+.

Definition 10.10 (Maximal Control Invariant Set C∞) The set C∞ ⊆ X is
said to be the maximal control invariant set for the system (10.2) subject to the
constraints in (10.3), if it is control invariant and contains all control invariant
sets contained in X .

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Oinf.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Oinf.m

10.2 Invariant Sets 193

Remark 10.4 The geometric conditions for invariance (10.22), (10.23) hold for
control invariant sets.

The following algorithm provides a procedure for computing the maximal
control invariant set C∞ for system (10.2),(10.3) [10, 49, 172, 124].

Algorithm 10.2 Computation of C∞

Input: g, X , U
Output: C∞

Ω0 ← X , k ← −1

Repeat

k ← k + 1

Ωk+1 ← Pre(Ωk) ∩ Ωk

Until Ωk+1 = Ωk

C∞ ← Ωk+1

Algorithm 10.2 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk, ∀k ∈ N.
Algorithm 10.2 terminates when Ωk+1 = Ωk. If it terminates, then Ωk is
the maximal control invariant set C∞ for the system (10.2)–(10.3). In general,
Algorithm 10.2 may never terminate [10, 49, 172, 164]. If the algorithm does not
terminate in a finite number of iterations, in general, convergence to the maximal
control invariant set is not guaranteed

C∞ 	= lim
k→+∞

Ωk. (10.24)

The work in [50] reports examples of nonlinear systems where (10.24) can be
observed. A sufficient condition for the convergence of Ωk to C∞ as k → +∞
requires the polyhedral sets X and U to be bounded and the system g(x, u) to be
continuous [50].

Example 10.6 Consider the second order unstable system in Example 10.2.
Algorithm 10.2 is used to compute the maximal control invariant set of system (10.15)
subject to constraints (10.16). Algorithm 10.2 terminates after 45 iterations and the
maximal control invariant set C∞ is:⎡⎢⎢⎢⎢⎢⎢⎣

0 1
0 −1

0.55 −0.83
−0.55 0.83

1 0
−1 0

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
4
4

2.22
2.22
10
10

⎤⎥⎥⎥⎥⎥⎥⎦ .

The results of the iterations and C∞ are depicted in Figure 10.8.

Definition 10.11 (Finitely determined set) Consider Algorithm 10.1 (Algo-
rithm 10.2). The set O∞ (C∞) is finitely determined if and only if ∃ i ∈ N such
that Ωi+1 = Ωi. The smallest element i ∈ N such that Ωi+1 = Ωi is called the
determinedness index.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Cinf.m

194 10 Controllability, Reachability and Invariance

x1

x
2

X

C∞

–10 0 5 10
–10

–5

0

5

10

–5

Figure 10.8 Example 10.6. Maximal Control Invariant Set of system (10.15)
subject to constraints (10.16).

Remark 10.5 From the results in Section 10.1.1, for linear system with linear
constraints the sets O∞ and C∞ are polyhedra if they are finitely determined.

For all states contained in the maximal control invariant set C∞ there exists
a control law such that the system constraints are never violated. This does not
imply that there exists a control law which can drive the state into a user-specified
target set. This issue is addressed in the following by introducing the concepts of
maximal controllable sets and stabilizable sets.

Definition 10.12 (Maximal Controllable Set K∞(O)) For a given target
set O ⊆ X , the maximal controllable set K∞(O) for system (10.2) subject to the
constraints in (10.3) is the union of all N -step controllable sets KN (O) contained
in X (N ∈ N).

We will often deal with controllable sets KN (O) where the target O is a control
invariant set. They are special sets, since in addition to guaranteeing that from
KN (O) we reach O in N steps, one can ensure that once it has reached O, the
system can stay there at all future time instants.

Definition 10.13 (N-step (Maximal) Stabilizable Set) For a given control
invariant set O ⊆ X , the N -step (maximal) stabilizable set of the system (10.2)
subject to the constraints (10.3) is the N -step (maximal) controllable set KN (O)
(K∞(O)).

The setK∞(O) contains all states which can be steered into the control invariant
set O and hence K∞(O) ⊆ C∞. The set K∞(O) ⊆ C∞ can be computed as
follows [58, 50]:

Algorithm 10.3 Computation of K∞(O)

Input: g, X , U
Output: K∞(O)

K0 ← O, where O is a control invariant set

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Cinf.m

10.3 Robust Controllable and Reachable Sets 195

c ← −1

Repeat

c ← c+ 1

Kc+1 ← Pre(Kc)
⋂

X
Until Kc+1 = Kc

K∞(O) ← Kc

Since O is control invariant, it holds ∀c ∈ N that Kc(O) is control invariant and
Kc ⊆ Kc+1. Note that Algorithm 10.3 is not guaranteed to terminate in finite time.

Remark 10.6 In general, the maximal stabilizable set K∞(O) is not equal to the
maximal control invariant set C∞, even for linear systems. K∞(O) ⊆ C∞ for all control
invariant sets O. The set C∞\K∞(O) includes all initial states from which it is not
possible to steer the system to the stabilizable region K∞(O) and hence O.

Example 10.7 Consider the simple constrained one-dimensional system

x(t+ 1) = 2x(t) + u(t) (10.25a)

|x(t)| ≤ 1, and |u(t)| ≤ 1 (10.25b)

and the state feedback control law

u(t) =

⎧⎨⎩
1 if x(t) ∈

[
−1, − 1

2

]
−2x(t) if x(t) ∈

[
− 1

2
, 1

2

]
−1 if x(t) ∈

[
1
2
, 1
]
.

(10.26)

The closed-loop system has three equilibria at −1, 0, and 1 and system (10.25) is
always feasible for all initial states in [−1, 1] and therefore C∞ = [−1, 1]. The
equilibrium point 0 is, however, asymptotically stable only for the open set (−1, 1).
In fact, u(t) and any other feasible control law cannot stabilize the system from x = 1
and from x = −1 and therefore when O = ∅ then K∞(O) = (−1, 1) ⊂ C∞. We note
in this example that the maximal stabilizable set is open. One can easily argue that,
in general, if the maximal stabilizable set is closed then it is equal to the maximal
control invariant set.

10.3 Robust Controllable and Reachable Sets

In this section we deal with two types of systems, namely, autonomous systems

x(k + 1) = ga(x(k), w(k)), (10.27)

and systems subject to external controllable inputs

x(k + 1) = g(x(k), u(k), w(k)). (10.28)

Both systems are subject to the disturbance w(k) and to the constraints

x(k) ∈ X , u(k) ∈ U , w(k) ∈ W ∀ k ≥ 0. (10.29)

The sets X , U and W are polyhedra.

196 10 Controllability, Reachability and Invariance

Definition 10.14 For the autonomous system (10.27) we will denote the robust
precursor set to the set S as

Pre(S,W) = {x ∈ Rn : ga(x,w) ∈ S, ∀w ∈ W}. (10.30)

Pre(S,W) defines the set of states of system (10.27) which evolve into the target
set S in one time step for all possible disturbances w ∈ W.

Definition 10.15 For the system (10.28) we will denote the robust precursor
set to the set S as

Pre(S,W) = {x ∈ Rn : ∃u ∈ U s.t. g(x, u, w) ⊆ S, ∀w ∈ W}. (10.31)

For a system with inputs, Pre(S,W) is the set of states which can be robustly
driven into the target set S in one time step for all admissible disturbances.

Definition 10.16 For the autonomous system (10.27) we will denote the robust
successor set from the set S as

Suc(S,W) = {x ∈ Rn : ∃ x(0) ∈ S, ∃ w ∈ W such that x = ga(x(0), w)}.

Definition 10.17 For the system (10.28) with inputs we will denote the robust
successor set from the set S as

Suc(S,W) = {x ∈ Rn : ∃ x(0) ∈ S, ∃ u ∈ U , ∃ w ∈ W, such that x = g(x(0), u, w)}.

Thus, all the states contained in S are mapped into the set Suc(S,W) under the
map ga for all disturbances w ∈ W, and under the map g for all inputs u ∈ U and
for all disturbances w ∈ W.

Remark 10.7 The sets Pre(S,W) and Suc(S,W) are also denoted as “one-
step robust backward-reachable set” and “one-step robust forward-reachable set,”
respectively, in the literature.

N -step robust controllable and robust reachable sets are defined by iterating
Pre(·, ·) and Suc(·, ·) computations, respectively.

Definition 10.18 (N-Step Robust Controllable Set KN (S,W)) For a given
target set S ⊆ X , the N -step robust controllable set KN (S,W) of the system (10.27)
or (10.28) subject to the constraints (10.29) is defined recursively as:

Kj(S,W) = Pre(Kj−1(S,W),W)∩X , K0(S,W) = S, j ∈ {1, . . . , N}. (10.32)

From Definition 10.18, all states x0 belonging to the N -Step Robust Controllable
Set KN (S,W) can be robustly driven, through a time-varying control law, to the
target set S in N steps, while satisfying input and state constraints for all possible
disturbances.

N -step robust reachable sets are defined analogously to N -step robust control-
lable set.

10.3 Robust Controllable and Reachable Sets 197

Definition 10.19 (N-Step Robust Reachable Set RN (X0,W)) For a given
initial set X0 ⊆ X , the N -step robust reachable set RN (X0,W) of the system (10.27)
or (10.28) subject to the constraints (10.29) is defined recursively as:

Ri+1(X0,W) = Suc(Ri(X0,W),W) ∩ X , R0(X0,W) = X0, i = 0, . . . , N − 1.
(10.33)

From Definition 10.19, all states x0 belonging to X0 will evolve to the N -step robust
reachable set RN (X0,W) in N steps.

Next, we will show through simple examples the main steps involved in the
computation of robust controllable and robust reachable sets for certain classes of
uncertain constrained linear systems.

10.3.1 Linear Systems with Additive Uncertainty and without Inputs

Example 10.8 Consider the second order autonomous system

x(t+ 1) = Ax(t) + w(t) =

[
0.5 0
1 −0.5

]
x(t) + w(t) (10.34)

subject to the state constraints

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0, (10.35)

and where the additive disturbance belongs to the set

w(t) ∈ W =

{
w :

[
−1
−1

]
≤ w ≤

[
1
1

]}
, ∀t ≥ 0. (10.36)

The set Pre(X ,W) can be obtained as described next. Since the set X is a polytope,
it can be represented as an H-polytope (Section 4.2)

X = {x : Hx ≤ h}, (10.37)

where

H =

⎡⎢⎢⎣
1 0
0 1
−1 0
0 −1

⎤⎥⎥⎦ and h =

⎡⎢⎢⎣
10
10
10
10

⎤⎥⎥⎦ .

By using this H-presentation and the system equation (10.34), the set Pre(X ,W) can
be rewritten as

Pre(X ,W) = {x : Hga(x,w) ≤ h, ∀w ∈ W} (10.38a)

= {x : HAx ≤ h−Hw, ∀w ∈ W} . (10.38b)

The set (10.38) can be represented as a the following polyhedron

Pre(X ,W) = {x ∈ Rn : HAx ≤ h̃} (10.39)

with
h̃i = min

w∈W
(hi −Hiw). (10.40)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachAdditive_AutandNot.m

198 10 Controllability, Reachability and Invariance

In general, a linear program is required to solve problems (10.40). In this example Hi

and W have simple expressions and we get h̃ =

⎡⎢⎢⎣
9
9
9
9

⎤⎥⎥⎦. The set (10.39) might contain

redundant inequalities which can be removed by using Algorithm 4.1 in Section 4.4.1
to obtain its minimal representation.

The set Pre(X ,W) is

Pre(X ,W) =

⎧⎪⎪⎨⎪⎪⎩x :

⎡⎢⎢⎣
1 0
1 −0.5
−1 0
−1 0.5

⎤⎥⎥⎦x ≤

⎡⎢⎢⎣
18
9
18
9

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ .

The one-step robust controllable set K1(X ,W) = Pre(X ,W) ∩ X is

Pre(X ,W) ∩ X =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x :

⎡⎢⎢⎢⎢⎢⎢⎣
1 0
0 1
−1 0
0 −1
1 −0.5
−1 0.5

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
10
10
10
10
9
9

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
and is depicted in Figure 10.9.

Note that by using the definition of the Pontryagin difference given in Section 4.4.8
and affine operations on polyhedra in Section 4.4.11 we can compactly summarize
the operations in (10.38) and write the set Pre in (10.30) as

Pre(X ,W) = {x ∈ Rn : Ax+ w ∈ X , ∀w ∈ W} = {x ∈ Rn : Ax ∈ X �W} =
= (X �W) ◦A.

The set

Suc(X ,W) = {y : ∃x ∈ X , ∃w ∈ W such that y = Ax+ w} (10.41)

is obtained by applying the map A to the set X and then considering the effect of
the disturbance w ∈ W. Let us write X in V-representation (see Section 4.1)

X = conv(V), (10.42)

x1

x
2

X

Pre(X, W) ∩ X

–10 –5 0 5
–10

–5

0

5

10

10

Figure 10.9 Example 10.8. One-step robust controllable set Pre(X ,W) ∩ X
for system (10.34) under constraints (10.35)–(10.36).

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachAdditive_AutandNot.m

10.3 Robust Controllable and Reachable Sets 199

Su
c(

X,
 W

)

x1

x
2

X

–10 0 10

–10

0

10

Figure 10.10 Example 10.8. Robust successor set for system (10.34) under
constraints (10.36).

and let us map the set of vertices V through the transformation A. Because the
transformation is linear, the composition of the map A with the set X , denoted as
A ◦ X , is simply the convex hull of the transformed vertices

A ◦ X = conv(AV). (10.43)

We refer the reader to Section 4.4.11 for a detailed discussion on linear transforma-
tions of polyhedra. Rewrite (10.41) as

Suc(X ,W) = {y ∈ Rn : ∃ z ∈ A ◦ X , ∃w ∈ W such that y = z + w}.
We can use the definition of the Minkowski sum given in Section 4.4.9 and rewrite
the Suc set as

Suc(X ,W) = (A ◦ X)⊕W.

We can compute the Minkowski sum via projection or vertex enumeration as
explained in Section 4.4.9. The set Suc(X ,W) in H-representation is

Suc(X ,W) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x :

⎡⎢⎢⎢⎢⎢⎢⎣
1 −0.5
0 −1
−1 0
−1 0.5
0 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
4
16
6
4
16
6

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

and is depicted in Figure 10.10.

10.3.2 Linear Systems with Additive Uncertainty and Inputs

Example 10.9 Consider the second order unstable system{
x(t+ 1) = Ax+Bu =

[
1.5 0
1 −1.5

]
x(t) +

[
1
0

]
u(t) + w(t) (10.44)

subject to the input and state constraints

u(t) ∈ U = {u : − 5 ≤ u ≤ 5} , ∀t ≥ 0 (10.45a)

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0, (10.45b)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachAdditive_AutandNot.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachAdditive_AutandNot.m

200 10 Controllability, Reachability and Invariance

where
w(t) ∈ W = {w : − 1 ≤ w ≤ 1} , ∀t ≥ 0. (10.46)

For the nonautonomous system (10.44), the set Pre(X ,W) can be computed using
the H-presentation of X and U ,

X = {x : Hx ≤ h}, U = {u : Huu ≤ hu}, (10.47)

to obtain

Pre(X ,W) =
{
x ∈ R2 : ∃u ∈ U s.t. Ax+Bu+ w ∈ X , ∀ w ∈ W

}
(10.48a)

=

{
x ∈ R2 : ∃u ∈ R s.t.

[
HA HB
0 Hu

](
x
u

)
≤
[
h−Hw

hu

]
, ∀ w ∈ W

}
.

(10.48b)

As in Example 10.8, the set Pre(X ,W) can be compactly written as

Pre(X ,W) =

{
x ∈ R2 : ∃u ∈ R s.t.

[
HA HB
0 Hu

](
x
u

)
≤
[
h̃
hu

]}
, (10.49)

where
h̃i = min

w∈W
(hi −Hiw). (10.50)

In general, a linear program is required to solve problems (10.50). In this example Hi

and W have simple expressions and we get h̃ =

⎡⎢⎢⎣
9
9
9
9

⎤⎥⎥⎦.
The halfspaces in (10.49) define a polytope in the state-input space, and a projection
operation (see Section 4.4.6) is used to derive the halfspaces which define Pre(X ,W)
in the state space. The set Pre(X ,W) ∩ X is depicted in Figure 10.11 and reported
below: ⎡⎢⎢⎢⎢⎢⎢⎣

1 0
−1 0
1 −1.5
−1 1.5
0 1
0 −1

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
9.3
9.3
9
9
10
10

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that by using the definition of a Minkowski sum given in Section 4.4.9
and the affine operation on polyhedra in Section 4.4.11 we can compactly write the
operations in (10.48) as follows:

Pre(X ,W) = {x : ∃u ∈ U s.t. Ax+Bu+ w ∈ X , ∀ w ∈ W}
= {x : ∃y ∈ X , ∃u ∈ U s.t. y = Ax+Bu+ w, ∀ w ∈ W}
= {x : ∃y ∈ X , ∃u ∈ U s.t. Ax = y + (−Bu)− w, ∀ w ∈ W}
= {x : Ax ∈ C and C = X ⊕ (−B) ◦ U �W}
= {x : x ∈ C ◦A, C = X ⊕ (−B) ◦ U �W}
= {x : x ∈ ((X �W)⊕ (−B ◦ U)) ◦A} .

(10.51)

10.3 Robust Controllable and Reachable Sets 201

x1

x
2

X

Pre(X, W) ∩ X

–10 0 5 10
–10

–5

0

5

10

–5

Figure 10.11 Example 10.9. One-step robust controllable set Pre(X ,W)∩X
for system (10.44) under constraints (10.45)–(10.46).

x1

x
2 Suc(X, W)

–30 –20 0 10 20
–30

–20

–10

0

10

20

30

–10 30

Figure 10.12 Example 10.9. Robust successor set for system (10.44) under
constraints (10.45)–(10.46).

Remark 10.8 Note that in (10.51) we have used the fact that if a set S is described
as S = {v : ∃z ∈ Z, s.t. v = z − w, ∀ w ∈ W}, then S = {v : ∃z ∈ Z, s.t. z =
v + w, ∀ w ∈ W} or S = {v : v + w ∈ Z, ∀ w ∈ W} = Z � W. Also, to derive
the last equation of (10.51) we have used the associative property of the Pontryagin
difference.

The set Suc(X ,W) = {y : ∃x ∈ X , ∃u ∈ U , ∃w ∈ W s.t. y = Ax + Bu + w}
is obtained by applying the map A to the set X and then considering the effect
of the input u ∈ U and of the disturbance w ∈ W. We can use the definition of
Minkowski sum given in Section 4.4.9 and rewrite Suc(X ,W) as

Suc(X ,W) = (A ◦ X)⊕ (B ◦ U)⊕W.

The set Suc(X ,W) is depicted in Figure 10.12.
In summary, for linear systems with additive disturbances the sets Pre(X ,W)

and Suc(X ,W) are the results of linear operations on the polytopes X , U and W
and therefore are polytopes. By using the definition of Minkowski sum given in
Section 4.4.9, Pontryagin difference given in Section 4.4.8 and affine operation on
polyhedra in Section 4.4.11 we can compactly summarize the operations in Table
10.2. Note that the summary in Table 10.2 applies also to the class of systems
x(k + 1) = Ax(t) + Bu(t) + Ed̃(t) where d̃ ∈ W̃. This can be transformed into
x(k + 1) = Ax(t) +Bu(t) + w(t) where w ∈ W = E ◦ W̃ .

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachAdditive_AutandNot.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachAdditive_AutandNot.m

202 10 Controllability, Reachability and Invariance

Table 10.2 Pre and Suc operations for uncertain linear systems subject to
polyhedral input and state constraints x(t) ∈ X , u(t) ∈ U with additive
polyhedral disturbances w(t) ∈ W.

x(t+ 1) = Ax(t) + w(t) x(t+ 1) = Ax(t) +Bu(t) + w(t)

Pre(X ,W) (X �W) ◦A ((X �W)⊕ (−B ◦ U)) ◦A
Suc(X ,W) (A ◦ X)⊕W (A ◦ X)⊕ (B ◦ U)⊕W

The N -step robust controllable set KN (S,W) and the N -step robust reachable
set RN (X0,W) can be computed by using their recursive formulas (10.32), (10.33)
and computing the Pre and Suc operations as described in Table 10.2.

10.3.3 Linear Systems with Parametric Uncertainty

The next Lemma 10.1 will help us computing Pre and Suc sets for linear systems
with parametric uncertainty.

Lemma 10.1 Let g : Rnz × Rn × Rnw → Rng be a function of (z, x, w) convex
in w for each (z, x). Assume that the variable w belongs to the polytope W with
vertices {w̄i}nW

i=1. Then, the constraint

g(z, x, w) ≤ 0 ∀w ∈ W (10.52)

is satisfied if and only if

g(z, x, w̄i) ≤ 0, i = 1, . . . , nW . (10.53)

Proof: Easily follows from the fact that the maximum of a convex function
over a compact convex set is attained at an extreme point of the set. �

Lemma 10.2 shows how to reduce the number of constraints in (10.53) for a
specific class of constraint functions.

Lemma 10.2 Assume g(z, x, w) = g1(z, x)+ g2(w). Then the constraint (10.52)

can be replaced by g1(z, x) ≤ −ḡ, where ḡ =
[
ḡ1, . . . , ḡng

]′
is a vector whose i-th

component is

ḡi = max
w∈W

g2i (w), (10.54)

and g2i (w) denotes the i-th component of g2(w).

Example 10.10 Consider the second order autonomous system

x(t+ 1) = A(wp(t))x(t) + wa(t) =

[
0.5 + wp(t) 0

1 −0.5

]
x(t) + wa(t) (10.55)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachParametric.m

10.3 Robust Controllable and Reachable Sets 203

subject to the constraints

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0

wa(t) ∈ Wa =

{
wa :

[
−1
−1

]
≤ wa ≤

[
1
1

]}
, ∀t ≥ 0

wp(t) ∈ Wp = {wp : 0 ≤ wp ≤ 0.5} , ∀t ≥ 0.

(10.56)

Let w = [wa; wp] and W = Wa×Wp. The set Pre(X ,W) can be obtained as follows.
The set X is a polytope and it can be represented as an H-polytope (Section 4.2)

X = {x : Hx ≤ h}, (10.57)

where

H =

⎡⎢⎢⎣
1 0
0 1
−1 0
0 −1

⎤⎥⎥⎦ and h =

⎡⎢⎢⎣
10
10
10
10

⎤⎥⎥⎦ .

By using this H-presentation and the system equation (10.55), the set Pre(X ,W) can
be rewritten as

Pre(X ,W) =
{
x : Hga(x,w) ≤ h, ∀w ∈ W

}
(10.58)

= {x : HA(wp)x ≤ h−Hwa, ∀wa ∈ Wa, wp ∈ Wp} .
(10.59)

By using Lemmas 10.1 and 10.2, the set (10.59) can be rewritten as a the polytope

x ∈ Pre(X ,W) =

{
x ∈ Rn :

[
HA(0)
HA(0.5)

]
x ≤

[
h̃

h̃

]}
(10.60)

with
h̃i = min

wa∈Wa
(hi −Hiw

a), i = 1, . . . , 4. (10.61)

The set Pre(X ,W) ∩ X is depicted in Figure 10.13 and reported below:⎡⎢⎢⎢⎢⎢⎢⎣
1 0

0.89 −0.44
1 0

−0.89 0.44
0 1
0 −1

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
9

8.049
9

8.049
10
10

⎤⎥⎥⎥⎥⎥⎥⎦ .

X

x1

x
2 Pre(X, W) ∩ X

–10 0 5 10
–10

–5

0

5

10

–5

Figure 10.13 Example 10.10. One-step robust controllable set Pre(X ,W)∩X
for system (10.55) under constraints (10.56).

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachParametric.m

204 10 Controllability, Reachability and Invariance

x
2

x1

Su
c(X

, W
)

–10 0 10

–10

0

10

Figure 10.14 Example 10.11. Robust successor set Suc(X ,W) for system
(10.62) under constraints (10.63).

Example 10.11 Consider the second order autonomous system

x(t+ 1) = A(wp(t))x(t) =

[
0.5 + wp(t) 0

1 −0.5

]
x(t) (10.62)

subject to the constraints

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0

wp(t) ∈ Wp = {wp : 0 ≤ wp ≤ 0.5} , ∀t ≥ 0.
(10.63)

Let w = [wp] and W = Wp. The set Suc(X ,W) can be written as infinite union of
reachable sets

Suc(X ,W) =
⋃

w̄∈W
Suc(X , w̄) (10.64)

where Suc(X , w̄) is computed as described in Example 10.1 for the system A(w̄).
In general, the union in equation (10.64) generates a nonconvex set, as can be seen
in Figure 10.14. Nonconvexity of successor sets for parametric linear systems is also
discussed in [59][Section 6.1.2].

10.4 Robust Invariant Sets

Two different types of sets are considered in this chapter: robust invariant sets and
robust control invariant sets. We will first discuss robust invariant sets.

Robust Positive Invariant Sets

Robust invariant sets are computed for autonomous systems. These types of sets
are useful to answer questions such as: “For a given feedback controller u = f(x),
find the set of states whose trajectory will never violate the system constraints for
all possible disturbances.” The following definitions introduce the different types
of robust invariant sets.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachParametric.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobPreReachParametric.m

10.4 Robust Invariant Sets 205

Definition 10.20 (Robust Positive Invariant Set) A set O ⊆ X is said to
be a robust positive invariant set for the autonomous system (10.27) subject to the
constraints (10.29), if

x(0) ∈ O ⇒ x(t) ∈ O, ∀w(t) ∈ W, t ∈ N+.

Definition 10.21 (Maximal Robust Positive Invariant Set O∞) The set
O∞ ⊆ X is the maximal robust invariant set of the autonomous system (10.27)
subject to the constraints (10.29) if O∞ is a robust invariant set and O∞ contains
all the robust positive invariant sets contained in X .

Theorem 10.2 (Geometric condition for invariance) A set O ⊆ X is a
robust positive invariant set for the autonomous system (10.27) subject to the
constraints (10.29), if and only if

O ⊆ Pre(O,W). (10.65)

The proof of Theorem 10.2 follows the same lines of the proof of Theorem 10.1. �

It is immediate to prove that condition (10.65) of Theorem 10.2 is equivalent
to the following condition

Pre(O,W) ∩ O = O. (10.66)

Based on condition (10.66), the following algorithm provides a procedure for
computing the maximal robust positive invariant subset O∞ for system (10.27)–
(10.29) (for reference to proofs and literature see Section 10.1).

Algorithm 10.4 Computation of O∞

Input: ga, X , W
Output: O∞

Ω0 ← X , k ← −1

Repeat

k ← k + 1

Ωk+1 ← Pre(Ωk,W) ∩ Ωk

Until Ωk+1 = Ωk

O∞ ← Ωk

Algorithm 10.4 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk, ∀k ∈ N and
it terminates when Ωk+1 = Ωk. If it terminates, then Ωk is the maximal robust
positive invariant set O∞ for system (10.27)–(10.29). If Ωk = ∅ for some integer k
then the simple conclusion is that O∞ = ∅.

In general, Algorithm 10.4 may never terminate. If the algorithm does not
terminate in a finite number of iterations, it can be proven that [179]

O∞ = lim
k→+∞

Ωk.

Conditions for finite time termination of Algorithm 10.4 can be found in [124].
A simple sufficient condition for finite time termination of Algorithm 10.1 requires
the system ga(x,w) to be linear and stable, and the constraint set X and
disturbance set W to be bounded and to contain the origin.

206 10 Controllability, Reachability and Invariance

X

O∞

x1

x
2

–10 0 5 10
–10

–5

0

5

10

–5

Figure 10.15 Example 10.12. Maximal Robust Positive Invariant Set of
system (10.67) subject to constraints (10.68).

Example 10.12 Consider the second order stable system in Example 10.8

x(t+ 1) = Ax(t) + w(t) =

[
0.5 0
1 −0.5

]
x(t) + w(t) (10.67)

subject to the constraints

x(t) ∈ X =

{
x :

[
−10
−10

]
≤ x ≤

[
10
10

]}
, ∀t ≥ 0

w(t) ∈ W =

{
w :

[
−1
−1

]
≤ w ≤

[
1
1

]}
, ∀t ≥ 0.

(10.68)

The maximal robust positive invariant set of system (10.67) subject to con-
straints (10.68) is depicted in Figure 10.15 and reported below:⎡⎢⎢⎢⎢⎢⎢⎣

0.89 −0.44
−0.89 0.44
−1 0
0 −1
1 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎢⎢⎢⎣
8.04
8.04
10
10
10
10

⎤⎥⎥⎥⎥⎥⎥⎦ .

Robust Control Invariant Sets

Robust control invariant sets are defined for systems subject to controllable inputs.
These types of sets are useful to answer questions such as: “Find the set of states for
which there exists a controller such that the system constraints are never violated
for all possible disturbances.” The following definitions introduce the different types
of robust control invariant sets.

Definition 10.22 (Robust Control Invariant Set) A set C ⊆ X is said to
be a robust control invariant set for the system (10.28) subject to the con-
straints (10.29), if

x(t) ∈ C ⇒ ∃u(t) ∈ U such that g(x(t), u(t), w(t)) ∈ C, ∀ w(t) ∈ W, ∀ t ∈ N+.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobInv.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobInv.m

10.4 Robust Invariant Sets 207

Definition 10.23 (Maximal Robust Control Invariant Set C∞) The set
C∞ ⊆ X is said to be the maximal robust control invariant set for the system (10.28)
subject to the constraints (10.29), if it is robust control invariant and contains all
robust control invariant sets contained in X .

Remark 10.9 The geometric conditions for invariance (10.65)–(10.66) hold for
control invariant sets.

The following algorithm provides a procedure for computing the maximal robust
control invariant set C∞ for system (10.28)–(10.29).

Algorithm 10.5 Computation of C∞

Input: g, X , U , W
Output: C∞

Ω0 ← X , k ← −1

Repeat

k ← k + 1

Ωk+1 ← Pre(Ωk,W) ∩ Ωk

Until Ωk+1 = Ωk

C∞ ← Ωk+1

Algorithm 10.5 generates the set sequence {Ωk} satisfying Ωk+1 ⊆ Ωk, ∀k ∈ N.
Algorithm 10.5 terminates when Ωk+1 = Ωk. If it terminates, then Ωk is the
maximal robust control invariant set C∞ for the system (10.28)–(10.29).

In general, Algorithm 10.5 may never terminate [10, 49, 172, 164]. If the algo-
rithm does not terminate in a finite number of iterations, in general, convergence
to the maximal robust control invariant set is not guaranteed

C∞ 	= lim
k→+∞

Ωk. (10.69)

The work in [50] reports examples of nonlinear systems where (10.69) can be
observed. A sufficient condition for the convergence of Ωk to C∞ as k → +∞
requires the polyhedral sets X , U and W to be bounded and the system g(x, u, w)
to be continuous [50].

Example 10.13 Consider the second order unstable system in Example 10.9. The
maximal robust control invariant set of system (10.44) subject to constraints (10.45)–
(10.46) is an empty set. If the uncertain set (10.46) is replaced with

w(t) ∈ W = {w : − 0.1 ≤ w ≤ 0.1} , ∀t ≥ 0

the maximal robust control invariant set is⎡⎢⎢⎣
0 1
0 −1

0.55 −0.83
−0.55 0.83

⎤⎥⎥⎦x ≤

⎡⎢⎢⎣
3.72
3.72
2.0
2.0

⎤⎥⎥⎦
which is depicted in Figure 10.16.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobInv.m

208 10 Controllability, Reachability and Invariance

X

C∞

x1

x
2

–10 –5 0 5
–10

–5

0

5

10

10

Figure 10.16 Example 10.13. Maximal Robust Control Invariant Set of
system (10.44) subject to constraints (10.45).

Definition 10.24 (Finitely determined set) Consider Algorithm 10.4 (10.5).
The set O∞ (C∞) is finitely determined if and only if ∃ i ∈ N such that Ωi+1 = Ωi.
The smallest element i ∈ N such that Ωi+1 = Ωi is called the determinedness index.

For all states contained in the maximal robust control invariant set C∞ there
exists a control law, such that the system constraints are never violated for all
feasible disturbances. This does not imply that there exists a control law which
can drive the state into a user-specified target set. This issue is addressed in the
following by introducing the concept of robust controllable and stabilizable sets.

Definition 10.25 (Maximal Robust Controllable Set K∞(O,W)) For a
given target set O ⊆ X , the maximal robust controllable set K∞(O,W) for the
system (10.28) subject to the constraints (10.29) is the union of all N -step robust
controllable sets contained in X for N ∈ N.

Robust controllable sets KN (O,W) where the target O is a robust control invariant
set are special sets, since in addition to guaranteeing that from KN (O,W) we
robustly reach O in N steps, one can ensure that once reached O, the system can
stay there at all future time instants and for all possible disturbance realizations.

Definition 10.26 (N-step (Maximal) Robust Stabilizable Set) For a given
robust control invariant set O ⊆ X , the N -step (maximal) robust stabilizable set
of the system (10.28) subject to the constraints (10.29) is the N -step (maximal)
robust controllable set KN (O,W) (K∞(O,W)).

The set K∞(O,W) contains all states which can be robustly steered into the
robust control invariant set O and hence K∞(O,W) ⊆ C∞. The set K∞(O,W) ⊆
C∞ can be computed as follows:

Algorithm 10.6 Computation of K∞(O,W)

Input: ga, X , W
Output: K∞(O,W)

K0 ← O, where O is a robust control invariant set

c ← −1

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/RobInv.m

10.4 Robust Invariant Sets 209

Repeat

c ← c+ 1

Kc+1 ← Pre(Kc,W)
⋂

X
Until Kc+1 = Kc

K∞(O,W) = Kc

Since O is robust control invariant, it holds ∀c ∈ N that Kc is robust control
invariant and Kc ⊆ Kc+1. Note that Algorithm 10.6 is not guaranteed to terminate
in finite time.

11

Constrained Optimal Control

In this chapter we study the finite time and infinite time optimal control problem
for linear systems with linear constraints on inputs and state variables. We establish
the structure of the optimal control law and derive algorithms for its computation.
For finite time problems with linear and quadratic objective functions we show that
the time varying feedback law is piecewise affine and continuous. The value function
is a convex piecewise linear for linear objective functions and convex piecewise
quadratic for quadratic objective functions.

We describe how the optimal control action for a given initial state can be
computed by means of linear or quadratic programming. We also describe how
the optimal control law can be computed by means of multiparametric linear or
quadratic programming. Finally, we show how to compute the infinite time optimal
controller for linear and quadratic objective functions and prove that, when it exists,
the infinite time controller inherits all the structural properties of the finite time
optimal controller.

11.1 Problem Formulation

Consider the linear time-invariant system

x(t+ 1) = Ax(t) +Bu(t), (11.1)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and input vectors, respectively, subject
to the constraints

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0. (11.2)

The sets X ⊆ Rn and U ⊆ Rm are polyhedra.

Remark 11.1 The results of this chapter also hold for more general forms of linear
constraints such as mixed input and state constraints

[x(t)′, u(t)′] ∈ Px,u, (11.3)

212 11 Constrained Optimal Control

where Px,u is a polyhedron in Rn+m of mixed input and state constraints over a finite
time, or, even more general, constraints of the type:[

x(0)′, . . . , x(N − 1)′, u(0)′, . . . , u(N − 1)′
]
∈ Px,u,N , (11.4)

where Px,u,N is a polyhedron in RN(n+m). Note that constraints of the type (11.4)
can arise, for example, from constraints on the input rate Δu(t) = u(t)− u(t− 1). In
this chapter, for the sake of simplicity, we will use the less general form (11.2).

Define the cost function

J0(x(0), U0) = p(xN) +
N−1∑
k=0

q(xk, uk), (11.5)

where xk denotes the state vector at time k obtained by starting from the state
x0 = x(0) and applying to the system model

xk+1 = Axk +Buk (11.6)

the input sequence u0, . . . , uk−1.
If the 1-norm or∞-norm is used in the cost function (11.5), then we set p(xN) =

‖PxN‖p and q(xk, uk) = ‖Qxk‖p + ‖Ruk‖p with p = 1 or p = ∞ and P , Q, R full
column rank matrices. Cost (11.5) is rewritten as

J0(x(0), U0) = ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p. (11.7)

If the squared Euclidian norm is used in the cost function (11.5), then we set
p(xN) = x′

NPxN and q(xk, uk) = x′
kQxk + u′

kRuk with P � 0, Q � 0 and R � 0.
Cost (11.5) is rewritten as

J0(x(0), U0) = x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk. (11.8)

Consider the constrained finite time optimal control problem (CFTOC)

J∗
0 (x(0)) = minU0

J0(x(0), U0)
subj. to xk+1 = Axk +Buk, k = 0, . . . , N − 1

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0),

(11.9)

where N is the time horizon and Xf ⊆ Rn is a terminal polyhedral region.
In (11.5)–(11.9) U0 = [u′

0, . . . , u
′
N−1]

′ ∈ Rs, s = mN is the optimization vector.
We denote with X0 ⊆ X the set of initial states x(0) for which the optimal control
problem (11.5)–(11.9) is feasible, i.e.,

X0 = {x0 ∈ Rn : ∃(u0, . . . , uN−1) such that xk ∈ X , uk ∈ U , k = 0, . . . , N − 1,
xN ∈ Xf where xk+1 = Axk +Buk, k = 0, . . . , N − 1}.

(11.10)

11.2 Feasible Solutions 213

Remark 11.2 Note that we distinguish between the current state x(k) of system
(11.1) at time k and the variable xk in the optimization problem (11.9), that is
the predicted state of system (11.1) at time k obtained by starting from the
state x0 = x(0) and applying to system (11.6) the input sequence u0, . . . , uk−1.
Analogously, u(k) is the input applied to system (11.1) at time k while uk is the
k-th optimization variable of the optimization problem (11.9).

If we use cost (11.8) with the squared Euclidian norm and set

{(x, u) ∈ Rn+m : x ∈ X , u ∈ U} = Rn+m, Xf = Rn, (11.11)

problem (11.9) becomes the standard unconstrained finite time optimal control
problem (Chapter 8) whose solution (under standard assumptions on A, B, P , Q
and R) can be expressed through the time varying state feedback control law (8.28)

u∗(k) = Fkx(k) k = 0, . . . , N − 1. (11.12)

From (8.25) the optimal cost is given by

J∗
0 (x(0)) = x(0)′P0x(0). (11.13)

If we let N → ∞ as discussed in Section 8.5, then problem (11.8), (11.9), (11.11)
becomes the standard infinite horizon linear quadratic regulator (LQR) problem
whose solution (under standard assumptions on A, B, P ,Q and R) can be expressed
as the state feedback control law (see (8.33))

u∗(k) = F∞x(k), k = 0, 1, . . . (11.14)

In the following chapters we will show that the solution to problem (11.9) can
again be expressed in feedback form where now u∗(k) is a continuous piecewise
affine function on polyhedra of the state x(k), i.e., u∗(k) = fk(x(k)) where

fk(x) = F j
kx+ gjk if Hj

kx ≤ Kj
k, j = 1, . . . , Nr

k . (11.15)

Matrices Hj
k and Kj

k in equation (11.15) describe the j-th polyhedron CRj
k = {x ∈

Rn : Hj
kx ≤ Kj

k} inside which the feedback optimal control law u∗(k) at time k has

the affine form F j
kx+ gjk. The set of polyhedra CRj

k, j = 1, . . . , Nr
k is a polyhedral

partition of the set of feasible states Xk of problem (11.9) at time k. The sets Xk are
discussed in detail in the next section. Since the functions fk(x(k)) are continuous,
the use of polyhedral partitions rather than strict polyhedral partitions (Definition
4.5) will not cause any problem, indeed it will simplify the exposition.

In the rest of this chapter we will characterize the structure of the value function
and describe how the optimal control law can be efficiently computed by means of
multiparametric linear and quadratic programming. We will distinguish the cases
1- or ∞-norm and squared 2-norm.

11.2 Feasible Solutions

We denote with Xi the set of states xi at time i for which (11.9) is feasible,
for i = 0, . . . , N . The sets Xi for i = 0, . . . , N play an important role in the

214 11 Constrained Optimal Control

solution of (11.9). They are independent of the cost function (as long as it
guarantees the existence of a minimum) and of the algorithm used to compute
the solution to problem (11.9). There are two ways to rigorously define and
compute the sets Xi: the batch approach and the recursive approach. In the batch
approach

Xi = {xi ∈ X : ∃(ui, . . . , uN−1) such that xk ∈ X , uk ∈ U , k = i, . . . , N − 1,
xN ∈ Xf where xk+1 = Axk +Buk, k = i, . . . , N − 1}.

(11.16)

The definition of Xi in (11.16) requires that for any initial state xi ∈ Xi there exists
a feasible sequence of inputs Ui = [u′

i, . . . , u
′
N−1] which keeps the state evolution in

the feasible set X at future time instants k = i+1, . . . , N−1 and forces xN into Xf

at time N . Clearly XN = Xf . Next we show how to compute Xi for i = 0, . . . , N−1.
Let the state and input constraint sets X , Xf and U be the H-polyhedra Axx ≤ bx,
AfxN ≤ bf , Auu ≤ bu, respectively. Define the polyhedron Pi for i = 0, . . . , N − 1
as follows

Pi = {(Ui, xi) ∈ Rm(N−i)+n : GiUi − Eixi ≤ wi}, (11.17)

where Gi, Ei and wi are defined as follows

Gi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Au 0 . . . 0
0 Au . . . 0
...

...
...

...
0 0 . . . Au

0 0 . . . 0
AxB 0 . . . 0
AxAB AxB . . . 0
...

...
...

...
AfA

N−i−1B AfA
N−i−2B . . . AfB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ei =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0

−Ax

−AxA
−AxA

2

...
−AfA

N−i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, wi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bu
bu
...
bu
bx
bx
bx
...
bf

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(11.18)

The set Xi is a polyhedron as it is the projection of the polyhedron Pi in (11.17)–
(11.18) on the xi space.

In the recursive approach,

Xi = {x ∈ X : ∃u ∈ U such that Ax+Bu ∈ Xi+1},
i = 0, . . . , N − 1

XN = Xf . (11.19)

The definition of Xi in (11.19) is recursive and requires that for any feasible initial
state xi ∈ Xi there exists a feasible input ui which keeps the next state Axi +Bui

in the feasible set Xi+1. It can be compactly written as

Xi = Pre(Xi+1) ∩ X . (11.20)

Initializing XN to Xf and solving (11.19) backward in time yields the same sets Xi

as the batch approach. This recursive formulation, however, leads to an alternative

11.2 Feasible Solutions 215

approach for computing the sets Xi. Let Xi be the H-polyhedra AXi
x ≤ bXi

. Then
the set Xi−1 is the projection of the following polyhedron⎡⎣ Au

0
AXi

B

⎤⎦ui +

⎡⎣ 0
Ax

AXi
A

⎤⎦xi ≤

⎡⎣ bu
bx
bXi

⎤⎦ (11.21)

on the xi space.
Consider problem (11.9). The set X0 is the set of all initial states x0 for

which (11.9) is feasible. The sets Xi with i = 1, . . . , N − 1 are hidden. A given
Ū0 = [ū0, . . . , ūN−1] is feasible for problem (11.9) if and only if at all time
instants i, the state xi obtained by applying ū0, . . . , ūi−1 to the system model
xk+1 = Axk + Buk with initial state x0 ∈ X0 belongs to Xi. Also, Xi is the set of
feasible initial states for problem

J∗
i (x(0)) = minUi

p(xN) +

N−1∑
k=i

q(xk, uk)

subj. to xk+1 = Axk +Buk, k = i, . . . , N − 1
xk ∈ X , uk ∈ U , k = i, . . . , N − 1
xN ∈ Xf .

(11.22)

Next, we provide more insights into the set Xi by using the invariant set
theory of Section 10.2. We consider two cases: (1) Xf = X which corresponds
to effectively “removing” the terminal constraint set and (2) Xf chosen to be a
control invariant set.

Theorem 11.1 [172, Theorem 5.3]. Let the terminal constraint set Xf be equal
to X . Then,

1. The feasible set Xi, i = 0, . . . , N − 1 is equal to the (N − i)-step controllable
set:

Xi = KN−i(X).

2. The feasible set Xi, i = 0, . . . , N − 1 contains the maximal control invariant
set:

C∞ ⊆ Xi.

3. The feasible set Xi is control invariant if and only if the maximal control
invariant set is finitely determined and N − i is equal to or greater than its
determinedness index N̄ , i.e.,

Xi ⊆ Pre(Xi) ⇔ C∞ = KN−i(X) for all i ≤ N − N̄ .

4. Xi ⊆ Xj if i < j for i = 0, . . . , N − 1. The size of the feasible set Xi stops
decreasing (with decreasing i) if and only if the maximal control invariant
set is finitely determined and N − i is larger than its determinedness index,
i.e.,

Xi ⊂ Xj if N − N̄ < i < j < N.

216 11 Constrained Optimal Control

Furthermore,

Xi = C∞ if i ≤ N − N̄ .

Theorem 11.2 [172, Theorem 5.4]. Let the terminal constraint set Xf be a
control invariant subset of X . Then,

1. The feasible set Xi, i = 0, . . . , N − 1 is equal to the (N − i)-step stabilizable
set:

Xi = KN−i(Xf).

2. The feasible set Xi, i = 0, . . . , N−1 is control invariant and contained within
the maximal control invariant set:

Xi ⊆ C∞.

3. Xi ⊇ Xj if i < j, i = 0, . . . , N − 1. The size of the feasible Xi set stops
increasing (with decreasing i) if and only if the maximal stabilizable set is
finitely determined and N − i is larger than its determinedness index, i.e.,

Xi ⊃ Xj if N − N̄ < i < j < N.

Furthermore,

Xi = K∞(Xf) if i ≤ N − N̄ .

Remark 11.3 Theorems 11.1 and 11.2 help us understand how the feasible sets
Xi propagate backward in time as a function of the terminal set Xf . In particular,
when Xf = X the set Xi shrinks as i becomes smaller and stops shrinking when it
becomes the maximal control invariant set. Also, depending on i, either it is not a
control invariant set or it is the maximal control invariant set. We have the opposite
if a control invariant set is chosen as terminal constraint Xf . The set Xi grows as
i becomes smaller and stops growing when it becomes the maximal stabilizable set.
Both cases are shown in the Example 11.1 below.

Remark 11.4 In this section we investigated the behavior of Xi as i varies for a
fixed horizon N . Equivalently, we could study the behavior of X0 as the horizon N
varies. Specifically, the sets X0→N1 and X0→N2 with N2 > N1 are equal to the sets
XN2−N1→N and X0→N , respectively, with N = N2.

Example 11.1 Consider the double integrator⎧⎪⎨⎪⎩
x(t+ 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
1 0

]
x(t)

(11.23)

subject to the input constraints

− 1 ≤ u(k) ≤ 1 for all k ≥ 0 (11.24)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PropagationSets.m

11.2 Feasible Solutions 217

x1

x
2

–6 –4 –2 0 2 4 6–6

–4

–2

0

2

4

6

(a) Case 1: Xf = control invariant

set in (11.26).

x1

x
2

–6 –4 –2 0 2 4 6–6

–4

–2

0

2

4

6

(b) Case 2: Xf = X .

Figure 11.1 Example 11.1. Propagation of the feasible sets Xi to arrive at
C∞ (shaded dark).

and the state constraints [
−5
−5

]
≤ x(k) ≤

[
5
5

]
for all k ≥ 0. (11.25)

We compute the feasible sets Xi and plot them in Figure 11.1 in two cases.

Case 1. Xf is the control invariant set

⎡⎢⎢⎣
−0.32132 −0.94697
0.32132 0.94697

1 0
−1 0

⎤⎥⎥⎦x ≤

⎡⎢⎢⎣
0.3806
0.3806
2.5
2.5

⎤⎥⎥⎦ . (11.26)

After six iterations the sets Xi converge to the following K∞(Xf)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.44721 −0.89443
−0.24254 −0.97014
−0.31623 −0.94868
0.24254 0.97014
0.31623 0.94868
0.44721 0.89443

1 0
−1 0

0.70711 0.70711
−0.70711 −0.70711

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.6833
2.6679
2.5298
2.6679
2.5298
2.6833

5
5

3.5355
3.5355

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11.27)

Note that in this case C∞ = K∞(Xf) and the determinedness index is six.

Case 2. Xf = X . After six iterations the sets Xi converge to K∞(Xf) in (11.27).

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PropagationSets.m

218 11 Constrained Optimal Control

11.3 2-Norm Case Solution

Consider problem (11.9) with J0(·) defined by (11.8). In this chapter we always
assume that Q = Q′ � 0, R = R′ � 0, P = P ′ � 0.

J∗
0 (x(0)) = minU0

J0(x(0), U0) = x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk

subj. to xk+1 = Axk +Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0).

(11.28)

11.3.1 Solution via QP

As shown in Section 8.2, problem (11.28) can be rewritten as

J∗
0 (x(0)) = min

U0

J0(x(0), U0) = U ′
0HU0 + 2x′(0)FU0 + x′(0)Y x(0)

= min
U0

J0(x(0), U0) = [U ′
0 x′(0)]

[
H F ′

F Y

]
[U0

′ x(0)′]′

subj. to G0U0 ≤ w0 + E0x(0), (11.29)

with G0, w0 and E0 defined in (11.18) for i = 0 and H, F , Y defined in (8.8). As
J0(x(0), U0) ≥ 0 by definition it follows that

[
H F ′

F Y

]
� 0.

For a given vector x(0) the optimal input sequence U∗
0 solving problem (11.29)

can be computed by using a Quadratic Program (QP) solver (see Section 2.3
for QP definition and properties and Chapter 3 for fast numerical methods for
solving QPs).

To obtain the problem (11.29) we have eliminated the state variables and
equality constraints xk+1 = Axk+Buk by successive substitution so that we are left
with u0, . . . , uN−1 as the only decision variables and x(0) as a parameter vector.
In general, it might be more efficient to solve a QP problem with equality and
inequality constraints so that sparsity can be exploited. To this aim we can define
the variable z̃ as

z̃ =
[
x′
1 . . . x′

N u′
0 . . . u′

N−1

]′
and rewrite problem (11.28) as

J∗
0 (x(0)) = min

z̃
[z̃′ x(0)′]

[
H̄ 0
0 Q

]
[z̃′ x(0)′]′

subj. to G0,eqz̃ = E0,eqx(0)
G0,inz̃ ≤ w0,in + E0,inx(0).

(11.30)

For a given vector x(0) the optimal input sequence U∗
0 solving problem (11.30) can

be computed by using a Quadratic Program (QP) solver.

11.3 2-Norm Case Solution 219

To obtain problem (11.30) we have rewritten the equalities from system
dynamics xk+1 = Axk +Buk as G0,eqz̃ = E0,eqx(0) where

G0,eq =

⎡⎢⎢⎢⎢⎢⎣
I −B

−A I −B
−A I −B

. . .
. . .

. . .

−A I −B

⎤⎥⎥⎥⎥⎥⎦ , E0,eq =

⎡⎢⎢⎢⎣
A
0
...
0

⎤⎥⎥⎥⎦ ,

and rewritten state and input constraints as G0,inz̃ ≤ w0,in + E0,inx(0) where

G0,in =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
Ax 0 0

Ax 0
. . .

. . .

Ax 0
Af 0

0 Au

0 Au

. . .
. . .

0 Au

0 Au

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, w0,in =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bx
bx
...
bx
bf
bu
bu
...
bu
bu

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

E0,in =
[
−A′

x 0 · · · 0
]′
,

and constructed the cost matrix H̄ as

H̄ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q
. . .

Q
P

R
. . .

R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

11.3.2 State Feedback Solution via Batch Approach

As shown in Section 8.2, problem (11.28) can be rewritten as

J∗
0 (x(0)) = min

U0

J0(x(0), U0) = [U ′
0 x′(0)]

[
H F ′

F Y

]
[U0

′ x(0)′]′

subj. to G0U0 ≤ w0 + E0x(0),
(11.31)

with G0, w0 and E0 defined in (11.18) for i = 0 and H, F , Y defined in (8.8). As
J0(x(0), U0) ≥ 0 by definition it follows that

[
H F ′

F Y

]
� 0. Note that the optimizer

U∗
0 is independent of the term involving Y in (11.31).

220 11 Constrained Optimal Control

We view x(0) as a vector of parameters and our goal is to solve (11.31) for
all values of x(0) ∈ X0 and to make this dependence explicit. The computation of
the set X0 of initial states for which problem (11.31) is feasible was discussed in
Section 11.2.

Before proceeding further, it is convenient to define

z = U0 +H−1F ′x(0), (11.32)

z ∈ Rs, remove x(0)′Y x(0) and to transform (11.31) to obtain the equivalent
problem

Ĵ∗(x(0)) = min
z

z′Hz

subj. to G0z ≤ w0 + S0x(0),
(11.33)

where S0 = E0+G0H
−1F ′, and Ĵ∗(x(0)) = J∗

0 (x(0))−x(0)′(Y −FH−1F ′)x(0). In
the transformed problem the parameter vector x(0) appears only on the right-hand
side of the constraints.

Problem (11.33) is a multiparametric quadratic program that can be solved
by using the algorithm described in Section 6.3.1. Once the multiparametric
problem (11.33) has been solved, the solution U∗

0 = U∗
0 (x(0)) of CFTOC (11.28)

and therefore u∗(0) = u∗(x(0)) is available explicitly as a function of the initial
state x(0) for all x(0) ∈ X0.

Theorem 6.7 states that the solution z∗(x(0)) of the mp-QP problem (11.33) is
a continuous and piecewise affine function on polyhedra of x(0). Clearly the same
properties are inherited by the controller. The following corollaries of Theorem
6.7 establish the analytical properties of the optimal control law and of the value
function.

Corollary 11.1 The control law u∗(0) = f0(x(0)), f0 : Rn → Rm, obtained as a
solution of the CFTOC (11.28) is continuous and piecewise affine on polyhedra

f0(x) = F j
0x+ gj0 if x ∈ CRj

0, j = 1, . . . , Nr
0 , (11.34)

where the polyhedral sets CRj
0 = {x ∈ Rn : Hj

0x ≤ Kj
0}, j = 1, . . . , Nr

0 are a
partition of the feasible polyhedron X0.

Proof: From (11.32) U∗
0 (x(0)) = z∗(x(0))−H−1F ′x(0). From Theorem 6.7 we

know that z∗(x(0)), solution of (11.33), is PPWA and continuous. As U∗
0 (x(0)) is

a linear combination of a linear function and a PPWA function, it is PPWA. As
U∗
0 (x(0)) is a linear combination of two continuous functions it is continuous. In

particular, these properties hold for the first component u∗(0) of U∗
0 . �

Remark 11.5 Note that, as discussed in Remark 6.8, the critical regions defined
in (6.4) are in general sets that are neither closed nor open. In Corollary 11.1 the
polyhedron CRi

0 describes the closure of a critical region. The function f0(x) is
continuous and therefore it is simpler to use a polyhedral partition rather than a
strict polyhedral partition.

Corollary 11.2 The value function J∗
0 (x(0)) obtained as solution of the CFTOC

(11.28) is convex and piecewise quadratic on polyhedra. Moreover, if the mp-QP
problem (11.33) is not degenerate, then the value function J∗

0 (x(0)) is C(1).

11.3 2-Norm Case Solution 221

Proof: By Theorem 6.7 Ĵ∗(x(0)) is a convex function of x(0). As
[
H F ′

F Y

]
� 0,

its Schur complement1 Y − FH−1F ′ � 0, and therefore J∗
0 (x(0)) = Ĵ∗(x(0)) +

x(0)′(Y − FH−1F ′)x(0) is a convex function, because it is the sum of convex
functions. If the mp-QP problem (11.33) is not degenerate, then Theorem 6.9
implies that Ĵ∗(x(0)) is a C(1) function of x(0) and therefore J∗

0 (x(0)) is a C(1)

function of x(0). The results of Corollary 11.1 imply that J∗
0 (x(0)) is piecewise

quadratic. �

Remark 11.6 The relation between the design parameters of the optimal control
problem (11.28) and the degeneracy of the mp-QP problem (11.33) is complex, in
general.

The solution of the multiparametric problem (11.33) provides the state feedback
solution u∗(k) = fk(x(k)) of CFTOC (11.28) for k = 0 and it also provides
the open-loop optimal control u∗(k) as function of the initial state, i.e., u∗(k) =
u∗(k, x(0)). The state feedback PPWA optimal controllers u∗(k) = fk(x(k)) with
fk : Xk �→ U for k = 1, . . . , N are computed in the following way. Consider the
same CFTOC (11.28) over the shortened time-horizon [i,N]

minUi
x′
NPxN +

N−1∑
k=i

x′
kQxk + u′

kRuk

subj. to xk+1 = Axk +Buk, k = i, . . . , N − 1
xk ∈ X , uk ∈ U , k = i, . . . , N − 1
xN ∈ Xf

xi = x(i),

(11.35)

where Ui = [u′
i, . . . , u

′
N−1]. As defined in (11.16) and discussed in Section 11.2,

Xi ⊆ Rn is the set of initial states x(i) for which the optimal control problem (11.35)
is feasible. We denote by U∗

i the optimizer of the optimal control problem (11.35).
Problem (11.35) can be translated into the mp-QP

min Ui
′HiUi + 2x′(i)FiUi + x′(i)Yix(i)

subj. to GiUi ≤ wi + Eix(i),
(11.36)

where Hi = H ′
i � 0, Fi, Yi are appropriately defined for each i and Gi, wi, Ei are

defined in (11.18). The first component of the multiparametric solution of (11.36)
has the form

u∗
i (x(i)) = fi(x(i)), ∀x(i) ∈ Xi, (11.37)

where the control law fi : Rn → Rm, is continuous and PPWA

fi(x) = F j
i x+ gji if x ∈ CRj

i , j = 1, . . . , Nr
i , (11.38)

1 Let X =

[
A B′

B C

]
and A � 0. Then X � 0 if and only if the Schur complement S =

C −BA−1B′ � 0.

222 11 Constrained Optimal Control

and where the polyhedral sets CRj
i = {x ∈ Rn : Hj

i x ≤ Kj
i }, j = 1, . . . , Nr

i are
a partition of the feasible polyhedron Xi. Therefore the feedback solution u∗(k) =
fk(x(k)), k = 0, . . . , N −1 of the CFTOC (11.28) is obtained by solving N mp-QP
problems of decreasing size. The following corollary summarizes the final result.

Corollary 11.3 The state feedback control law u∗(k) = fk(x(k)), fk : Xk ⊆
Rn → U ⊆ Rm, obtained as a solution of the CFTOC (11.28) and k = 0, . . . , N −1
is time-varying, continuous and piecewise affine on polyhedra

fk(x) = F j
kx+ gjk if x ∈ CRj

k, j = 1, . . . , Nr
k , (11.39)

where the polyhedral sets CRj
k = {x ∈ Rn : Hj

kx ≤ Kj
k}, j = 1, . . . , Nr

k are a
partition of the feasible polyhedron Xk.

11.3.3 State Feedback Solution via Recursive Approach

Consider the dynamic programming formulation of the CFTOC (11.28)

J∗
j (xj) = min

uj

x′
jQxj + u′

jRuj + J∗
j+1(Axj +Buj)

subj. to xj ∈ X , uj ∈ U ,
Axj +Buj ∈ Xj+1

(11.40)

for j = 0, . . . , N − 1, with boundary conditions

J∗
N (xN) = x′

NPxN (11.41)

XN = Xf , (11.42)

where Xj denotes the set of states x for which the CFTOC (11.28) is feasible at time
j (as defined in (11.16)). Note that according to Corollary 11.2, J∗

j+1(Axj+Buj) is
piecewise quadratic for j < N − 1. Therefore (11.40) is not simply an mp-QP and,
contrary to the unconstrained case (Section 8.2), the computational advantage of
the iterative over the batch approach is not obvious. Nevertheless an algorithm was
developed and can be found in Section 17.6.

11.3.4 Infinite Horizon Problem

Assume Q � 0, R � 0 and that the constraint sets X and U contain the origin in
their interior.2 Consider the following infinite-horizon linear quadratic regulation
problem with constraints (CLQR)

J∗
∞(x(0)) = minu0,u1,...

∞∑
k=0

x′
kQxk + u′

kRuk

subj. to xk+1 = Axk +Buk, k = 0, . . . ,∞
xk ∈ X , uk ∈ U , k = 0, . . . ,∞
x0 = x(0)

(11.43)

2 As in the unconstrained case, the assumption Q � 0 can be relaxed by requiring that (Q1/2, A)
is observable (Section 8.5).

11.3 2-Norm Case Solution 223

and the set (see Remark 7.1 for notation)

X∞ = {x(0) ∈ Rn : Problem (11.43) is feasible and J∗
∞(x(0)) < +∞}. (11.44)

Because Q � 0, R � 0 any optimizer u∗
k of problem (11.43) must converge to the

origin (u∗
k → 0) and so must the state trajectory resulting from the application of u∗

k

(x∗
k → 0). Thus the origin x = 0, u = 0 must lie in the interior of the constraint set

(X ,U) (if the origin were not contained in the constraint set then J∗
∞(x(0)) would

be infinite). For this reason, the set X∞ in (11.44) is the maximal stabilizable set
K∞(O) of system (11.1) subject to the constraints (11.2) with O being the origin
(Definition 10.13).

If the initial state x0 = x(0) is sufficiently close to the origin, then the
constraints will never become active and the solution of problem (11.43) will yield
the same control input as the unconstrained LQR (8.33). More formally we can
define a corresponding invariant set around the origin.

Definition 11.1 (Maximal LQR Invariant Set OLQR
∞) Consider the system

x(k + 1) = Ax(k) + Bu(k). OLQR
∞ ⊆ Rn denotes the maximal positively invariant

set for the autonomous constrained linear system:

x(k + 1) = (A+BF∞)x(k), x(k) ∈ X , u(k) ∈ U , ∀ k ≥ 0,

where u(k) = F∞x(k) is the unconstrained LQR control law (8.33) obtained from
the solution of the ARE (8.32).

Therefore, from the previous discussion, there is some finite time N̄(x0),
depending on the initial state x0, at which the state enters OLQR

∞ and after which
the system evolves in an unconstrained manner (x∗

k ∈ X , u∗
k ∈ U , ∀k > N̄). This

consideration allows us to split problem (11.43) into two parts by using the dynamic
programming principle, one up to time k = N̄ where the constraints may be active
and one for longer times k > N̄ where there are no constraints.

J∗
∞(x(0)) = minu0,u1,...

N̄−1∑
k=0

x′
kQxk + u′

kRuk + J∗
N̄→∞(xN̄)

subj. to xk ∈ X , uk ∈ U , k = 0, . . . , N̄ − 1
xk+1 = Axk +Buk, k ≥ 0
x0 = x(0),

(11.45)

where

J∗
N̄→∞(xN̄) = minuN̄ ,uN̄+1,...

∞∑
k=N̄

x′
kQxk + u′

kRuk

subj. to xk+1 = Axk +Buk, k ≥ N̄

= x′
N̄
P∞xN̄ .

(11.46)

This key insight due to Sznaier and Damborg [272] is formulated precisely in the
following.

224 11 Constrained Optimal Control

Theorem 11.3 (Equality of Finite and Infinite Optimal Control, [260])
For any given initial state x(0), the solution to (11.45, 11.46) is equal to the infinite
time solution of (11.43), if the terminal state xN̄ of (11.45) lies in the positive
invariant set OLQR

∞ and no terminal set constraint is applied in (11.45), i.e., the
state ‘voluntarily’ enters the set OLQR

∞ after N̄ steps.

Theorem 11.3 suggests that we can obtain the infinite horizon constrained linear
quadratic regulator CLQR by solving the finite horizon problem for a horizon of N̄
with a terminal weight of P = P∞ and no terminal constraint. The critical question
of how to determine N̄(x0) or at least an upper bound was studied by several
researchers. Chmielewski and Manousiouthakis [85] presented an approach that
provides a conservative estimate Nest of the finite horizon N̄(x0) for all x0 belonging
to a compact set of initial conditions S ⊆ X∞ = K∞(0) (Nest ≥ N̄S(x0), ∀x0 ∈
S). They solve a single, finite dimensional, convex program to obtain Nest. Their
estimate can be used to compute the PWA solution of (11.45) for a particular
set S.

Alternatively, the quadratic program with horizon Nest can be solved to
determine u∗

0, u∗
1, . . . , u

∗
Nest

for a particular x(0) ∈ S. For a given initial state
x(0), rather then a set S, Scokaert and Rawlings [260] presented an algorithm that
attempts to identify N̄(x(0)) iteratively. In summary, we can state the following
Theorem.

Theorem 11.4 (Explicit solution of CLQR) Assume that (A,B) is a sta-
bilizable pair and (Q1/2, A) is an observable pair, R � 0. The state feedback
solution to the CLQR problem (11.43) in a compact set of the initial conditions
S ⊆ X∞ = K∞(0) is time-invariant, continuous and piecewise affine on polyhedra

u∗(k) = f∞(x(k)), f∞(x) = F jx+ gj if x ∈ CRj
∞, j = 1, . . . , Nr

∞, (11.47)

where the polyhedral sets CRj
∞ = {x ∈ Rn : Hjx ≤ Kj}, j = 1, . . . , Nr

∞ are a
finite partition of the feasible compact polyhedron S ⊆ X∞.

As argued previously, the complexity of the solution manifested by the number
of polyhedral regions depends on the chosen horizon. As the various discussed
techniques yield an Nest that may be too large by orders of magnitude this is not
a viable proposition. An efficient algorithm for computing the PPWA solution to
the CLQR problem is presented next.

11.3.5 CLQR Algorithm

In this section we will sketch an efficient algorithm to compute the PWA solution
to the CLQR problem in (11.43) for a given set S of initial conditions. Details
are available in [132, 133]. As a side product, the algorithm also computes N̄S ,
the shortest horizon N̄ for which the problem (11.45), (11.46) is equivalent to the
infinite horizon problem (11.43).

The idea is as follows. For the CFTOC problem (11.28) with a horizon N with
no terminal constraint (Xf = Rn) and terminal cost P = P∞, where P∞ is the

11.3 2-Norm Case Solution 225

x1

x
2 O∞LQR

–3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

Step ε over facet

(a) Compute positive invariant

region OLQR
∞ and step over facet

with step-size ε.

x1

x
2 O∞LQR

–3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

P1

(b) Solve QP for new point with
horizon N = 1 to create the first
constrained region P1.

O∞LQR

x1

x
2

–3 –2 –1 0 1 2 3
–3

–2

–1

0

1

2

3

Reachability subset ITP1
1

(c) Compute reachability subset of P1 to

obtain IT P1
1.

Figure 11.2 CLQR Algorithm. Region Exploration.

solution to the ARE (8.32), we solve an mp-QP and obtain the PWA control law.
From Theorem 11.3 we can conclude that for all states which enter the invariant
set OLQR

∞ introduced in Definition 11.1 with the computed control law in N
steps, the infinite-horizon problem has been solved. For these states, which we can
identify via a reachability analysis, the computed feedback law is infinite-horizon
optimal.

In more detail, we start the procedure by computing the Maximal LQR
Invariant Set OLQR

∞ introduced in Definition 11.1, the polyhedron P0 = OLQR
∞ =

{x ∈ Rn : H0x ≤ K0}. Figure 11.2(a) depicts OLQR
∞ . Then, the algorithm finds a

point x̄ by stepping over a facet of OLQR
∞ with a small step ε, as described in [19].

If (11.28) is feasible for horizon N = 1 (terminal set constraint Xf = Rn, terminal
cost P = P∞ and x(0) = x̄), the active constraints will define the neighboring
polyhedron P1 = {x ∈ Rn : H1x ≤ K1} (x̄ ∈ P1, see Figure 11.2(b)) [44]. By
Theorem 11.3, the finite time optimal solution computed above equals the infinite
time optimal solution if x1 ∈ OLQR

∞ . Therefore we extract from P1 the set of points
that will enter OLQR

∞ in N = 1 time-steps, provided that the optimal control law

226 11 Constrained Optimal Control

associated with P1 (i.e., U
∗
1 = F1x(0)+g1) is applied. The Infinite Time Polyhedron

(IT P1
1) is therefore defined by the intersection of the following two polyhedra:

x1 ∈ OLQR
∞ , x1 = Ax0 +BU∗

1 , (11.48a)

x0 ∈ P1. (11.48b)

Equation (11.48a) is the reachability constraint and (11.48b) defines the set of states
for which the computed feedback law is feasible and optimal over N = 1 steps (see
[44] for details). The intersection is the set of points for which the control law is
infinite time optimal.

A general step r of the algorithm involves stepping over a facet to a new point x̄
and determining the polyhedron Pr and the associated control law (U∗

N = Frx(0)+
gr) from (11.28) with horizon N. Then we extract from Pr the set of points that
will enter OLQR

∞ in N time-steps, provided that the optimal control law associated
with Pr is applied. The Infinite Time Polyhedron (IT PN

r) is therefore defined by
the intersection of the following two polyhedra:

xN ∈ OLQR
∞ (11.49a)

x0 ∈ Pr. (11.49b)

This intersection is the set of points for which the control law is infinite time
optimal. Note that, as for x1 in the one-step case, xN in (11.49a) can be described
as a linear function of x0 by substituting the feedback sequence U∗

N = Frx0 + gr
into the LTI system dynamics (11.1).

We continue exploring the facets increasing N when necessary. The algorithm
terminates when we have covered S or when we can no longer find a new feasible
polyhedron Pr. The following theorem shows that the algorithm also provides the
horizon N̄S for compact sets. Exact knowledge of N̄S can serve to improve the
performance of a wide array of algorithms presented in the literature.

Theorem 11.5 (Exact Computation of N̄S , [132, 133]) If we explore any
given compact set S with the proposed algorithm, the largest resulting horizon is
equal to N̄S , i.e.,

N̄S = max
IT PN

r r=0,...,R
N.

Often the proposed algorithm is more efficient than standard multiparametric
solvers, even if finite horizon optimal controllers are sought. The initial polyhedral
representation Pr contains redundant constraints which need to be removed in order
to obtain a minimal representation of the controller region. The intersection with
the reachability constraint, as proposed here, can simplify this constraint removal.

11.3.6 Examples

Example 11.2 Consider the double integrator (11.23). We want to compute the
state feedback optimal controller that solves problem (11.28) with N = 6, Q = [1 0

0 1],
R = 0.1, P is equal to the solution of the Riccati equation (8.32), Xf = R2. The
input constraints are

− 1 ≤ u(k) ≤ 1, k = 0, . . . , 5 (11.50)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_2norm_finite.m

11.3 2-Norm Case Solution 227

and the state constraints[
−10
−10

]
≤ x(k) ≤

[
10
10

]
, k = 0, . . . , 5. (11.51)

This task is addressed as shown in Section (11.3.2). The feedback optimal solution
u∗(0), . . . , u∗(5) is computed by solving six mp-QP problems and the corresponding
polyhedral partitions of the state space are depicted in Figure 11.3. Only the last two
optimal control moves are reported below:

u∗(5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−0.58 −1.55]x(5) if

[−0.35 −0.94
0.35 0.94
1.00 0.00

−1.00 0.00

]
x(5) ≤

[
0.61
0.61

10.00
10.00

]
(Region #1)

1.00 if

[0.35 0.94
0.00 −1.00

−0.71 −0.71
1.00 0.00

−1.00 0.00

]
x(5) ≤

[−0.61
10.00
7.07

10.00
10.00

]
(Region #2)

− 1.00 if

[−0.35 −0.94
1.00 0.00
0.00 1.00

−1.00 0.00
0.71 0.71

]
x(5) ≤

[−0.61
10.00
10.00
10.00
7.07

]
(Region #3)

u∗(4) =

⎧⎪⎪⎨⎪⎪⎩

[−0.58 −1.55]x(4) if

[−0.35 −0.94
0.35 0.94

−0.77 −0.64
0.77 0.64

]
x(4) ≤

[
0.61
0.61
2.43
2.43

]
(Region #1)

1.00 if

⎡⎣ 0.29 0.96
0.00 −1.00

−0.71 −0.71
−0.45 −0.89
1.00 0.00

−1.00 0.00

⎤⎦x(4) ≤

⎡⎣−0.98
10.00
7.07
4.92

10.00
10.00

⎤⎦ (Region #2)

1.00 if

⎡⎢⎣
0.29 0.96
0.35 0.94
0.00 −1.00

−0.71 −0.71
−0.45 −0.89
1.00 0.00

−1.00 0.00

⎤⎥⎦x(4) ≤

⎡⎢⎣
−0.37
−0.61
10.00
7.07
4.92

10.00
10.00

⎤⎥⎦ (Region #3)

− 1.00 if

⎡⎣−0.29 −0.96
1.00 0.00
0.00 1.00

−1.00 0.00
0.71 0.71
0.45 0.89

⎤⎦x(4) ≤

⎡⎣−0.98
10.00
10.00
10.00
7.07
4.92

⎤⎦ (Region #4)

− 1.00 if

⎡⎢⎣
−0.29 −0.96
−0.35 −0.94
1.00 0.00
0.00 1.00

−1.00 0.00
0.71 0.71
0.45 0.89

⎤⎥⎦x(4) ≤

⎡⎢⎣
−0.37
−0.61
10.00
10.00
10.00
7.07
4.92

⎤⎥⎦ (Region #5)

[−0.44 −1.43]x(4)− 0.46 if

[−0.29 −0.96
0.29 0.96

−0.77 −0.64
1.00 0.00

]
x(4) ≤

[
0.98
0.37

−2.43
10.00

]
(Region #6)

[−0.44 −1.43]x(4) + 0.46 if

[−0.29 −0.96
0.29 0.96
0.77 0.64

−1.00 0.00

]
x(4) ≤

[
0.37
0.98

−2.43
10.00

]
(Region #7)

Note that by increasing the horizon N , the control law changes only far away from
the origin. This must be expected from the results of Section 11.3.5. The control
law does not change anymore with increasing N in the set where the CFTOC law
becomes equal to the constrained infinite-horizon linear quadratic regulator (CLQR)
problem. This set gets larger as N increases [85, 260].

228 11 Constrained Optimal Control

x1(0)

x
2(

0)

–10 –5 0 105
–10

–5

0

5

10

(a) Partition of the state space for the

affine control law u∗(0) (Nr
0 = 13).

x1(1)

x
2(

1)

–10 –5 0 5 10
–10

–5

0

5

10

(b) Partition of the state space for the

affine control law u∗(1) (Nr
1 = 13).

x
2(

2)

x1(2)
–10 –5 0 5 10

–10

–5

0

5

10

(c) Partition of the state space for the

affine control law u∗(2) (Nr
2 = 13).

x
2(

3)

x1(3)
–10 –5 0 5 10

–10

–5

0

5

10

(d) Partition of the state space for the

affine control law u∗(3) (Nr
3 = 11).

x1(4)
–10 –5 0 5 10

x
2(

4)

–10

–5

0

5

10

(e) Partition of the state space for the

affine control law u∗(4) (Nr
4 = 7).

x1(5)
–10 –5 0 5 10

x
2(

5)

–10

–5

0

5

10

(f) Partition of the state space for the

affine control law u∗(5) (Nr
5 = 3).

Figure 11.3 Example 11.2. Double Integrator, 2-norm objective function,
horizon N = 6. Partition of the state space for the time-varying optimal
control law. Polyhedra with the same control law were merged.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_2norm_finite.m

11.4 1-Norm and ∞-Norm Case Solution 229

x1

x
2

–10 –5 0 5 10
–10

–5

0

5

10

(a) Partition before merging (Nr
∞ =

117).

x1

–10 –5 0 5 10

x
2

–10

–5

0

5

10

(b) Partition after merging (Nr
∞ =

13).

Figure 11.4 Example 11.3. Double Integrator, 2-norm objective function,
horizon N = ∞. Partition of the state space for the time invariant optimal
control law.

Example 11.3 The infinite time CLQR (11.43) was determined for Example 11.2 by
using the approach presented in Section 11.3.4. The resulting N̄S is 12. The state
space is divided into 117 polyhedral regions and is depicted in Figure 11.4(a). In
Figure 11.4(b) the same control law is represented where polyhedra with the same
affine control law were merged.

11.4 1-Norm and ∞-Norm Case Solution

Next, we consider problem (11.9) with J0(·) defined by (11.7) with p = 1 or p = ∞.
In the following section we will concentrate on the ∞-norm, the results can be
extended easily to cost functions with 1-norm or mixed 1/∞ norms.

J∗
0 (x(0)) = minU0

J0(x(0), U0) = ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p

subj. to xk+1 = Axk +Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0).

(11.52)

11.4.1 Solution via LP

The optimal control problem (11.52) with p = ∞ can be rewritten as a linear
program by using the approach presented in Section 9.2. Therefore, problem (11.52)
can be reformulated as the following LP problem

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_2norm_infinite.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_2norm_infinite.m

230 11 Constrained Optimal Control

min
z0

εx0 + · · ·+ εxN + εu0 + · · ·+ εuN−1 (11.53a)

subj. to −1nε
x
k ≤ ±Q

⎡⎣Akx0 +

k−1∑
j=0

AjBuk−1−j

⎤⎦ , (11.53b)

−1rε
x
N ≤ ±P

⎡⎣ANx0 +

N−1∑
j=0

AjBuN−1−j

⎤⎦ , (11.53c)

−1mεuk ≤ ±Ruk, (11.53d)

Akx0 +

k−1∑
j=0

AjBuk−1−j ∈ X , uk ∈ U , (11.53e)

ANx0 +

N−1∑
j=0

AjBuN−1−j ∈ Xf , (11.53f)

k = 0, . . . , N − 1

x0 = x(0), (11.53g)

where constraints (11.53b)–(11.53f) are componentwise, and ± means that the
constraint appears once with each sign.

Problem (11.53) can be rewritten in the more compact form

min
z0

c′0z0

subj. to Ḡ0z0 ≤ w̄0 + S̄0x(0),
(11.54)

where z0 = {εx0 , . . . , εxN , εu0 , . . . , ε
u
N−1, u

′
0, . . . , u

′
N−1} ∈ Rs, s = (m + 1)N +N + 1

and

Ḡ0 =

[
Gx

ε Gu
ε Gc

ε

0 0 G0

]
, S̄0 =

[
Sε

E0

]
, w̄0 =

[
wε

w0

]
, (11.55)

where [Gx
ε , Gu

ε , Gc
ε] is the block partition of the matrix Gε into the three parts

corresponding to the variables εxi , εui and ui, respectively. The vector c0 and
the submatrices Gε, wε, Sε associated with the constraints (11.53b)–(11.53d) are
defined in (9.10). The matrices G0, w0 and E0 are defined in (11.18) for i = 0.

For a given vector x(0) the optimal input sequence U∗
0 solving problem (11.54)

can be computed by using a Linear Program (LP) solver (see Section 2.2 for LP
definition and properties and Chapter 3 for fast numerical methods for solving LPs).

To obtain the problem (11.54) we have eliminated the state variables and
equality constraints xk+1 = Axk + Buk by successive substitution so that we are
left with u0, . . . , uN−1 and the slack variables ε as the only decision variables, and
x(0) as a parameter vector. As in the 2-norm case, it might be more efficient to
solve an LP problem with equality and inequality constraints so that sparsity can
be exploited. We omit the details and refer the reader to the construction of the
QP problem without substitution in Section 11.3.1.

11.4 1-Norm and ∞-Norm Case Solution 231

11.4.2 State Feedback Solution via Batch Approach

As shown in the previous section, problem (11.52) can be rewritten in the compact
form

min
z0

c′0z0

subj. to Ḡ0z0 ≤ w̄0 + S̄0x(0),
(11.56)

where z0 = {εx0 , . . . , εxN , εu0 , . . . , ε
u
N−1, u

′
0, . . . , u

′
N−1} ∈ Rs, s = (m+ 1)N +N + 1.

As in the 2-norm case, by treating x(0) as a vector of parameters, problem (11.56)
becomes a multiparametric linear program (mp-LP) that can be solved as described
in Section 6.2. Once the multiparametric problem (11.56) has been solved, the
explicit solution z∗0(x(0)) of (11.56) is available as a piecewise affine function of
x(0), and the optimal control law u∗(0) is also available explicitly, as the optimal
input u∗(0) consists simply of m components of z∗0(x(0))

u∗(0) = [0 . . . 0 Im 0 . . . 0]z∗0(x(0)). (11.57)

Theorem 6.5 states that there always exists a continuous PPWA solution
z∗0(x) of the mp-LP problem (11.56). Clearly the same properties are inherited by
the controller. The following corollaries of Theorem 6.5 summarize the analytical
properties of the optimal control law and of the value function.

Corollary 11.4 There exists a control law u∗(0) = f0(x(0)), f0 : Rn → Rm,
obtained as a solution of the CFTOC (11.52) with p = 1 or p = ∞, which is
continuous and PPWA

f0(x) = F j
0x+ gj0 if x ∈ CRj

0, j = 1, . . . , Nr
0 , (11.58)

where the polyhedral sets CRj
0 = {Hj

0x ≤ kj0}, j = 1, . . . , Nr
0 , are a partition of the

feasible set X0.

Corollary 11.5 The value function J∗(x) obtained as a solution of the CFTOC
(11.52) is convex and PPWA.

Remark 11.7 Note that if the optimizer of problem (11.52) is unique for all x(0) ∈
X0, then Corollary 11.4 reads: “The control law u∗(0) = f0(x(0)), f0 : Rn → Rm,
obtained as a solution of the CFTOC (11.52) with p = 1 or p = ∞, is continuous
and PPWA,. . ..” From the results of Section 6.2 we know that in case of multiple
optimizers for some x(0) ∈ X0, a continuous control law of the form (11.58) can
always be computed.

The multiparametric solution of (11.56) provides the open-loop optimal
sequence u∗(0), . . . , u∗(N − 1) as an affine function of the initial state x(0). The
state feedback PPWA optimal controllers u∗(k) = fk(x(k)) with fk : Xk �→ U for

232 11 Constrained Optimal Control

k = 1, . . . , N are computed in the following way. Consider the same CFTOC (11.52)
over the shortened time horizon [i,N]

minUi
‖PxN‖p +

N−1∑
k=i

‖Qxk‖p + ‖Ruk‖p

subj. to xk+1 = Axk +Buk, k = i, . . . , N − 1
xk ∈ X , uk ∈ U , k = i, . . . , N − 1
xN ∈ Xf

xi = x(i),

(11.59)

where Ui = [u′
i, . . . , u

′
N−1] and p = 1 or p = ∞. As defined in (11.16) and discussed

in Section 11.2, Xi ⊆ Rn is the set of initial states x(i) for which the optimal control
problem (11.59) is feasible. We denote by U∗

i one of the optimizers of the optimal
control problem (11.59).

Problem (11.59) can be translated into the mp-LP

min
zi

c′izi

subj. to Ḡizi ≤ w̄i + S̄ix(i),
(11.60)

where zi = {εxi , . . . , εxN , εui , . . . , ε
u
N−1, u

′
i, . . . , u

′
N−1} and ci, Ḡi, S̄i, w̄i, are

appropriately defined for each i. The component u∗
i of the multiparametric solution

of (11.60) has the form

u∗
i (x(i)) = fi(x(i)), ∀x(i) ∈ Xi, (11.61)

where the control law fi : Rn → Rm, is continuous and PPWA

fi(x) = F j
i x+ gji if x ∈ CRj

i , j = 1, . . . , Nr
i (11.62)

and where the polyhedral sets CRj
i = {x ∈ Rn : Hj

i x ≤ Kj
i }, j = 1, . . . , Nr

i

are a partition of the feasible polyhedron Xi. Therefore the feedback solution
u∗(k) = fk(x(k)), k = 0, . . . , N − 1 of the CFTOC (11.52) with p = 1 or p = ∞ is
obtained by solving N mp-LP problems of decreasing size. The following corollary
summarizes the final result.

Corollary 11.6 There exists a state feedback control law u∗(k) = fk(x(k)), fk :
Xk ⊆ Rn → U ⊆ Rm, solution of the CFTOC (11.52) for p = 1 or p = ∞
and k = 0, . . . , N − 1 which is time-varying, continuous and piecewise affine on
polyhedra

fk(x) = F j
kx+ gjk if x ∈ CRj

k, j = 1, . . . , Nr
k , (11.63)

where the polyhedral sets CRj
k = {x ∈ Rn : Hj

kx ≤ Kj
k}, j = 1, . . . , Nr

k are a
partition of the feasible polyhedron Xk.

11.4 1-Norm and ∞-Norm Case Solution 233

11.4.3 State Feedback Solution via Recursive Approach

Consider the dynamic programming formulation of (11.52) with J0(·) defined
by (11.7) with p = 1 or p = ∞

J∗
j (xj) = minuj

‖Qxj‖p + ‖Ruj‖p + J∗
j+1(Axj +Buj)

subj. to xj ∈ X , uj ∈ U
Axj +Buj ∈ Xj+1,

(11.64)

for j = 0, . . . , N − 1, with boundary conditions

J∗
N (xN) = ‖PxN‖p (11.65)

XN = Xf . (11.66)

Unlike for the 2-norm case the dynamic program (11.64)–(11.66) can be solved as
explained in the next theorem.

Theorem 11.6 The state feedback piecewise affine solution (11.63) of the
CFTOC (11.52) for p = 1 or p = ∞ is obtained by solving the optimization
problem (11.64)–(11.66) via N mp-LPs.

Proof: Consider the first step j = N − 1 of dynamic programming (11.64)–
(11.66)

J∗
N−1(xN−1) = minuN−1

‖QxN−1‖p + ‖RuN−1‖p + J∗
N (AxN−1 +BuN−1)

subj. to xN−1 ∈ X , uN−1 ∈ U
AxN−1 +BuN−1 ∈ Xf . (11.67)

J∗
N−1(xN−1), u

∗
N−1(xN−1) and XN−1 are computable via the mp-LP:

J∗
N−1(xN−1) = minμ,uN−1

μ
subj. to μ ≥ ‖QxN−1‖p + ‖RuN−1‖p+‖P (AxN−1 +BuN−1)‖p

xN−1 ∈ X , uN−1 ∈ U
AxN−1 +BuN−1 ∈ Xf . (11.68)

The constraint μ ≥ ‖QxN−1‖p + ‖RuN−1‖p + ‖P (AxN−1 + BuN−1)‖p in (11.68)
is converted into a set of linear constraints as discussed in Remark 2.1 of Section
2.2.5. For instance, if p = ∞ we follow the approach of Section 9.3 and rewrite the
constraint as

μ ≥ εxN−1 + εuN−1 + εxN
−1nε

x
N−1 ≤ ±QxN−1

−1mεuN−1 ≤ ±RuN−1

−1rN εxN ≤ ±PN [AxN−1 +BuN−1]

(11.69)

By Theorem 6.5, J∗
N−1 is a convex and piecewise affine function of xN−1, the

corresponding optimizer u∗
N−1 is piecewise affine and continuous, and the feasible

set XN−1 is a polyhedron. Without any loss of generality we assume J∗
N−1 to be

described as follows: J∗
N−1(xN−1) = maxi=1,...,nN−1

{c′ixN−1+di} (see Section 2.2.5
for convex PPWA functions representation) where nN−1 is the number of affine

234 11 Constrained Optimal Control

components comprising the value function J∗
N−1. At step j = N − 2 of dynamic

programming (11.64)–(11.66) we have

J∗
N−2(xN−2) = minuN−2

‖QxN−2‖p + ‖RuN−2‖p + J∗
N−1(AxN−2 +BuN−2)

subj. to xN−2 ∈ X , uN−2 ∈ U
AxN−2 +BuN−2 ∈ XN−1. (11.70)

Since J∗
N−1(x) is a convex and piecewise affine function of x, the problem (11.70)

can be recast as the following mp-LP (see Section 2.2.5 for details)

J∗
N−2(xN−2) = minμ,uN−2

μ
subj. to μ ≥ ‖QxN−2‖p+‖RuN−2‖p+ci(AxN−2+BuN−2)+di

i = 1, . . . , nN−1

xN−2 ∈ X , uN−2 ∈ U
AxN−2 +BuN−2 ∈ XN−1. (11.71)

J∗
N−2(xN−2), u

∗
N−2(xN−2) and XN−2 are computed by solving the mp-LP (11.71).

By Theorem 6.5, J∗
N−2 is a convex and piecewise affine function of xN−2, the

corresponding optimizer u∗
N−2 is piecewise affine and continuous, and the feasible

set XN−2 is a convex polyhedron.
The convexity and piecewise linearity of J∗

j and the polyhedra representation
of Xj still hold for j = N − 3, . . . , 0 and the procedure can be iterated backwards
in time, proving the theorem. �

Consider the state feedback piecewise affine solution (11.63) of the CFTOC
(11.52) for p = 1 or p = ∞ and assume we are interested only in the optimal
controller at time 0. In this case, by using duality arguments we can solve the
equations (11.64)–(11.66) by using vertex enumerations and one mp-LP. This is
proven in the next theorem.

Theorem 11.7 The state feedback piecewise affine solution (11.63) at time k = 0
of the CFTOC (11.52) for p = 1 or p = ∞ is obtained by solving the optimization
problem (11.64)–(11.66) via one mp-LP.

Proof: Consider the first step j = N − 1 of dynamic programming (11.64)–
(11.66)

J∗
N−1(xN−1) = minuN−1

‖QxN−1‖p + ‖RuN−1‖p + J∗
N (AxN−1 +BuN−1)

subj. to xN−1 ∈ X , uN−1 ∈ U
AxN−1 +BuN−1 ∈ Xf (11.72)

and the corresponding mp-LP:

J∗
N−1(xN−1) = minμ,uN−1 μ

subj. to μ ≥ ‖QxN−1‖p + ‖RuN−1‖p + ‖P (AxN−1 +BuN−1)‖p
xN−1 ∈ X , uN−1 ∈ U
AxN−1 +BuN−1 ∈ Xf . (11.73)

By Theorem 6.5, J∗
N−1 is a convex and piecewise affine function of xN−1, and the

feasible set XN−1 is a polyhedron. J∗
N−1 and XN−1 are computed without explicitly

solving the mp-LP (11.73). Rewrite problem (11.73) in the more compact form

min
zN−1

c′N−1zN−1

subj. to ḠN−1zN−1 ≤ w̄N−1 + S̄N−1xN−1,
(11.74)

11.4 1-Norm and ∞-Norm Case Solution 235

where zN−1 collects the optimization variables μ, uN−1 and the auxiliary variables
need to transform the constraint μ ≥ ‖QxN−1‖p + ‖RuN−1‖p + ‖P (AxN−1 +
BuN−1)‖p into a set of linear constraints. Consider the LP dual of (11.74)

maxv −(w̄N−1 + S̄N−1xN−1)
′v

subj. to Ḡ′
N−1v = −cN−1

v ≥ 0.
(11.75)

Consider the dual feasibility polyheron Pd = {v ≥ 0 : Ḡ′
N−1v = −cN−1}. Let

{V1, . . . , Vk} be the vertices of Pd and {y1, . . . , ye} be the rays of Pd. Since we have
a zero duality gap, we have that

J∗
N−1(xN−1) = max

i=1,...,k
{−(w̄N−1 + S̄N−1xN−1)

′Vi}

i.e.,

J∗
N−1(xN−1) = max

i=1,...,k
{−(V ′

i S̄N−1)xN−1 − w̄′
N−1Vi}.

Recall that if the dual of a mp-LP is unbounded, then the primal is infeasible
(Theorem 6.3). For this reason the feasible set XN−1 is obtained by requiring that
the cost of (11.75) does not increase in the direction of the rays:

XN−1 = {xN−1 : − (w̄N−1 + S̄N−1xN−1)
′yi ≤ 0, ∀ i = 1, . . . , e}

with J∗
N−1(xN−1) and XN−1 available, we can iterate the procedure backwards in

time for steps N − 2, N − 3, . . . , 1. At step 0 one mp-LP will be required in order
to compute u∗

0(x(0)). �

11.4.4 Example

Example 11.4 Consider the double integrator system (11.23). We want to compute
the state feedback optimal controller that solves (11.52) with p = ∞, N = 6,

P =

[
1 0
0 1

]
, Q =

[
1 0
0 1

]
, R = 0.8, subject to the input constraints

U = {u ∈ R : − 1 ≤ u ≤ 1} (11.76)

and the state constraints

X =

{
x ∈ R2 :

[
−10
−10

]
≤ x ≤

[
10
10

]}
(11.77)

and Xf = X . The optimal feedback solution u∗(0), . . . , u∗(5) was computed by solving
six mp-LP problems and the corresponding polyhedral partitions of the state space
are depicted in Figure 11.5, where polyhedra with the same control law were merged.
Only the last optimal control move is reported below:

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_inftynorm_finite.m

236 11 Constrained Optimal Control

x1(0)

x
2(

0)

–10 –5 0 5 10
–10

–5

0

5

10

(a) Partition of the state space for the

affine control law u∗(0)(Nr
0 = 26).

x1(1)

x
2(

1)

–10 –5 0 5 10
–10

–5

0

5

10

(b) Partition of the state space for the

affine control law u∗(1) (Nr
1 = 28).

x1(2)

x
2(

2)

–10 –5 0 5 10
–10

–5

0

5

10

(c) Partition of the state space for the

affine control law u∗(2) (Nr
2 = 26).

x1(3)

x
2(

3)

–10 –5 0 5 10
–10

–5

0

5

10

(d) Partition of the state space for the

affine control law u∗(3) (Nr
3 = 12)

x1(4)

x
2(

4)

–10 –5 0 5 10
–10

–5

0

5

10

(e) Partition of the state space for the

affine control law u∗(4) (Nr
4 = 12).

x1(5)

x
2(

5)

–10 –5 0 5 10
–10

–5

0

5

10

(f) Partition of the state space for the

affine control law u∗(5) (Nr
5 = 8).

Figure 11.5 Example 11.4. Double Integrator, ∞-norm objective function,
horizon N = 6. Partition of the state space for the time-varying optimal
control law. Polyhedra with the same control law were merged.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_inftynorm_finite.m

11.4 1-Norm and ∞-Norm Case Solution 237

u∗(5) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if

[0.45 0.89
1.00 0.00

−0.71 −0.71
−1.00 −0.00

]
x(5) ≤

[
0.00
0.00
7.07

10.00

]
(Region #1)

0 if

[−0.45 −0.89
−1.00 0.00
0.71 0.71
1.00 −0.00

]
x(5) ≤

[
0.00
0.00
7.07

10.00

]
(Region #2)

[−1.00 −2.00]x(5) if

[−0.45 −0.89
0.45 0.89
0.71 0.71

−1.00 −0.00

]
x(5) ≤

[
0.00
0.45
0.00

10.00

]
(Region #3)

[−1.00 −2.00]x(5) if

[−0.45 −0.89
0.45 0.89

−0.71 −0.71
1.00 −0.00

]
x(5) ≤

[
0.45
0.00
0.00

10.00

]
(Region #4)

[1.00 0.00]x(5) if

[−0.71 −0.71
−1.00 0.00
1.00 0.00

−0.00 1.00

]
x(5) ≤

[
0.00
1.00
0.00

10.00

]
(Region #5)

[1.00 0.00]x(5) if

[0.71 0.71
−1.00 0.00
1.00 0.00

−0.00 −1.00

]
x(5) ≤

[
0.00
0.00
1.00

10.00

]
(Region #6)

1.00 if

[0.45 0.89
−1.00 0.00
−0.00 −1.00
1.00 −0.00

]
x(5) ≤

[−0.45
−1.00
10.00
10.00

]
(Region #7)

− 1.00 if

[−0.45 −0.89
1.00 0.00

−1.00 −0.00
−0.00 1.00

]
x(5) ≤

[−0.45
−1.00
10.00
10.00

]
(Region #8)

(11.78)

Note that the controller (11.78) is piecewise linear around the origin. In fact, the
origin belongs to multiple regions (1 to 6). Note that the number Nr

i of regions is not
always increasing with decreasing i (Nr

5 = 8, Nr
4 = 12, Nr

3 = 12, Nr
2 = 26, Nr

1 = 28,
Nr

0 = 26). This is due to the merging procedure, before merging we have Nr
5 = 12,

Nr
4 = 22, Nr

3 = 40, Nr
2 = 72, Nr

1 = 108, Nr
0 = 152.

11.4.5 Infinite-Time Solution

Assume that Q and R have full column rank and that the constraint sets X and U
contain the origin in their interior. Consider the following infinite-horizon problem
with constraints

J∗
∞(x(0)) = minu0,u1,...

∞∑
k=0

‖Qxk‖p + ‖Ruk‖p

subj. to xk+1 = Axk +Buk, k = 0, . . . ,∞
xk ∈ X , uk ∈ U , k = 0, . . . ,∞
x0 = x(0)

(11.79)

and the set

X∞ = {x(0) ∈ Rn : Problem (11.79) is feasible and J∗
∞(x(0)) < +∞}. (11.80)

Because Q and R have full column rank, any optimizer u∗
k of problem (11.43) must

converge to the origin (u∗
k → 0) and so must the state trajectory resulting from the

238 11 Constrained Optimal Control

application of u∗
k (x∗

k → 0). Thus the origin x = 0, u = 0 must lie in the interior
of the constraint set (X ,U). (If the origin were not contained in the constraint
set then J∗

∞(x(0)) would be infinite.) Furthermore, if the initial state x0 = x(0)
is sufficiently close to the origin, then the state and input constraints will never
become active and the solution of problem (11.43) will yield the unconstrained
optimal controller (9.31).

The discussion for the solution of the infinite horizon constrained linear
quadratic regulator (Section 11.3.4) by means of the batch approach can be
repeated here with one precaution. Since the unconstrained optimal controller (if it
exists) is PPWA the computation of the Maximal Invariant Set for the autonomous
constrained piecewise linear system is more involved and requires algorithms which
will be presented later in Chapter 17.

Differently from the 2-norm case, here the use of dynamic programming for
computing the infinite horizon solution is a viable alternative to the batch approach.
Convergence conditions for the dynamic programming strategy and convergence
guarantees for the resulting possibly discontinuous closed-loop system are given
in [87]. A computationally efficient algorithm to obtain the infinite time optimal
solution, based on a dynamic programming exploration strategy with an mp-LP
solver and basic polyhedral manipulations, is also presented in [87].

Example 11.5 We consider the double integrator system (11.23) from Example 11.4
with N = ∞.

The partition of the state space for the time invariant optimal control law is shown
in Figure 11.6(a) and consists of 202 polyhedral regions. In Figure 11.6(b) the same
control law is represented where polyhedra with the same affine control law were
merged.

x1

x
2

–10 –5 0 5 10–10

–5

0

5

10

(a) Partition before merging (Nr
∞ =

202).

x
2

x1

–10 –5 0 5 10–10

–5

0

5

10

(b) Partition after merging (Nr
∞ =

26).

Figure 11.6 Example 11.5. Double Integrator, ∞-norm objective function,
horizon N = ∞. Partition of the state space for the time invariant optimal
control law.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_inftynorm_infinite.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_inftynorm_infinite.m

11.5 State Feedback Solution, Minimum-Time Control 239

11.5 State Feedback Solution, Minimum-Time Control

In this section we consider the solution of minimum-time optimal control problems

J∗
0 (x(0)) = min

U0,N
N

subj. to xk+1 = Axk +Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0),

(11.81)

where Xf ⊂ Rn is a terminal target set to be reached in minimum time.
We can find the controller that brings the states into Xf in one time step by

solving the following multiparametric program

min
u0

c(x0, u0)

subj. to x1 = Ax0 +Bu0

x0 ∈ X , u0 ∈ U
x1 ∈ Xf ,

(11.82)

where c(x0, u0) is any convex quadratic function. Let us assume that the solution of

the multiparametric program generates R1 regions {P1
r }R

1

r=1 with the affine control
law u0 = F 1

r x+ g1r in each region r. By construction we have

X0 = K1(Xf).

Continuing to set up simple multiparametric programs bring the states into Xf in
2, 3, . . . steps, we have for step j

min
u0

c(x0, u0)

subj. to x1 = Ax0 +Bu0

x0 ∈ X , u0 ∈ U
x1 ∈ Kj−1(Xf),

(11.83)

which yields Rj regions {Pj
r}R

j

r=1 with the affine control law u0 = F j
r x+ gjr in each

region r. By construction we have

X0 = Kj(Xf).

Thus to obtain K1(Xf), . . . ,KN (Xf) we need to solve N multiparametric programs
with a prediction horizon of 1. Since the overall complexity of a multiparametric
program is exponential in N , this scheme can be exploited to yield controllers
of lower complexity than the optimal control schemes introduced in the previous
sections.

Since N multiparametric programs have been solved, the controller regions
overlap in general. In order to achieve minimum time behavior, the feedback law
associated with the region computed for the smallest number of steps c, is selected
for any given state x.

240 11 Constrained Optimal Control

Algorithm 11.1 On-line computation of minimum-time control input

Input: State measurement x, N controller partitions solution to (11.83) for j =
1, . . . , N

Output: Minimum time control action u(x)

Find controller partition cmin = minc∈{0,...,N} c, s.t. x ∈ Kc(Xf)

Find controller region r, such that x ∈ Pcmin
r and compute u = F cmin

r x+ gcmin
r

Return u

Note that the region identification for this type of controller partition is much
more efficient than simply checking all the regions. The two steps of “finding a
controller partition” and “finding a controller region” in Algorithm 11.1 correspond
to two levels of a search tree, where the search is first performed over the
feasible sets Kc(Xf) and then over the controller partition {Pc

r}R
c

r=1. Furthermore,
one may discard all regions Pi

r which are completely covered by previously
computed controllers (i.e., Pi

r ⊆
⋃

j∈{1,...,i−1} Kj(Xf)) since they are not time
optimal.

Example 11.6 Consider again the double integrator from Example 11.2. The
Minimum-Time Controller is computed that steers the system to the Maximal LQR
Invariant Set OLQR

∞ in the minimum number of time steps N . The Algorithm
terminated after 11 iterations, covering the Maximal Controllable Set K∞(OLQR

∞).
The resulting controller is defined over 33 regions. The regions are depicted in Figure
11.7(a). The Maximal LQR Invariant Set OLQR

∞ is the central shaded region.

The control law on this partition is depicted in Figure 11.7(b). Note that, in general,
the minimum-time control law is not continuous as can be seen in Figure 11.7(b).

x1

–10 –5 0 5 10
–10

–5

0

5

10

x
2

(a) Minimum-Time State Space Par-

tition (Nr=33).

x1

x2

u

–10
–50510

–5

0

5

–1

0

1

(b) Minimum-Time Control Law

(discontinuous).

Figure 11.7 Example 11.6. Double integrator, minimum-time objective
function. Partition of the state space and control law. Maximal LQR
Invariant Set OLQR

∞ is the central shaded region in (a).

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_minimumtime.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_minimumtime.m

11.6 Comparison of the Design Approaches and Controllers 241

11.6 Comparison of the Design Approaches and Controllers

For the design, the storage and the on-line execution time of the control law we
are interested in the controller complexity. All the controllers we discussed in this
chapter are PPWA. Their storage and execution times are closely related to the
number of polyhedral regions, which is related to the number of constraints in the
mp-LP or mp-QP.

When the control objective is expressed in terms of the 1- or ∞- norm, it
is translated into a set of constraints in the mp-LP. When the control objective
is expressed in terms of the 2-norm such a translation is not necessary. Thus
controllers minimizing the 1- or ∞- norm do generally involve more regions than
those minimizing the 2-norm and therefore tend to be more complex.

In mp-LPs degeneracies are common and have to be taken care of in the
respective algorithms. Strictly convex mp-QPs for which the Linear Independent
Constraint Qualification holds are comparatively well behaved with unique solu-
tions and full-dimensional polyhedral regions. Only for the 1-norm and ∞-norm
objective, however, we can use for the controller design an efficient Dynamic
Programming scheme involving a sequence of mp-LPs.

As we let the horizon N go to infinity, the number of regions stays finite for
the 2-norm objective, for the 1- and ∞-norm nothing can be said in general. In the
examples, we have usually observed a finite number, but cases can be constructed
where the number can be proven to be infinite.

As we will argue in the following chapter, infinite horizon controllers based on
the 2-norm render the closed-loop system exponentially stable, while controllers
based on the 1- or ∞-norm render the closed-loop system stable, only.

Among the controllers proposed in this chapter, the minimum-time controller
is usually the least complex involving the smallest number of regions. Minimum
time controllers are often considered to be too aggressive for practical use. The
controller here is different, however. It is minimum time only until it reaches the
terminal set Xf . Inside the terminal set a different unconstrained control law can
be used. Overall the operation of the minimum-time controller is observed to be
very similar to that of the other infinite time controllers in this chapter.

12

Receding Horizon Control

In this chapter we review the basics of Receding Horizon Control (RHC). In the first
part we discuss the stability and the feasibility of RHC and we provide guidelines
for choosing the terminal weight so that closed-loop stability is achieved.

The second part of the chapter focuses on the RHC implementation. Since
RHC requires at each sampling time to solve an open-loop constrained finite time
optimal control problem as a function of the current state, the results of the previous
chapters imply two possible approaches for RHC implementation.

In the first approach a mathematical program is solved at each time step for the
current initial state. In the second approach the explicit piecewise affine feedback
policy (that provides the optimal control for all states) is precomputed off-line.
This reduces the on-line computation of the RHC law to a function evaluation,
thus avoiding the on-line solution of a quadratic or linear program. This technique
is attractive for a wide range of practical problems where the computational
complexity of on-line optimization is prohibitive. It also provides insight into the
structure underlying optimization-based controllers, describing the behavior of the
RHC controller in different regions of the state space. Moreover, for applications
where safety is crucial, the correctness of a piecewise affine control law is easier to
verify than that of a mathematical program solver.

12.1 RHC Idea

In the previous chapter we discussed the solution of constrained finite time and
infinite time optimal control problems for linear systems. An infinite horizon
suboptimal controller can be designed by repeatedly solving finite time optimal
control problems in a receding horizon fashion as described next. At each sampling
time, starting at the current state, an open-loop optimal control problem is
solved over a finite horizon (top diagram in Figure 12.1). The computed optimal
manipulated input signal is applied to the process only during the following
sampling interval [t, t+1]. At the next time step t+1 a new optimal control problem
based on new measurements of the state is solved over a shifted horizon (bottom

244 12 Receding Horizon Control

Past Future

Reference

t t+1 t+N

t+1 t+2 t+1+N

u(t)

u(t+1)

Predicted outputs

Predicted outputs

Manipulated inputs

Manipulated inputs

Figure 12.1 Receding Horizon Idea.

diagram in Figure 12.1). The resulting controller is referred to as a Receding
Horizon Controller (RHC). A receding horizon controller where the finite time
optimal control law is computed by solving an optimization problem on-line is
usually referred to as Model Predictive Control (MPC).

12.2 RHC Implementation

Consider the problem of regulating to the origin the discrete-time linear time-
invariant system

x(t+ 1) = Ax(t) +Bu(t), (12.1)

where x(t) ∈ Rn, u(t) ∈ Rm are the state and input vectors, respectively, subject
to the constraints

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0, (12.2)

where the sets X ⊆ Rn and U ⊆ Rm are polyhedra. Receding Horizon Control
(RHC) approaches such a constrained regulation problem in the following way.
Assume that a full measurement or estimate of the state x(t) is available at the
current time t. Then the finite time optimal control problem

12.2 RHC Implementation 245

J∗
t (x(t)) = minUt→t+N|t Jt(x(t), Ut→t+N |t) = p(xt+N |t) +

N−1∑
k=0

q
(
xt+k|t, ut+k|t

)
subj. to xt+k+1|t = Axt+k|t +But+k|t, k = 0, . . . , N − 1

xt+k|t ∈ X , ut+k|t ∈ U , k = 0, . . . , N − 1
xt+N |t ∈ Xf

xt|t = x(t)
(12.3)

is solved at time t, where Ut→t+N |t = {ut|t, . . . , ut+N−1|t} and where xt+k|t denotes
the state vector at time t + k predicted at time t obtained by starting from the
current state xt|t = x(t) and applying to the system model

xt+k+1|t = Axt+k|t +But+k|t

the input sequence ut|t, . . . , ut+k−1|t. Often the symbol xt+k|t is read as “the state
x at time t+k predicted at time t.” Similarly, ut+k|t is read as “the input u at time
t+k computed at time t.” For instance, x3|1 represents the predicted state at time
3 when the prediction is done at time t = 1 starting from the current state x(1). It
is different, in general, from x3|2 which is the predicted state at time 3 when the
prediction is done at time t = 2 starting from the current state x(2).

Let U∗
t→t+N |t = {u∗

t|t, . . . , u
∗
t+N−1|t} be the optimal solution of (12.3) at time t

and J∗
t (x(t)) the corresponding value function. Then, the first element of U∗

t→t+N |t
is applied to system (12.1)

u(t) = u∗
t|t(x(t)). (12.4)

The optimization problem (12.3) is repeated at time t+ 1, based on the new state
xt+1|t+1 = x(t+ 1), yielding a moving or receding horizon control strategy.

Let ft : Rn → Rm denote the receding horizon control law that associates
the optimal input u∗

t|t to the current state x(t), ft(x(t)) = u∗
t|t(x(t)). Then the

closed-loop system obtained by controlling (12.1) with the RHC (12.3)–(12.4) is

x(k + 1) = Ax(k) +Bfk(x(k)) = fcl(x(k), k), k ≥ 0. (12.5)

Note that the notation used in this chapter is slightly different from the one
used in Chapter 11. Because of the receding horizon strategy, there is the need to
distinguish between the input u∗(t + k) applied to the plant at time t + k, and
optimizer u∗

t+k|t of the problem (12.3) at time t + k obtained by solving (12.3) at

time t with xt|t = x(t).
Consider problem (12.3). As the system, the constraints and the cost function

are time-invariant, the solution to problem (12.3) is a time-invariant function
of the initial state x(t). Therefore, in order to simplify the notation, we can
set t = 0 in (12.3) and remove the term “|0” since it is now redundant and
rewrite (12.3) as

J∗
0 (x(t)) = minU0

J0(x(t), U0) = p(xN) +

N−1∑
k=0

q(xk, uk)

subj. to xk+1 = Axk +Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(t),

(12.6)

246 12 Receding Horizon Control

where U0 = {u0, . . . , uN−1} and the notation in Remark 7.1 applies. Similarly
as in previous chapters, we will focus on two classes of cost functions. If the
1-norm or ∞-norm is used in (12.6), then we set p(xN) = ‖PxN‖p and q(xk, uk) =
‖Qxk‖p + ‖Ruk‖p with p = 1 or p = ∞ and P , Q, R full column rank matrices.
The cost function is rewritten as

J0(x(0), U0) = ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p. (12.7)

If the squared Euclidian norm is used in (12.6), then we set p(xN) = x′
NPxN and

q(xk, uk) = x′
kQxk + u′

kRuk with P � 0, Q � 0 and R � 0. The cost function is
rewritten as

J0(x(0), U0) = x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk. (12.8)

The control law (12.4)

u(t) = f0(x(t)) = u∗
0(x(t)) (12.9)

and closed-loop system (12.5)

x(k + 1) = Ax(k) +Bf0(x(k)) = fcl(x(k)), k ≥ 0 (12.10)

are time-invariant as well.
Note that the notation in (12.6) does not allow us to distinguish at which time

step a certain state prediction or optimizer is computed and is valid for time-
invariant problems only. Nevertheless, we will prefer the RHC notation in (12.6) to
the one in (12.3) in order to simplify the exposition.

Compare problem (12.6) and the CFTOC (11.9). The only difference is that
problem (12.6) is solved for x0 = x(t), t ≥ 0 rather than for x0 = x(0). For this
reason we can make use of all the results of the previous chapter. In particular, X0

denotes the set of feasible states x(t) for problem (12.6) as defined and studied in
Section 11.2. Recall from Section 11.2 that X0 is a polyhedron.

From the above explanations it is clear that a fixed prediction horizon is shifted
or recedes over time, hence its name, receding horizon control. The procedure of
this on-line optimal control technique is summarized in the following algorithm.

Algorithm 12.1 On-line receding horizon control

Input: State x(t) at time instant t

Output: Receding horizon control input u(x(t))

Obtain U∗
0 (x(t)) by solving the optimization problem (12.6)

If ‘problem infeasible’ Then stop

Return the first element u∗
0 of U∗

0

Example 12.1 Consider the double integrator system (11.23) rewritten below:

x(t+ 1) =

[
1 1
0 1

]
x(t) +

[
0
1

]
u(t) (12.11)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/FeasibilityExample.m

12.2 RHC Implementation 247

The aim is to compute the receding horizon controller that solves the optimization
problem (12.6) with p(xN) = x′

NPxN , q(xk, uk) = x′
kQxk + u′

kRuk N = 3, P =

Q =

[
1 0
0 1

]
, R = 10, Xf = R2 subject to the input constraints

− 0.5 ≤ u(k) ≤ 0.5, k = 0, . . . , 3 (12.12)

and the state constraints [
−5
−5

]
≤ x(k) ≤

[
5
5

]
, k = 0, . . . , 3. (12.13)

The QP problem associated with the RHC has the form (11.31) with

H =
[

13.50 −10.00 −0.50
−10.00 22.00 −10.00
−0.50 −10.00 31.50

]
, F =

[−10.50 10.00 −0.50
−20.50 10.00 9.50

]
, Y = [14.50 23.50

23.50 54.50] (12.14)

and

G0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.50 −1.00 0.50
−0.50 1.00 −0.50
−0.50 0.00 0.50
−0.50 0.00 −0.50
0.50 0.00 −0.50
0.50 0.00 0.50

−1.00 0.00 0.00
0.00 −1.00 0.00
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 −1.00
0.00 0.00 1.00
0.00 0.00 0.00

−0.50 0.00 0.50
0.00 0.00 0.00
0.50 0.00 −0.50

−0.50 0.00 0.50
0.50 0.00 −0.50
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.50 0.50
−0.50 −0.50
0.50 0.50

−0.50 −0.50
−0.50 −0.50
0.50 0.50
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
1.00 1.00

−0.50 −0.50
−1.00 −1.00
0.50 0.50

−0.50 −1.50
0.50 1.50
1.00 0.00
0.00 1.00

−1.00 0.00
0.00 −1.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, w0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.50
0.50
5.00
5.00
5.00
5.00
5.00
5.00
5.00
5.00
0.50
0.50
5.00
5.00
5.00
5.00
0.50
0.50
5.00
5.00
5.00
5.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12.15)

The RHC (12.6)–(12.9) algorithm becomes Algorithm 12.2. We refer to the solution
U∗

0 of the QP (11.31) as [U∗
0 ,Flag] = QP(H, 2F ′x(0), G0, w0 +E0x(0)) where “Flag”

indicates if the QP was found to be feasible or not.

Algorithm 12.2 QP-based on-line receding horizon control

Input: State x(t) at time instant t

Output: Receding horizon control input u(x(t))

Compute F̃ = 2F ′x(t) and w̃0 = w0 + E0x(t)

Obtain U∗
0 (x(t)) by solving the optimization problem [U∗

0 ,Flag] =
QP(H, F̃ ,G0, w̃0)

If Flag = infeasible Then stop

Return the first element u∗
0 of U∗

0

Figure 12.2 shows two closed-loop trajectories starting at state x(0) = [−4.5, 2]
and x(0) = [−4.5, 3]. The trajectory starting from x(0) = [−4.5, 2] converges to
the origin and satisfies input and state constraints. The trajectory starting from
x(0) = [−4.5, 3] stops at x(2) = [1, 2] because of infeasibility. At each time step, the
open-loop predictions are depicted with dashed lines. This shows that the closed-loop

248 12 Receding Horizon Control

x1

x
2

–5 –3 –2 –1 1 2 3 5

0

1

2

3

–4 0 4

Figure 12.2 Example 12.1. Closed-loop trajectories realized (solid) and
predicted (dashed) for two initial states x(0)=[−4.5,2] (boxes) and
x(0)=[−4.5,3] (circles).

x1

x
2

–5 –4 –3 –2 –1 0 1 2 3 4 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

(a) Boxes (Circles) are initial
points leading (not leading) to fea-
sible closed-loop trajectories.

x1

x
2

–5 –4 –3 –2 –1 0 1 2 3 4 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

(b) Maximal positive invariant set
O∞ (gray) and set of initial feasi-
ble states X0 (white and gray).

Figure 12.3 Example 12.1. Double integrator with RHC.

trajectories are different from the open-loop predicted trajectories because of the
receding horizon nature of the controller.

In Figure 12.3(a) the feasible state space was gridded and each point of the grid was
marked with a square if the RHC law (12.6)–(12.9) generates feasible closed-loop
trajectories and with a circle if it does not. The set of all initial conditions generating
feasible closed-loop trajectories is the maximal positive invariant set O∞ of the
autonomous system (12.10). We remark that this set is different from the set X0 of
feasible initial conditions for the QP problem (11.31) with matrices (12.15). Both
sets O∞ and X0 are depicted in Figure 12.3(b). The computation of f0 is discussed
later in this chapter. Because of the nonlinear nature of f0, the computation of O∞
for the system (12.10) is not an easy task. Therefore, we will show how to choose a
terminal invariant set Xf such that O∞ = X0 is guaranteed automatically.

Note that a feasible closed-loop trajectory does not necessarily converge to the
origin. Feasibility, convergence and stability of RHC are discussed in detail in
the next sections. Before that we want to illustrate these issues through another
example.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/FeasibilityExample.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/FeasibilityExample.m

12.2 RHC Implementation 249

Example 12.2 Consider the unstable system

x(t+ 1) =

[
2 1
0 0.5

]
x(t) +

[
1
0

]
u(t) (12.16)

with the input constraints

− 1 ≤ u(k) ≤ 1, k = 0, . . . , N − 1 (12.17)

and the state constraints[
−10
−10

]
≤ x(k) ≤

[
10
10

]
, k = 0, . . . , N − 1. (12.18)

In the following, we study the receding horizon control problem (12.6) with p(xN) =
x′
NPxN , q(xk, uk) = x′

kQxk + u′
kRuk for different horizons N and weights R. We

set Q = I and omit both the terminal set constraint and the terminal weight, i.e.,
Xf = R2, P = 0.

Figure 12.4 shows closed-loop trajectories for receding horizon control loops that were
obtained with the following parameter settings

• Setting 1: N = 2, R = 10

• Setting 2: N = 3, R = 2

• Setting 3: N = 4, R = 1

x1

x
2

–8 –4 0 4 8
–10

–5

0

5

10

(a) Setting 1 : N = 2, R = 10.

x1

x
2

–8 –4 0 4 8
–10

–5

0

5

10

(b) Setting 2 : N = 3, R = 2.

x1

x
2

–8 –4 0 4 8
–10

–5

0

5

10

(c) Setting 3 : N = 4, R = 1.

Figure 12.4 Example 12.2. Closed-loop trajectories for different settings of
horizon N and weight R. Boxes (Circles) are initial points leading (not
leading) to feasible closed-loop trajectories.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/FeasibilityAndTuning.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/FeasibilityAndTuning.m

250 12 Receding Horizon Control

For Setting 1 (Figure 12.4(a)) there is evidently no initial state that can be steered
to the origin. Indeed, it turns out, that all nonzero initial states x(0) ∈ R2 diverge
from the origin and eventually become infeasible. In contrast, Setting 2 leads
to a receding horizon controller, that manages to get some of the initial states
converge to the origin, as seen in Figure 12.4(b). Finally, Figure 12.4(c) shows that
Setting 3 can expand the set of those initial states that can be brought to the
origin.

Note the behavior of particular initial states:

1. Closed-loop trajectories starting at state x(0) = [−4, 7] behave differently
depending on the chosen setting. Both Setting 1 and Setting 2 cannot bring
this state to the origin, but the controller with Setting 3 succeeds.

2. There are initial states, e.g., x(0) = [−4, 8.5], that always lead to infeasible
trajectories independent of the chosen settings. It turns out, that no setting can
be found that brings those states to the origin.

These results illustrate that the choice of parameters for receding horizon control
influences the behavior of the resulting closed-loop trajectories in a complex manner.
A better understanding of the effect of parameter changes can be gained from an
inspection of maximal positive invariant sets O∞ for the different settings, and the
maximal control invariant set C∞ as depicted in Figure 12.5.

The maximal positive invariant set stemming from Setting 1 only contains the
origin (O∞ = {0}) which explains why all nonzero initial states diverge from the
origin. For Setting 2 the maximal positive invariant set has grown considerably,
but does not contain the initial state x(0) = [−4, 7], thus leading to infeasibility
eventually. Setting 3 leads to a maximal positive invariant set that contains this
state and thus keeps the closed-loop trajectory inside this set for all future time
steps.

From Figure 12.5 we also see that a trajectory starting at x(0) = [−4, 8.5] cannot
be kept inside any bounded set by any setting (indeed, by any controller) since it is
outside the maximal control invariant set C∞.

x1

x
2

x(0) = [−4, 7]
x(0) = [−4, 8.5]

–4 0 4
–10

–5

0

5

10

Figure 12.5 Example 12.2. Maximal positive invariant sets O∞ for different
parameter settings: Setting 1 (origin), Setting 2 (dark-gray) and Setting 3
(gray and dark-gray). Also depicted is the maximal control invariant set C∞
(white and gray and dark-gray).

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/FeasibilityAndTuning.m

12.3 RHC Main Issues 251

12.3 RHC Main Issues

If we solve the receding horizon problem for the special case of an infinite horizon
(setting N = ∞ in (12.6) as we did for LQR in Section 8.5 and CLQR in Section
11.3.4) then it is almost immediate that the closed-loop system with this controller
has some nice properties. Most importantly, the differences between the open-
loop predicted and the actual closed-loop trajectories observed in Example 12.1
disappear. As a consequence, if the optimization problem is feasible, then the closed-
loop trajectories will be feasible for all times. If the optimization problem has a
finite solution, then in closed-loop the states and inputs will converge to the origin
asymptotically.

In RHC, when we solve the optimization problem over a finite horizon
repeatedly at each time step, we hope that the controller resulting from this “short-
sighted” strategy will lead to a closed-loop behavior that mimics that of the infinite
horizon controller. The examples in the last section indicated that at least two
problems may occur. First of all, the controller may lead us into a situation where
after a few steps the finite horizon optimal control problem that we need to solve
at each time step is infeasible, i.e., that there does not exist a sequence of control
inputs for which the constraints are obeyed. Second, even if the feasibility problem
does not occur, the generated control inputs may not lead to trajectories that
converge to the origin, i.e., that the closed-loop system is asymptotically stable.

In general, stability and feasibility are not ensured by the RHC law (12.6)–
(12.9). In principle, we could analyze the RHC law for feasibility, stability and
convergence but this is difficult as the examples in the last section illustrated.
Therefore, conditions will be derived on how the terminal weight P and the terminal
constraint set Xf should be chosen such that closed-loop stability and feasibility
are ensured.

12.3.1 Feasibility of RHC

The examples in the last section illustrate that feasibility at the initial time x(0) ∈
X0 does not necessarily imply feasibility for all future times. It is desirable to design
an RHC such that feasibility for all future times is guaranteed, a property we refer
to as persistent feasibility.

We would like to gain some insight when persistent feasibility occurs and how it
is affected by the formulation of the control problem and the choice of the controller
parameters. Let us first recall the various sets introduced in Section 10.2 and Section
11.2 and how they are influenced.

C∞: The maximal control invariant set C∞ is only affected by the sets X and U ,
the constraints on states and inputs. It is the largest set over which we can
expect any controller to work.

X0: A control input U0 can only be found, i.e., the control problem is feasible,
if x(0) ∈ X0. The set X0 depends on X and U , on the controller horizon N
and on the controller terminal set Xf . It does not depend on the objective
function and it has generally no relation with C∞ (it can be larger, smaller,
etc.).

252 12 Receding Horizon Control

O∞: The maximal positive invariant set for the closed-loop system depends on the
controller and as such on all parameters affecting the controller, i.e., X , U ,
N , Xf and the objective function with its parameters P , Q and R. Clearly
O∞ ⊆ X0 because if it were not there would be points in O∞ for which
the control problem is not feasible. Because of invariance, the closed-loop is
persistently feasible for all states x(0) ∈ O∞. Clearly, O∞ ⊆ C∞.

We can now state necessary and sufficient conditions guaranteeing persistent
feasibility by means of invariant set theory.

Lemma 12.1 Let O∞ be the maximal positive invariant set for the closed-loop
system x(k + 1) = fcl(x(k)) in (12.10) with constraints (12.2). The RHC problem
is persistently feasible if and only if X0 = O∞.

Proof: For the RHC problem to be persistently feasible X0 must be positive
invariant for the closed-loop system. We argued above that O∞ ⊆ X0. As the
positive invariant set X0 cannot be larger than the maximal positive invariant set
O∞, it follows that X0 = O∞. �

As X0 does not depend on the controller parameters P , Q and R but O∞ does,
the requirement X0 = O∞ for persistent feasibility shows that, in general, only
some P , Q and R are allowed. The parameters P , Q and R affect the performance.
The complex effect they have on persistent feasibility makes their choice extremely
difficult for the design engineer. In the following we will remedy this undesirable
situation. We will make use of the following important sufficient condition for
persistent feasibility.

Lemma 12.2 Consider the RHC law (12.6)–(12.9) with N ≥ 1. If X1 is a control
invariant set for system (12.1)−(12.2) then the RHC is persistently feasible. Also,
O∞ = X0 is independent of P , Q and R.

Proof: If X1 is control invariant then, by definition, X1 ⊆ Pre(X1). Also recall
that Pre(X1) = X0 from the properties of the feasible sets in equation (11.20)
(note that Pre(X1) ∩ X = Pre(X1) from control invariance). Pick some x ∈ X0

and some feasible control u for that x and define x+ = Ax + Bu ∈ X1. Then
x+ ∈ X1 ⊆ Pre(X1) = X0. As u was arbitrary (as long as it is feasible) x+ ∈ X0

for all feasible u. As X0 is positive invariant, X0 = O∞ from Lemma 12.1. As X0 is
positive invariant for all feasible u, O∞ does not depend on P , Q and R. �

Note that in the proof of Lemma 12.2, persistent feasibility does not depend
on the input u as long as it is feasible. For this reason, sometimes in the literature
this property is referred to “persistently feasible for all feasible u.”

We can use Lemma 12.2 in the following manner. For N = 1, X1 = Xf . If we
choose the terminal set to be control invariant then X0 = O∞ and RHC will be
persistently feasible independent of chosen control objectives and parameters. Thus
the designer can choose the parameters to affect performance without affecting
persistent feasibility. A control horizon of N = 1 is often too restrictive, but we
can easily extend Lemma 12.2.

Theorem 12.1 Consider the RHC law (12.6)–(12.9) with N ≥ 1. If Xf is a
control invariant set for system (12.1)–(12.2) then the RHC is persistently feasible.

12.3 RHC Main Issues 253

Proof: If Xf is control invariant, then XN−1, XN−2, . . . ,X1 are control invariant
and Lemma 12.2 establishes persistent feasibility for all feasible u. �

Corollary 12.1 Consider the RHC law (12.6)–(12.9) with N ≥ 1. If there exists
i ∈ [1, N] such that Xi is a control invariant set for system (12.1)–(12.2), then the
RHC is persistently feasible for all cost functions.

Proof: Follows directly from the proof of Theorem 12.1. �

Recall that Theorem 11.2 together with Remark 11.4 define the properties of
the set X0 as N varies. Therefore, Theorem 12.1 and Corollary 12.1 provide also
guidelines on the choice of the horizon N for guaranteeing persistent feasibility
for all feasible u. For instance, if the RHC problem (12.6) for N = N̄ yields a
control invariant set X0, then from Theorem 11.2 the RHC law (12.6)–(12.9) with
N = N̄ + 1 is persistently feasible for all feasible u. Moreover, from Corollary
12.1 the RHC law (12.6)–(12.9) with N ≥ N̄ + 1 is persistently feasible for all
feasible u.

Corollary 12.2 Consider the RHC problem (12.6)−(12.9). If N is greater than
the determinedness index N̄ of K∞(Xf) for system (12.1)−(12.2), then the RHC
is persistently feasible.

Proof: The feasible set Xi for i = 1, . . . , N − 1 is equal to the (N − i)-
step controllable set Xi = KN−i(Xf). If the maximal controllable set is
finitely determined then Xi = K∞(Xf) for i ≤ N − N̄ . Note that K∞(Xf)
is control invariant. Then persistent feasibility for all feasible u follows from
Corollary 12.1. �

Persistent feasibility does not guarantee that the closed-loop trajectories
converge towards the desired equilibrium point. From Theorem 12.1 it is clear
that one can only guarantee that x(k) ∈ X1 for all k > 0 if x(0) ∈ X0.

One of the most popular approaches to guarantee persistent feasibility and
stability of the RHC law (12.6)–(12.9) makes use of a control invariant terminal set
Xf and a terminal cost P which drives the closed-loop optimal trajectories towards
the origin. A detailed discussion follows in the next section.

12.3.2 Stability of RHC

In this section we will derive the main stability result for RHC. Our objective is
to find a Lyapunov function for the closed-loop system. We will show next that if
the terminal cost and constraint are appropriately chosen, then the value function
J∗
0 (·) is a Lyapunov function.

Theorem 12.2 Consider system (12.1)–(12.2), the RHC law (12.6)–(12.9) and
the closed-loop system (12.10). Assume that

(A0) The stage cost q(x, u) and terminal cost p(x) are continuous and positive
definite functions.

(A1) The sets X , Xf and U contain the origin in their interior and are closed.

254 12 Receding Horizon Control

(A2) Xf is control invariant, Xf ⊆ X .

(A3) min
v∈U, Ax+Bv∈Xf

(−p(x) + q(x, v) + p(Ax+Bv)) ≤ 0, ∀x ∈ Xf .

Then, the origin of the closed-loop system (12.10) is asymptotically stable with
domain of attraction X0.

Proof: From hypothesis (A2), Theorem 12.1 and Lemma 12.1, we conclude
that X0 = O∞ is a positive invariant set for the closed-loop system (12.10) for
any choice of the cost function. Thus persistent feasibility for any feasible input is
guaranteed in X0.

Next, we prove convergence and stability. We establish that the function J∗
0 (·)

in (12.6) is a Lyapunov function for the closed-loop system. Because the cost J0,
the system and the constraints are time-invariant we can study the properties of
J∗
0 between step k = 0 and step k + 1 = 1.
Consider problem (12.6) at time t = 0. Let x(0) ∈ X0 and let U∗

0 =
{u∗

0, . . . , u
∗
N−1} be the optimizer of problem (12.6) and x0 = {x(0), x1, . . . , xN}

be the corresponding optimal state trajectory. After the implementation of u∗
0

we obtain x(1) = x1 = Ax(0) + Bu∗
0. Consider now problem (12.6) for t = 1.

We will construct an upper bound on J∗
0 (x(1)). Consider the sequence Ũ1 =

{u∗
1, . . . , u

∗
N−1, v} and the corresponding state trajectory resulting from the initial

state x(1), x̃1 = {x1, . . . , xN , AxN +Bv}. Because xN ∈ Xf and (A2) there exists
a feasible v such that xN+1 = AxN + Bv ∈ Xf and with this v the sequence

Ũ1 = {u∗
1, . . . , u

∗
N−1, v} is feasible. Because Ũ1 is not optimal J0(x(1), Ũ1) is an

upper bound on J∗
0 (x(1)).

Since the trajectories generated by U∗
0 and Ũ1 overlap, except for the first and

last sampling intervals, it is immediate to show that

J∗
0 (x(1)) ≤ J0(x(1), Ũ1) = J∗

0 (x(0))− q(x0, u
∗
0)− p(xN)

+ (q(xN , v) + p(AxN +Bv)).
(12.19)

Let x = x0 = x(0) and u = u∗
0. Under assumption (A3) equation (12.19) becomes

J∗
0 (Ax+Bu)− J∗

0 (x) ≤ −q(x, u), ∀x ∈ X0. (12.20)

Equation (12.20) and the hypothesis (A0) on the stage cost q(·) ensure that J∗
0 (x)

strictly decreases along the state trajectories of the closed-loop system (12.10)
for any x ∈ X0, x 	= 0. In addition to the fact that J∗

0 (x) decreases, J∗
0 (x) is

lower-bounded by zero and since the state trajectories generated by the closed-loop
system (12.10) starting from any x(0) ∈ X0 lie in X0 for all k ≥ 0, equation (12.20)
is sufficient to ensure that the state of the closed-loop system converges to zero as
k → 0 if the initial state lies in X0. We have proven (i).

In order to prove stability via Theorem 7.2 we have to establish that J∗
0 (x)

is a Lyapunov function. Positivity holds by the hypothesis (A0), decrease follows
from (12.20). For continuity at the origin we will show that J∗

0 (x) ≤ p(x), ∀x ∈ Xf

and as p(x) is continuous at the origin (by hypothesis (A0)) J∗
0 (x) must be

continuous as well. From assumption (A2), Xf is control invariant and thus for any
x ∈ Xf there exists a feasible input sequence {u0, . . . , uN−1} for problem (12.6)
starting from the initial state x0 = x whose corresponding state trajectory is

12.3 RHC Main Issues 255

{x0, x1, . . . , xN} stays in Xf , i.e., xi ∈ Xf ∀ i = 0, . . . , N . Among all the
aforementioned input sequences {u0, . . . , uN−1} we focus on the one where ui

satisfies assumption (A3) for all i = 0, . . . , N − 1. Such a sequence provides an
upper bound on the function J∗

0 :

J∗
0 (x0) ≤

(
N−1∑
i=0

q(xi, ui)

)
+ p(xN), xi ∈ Xf , i = 0, . . . , N, (12.21)

which can be rewritten as

J∗
0 (x0) ≤

(
N−1∑
i=0

q(xi, ui)

)
+ p(xN)

= p(x0) +

(
N−1∑
i=0

q(xi, ui) + p(xi+1)− p(xi)

)
xi ∈ Xf , i = 0, . . . , N,

(12.22)

which from assumption (A3) yields

J∗
0 (x) ≤ p(x), ∀x ∈ Xf . (12.23)

In conclusion, there exist a finite time in which any x ∈ X0 is steered to a level
set of J∗

0 (x) contained in Xf after which convergence to and stability of the origin
follows. �

Remark 12.1 The assumption on the positive definiteness of the stage cost q(·) in
Theorem 12.2 can be relaxed as in standard optimal control. For instance, for the

2-norm based cost function (12.8), one can allow Q � 0 with (Q
1
2 , A) observable.

Remark 12.2 The procedure outlined in Theorem 12.2 is, in general, conservative
because it requires the introduction of an artificial terminal set Xf to guarantee
persistent feasibility and a terminal cost to guarantee stability. Requiring xN ∈ Xf

usually decreases the size of the region of attraction X0 = O∞. Also the performance
may be negatively affected.

Remark 12.3 A function p(x) satisfying assumption (A3) of Theorem 12.2 is often
called control Lyapunov function.

The hypothesis (A2) of Theorem 12.2 is required for guaranteeing persistent
feasibility as discussed in Section 12.3.1. In some part of the literature the constraint
Xf is not used. However, in this literature the terminal region constraint Xf is
implicit. In fact, it is typically required that the horizon N is sufficiently large to
ensure feasibility of the RHC (12.6)–(12.9) at all time instants t. Technically this
means that N has to be greater than the determinedness index N̄ of system (12.1)–
(12.2) which by Corollary 12.2 guarantees persistent feasibility for all inputs. We
refer the reader to Section 12.3.1 for more details on feasibility.

Next we will show a few simple choices for P and Xf satisfying the hypothesis
(A2) and (A3) of Theorem 12.2.

256 12 Receding Horizon Control

Stability, 2-Norm Case

Consider system (12.1)–(12.2), the RHC law (12.6)–(12.9), the cost function (12.8)
and the closed-loop system (12.10). A simple choice for Xf is the maximal positive
invariant set (see Section 10.1) for the closed-loop system x(k+1) = (A+BF∞)x(k)
where F∞ is the associated unconstrained infinite time optimal controller (8.33).
With this choice the assumption (A3) in Theorem 12.2 becomes

x′(A′(P − PB(B′PB +R)−1BP)A+Q− P)x ≤ 0, ∀x ∈ Xf , (12.24)

which is satisfied as an equality if P is chosen as the solution P∞ of the Algebraic
Riccati Equation (8.32) for system (12.1).

In general, instead of F∞ we can choose any controller F which stabilizes
A+BF . With v = Fx the assumption (A3) in Theorem 12.2 becomes

− P + (Q+ F ′RF) + (A+BF)′P (A+BF) ≤ 0. (12.25)

It is satisfied as an equality if we choose P as a solution of the corresponding
Lyapunov equation.

We learned in Section 7.5.2 that P satisfying (12.24) or (12.25) as equalities
expresses the infinite horizon cost

J∗
∞(x0) = x′

0Px0 =
∞∑
k=0

x′
kQxk + u′

kRuk. (12.26)

In summary, we conclude that the closed-loop system (12.10) is stable if there
exist a controller F which stabilizes the unconstrained system inside the controlled
invariant terminal region Xf and if the infinite horizon cost x′Px incurred with
this controller is used in the cost function (12.8). Thus, the two terms in the
objective (12.8) reflect the infinite horizon cost, one the initial finite horizon cost
when the controller is constrained and the second one the cost for the infinite
tail of the trajectory incurred after the system enters Xf and the controller is
unconstrained.

If the open loop system (12.1) is asymptotically stable, then we may even select
F = 0. Note that depending on the choice of the controller the controlled invariant
terminal region Xf changes.

For any of the discussed choices for F and Xf stability implies exponential
stability. The argument is simple. As the system is closed-loop stable it enters
the terminal region in finite time. If Xf is chosen as suggested, the closed-loop
system is unconstrained after entering Xf . For an unconstrained linear system the
convergence to the origin is exponential.

Stability, 1-Norm and ∞-Norm Case

Consider system (12.1)–(12.2), the RHC law (12.6)–(12.9), the cost function (12.7)
and the closed-loop system (12.10). Let p = 1 or p = ∞. If system (12.1) is
asymptotically stable, then Xf can be chosen as the positively invariant set of the

12.4 State Feedback Solution of RHC, 2-Norm Case 257

autonomous system x(k + 1) = Ax(k) subject to the state constraints x ∈ X .
Therefore in Xf the input 0 is feasible and the assumption (A3) in Theorem 12.2
becomes

− ‖Px‖p + ‖PAx‖p + ‖Qx‖p ≤ 0, ∀x ∈ Xf , (12.27)

which is the corresponding Lyapunov inequality for the 1-norm and ∞-norm
case (7.55) whose solution has been discussed in Section 7.5.3.

In general, if the unconstrained optimal controller (9.31) exists it is PPWA. In
this case the computation of the maximal invariant set Xf for the closed-loop PWA
system

x(k + 1) = (A+ F i)x(k) if Hix ≤ 0, i = 1, . . . , Nr (12.28)

is more involved. However if such Xf can be computed it can be used as terminal
constraint in Theorem 12.2. With this choice the assumption (A3) in Theorem
12.2 is satisfied by the infinite time unconstrained optimal cost matrix P∞
in (9.32).

12.4 State Feedback Solution of RHC, 2-Norm Case

The state feedback receding horizon controller (12.9) with cost (12.8) for sys-
tem (12.1) is

u(t) = f∗
0 (x(t)), (12.29)

where f∗
0 (x0) : Rn → Rm is the piecewise affine solution to the CFTOC (12.6) and

is obtained as explained in Section 11.3.
We remark that the implicit form (12.6) and the explicit form (12.29)

describe the same function, and therefore the stability, feasibility, and performance
properties mentioned in the previous sections are automatically inherited by the
piecewise affine control law (12.29). Clearly, the explicit form (12.29) has the
advantage of being easier to implement, and provides insight into the type of
controller action in different regions CRi of the state space.

Example 12.3 Consider the double integrator system (12.11) subject to the input
constraints

− 1 ≤ u(k) ≤ 1 (12.30)

and the state constraints

− 10 ≤ x(k) ≤ 10. (12.31)

We want to regulate the system to the origin by using the RHC problem (12.6)–(12.9)
with cost (12.8), Q = [1 0

0 1], R = 0.01, and P = P∞ where P∞ solves the algebraic
Riccati equation (8.32). We consider three cases:

Case 1. N = 2, Xf = 0,
Case 2. N = 2, Xf is the positively invariant set of the closed-loop system x(k+1) =
(A+BF∞) where F∞ is the infinite time unconstrained optimal controller (8.33).
Case 3. No terminal state constraints: Xf = R2 and N = 6 = determinedness
index+1.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_MPC_3Cases.m

258 12 Receding Horizon Control

From the results presented in this chapter, all three cases guarantee persistent
feasibility for all cost functions and asymptotic stability of the origin with region
of attraction X0 (with X0 different for each case). Next, we will detail the matrices
of the quadratic program for the on-line solution as well as the explicit solution for
the three cases.

Case 1. Xf = 0. The mp-QP problem associated with the RHC has the form (11.31)
with

H =
[
19.08 8.55
8.55 5.31

]
, F =

[
−10.57 −5.29
−10.59 −5.29

]
, Y =

[
10.31 9.33
9.33 10.37

]
(12.32)

and

G0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 −1.00
0.00 1.00
0.00 0.00

−1.00 0.00
0.00 0.00
1.00 0.00

−1.00 0.00
−1.00 −1.00
1.00 0.00
1.00 1.00
0.00 0.00

−1.00 0.00
0.00 0.00
1.00 0.00

−1.00 0.00
1.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
1.00 0.00
1.00 1.00

−1.00 0.00
−1.00 −1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, E0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.00 0.00
0.00 0.00
1.00 1.00

−1.00 −1.00
−1.00 −1.00
1.00 1.00
0.00 0.00

−1.00 −1.00
0.00 0.00
1.00 1.00
1.00 1.00

−1.00 −1.00
−1.00 −1.00
1.00 1.00

−1.00 −2.00
1.00 2.00
1.00 0.00
0.00 1.00

−1.00 0.00
0.00 −1.00
1.00 0.00
0.00 1.00

−1.00 0.00
0.00 −1.00
0.00 0.00
1.00 1.00
0.00 0.00

−1.00 −1.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, w0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00
1.00

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
1.00
1.00

10.00
10.00
10.00
10.00
5.00
5.00
5.00
5.00
0.00
0.00
0.00
0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12.33)

The corresponding polyhedral partition of the state space is depicted in
Figure 12.6(a).

The RHC law is:

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[−0.61 −1.61] x if

[
0.70 0.71

−0.70 −0.71
−0.70 −0.71

0.70 0.71

]
x ≤

[
0.00
0.00
0.00
0.00

]
(Region #1)

[−1.00 −2.00] x if

⎡⎢⎢⎣
−0.71 −0.71
−0.70 −0.71
−0.45 −0.89

0.45 0.89
0.71 0.71

−0.70 −0.71

⎤⎥⎥⎦ x ≤

⎡⎢⎢⎣
0.00

−0.00
0.45
0.45
0.71

−0.00

⎤⎥⎥⎦ (Region #2)

[−1.00 −2.00] x if

[
0.45 0.89

−0.70 −0.71
0.71 0.71

]
x ≤

[
0.45

−0.00
−0.00

]
(Region #3)

[−0.72 −1.72] x if

[
0.39 0.92
0.70 0.71

−0.70 −0.71
0.70 0.71

]
x ≤

[
0.54
0.00
0.00

−0.00

]
(Region #4)

[−1.00 −2.00] x if

⎡⎢⎣
0.45 0.89

−0.71 −0.71
0.70 0.71

−0.45 −0.89
0.71 0.71
0.70 0.71

⎤⎥⎦ x ≤

⎡⎢⎢⎣
0.45
0.71

−0.00
0.45
0.00

−0.00

⎤⎥⎥⎦ (Region #5)

[−1.00 −2.00] x if

[−0.45 −0.89
−0.71 −0.71

0.70 0.71

]
x ≤

[
0.45

−0.00
−0.00

]
(Region #6)

[−0.72 −1.72] x if

[−0.39 −0.92
0.70 0.71

−0.70 −0.71
−0.70 −0.71

]
x ≤

[
0.54
0.00
0.00

−0.00

]
(Region #7)

The union of the regions depicted in Figure 12.6(a) is X0. From Theorem 12.2, X0 is
also the domain of attraction of the RHC law.

12.4 State Feedback Solution of RHC, 2-Norm Case 259

x1

x
2

(a) Polyhedral partition of X0,
Case 1. N = 2, Xf = 0,
Nr

0 = 7.

x1

x
2

(b) Polyhedral partition of X0,

Case 2. N = 2, Xf = OLQR
∞ ,

Nr
0 = 9.

x1

x
2

(c) Polyhedral partition of X0,

Case 3. N = 6, Xf = R2, Nr
0 =

13.

Figure 12.6 Example 12.3. Double integrator. RHC with 2-norm. Region of
attraction X0 for different horizons N and terminal regions Xf .

Case 2. Xf positively invariant set. The set Xf is

Xf =

{
x ∈ R2 :

[−0.35617 −0.93442
0.35617 0.93442
0.71286 0.70131

−0.71286 −0.70131

]
x ≤

[
0.58043
0.58043
1.9049
1.9049

]}
. (12.34)

The corresponding polyhedral partition of the state space is depicted in Figure
12.6(b). The union of the regions depicted in Figure 12.6(b) is X0. Note that from
Theorem 12.2 the set X0 is also the domain of attraction of the RHC law.

Case 3. Xf = Rn, N = 6. The corresponding polyhedral partition of the state space
is depicted in Figure 12.6(c).

Comparing the feasibility regions X0 in Figure 12.6 we notice that in Case 2 we obtain
a larger region than in Case 1 and that in Case 3 we obtain a feasibility region larger
than Case 1 and Case 2. This can be easily explained from the theory presented in
this and the previous chapter. In particular we have seen that if a control invariant
set is chosen as terminal constraint Xf , the size of the feasibility region increases
with the number of control moves (increase from Case 2 to Case 3) (Remark 11.3).
Actually in Case 3, X0 = K∞(Xf) with Xf = R2, the maximal controllable set. Also,
the size of the feasibility region increases with the size of the target set (increase from
Case 1 to Case 2).

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_MPC_3Cases.m

260 12 Receding Horizon Control

12.5 State Feedback Solution of RHC, 1-Norm,
∞-Norm Case

The state feedback receding horizon controller (12.6)–(12.9) with cost (12.7) for
system (12.1) is

u(t) = f∗
0 (x(t)) (12.35)

where f∗
0 (x0) : Rn → Rm is the piecewise affine solution to the CFTOC (12.6)

and is computed as explained in Section 11.4. As in the 2-norm case the explicit
form (12.35) has the advantage of being easier to implement, and provides insight
into the type of control action in different regions CRi of the state space.

Example 12.4 Consider the double integrator system (12.11) subject to the input
constraints

− 1 ≤ u(k) ≤ 1 (12.36)

and the state constraints
− 5 ≤ x(k) ≤ 5. (12.37)

We want to regulate the system to the origin by using the RHC controller (12.6)–
(12.9) with cost (12.7), p = ∞, Q = [1 0

0 1], R = 20. We consider two cases:

Case 1. Xf = Rn, N = 6 (determinedness index+1) and P = Q

Case 2. Xf = Rn, N = 6 and P = P∞ given in (9.34) measuring the infinite time
unconstrained optimal cost in (9.32).

From Corollary 12.2 in both cases persistent feasibility is guaranteed for all cost func-
tions and X0 = C∞. However, in Case 1 the terminal cost P does not satisfy (12.27)
which is assumption (A3) in Theorem 12.2 and therefore the convergence to and the
stability of the origin cannot be guaranteed. In order to satisfy assumption (A3) in
Theorem 12.2, in Case 2 we select the terminal cost to be equal to the infinite time
unconstrained optimal cost computed in Example 9.1.
Next we will detail the explicit solutions for the two cases.

Case 1. The LP problem associated with the RHC has the form (11.56) with Ḡ0 ∈
R124×18, S̄0 ∈ R124×2 and c′ = [06 112]. The corresponding polyhedral partition of
the state space is depicted in Figure 12.7(a). The RHC law is:

u =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if

[
0.16 0.99

−0.16 −0.99
−1.00 0.00
1.00 0.00

]
x ≤

[
0.82
0.82
5.00
5.00

]
(Region #1)

[−0.29 −1.71]x+ 1.43 if

[
1.00 0.00

−0.16 −0.99
−1.00 0.00
0.16 0.99

]
x ≤

[
5.00

−0.82
5.00
1.40

]
(Region #2)

− 1.00 if

⎡⎢⎢⎢⎣
−0.16 −0.99
1.00 0.00
0.71 0.71

−1.00 0.00
0.20 0.98
0.16 0.99
0.24 0.97
0.45 0.89
0.32 0.95

⎤⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎣
−1.40
5.00
4.24
5.00
2.94
3.04
2.91
3.35
3.00

⎤⎥⎥⎥⎦ (Region #3)

[−0.29 −1.71]x− 1.43 if

[−1.00 0.00
0.16 0.99
1.00 0.00

−0.16 −0.99

]
x ≤

[
5.00

−0.82
5.00
1.40

]
(Region #4)

1.00 if

⎡⎢⎢⎢⎣
−0.32 −0.95
−0.24 −0.97
−0.20 −0.98
−0.16 −0.99
−1.00 0.00
0.16 0.99

−0.71 −0.71
−0.45 −0.89
1.00 0.00

⎤⎥⎥⎥⎦x ≤

⎡⎢⎢⎢⎣
3.00
2.91
2.94
3.04
5.00

−1.40
4.24
3.35
5.00

⎤⎥⎥⎥⎦ (Region #5)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_MPC_inftynorm_3Cases.m

12.5 State Feedback Solution of RHC, 1-Norm, ∞-Norm Case 261

x1

x
2

(a) Polyhedral partition of X0,
Case 1.

x1

x
2

(b) Polyhedral partition of X0,
Case 2.

x1

x
2

(c) Closed-loop Trajectories,
Case 1. Convergence to origin
to guaranteed.

x1

x
2

(d) Closed-loop Trajectories,
Case 2.

Figure 12.7 Example 12.4. Double integrator. RHC with ∞-norm cost
function, behavior for different terminal weights.

The union of the regions depicted in Figure 12.7(a) is X0 and is shown in white in
Figure 12.7(c). Since N is equal to the determinedness index plus one, X0 is a positive
invariant set for the closed-loop system and thus persistent feasibility is guaranteed
for all x(0) ∈ X0. However, it can be noticed from Figure 12.7(c) that convergence to
the origin is not guaranteed. Starting from the initial conditions [−4,2], [−2, 2], [0,
0.5], [4,−2], [−1,−1] and [2,−0.5], the closed-loop system converges to either [−5, 0]
or [5, 0].

Case 2. The LP problem associated with the RHC has the form (11.56) with
Ḡ0 ∈ R174×18, S̄0 ∈ R174×2 and c′ = [06 112]. The RHC law is defined over 21
regions and the corresponding polyhedral partition of the state space is depicted in
Figure 12.7(b).

The union of the regions depicted in Figure 12.7(b) is X0 and is shown in white in
Figure 12.7(d). Since N is equal to the determinedness index plus one, X0 is a positive
invariant set for the closed-loop system and thus persistent feasibility is guaranteed
for all x(0) ∈ X0. Convergence to the origin is also guaranteed by the choice of P as
shown by the closed-loop trajectories in Figure 12.7(d) starting from the same initial
conditions as in Case 1.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/DD_MPC_inftynorm_3Cases.m

262 12 Receding Horizon Control

12.6 Tuning and Practical Use

Receding Horizon Control in the different variants and with the many parameter
options as introduced in this chapter is a very powerful control technique to address
complex control problems in practice. At present there is no other technique to
design controllers for general large linear multivariable systems with input and
output constraints with a stability guarantee. The fact that there is no effective
tool to analyze the stability of large constrained multivariable systems makes this
stability guarantee by design so important. The application of RHC in practice,
however, requires the designer to make many choices. In this section we will offer
some guidance.

Objective Function

The squared 2-norm is employed more often as an indicator of control quality in
the objective function than the 1- or ∞-norm. The former has many advantages.

The 1- or ∞-norm formulation leads to an LP (11.56) from which the optimal
control action is determined. The solution lies always at the intersection of
constraints and changes discontinuously as the tuning parameters are varied. This
makes the formulation of the control problem (what constraints need to be added
for good performance?) and the choice of the weights in the objective function
difficult.

The optimizer may be nonunique in the case of dual degeneracy. This may cause
the control action to vary randomly as the solver picks up different optimizers in
succeeding time steps.

The construction of the control invariant target set Xf and of a suitable
terminal cost p(xN) needed in Theorem 12.2 is more difficult for the 1- or ∞-norm
formulation because the unconstrained controller is PPWA (Section 12.3.2).

If the optimal control problem is stated in an ad hoc manner by trial and
error rather than on the basis of Theorem 12.2 undesirable response characteristics
may result. The controller may cease to take any action and the system may get
stuck. This happens if any control action leads to a short-term increase in the
objective function, which can occur, for example, for a system with inverse response
characteristics.

Finally, the 1- or ∞-norm formulation involves many more constraints than the
2-norm formulation. In general, this will lead to a larger number of regions of the
explicit control law. These regions do not need to be stored, however, but only
the value function and the controller, and the search for the region containing the
present state can be executed very efficiently (Chapter 14).

Despite the discussed deficiencies it may be advantageous to use the 1- or ∞-
norm in cases when the control objective is not just an indirect tool to achieve
a control specification but reflects the economics of the process. For example, the
costs of electrical power depend sometimes on peak power that can be captured
with the ∞-norm. However, even in these cases, quadratic terms are often added
to the objective for “regularization.”

12.6 Tuning and Practical Use 263

Design via Theorem 12.2

First, we need to choose the horizon length N and the control invariant target
set Xf . Then we can vary the parameters Q and R freely to affect the control
performance in the same spirit as we do for designing an LQR. Stability is assured
as long as we adjust P according to the outlined procedures when changing Q
and R.

The longer the horizon N , the larger the maximal controllable set KN (Xf) over
which the closed-loop system is guaranteed to be able to operate (this is true as
long as the horizon is smaller than the determinedness index of K∞(Xf)). On the
other hand, with the control horizon increases the on-line computational effort or
the complexity of the explicit controller determined off-line.

We need to keep in mind that the terminal set Xf is introduced artificially
for the sole purpose of leading to a sufficient condition for persistent feasibility.
We want it to be large so that it does not compromise closed-loop performance.
The larger Xf , the larger KN (Xf). Though it is simplest to choose Xf = 0, it is
undesirable unless N is chosen large. Ideally Xf should be the maximal control
invariant set achieved with the unconstrained controller.

Specifically, we first design the unconstrained optimal controller as suggested
at the end of Section 12.3.2. From this construction we also obtain the terminal
cost satisfying condition (A3) of Theorem 12.2 to use in the RHC design. Then
we determine the maximal positive invariant set for the closed-loop system with
the unconstrained controller and use this set as Xf . This set is usually difficult
to compute for systems of large dimension with the algorithms we introduced in
Section (10.2).

Note that for stable systems without state constraints K∞(Xf) = Rn always,
i.e., the choice of Xf is less critical. For unstable systems K∞(Xf) is the region
over which the system can operate stably in the presence of input constraints and
is of eminent practical importance.

State/Output Constraints

State constraints arise from practical restrictions on the allowed operating range of
the system. Thus, contrary to input constraints, they are rarely “hard.” They can
lead to complications in the controller implementation, however. As it can never
be excluded that the state of the real system moves outside the constraint range
chosen for the controller design, special provisions must be made (patches in the
algorithm) to move the state back into the range. This is difficult and these types of
patches are exactly what one wanted to avoid by choosing MPC in the first place.

Thus, typically, state constraints are “softened” in the MPC formulation. For
example,

x ≤ xmax

is approximated by

x ≤ xmax + ε, ε ≥ 0,

264 12 Receding Horizon Control

and a term l(ε) is added to the objective function to penalize violations of the
constraint. This formulation may, however, lead to a violation of the constraint
even when a feasible input exists that avoids it but is not optimal for the new
objective function with the penalty term added. Let us analyze how to choose l(·)
such that this does not occur by using the exact penalty method [173].

As an example, take

J∗ = minz f(z)
subj. to g(z) ≤ 0,

(12.38)

where g(z) is assumed to be scalar for simplicity and f(z) to be strictly convex.
Let us soften the constraints and add the penalty as suggested

p(ε) = minz f(z) + l(ε)
subj. to g(z) ≤ ε,

(12.39)

where ε ≥ 0. We want to choose the penalty l(ε) so that by minimizing the
augmented objective we recover the solution to the original problem if it exists:

p(0) = J∗

and

arg minε≥0 p(ε) = 0

which are equivalent to

p(0) = J∗ (12.40)

and

p(ε) > p(0), ∀ε > 0. (12.41)

For (12.40) we require l(0) = 0. To construct l(ε) to satisfy (12.41) we assume that
strong duality holds and u∗ exists so that

J∗ = min
z

(f(z) + u∗g(z)), (12.42)

where u∗ is an optimal dual variable. As the optimizer z∗ of (12.38) satisfies g(z∗) ≤
0 we can add a redundant constraint without affecting the solution

J∗ = minz (f(z) + u∗g(z))
subj. to g(z) ≤ ε

∀ε ≥ 0. (12.43)

Then we can state the bounds

J∗ ≤ minz (f(z) + u∗ε)
subj. to g(z) ≤ ε

<
p(ε) = minz (f(z) + uε)

subj. to g(z) ≤ ε
∀ε > 0, u > u∗.

(12.44)
Thus l(ε) = uε with u > u∗ ≥ 0 is a possible penalty term satisfying the
requirements (12.40)–(12.41).

Because of smoothness

l(ε) = uε+ vε2, u > u∗, v > 0 (12.45)

12.6 Tuning and Practical Use 265

is preferable. On the other hand, note that l(ε) = vε2 does not satisfy an inequality
of the form (12.44). Therefore, it should not be used as it can lead to optimizers
z∗ in (12.39) which violate g(z) ≤ 0 even if a feasible optimizer to the original
problem exists.

These ideas can be extended to multiple constraints gj(z) ≤ 0, j = 1, . . . , r via
the penalty term

l(ε) = u

r∑
j=1

εj + v

r∑
j=1

ε2j , (12.46)

where

u > max
j∈{1,...,r}

u∗
j , v ≥ 0. (12.47)

Formulations also exist where the necessary constraint violations are following
a prescribed order so that less important constraints are violated first [174].

Time-varying references, constraints, disturbances
and system parameters

The standard RHC formulation (12.6) can be easily extended to include these
features. Known disturbances are simply included in the prediction model. If the
system states are not to return to the origin, but some output y is to follow some
trajectory r, then appropriate penalties of the error e = y − r are included in the
control objective. How to do this and to achieve offset-free tracking is described in
Section 12.7. Theorem 12.2 can be used to design the controller in these cases.

If the constraints are time-varying then X and U become time-varying. For
example, the constraints may be shaped like a funnel tightening towards the end
of the horizon.

If the underlying system is nonlinear, one often uses a locally linearized model
for the prediction and updates it at each time step. Note that the results of Theorem
12.2 do not apply when the system model and/or the constraints are time-varying.

In all these cases, the optimization problem to be solved on line, (11.31)
or (11.56), does not change in structure but some of the defining matrices will now
change at each time step, which will increase the necessary on-line computational
effort somewhat.

If the controller is to be computed explicitly off-line, then all the varying
parameters (disturbances, constraints, references), which we will denote by θ,
become parameters in the multiparametric optimization problem and the resulting
controller becomes an explicit function of them: u(t) = F (x(t), θ). As we have
learned, the complexity of the solution of mp-QP and mp-LP problems depends
primarily on the number of constraints. If the number of parameters affects the
number of constraints then this may only be possible for a relatively small number
of parameters. Thus, the possibilities to take into account time-varying control
problem features in explicit MPC are rather limited. Time-varying models cannot
be handled at all.

266 12 Receding Horizon Control

Multiple Horizons and Move-Blocking

Unfortunately, as we started to discuss in the previous paragraphs, in challenging
applications, the design procedure implied by Theorem 12.2 may not be strictly
applicable. Then the closed-loop behavior with the RHC has to be analyzed by
other means, in the worst case through extensive simulation studies. In principle,
this offers us also more freedom in the problem formulation and the choice of the
parameters, for example, in order to reduce the computational complexity. The
basic RHC formulation (12.6) may be modified as follows:

min
U0

p(xNy
) +

Ny−1∑
k=0

q(xk, uk)

subj. to xk+1 = Axk +Buk, k = 0, . . . , Ny − 1
xk ∈ X , k = 0, . . . , Nc

uk ∈ U , k = 0, . . . , Nu

uk = Kxk, Nu < k < Ny

(12.48)

where K is some feedback gain, Ny, Nu, Nc are the prediction, input, and
state constraint horizons, respectively, with Nu ≤ Ny and Nc ≤ Ny. This
formulation reduces the number of constraints and as a consequence makes the
long horizon prediction used in the optimization less accurate as it is not forced
to obey all the constraints. As this approximation affects only the states far in
the future, it is hoped that it will not influence significantly the present control
action.

Generalized Predictive Control (GPC) in its most common formulation [89]
has multiple horizons as an inherent feature but does not include constraints.
Experience and theoretical analysis [56] have shown that it is very difficult to
choose all these horizons that affect not only performance but even stability in
a nonintuitive fashion. Thus, for problems where constraints are not important
and the adaptive features of GPC are not needed, it is much preferable to resort
to the well established LQR and LQG controllers for which a wealth of stability,
performance and robustness results have been established.

Another more effective way to reduce the computational effort is move-blocking
where the manipulated variables are assumed to be fixed over time intervals in
the future thus reducing the degrees of freedom in the optimization problem. By
choosing the blocking strategies carefully, the available RHC stability results remain
applicable [72].

12.7 Offset-Free Reference Tracking

This section describes how the RHC problem has to be formulated to track
constant references without offset under model mismatch. We distinguish between
the number p of measured outputs, the number r of outputs which one desires
to track (called “tracked outputs”), and the number nd of disturbances. First, we
summarize the conditions that need to be satisfied to obtain offset-free RHC by

12.7 Offset-Free Reference Tracking 267

using the arguments of the internal model principle. Then, we provide a simple
proof of zero steady-state offset when r ≤ p = nd. Extensive treatment of reference
tracking for RHC can be found in in [13, 218, 225, 226, 198]. Consider the discrete-
time time-invariant system⎧⎨⎩ xm(t+ 1) = f(xm(t), u(t))

ym(t) = g(xm(t))
z(t) = Hym(t).

(12.49)

In (12.49), xm(t) ∈ Rn, u(t) ∈ Rm and ym(t) ∈ Rp are the state, input,
measured output vector, respectively. The controlled variables z(t) ∈ Rr are a linear
combination of the measured variables for which offset-free behavior is sought.
Without any loss of generality we assume H to have full row rank.

The objective is to design an RHC based on the linear system model (12.1)
of (12.49) in order to have z(t) track r(t), where r(t) ∈ Rr is the reference signal,
which we assume to converge to a constant, i.e., r(t) → r∞ as t → ∞. We require
zero steady-state tracking error, i.e., (z(t)− r(t)) → 0 for t → ∞.

The Observer Design

The plant model (12.1) is augmented with a disturbance model in order to capture
the mismatch between (12.49) and (12.1) in steady state. Several disturbance
models have been presented in the literature [13, 205, 193, 226, 225, 294]. Here
we follow [226] and use the form:⎧⎨⎩ x(t+ 1) = Ax(t) +Bu(t) +Bdd(t)

d(t+ 1) = d(t)
y(t) = Cx(t) + Cdd(t)

(12.50)

with d(t) ∈ Rnd . With abuse of notation we have used the same symbols for state
and outputs of system (12.1) and system (12.50). Later we will focus on specific
versions of the model (12.50).

The observer estimates both states and disturbances based on this augmented
model. Conditions for the observability of (12.50) are given in the following
theorem.

Theorem 12.3 [215, 216, 226, 13] The augmented system (12.50) is observable
if and only if (C,A) is observable and[

A− I Bd

C Cd

]
(12.51)

has full column rank.

Proof: From the Hautus observability condition system (12.50) is observable
iff [

A′ − λI 0 C ′

B′
d I − λI C ′

d

]
has full row rank ∀λ. (12.52)

268 12 Receding Horizon Control

Again from the Hautus condition, the first set of rows is linearly independent iff
(C,A) is observable. The second set of rows is linearly independent from the first
n rows except possibly for λ = 1. Thus, for the augmented system the Hautus
condition needs to be checked for λ = 1 only, where it becomes (12.51). �

Remark 12.4 Note that for condition (12.51) to be satisfied the number of distur-
bances in d needs to be smaller or equal to the number of available measurements in y,
nd � p. Condition (12.51) can be nicely interpreted. It requires that the model of the
disturbance effect on the output d → y must not have a zero at (1, 0). Alternatively
we can look at the steady state of system (12.50)[

A− I Bd

C Cd

] [
x∞
d∞

]
=

[
0
y∞

]
, (12.53)

where we have denoted the steady state values with a subscript ∞ and have omitted
the forcing term u for simplicity. We note that from the observability condition (12.51)
for system (12.50) Equation (12.53) is required to have a unique solution, which
means, that we must be able to deduce a unique value for the disturbance d∞ from
a measurement of y∞ in steady state.

The following corollary follows directly from Theorem 12.3.

Corollary 12.3 The augmented system (12.50) with nd = p and Cd = I is
observable if and only if (C,A) is observable and

det

[
A− I Bd

C I

]
= det(A− I −BdC) 	= 0. (12.54)

Remark 12.5 We note here how the observability requirement restricts the choice of
the disturbance model. If the plant has no integrators, then det (A− I) �= 0 and we
can choose Bd = 0. If the plant has integrators then Bd has to be chosen specifically
to make det (A− I −BdC) �= 0.

The state and disturbance estimator is designed based on the augmented model
as follows:[

x̂(t+ 1)

d̂(t+ 1)

]
=

[
A Bd

0 I

] [
x̂(t)

d̂(t)

]
+

[
B
0

]
u(t)+

[
Lx

Ld

]
(−ym(t)+Cx̂(t)+Cdd̂(t)),

(12.55)

where Lx and Ld are chosen so that the estimator is stable. We remark that the
results below are independent of the choice of the method for computing Lx and
Ld. We then have the following property.

Lemma 12.3 Suppose the observer (12.55) is stable. Then, rank(Ld) = nd.

Proof: From (12.55) it follows[
x̂(t+ 1)

d̂(t+ 1)

]
=

[
A+ LxC Bd + LxCd

LdC I + LdCd

] [
x̂(t)

d̂(t)

]
+

[
B
0

]
u(t)−

[
Lx

Ld

]
ym(t).

(12.56)

12.7 Offset-Free Reference Tracking 269

By stability, the observer has no poles at (1, 0) and therefore

det

([
A− I + LxC Bd + LxCd

LdC LdCd

])
	= 0. (12.57)

For (12.57) to hold, the last nd rows of the matrix have to be of full row rank.
A necessary condition is that Ld has full row rank. �

In the rest of this section we will focus on the case nd = p.

Lemma 12.4 Suppose the observer (12.55) is stable. Choose nd = p. The steady
state of the observer (12.55) satisfies:[

A− I B
C 0

] [
x̂∞
u∞

]
=

[
−Bdd̂∞

ym,∞ − Cdd̂∞

]
, (12.58)

where ym,∞ and u∞ are the steady state measured output and input of the

system (12.49), x̂∞ and d̂∞ are state and disturbance estimates from the
observer (12.55) at steady state, respectively.

Proof: From (12.55) we note that the disturbance estimate d̂ converges only if

Ld(−ym,∞ + Cx̂∞ + Cdd̂∞) = 0. As Ld is square by assumption and nonsingular
by Lemma 12.3 this implies that at steady state, the observer estimates (12.55)
satisfy

− ym,∞ + Cx̂∞ + Cdd̂∞ = 0. (12.59)

Equation (12.58) follows directly from (12.59) and (12.55). �

The MPC Design

Denote by z∞ = Hym,∞ and r∞ the tracked measured outputs and their references
at steady state, respectively. For offset-free tracking at steady state we want
z∞ = r∞. The observer condition (12.58) suggests that at steady state the MPC
should satisfy [

A− I B
HC 0

] [
x∞
u∞

]
=

[
−Bdd̂∞

r∞ −HCdd̂∞

]
, (12.60)

where x∞ is the MPC state at steady state. For x∞ and u∞ to exist for any d̂∞

and r∞ the matrix

[
A− I B
HC 0

]
must be of full row rank which implies m ≥ r.

The MPC is designed as follows

minU0
(xN − x̄t)

′P (xN − x̄t) +

N−1∑
k=0

(xk − x̄t)
′Q(xk − x̄t)+(uk − ūt)

′R(uk − ūt)

subj. to xk+1 = Axk +Buk +Bddk, k = 0, . . . , N
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

dk+1 = dk, k = 0, . . . , N − 1
x0 = x̂(t)

d0 = d̂(t), (12.61)

270 12 Receding Horizon Control

with the targets ūt and x̄t given by[
A− I B
HC 0

] [
x̄t

ūt

]
=

[
−Bdd̂(t)

r(t)−HCdd̂(t)

]
(12.62)

and where Q � 0, R � 0, and P � 0.
Let U∗(t) = {u∗

0, . . . , u
∗
N−1} be the optimal solution of (12.61)–(12.62) at time

t. Then, the first sample of U∗(t) is applied to system (12.49)

u(t) = u∗
0. (12.63)

Denote by c0(x̂(t), d̂(t), r(t)) = u∗
0(x̂(t), d̂(t), r(t)) the control law when the

estimated state and disturbance are x̂(t) and d̂(t), respectively. Then the closed-
loop system obtained by controlling (12.49) with the MPC (12.61)–(12.62)–(12.63)
and the observer (12.55) is:

x(t+ 1) = f(x(t), c0(x̂(t), d̂(t), r(t)))

x̂(t+ 1) = (A+ LxC)x̂(t) + (Bd + LxCd)d̂(t) +Bc0(x̂(t), d̂(t), r(t))− Lxym(t)

d̂(t+ 1) = LdCx̂(t) + (I + LdCd)d̂(t)− Ldym(t).
(12.64)

Often in practice, one desires to track all measured outputs with zero offset.
Choosing nd = p = r is thus a natural choice. Such a zero-offset property continues
to hold if only a subset of the measured outputs are to be tracked, i.e., nd = p > r.
Next we provide a very simple proof for offset-free control when nd = p.

Theorem 12.4 Consider the case nd = p. Assume that for r(t) → r∞ as t → ∞,
the MPC problem (12.61)–(12.62) is feasible for all t ∈ N+, unconstrained for t ≥ j

with j ∈ N+ and the closed-loop system (12.64) converges to x̂∞, d̂∞, ym,∞, i.e.,

x̂(t) → x̂∞, d̂(t) → d̂∞, ym(t) → ym,∞ as t → ∞. Then z(t) = Hym(t) → r∞ as
t → ∞.

Proof: Consider the MPC problem (12.61)–(12.62). At steady state u(t) →
u∞ = c0(x̂∞, d̂∞, r∞), x̄t → x̄∞ and ūt → ū∞. Note that the steady state controller
input u∞ (computed and implemented) might be different from the steady state
target input ū∞.

The asymptotic values x̂∞, x̄∞, u∞ and ū∞ satisfy the observer conditions
(12.58) [

A− I B
C 0

] [
x̂∞
u∞

]
=

[
−Bdd̂∞

ym,∞ − Cdd̂∞

]
(12.65)

and the controller requirement (12.62)[
A− I B
HC 0

] [
x̄∞
ū∞

]
=

[
−Bdd̂∞

r∞ −HCdd̂∞

]
. (12.66)

Define δx = x̂∞ − x̄∞, δu = u∞ − ū∞ and the offset ε = z∞ − r∞. Notice that the
steady state target values x̄∞ and ū∞ are both functions of r∞ and d̂∞ as given

12.7 Offset-Free Reference Tracking 271

by (12.66). Left multiplying the second row of (12.65) by H and subtracting (12.66)
from the result, we obtain

(A− I)δx+Bδu = 0
HCδx = ε.

(12.67)

Next we prove that δx = 0 and thus ε = 0.
Consider the MPC problem (12.61)–(12.62) and the following change of

variables δxk = xk − x̄t, δuk = uk − ūt. Notice that Hyk − r(t) = HCxk +
HCddk − r(t) = HCδxk +HCx̄t +HCddk − r(t) = HCδxk from condition (12.62)

with d̂(t) = dk. Similarly, one can show that δxk+1 = Aδxk +Bδuk. Then, around
the origin where all constraints are inactive the MPC problem (12.61) becomes:

minδu0,...,δuN−1
δx′

NPδxN +

N−1∑
k=0

δx′
kQδxk + δu′

kRδuk

subj. to δxk+1 = Aδxk +Bδuk, 0 ≤ k ≤ N
δx0 = δx(t),
δx(t) = x̂(t)− x̄t.

(12.68)

Denote by KMPC the unconstrained MPC controller (12.68), i.e., δu∗
0 =

KMPCδx(t). At steady state δu∗
0 → u∞ − ū∞ = δu and δx(t) → x̂∞ − x̄∞ = δx.

Therefore, at steady state, δu = KMPCδx. From (12.67)

(A− I +BKMPC)δx = 0. (12.69)

By assumption the unconstrained system with the MPC controller converges.
Thus KMPC is a stabilizing control law, which implies that (A − I + BKMPC)
is nonsingular and hence δx = 0. �

Remark 12.6 Theorem 12.4 was proven in [226] by using a different approach.

Remark 12.7 Theorem 12.4 can be extended to prove local Lyapunov stability of
the closed-loop system (12.64) under standard regularity assumptions on the state
update function f in (12.64) [204].

Remark 12.8 The proof of Theorem 12.4 assumes only that the models used for
the control design (12.1) and the observer design (12.50) are identical in steady state
in the sense that they give rise to the same relation z = z(u, d, r). It does not make
any assumptions about the behavior of the real plant (12.49), i.e., the model-plant
mismatch, with the exception that the closed-loop system (12.64) must converge to a
fixed point. The models used in the controller and the observer could even be different
as long as they satisfy the same steady state relation.

Remark 12.9 If condition (12.62) does not specify x̄t and ūt uniquely, it is customary
to determine x̄t and ūt through an optimization problem, for example, minimizing
the magnitude of ūt subject to the constraint (12.62) [226].

272 12 Receding Horizon Control

Remark 12.10 Note that in order to achieve no offset we augmented the model of the
plant with as many disturbances (and integrators) as we have measurements (nd = p)
(cf. Equation (12.56)). Our design procedure requires the addition of p integrators
even if we wish to control only a subset of r < p measured variables. This is actually
not necessary as we suspect from basic system theory. The design procedure for the
case nd = r < p is, however, more involved [198].

If the squared 2-norm in the objective function of (12.61) is replaced with a 1-

or ∞-norm (‖P (xN − x̄t)‖p+
∑N−1

k=0 ‖Q(xk− x̄t)‖p+‖R(uk− ūt)‖p, where p = 1 or
p = ∞), then our results continue to hold. In particular, Theorem 12.4 continues
to hold. The unconstrained MPC controlled KMPC in (12.68) will be piecewise
linear around the origin [44]. In particular, around the origin, δu∗(t) = δu∗

0 =
KMPC(δx(t)) is a continuous piecewise linear function of the state variation δx:

KMPC(δx) = F jδx if Hjδx ≤ Kj , j = 1, . . . , Nr, (12.70)

where Hj and Kj in equation (12.70) are the matrices describing the j-th
polyhedron CRj = {δx ∈ Rn : Hjδx ≤ Kj} inside which the feedback optimal
control law δu∗(t) has the linear form F jδx(k). The polyhedra CRj , j = 1, . . . , Nr

are a partition of the set of feasible states of problem (12.61) and they all contain
the origin.

Explicit Controller

Examining (12.61), (12.62) we note that the control law depends on x̂(t), d̂(t) and
r(t). Thus in order to achieve offset free tracking of r outputs out of pmeasurements

we had to add the p+ r “parameters” d̂(t) and r(t) to the usual parameters x̂(t).
There are more involved RHC design techniques to obtain offset-free control

for models with nd < p and in particular, with minimum order disturbance models
nd = r. The total size of the parameter vector can thus be reduced to n + 2r.
This is significant only if a small subset of the plant outputs are to be controlled.
A greater reduction of parameters can be achieved by the following method. By
Corollary 12.3, we are allowed to choose Bd = 0 in the disturbance model if the
plant has no integrators. Recall the target conditions 12.62 with Bd = 0[

A− I B
HC 0

] [
x̄t

ūt

]
=

[
0

r(t)−HCdd̂(t)

]
. (12.71)

Clearly, any solution to (12.71) can be parameterized by r(t)−HCdd̂(t). The explicit

control law is written as u(t) = c0(x̂(t), r(t)−HCdd̂(t)), with only n+r parameters.
Since the observer is unconstrained, complexity is much less of an issue. Hence, a
full disturbance model with nd = p can be chosen to yield offset-free control.

Remark 12.11 The choice of Bd = 0 might be limiting in practice. In [14], the
authors have shown that for a wide range of systems, if Bd = 0 and a Kalman filter is
chosen as observer, then the closed-loop system might suffer a dramatic performance
deterioration.

12.7 Offset-Free Reference Tracking 273

Delta Input (δu) Formulation

In the δu formulation, the MPC scheme uses the following linear time-invariant
system model of (12.49): ⎧⎨⎩ x(t+ 1) = Ax(t) +Bu(t)

u(t) = u(t− 1) + δu(t)
y(t) = Cx(t).

(12.72)

System (12.72) is controllable if (A,B) is controllable. The δu formulation often
arises naturally in practice when the actuator is subject to uncertainty, e.g., the
exact gain is unknown or is subject to drift. In these cases, it can be advantageous
to consider changes in the control value as input to the plant. The absolute control
value is estimated by the observer, which is expressed as follows[

x̂(t+ 1)
û(t+ 1)

]
=

[
A B
0 I

] [
x̂(t)
û(t)

]
+

[
B
I

]
δu(t) +

[
Lx

Lu

]
(−ym(t) + Cx̂(t)).

(12.73)
The MPC problem is readily modified

minδu0,...,δuN−1
‖yk − rk‖2Q + ‖δuk‖2R

subj. to xk+1 = Axk +Buk, k ≥ 0
yk = Cxk k ≥ 0
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

uk = uk−1 + δuk, k ≥ 0
u−1 = û(t)
x0 = x̂(t).

(12.74)

The control input applied to the system is

u(t) = δu∗
0 + u(t− 1). (12.75)

The input estimate û(t) is not necessarily equal to the actual input u(t). This
scheme inherently achieves offset-free control, there is no need to add a disturbance
model. To see this, we first note that δu∗

0 = 0 in steady-state. Hence our analysis
applies as the δu formulation is equivalent to a disturbance model in steady-state.
This is due to the fact that any plant/model mismatch is lumped into û(t). Indeed
this approach is equivalent to an input disturbance model (Bd = B, Cd = 0). If
in (12.74) the measured u(t) were substituted for its estimate, i.e., u−1 = u(t− 1),
then the algorithm would show offset.

In this formulation the computation of a target input ūt and state x̄t is not
required. A disadvantage of the formulation is that it is not applicable when there
is an excess of manipulated variables u compared to measured variables y, since
detectability of the augmented system (12.72) is then lost.

Minimum-Time Controller

In minimum-time control, the cost function minimizes the predicted number of
steps necessary to reach a target region, usually the invariant set associated

274 12 Receding Horizon Control

with the unconstrained LQR controller [167]. This scheme can reduce the on-line
computation time significantly, especially for explicit controllers (Section 11.5).
While minimum-time MPC is computed and implemented differently from standard
MPC controllers, there is no difference between the two control schemes at steady-
state. In particular, one can choose the target region to be the unconstrained region
of (12.61)–(12.62). When the state and disturbance estimates and reference are
within this region, the control law is switched to (12.61)–(12.62). The analysis and
methods presented in this section therefore apply directly.

12.8 Literature Review

Although the basic idea of receding horizon control can be found in the theoretical
work of Propoi [239] in 1963 it did not gain much attention until the mid-
1970s, when Richalet and coauthors [248, 249] introduced their “Model Predictive
Heuristic Control (MPHC)”. Independently, in 1969 Charles Cutler proposed the
concept to his PhD advisor Dr. Huang at the University of Houston. In 1973 Cutler
implemented it successfully in the Shell Refinery in New Orleans, Louisiana [90].

Several years later Cutler and Ramaker [91] described this predictive control
algorithm named Dynamic Matrix Control (DMC) in the literature. It has been
hugely successful in the petro-chemical industry. A vast variety of different
methodologies with different names followed, such as Quadratic Dynamic Matrix
Control (QDMC), Adaptive Predictive Control (APC), Generalized Predictive
Control (GPC), Sequential Open Loop Optimization (SOLO), and others.

While the mentioned algorithms are seemingly different, they all share the
same structural features: a model of the plant, the receding horizon idea, and
an optimization procedure to obtain the control action by optimizing the system’s
predicted evolution.

Some of the first industrial MPC algorithms like IDCOM [249] and DMC [91]
were developed for constrained MPC with quadratic performance indices. However,
in those algorithms input and output constraints were treated in an indirect ad-
hoc fashion. Only later, algorithms like QDMC [118] overcame this limitation
by employing quadratic programming to solve constrained MPC problems with
quadratic performance indices. During the same period, the use of linear program-
ming was studied by Gutman and coauthors [137, 138, 140].

An extensive theoretical effort was devoted to analyze receding horizon control
schemes, provide conditions for guaranteeing feasibility and closed-loop stability,
and highlight the relations between MPC and the linear quadratic regulator [204,
203]. Theorem 12.2 in this book is the main result on feasibility and stability of
MPC and was adopted from these publications.

The idea behind Theorem 12.2 dates back to Keerthi and Gilbert [168], the first
researchers to propose specific choices for the terminal cost P and the terminal
constraint Xf , namely Xf = 0 and P = 0. Under these assumptions Keerthi
and Gilbert prove the stability for general nonlinear performance functions and
nonlinear models. Their work has been followed by many other stability conditions

12.8 Literature Review 275

for RHC including those in [168, 34, 35, 154, 84]. If properly analyzed all these
results are based on the same concepts as Theorem 12.2.

In the past fifty years, the richness of theoretical and computational issues
surrounding MPC has generated a large number of research studies that appeared in
conference proceedings, archival journals and research monographs. The preceding
paragraphs are not intended to summarize this vast literature. We refer the
interested reader to some books on Model Predictive Control [76, 197, 247] that
appeared in the last decade.

For complex constrained multivariable control problems, model predictive
control has long been the accepted standard in the process industries [240, 241]. The
results reported in this book have greatly reduced the on-line computational effort
and have opened up this methodology to other application areas where hardware
speed and costs are dominant — unlike in process control.

13

Approximate Receding Horizon
Control

Contributed by Prof. Colin N. Jones
Ecole Polytechnique Fédérale de Lausanne
colin.jones@epfl.ch

This chapter explains the construction of approximate explicit control laws of
desired complexity that provide certificates of recursive feasibility and stability.
The methods introduced all have the following properties:

1. Operations are only on the problem data, and the methods do not require
the computation of the explicit control law.

2. Any convex parametric problem can be approximated, not just those for
which the explicit solution can be computed.

3. The desired level of suboptimality or the desired complexity (in terms of
online storage and/or FLOPS) can be specified.

We begin by assuming that a controller with the desired properties has already
been defined via one of the predictive control methods introduced in Chapter
12, but that solving the requisite optimization problem online, or evaluating the
explicit solution offline, is not possible due to computational limitations. The
chapter begins by listing the specific assumptions on this optimal control law,
which is to be approximated. Then, the key theorem is introduced, which provides
sufficient conditions under which an approximate control law will be stabilizing and
persistently feasible. Section 13.2 describes an abstract algorithm that will provide
these properties, and Section 13.3 reviews a number of specific implementations of
this algorithm that have been proposed in the literature.

278 13 Approximate Receding Horizon Control

13.1 Stability of Approximate Receding Horizon Control

Recall problem (12.6)

J∗
0 (x(t)) = minU0

J0

(
x(t), U0) = p(xN) +

N−1∑
k=0

q(xk, uk

)
subj. to xk+1 = Axk +Buk, k = 0, . . . , N − 1

xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(t).

(13.1)

The cost function is either

J0(x(0), U0) = ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p (13.2)

with p = 1 or p = ∞, or

J0(x(0), U0) = x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk. (13.3)

Denote a suboptimal feasible solution of (13.1) by Ũ0 = {ũ0, . . . , ũN−1}. The
corresponding suboptimal MPC law is

ũ(t) = f̃0(x(t)) = ũ0(x(t)) (13.4)

and the closed-loop system

x(k + 1) = Ax(k) +Bf̃0(x(k)) = f̃cl(x(k)), k ≥ 0. (13.5)

In the following we will prove that the stability of receding horizon control is
preserved when the suboptimal control law ũ0(x(t)) is used as long as the level of
suboptimality is less than the stage cost, i.e.,

J0(x, Ũ0(x)) < J∗
0 (x) + q(x, 0).

This is stated more precisely in the following Theorem 13.1.

Theorem 13.1 Assume

(A0) The stage cost q(x, u) and terminal cost p(x) are continuous and positive
definite functions.

(A1) The sets X , Xf and U contain the origin in their interior and are closed.

(A2) Xf is control invariant, Xf ⊆ X .

(A3) min
v∈U, Ax+Bv∈Xf

(−p(x) + q(x, v) + p(Ax+Bv)) ≤ 0, ∀x ∈ Xf .

13.1 Stability of Approximate Receding Horizon Control 279

(A4) The suboptimal Ũ0(x) satisfies J0(x, Ũ0(x)) ≤ J∗
0 (x)+γ(x), ∀x ∈ X0, γ � 0.

(A5) γ(x)− q(x, 0) ≺ 0, ∀x ∈ X0, x 	= 0.

Then, the origin of the closed-loop system (13.5) is asymptotically stable with
domain of attraction X0.

Proof: The proof follows the proof of Theorem 12.2. We focus only on the
arguments for convergence, which are different for the suboptimal MPC controller.
We establish that the function J∗

0 (·) in (13.1) strictly decreases for the closed-loop
system. Because the cost J0, the system and the constraints are time invariant we
can study the properties of J∗

0 between step k = 0 and step k + 1 = 1.
Consider problem (13.1) at time t = 0. Let x(0) ∈ X0 and let Ũ0 =

{ũ0, . . . , ũN−1} be a feasible suboptimal solution to problem (13.1) and x0 =
{x(0), x1, . . . , xN} be the corresponding state trajectory. We denote by J̃0(x(0))
the cost at x(0) when the feasible Ũ0 is applied, J̃0(x(0)) = J0(x(0), Ũ0).

After the implementation of ũ0 we obtain x(1) = x1 = Ax(0) + Bũ0.
Consider now problem (13.1) for t = 1. We will construct an upper bound on
J∗
0 (x(1)). Consider the sequence Ũ1 = {ũ1, . . . , ũN−1, v} and the corresponding

state trajectory resulting from the initial state x(1), x̃1 = {x1, . . . , xN , AxN +Bv}.
Because xN ∈ Xf and (A2) there exists a feasible v such that xN+1 = AxN +Bv ∈
Xf and with this v the sequence Ũ1 = {ũ1, . . . , ũN−1, v} is feasible. Because Ũ1 is

not optimal J0(x(1), Ũ1) is an upper bound on J∗
0 (x(1)).

Since the trajectories generated by Ũ0 and Ũ1 overlap, except for the first and
last sampling intervals, it is immediate to show that

J∗
0 (x(1)) ≤ J0(x(1), Ũ1) = J̃0(x(0))− q(x0, ũ0)− p(xN)

+ (q(xN , v) + p(AxN +Bv)). (13.6)

Let x = x0 = x(0) and u = ũ0. Under assumption (A3) Equation (13.6) becomes

J∗
0 (Ax+Bu) ≤ J̃0(x)− q(x, u), ∀x ∈ X0. (13.7)

Under assumption (A4) Equation (13.7) becomes

J∗
0 (Ax+Bu)− J∗

0 (x) ≤ γ(x)− q(x, u) ≤ γ(x)− q(x, 0), ∀x ∈ X0. (13.8)

Equation (13.8), the hypothesis (A0) on the matrices Q and R and the hypothesis
(A5) ensure that J∗

0 (x) strictly decreases along the state trajectories of the closed-
loop system (13.5) for any x ∈ X0, x 	= 0. �

Theorem 13.1 has introduced sufficient conditions for stability for the approxi-
mate solution Ũ0(x) based on its level of suboptimality specified by the assumptions
(A4) and (A5). In the following section we describe how these conditions can be
met by sampling the optimal control law for different values of x and then using a
technique called barycentric interpolation.

To simplify the discussion we will adopt the notation for the general multipara-
metric programming problem from Chapter 5. We consider the multiparametric
program

J∗(x) = inf
z

J(z, x)

subj. to (z, x) ∈ C,
(13.9)

280 13 Approximate Receding Horizon Control

where
C = {z, x : g(z, x) ≤ 0}, (13.10)

z ∈ Z ⊆ Rs is the optimization vector, x ∈ X ⊆ Rn is the parameter vector,
J : Rs × Rn → R is the cost function and g : Rs × Rn → Rng are the constraints.
We assume throughout this chapter that the set C is convex, and that the function
J(z, x) is simultaneously convex in z and x. Note that this implies that the
optimization problem (13.9) is convex for each fixed value of the parameter x.
For a particular value of the parameter x, we denote the set of feasible points as

R(x) = {z ∈ Z : g(z, x) ≤ 0}, (13.11)

and define the feasible set as the set of parameters for which (13.9) has a solution

K∗ = {x ∈ X : R(x) 	= ∅}, (13.12)

We denote by J∗(x) the real-valued function that expresses the dependence of the
minimum value of the objective function over K∗ on x

J∗(x) = inf
z
{J(z, x) : z ∈ R(x)}, (13.13)

and by Z∗(x) the point-to-set map which assigns the (possibly empty) set of
optimizers z∗ ∈ 2Z to a parameter x ∈ X

Z∗(x) = {z ∈ R(x) : J(z, x) = J∗(x)}. (13.14)

We make the following assumptions:

Convexity The function J∗(x) is continuous and convex.

Uniqueness The set of optimizers Z∗(x) is a singleton for each value of the
parameter. The function z∗(x) = Z∗(x) will be called optimizer function.

Continuity The function z∗(x) is continuous.

Note that the solutions J∗(x), Z∗(x) and z∗(x) of problem (13.1) satisfy these
conditions. We emphasize, however, that the approximate methods introduced in
the following are applicable also to more general MPC problems as long as these
conditions of convexity, uniqueness and continuity are met.

For the approximation methods introduced below convexity of the function
γ(x) � 0 (Theorem 13.1, assumptions (A4)–(A5)) bounding the level of subopti-
mality is necessary. It is not required, however, for the closed-loop stability with
the approximate control law.

13.2 Barycentric Interpolation

Schemes have been proposed in the literature that compute an approximate solution
to various problems of the form (13.9) based on interpolating the optimizer z∗(vi)
at a number of samples of the parameter V = {vi} ⊂ K∗. The goal of interpolated

13.2 Barycentric Interpolation 281

control is to define a function z̃(x) over the convex hull of the sampled points
conv(V), which has the required properties laid out in Theorem 13.1.

Section 13.2.1 will introduce the notion of barycentric interpolation, and will
demonstrate that such an approach will lead to an approximate function z̃(x),
which is feasible

z̃(x) ∈ R(x), ∀x ∈ conv(V). (13.15)

Then Section 13.2.2 introduces a convex optimization problem, whose optimal
value, if positive, verifies a specified level of suboptimality

J(z̃(x), x) ≤ J∗(x) + γ(x), ∀x ∈ conv(V). (13.16)

By Theorem 13.1 the stability of the resulting suboptimal interpolated control law
follows.

13.2.1 Feasibility

The class of interpolating functions z̃(x) satisfying (13.15) is called the class of
barycentric functions.

Definition 13.1 (Barycentric function) Let V = conv(v1, . . . , vn) ⊂ Rn be a
polytope. The set of functions wv(x), v ∈ extreme(V) is called barycentric if three
conditions hold for all x ∈ V

wv(x) ≥ 0 positivity (13.17a)∑
v∈extreme(V)

wv(x) = 1 partition of unity (13.17b)

∑
v∈extreme(V)

vwv(x) = x linear precision (13.17c)

Many methods have been proposed in the literature to generate barycentric
functions, several of which are detailed in Section 13.3, when we introduce
constructive methods for generating approximate controllers. Figure 13.1 illustrates
several standard methods of barycentric interpolation.

Given a set of samples V , and a set of barycentric interpolating functions
{wv(x)}, we can now define an interpolated approximation z̃(x):

z̃(x) =
∑

v∈extreme(V)

z∗(v)wv(x) (13.18)

The key statement that can be made about functions defined via barycentric
interpolation is that the function values lie within the convex hull of the function
values at the sample points. This property is illustrated in Figure 13.2, and formally
defined in the following lemma.

Lemma 13.1 (Convex Hull Property of Barycentric Interpolation) If
V = {v0, . . . , vm} ⊂ K∗, z∗(vi) is the optimizer of (13.9) for the parameter vi, and
{wv(x)} is a set of barycentric interpolating functions, then

282 13 Approximate Receding Horizon Control

(a) Linear interpolation. (b) Wavelet interpolation.

(c) Barycentric interpolation
defined in Lemma 13.5.

Figure 13.1 Examples of different barycentric interpolations.

Figure 13.2 Illustration of the Convex-Hull Property of Barycentric Inter-
polation. The first image (a) shows a number of samples of a function,
(b) the convex hull of these sample points and (c) a barycentric interpolation
that lies within this convex hull.

13.2 Barycentric Interpolation 283

z̃(x) =
∑
v∈V

z∗(v)wv(x) ∈ R(x) for all x ∈ conv(V).

Proof: The statement holds if for each x ∈ conv(V) there exists a set of positive
multipliers λ0, . . . , λm such that(

x
z̃(x)

)
=

m∑
i=0

λi

(
vi

z∗(vi)

)
and

∑m
i=0 λi = 1. The properties of barycentric functions (13.17) clearly satisfy

this requirement. �

13.2.2 Suboptimality

Next we investigate the level of suboptimality obtained for a barycentric inter-
polation. First we demonstrate that the value of the function J (z, x) for the
approximate solution z̃(x) is upper-bounded by the barycentric interpolation of its
optimal value taken at the sample points. Then we introduce a convex optimization
problem, whose solution upper-bounds the approximation error.

Lemma 13.2 If z̃(x) is a barycentric interpolation as defined in (13.18), then
the following condition holds:

J∗(x) ≤ J (z̃(x), x) ≤
∑
v∈V

wv(x)J
∗(v) for all x ∈ conv(V).

Proof: The lower bound follows from the fact that z̃(x) is feasible for the
optimization problem for all x ∈ V (Lemma 13.1).

The upper bound follows from convexity of the function J (z, x). Consider a
fixed value of the parameter x ∈ conv(V):

J (z̃(x), x) = J

(∑
v∈V

wv(x)z
∗(v),

∑
v∈V

wv(x)v

)
≤

∑
v∈V

wv(x)J (z∗(v) , v)

=
∑
v∈V

wv(x)J
∗(v).

The inequality in the above sequence follows because for a fixed value of the
parameter x, the barycentric interpolating functions {wv} are all positive, and
sum to one. �

The previous lemma demonstrates that due to the convexity of the value
function J (z, x), the interpolation of the optimal value function at the sample
points provides an upper bound of the value function evaluated at the interpolated
approximation z̃(x) (Figure 13.3). We can use this fact to formulate a convex
optimization problem, whose solution will provide a certificate for (13.16).

284 13 Approximate Receding Horizon Control

v1 v2

J (v1)

J (x)

J (v2)
J(z̃(x), x)

(v)wv(x)J

Figure 13.3 Illustration of the relationship between the optimal value
function J∗(x), the value function evaluated for the sub-optimal function
z̃(x) and the convex hull of the optimal value at the sample points.

Theorem 13.2 If δV ≥ 0, then J (z̃(x), x) ≤ J∗(x) + γ(x) for all x ∈ conv(V),
where

δV = min
x,z,λv

J (z, x) + γ(x)−
∑
v∈V

λvJ
∗(v) (13.19)

s.t. x =
∑
v∈V

λvv, λv ≥ 0,
∑
v∈V

λv = 1

(x, z) ∈ C

Proof: We see that the suboptimality bound is met within the convex hull of
V if and only if the following value is nonnegative:

min
λv,x∈conv(V)

J∗(x) + γ(x)− J (z̃(x), x) (13.20)

Lemma 13.2 provides a lower-bound

(13.20) ≥ min
x∈conv(V)

J∗(x) + γ(x)−
∑
v∈V

wv(x)J
∗(v)

and we obtain a further relaxation / lower bound by optimizing over all possible
barycentric functions

(13.20) ≥ min
x∈conv(V)

J∗(x) + γ(x)−
∑
v∈V

λvJ
∗(v)

s.t. x =
∑
v∈V

λvv, λv ≥ 0,
∑
v∈V

λv = 1.

Recalling that J∗(x) = minz J (z, x) s.t. (x, z) ∈ C provides the desired result. �

In this section we have demonstrated that if the approximate solution z̃(x)
is generated via barycentric interpolation, it will satisfy (13.15) and that the
condition for suboptimality (13.16) can be verified by solving a convex optimization
problem. In the next section, we will introduce several constructive techniques to
incrementally build approximate barycentric interpolating functions.

13.3 Partitioning and Interpolation Methods 285

13.2.3 Constructive Algorithm

In this section, we introduce a simple high-level algorithm to incrementally
construct a barycentric function that satisfies conditions (13.15)–(13.16) and
therefore can be used in Theorem 13.1 to generate a stabilizing control law. The
idea is simple: begin with a set of sample points and solve the optimization problem
in Theorem 13.2 to test if the stability condition is met. If it is not, then sample an
additional set of points, subdivide the resulting region into subregions and repeat
the procedure for each such generated region. In the following we formalize this
idea, and demonstrate that this procedure will terminate.

Algorithm 13.1 Approximate Parametric Programming with Stability Guarantee

Input: Parametric Optimization Problem (13.9). Initial set of samples V

Output: Sample points V ⊂ K∗ and set of subsets R = {Rj , j = 1, . . .}, Rj ⊆ V
such that {conv(Rj), j = 1, . . .} forms a partition of conv(V) and δRj ≥ 0 for all j

Let R ← V

Repeat

R∗ ← argminRj∈R δRj (from problem (13.19))

If δR∗ < 0 Then

V ← V ∪ {xR∗}, where xR∗ is the optimizer of (13.19) for region R∗

R ← partition(V,R)

Until δR∗ ≥ 0

Return R

Algorithm 13.1 outlines at a high level a method for constructing a polytopic
partition (Definition 4.6) of a set of initial samples, where each polytope in the
partition satisfies the suboptimality condition of Theorem 13.1, and therefore
any barycentrically interpolated control law defined over the partition will be
stabilizing. One can see that in each iteration of the algorithm, the region R∗ with
the worst fit measured in terms of δR∗ is computed, and the parameter xR∗ at which
this maximum error occurs is added to the samples. The sample points V are then
updated to include this new point, and the set R is recomputed. This set R defines
a partition splitting conv(V) into a set of polytopes {conv(Rj), j = 1, . . .}. Once
this key function “partition” is defined, this algorithm can be directly implemented.

Several methods have been proposed in the literature that roughly follow the
scheme of Algorithm 13.1 [37, 159, 3, 156]. Many of these approaches differ in
the details by adding caching steps to minimize computation of δR, add multiple
points at a time, or take an incremental repartitioning approach. All of these
procedures can significantly improve the computation speed of the algorithm, and
should therefore be incorporated into any practical approach.

13.3 Partitioning and Interpolation Methods

This section outlines three approaches to partitioning the set of samples and the
associated barycentric interpolation methods. While many proposals have been

286 13 Approximate Receding Horizon Control

put forward in the literature, we focus here on three techniques: inner polytopic
approximation (triangulation), outer polytopic approximation (convex hull) and
second-order interpolants (hierarchical grids). For each partitioning approach, we
present an appropriate barycentric interpolation method.

13.3.1 Triangulation

The simplest approach to generate a barycentric function is to first triangulate
the sampled points V , and then define a piece-wise affine control law over the
triangulation. The resulting interpolation of the optimal value function at the
sampled points will result in a convex piecewise affine inner approximation of
the optimal value function, and the approximate control law will be a piecewise
affine function.

Definition 13.2 (Triangulation) A triangulation of a finite set of points V ⊂
Rn is a finite collection TV = {R0, . . . , RL} such that

• Ri = conv(Vi) is an n−dimensional simplex for some Vi ⊂ V

• conv(V) = ∪Ri and intRi ∩ intRj = ∅ for all i 	= j

• If i 	= j then there is a common (possibly empty) face F of the boundaries of
Si and Sj such that Si ∩ Sj = F .

There are various triangulations possible; for example, the recursive trian-
gulation developed in [232, 37] has the strong property of generating a simple
hierarchy that can significantly speed online evaluation of the resulting control
law. The Delaunay triangulation [109], which has the nice property of minimizing
the number of skinny triangles, or those with small angles is a common choice for
which incremental update algorithms are well-studied and readily available (i.e.,
computation of TV ∪{v} given TV). A particularly suitable Delaunay triangulation
can be defined by using the optimal cost function as a weighting term, which causes
the resulting triangulation to closely match the optimal partition [159].

Given a discrete set of states V , we can now define an interpolated control law
z̃(x;TV) : Rn �→ Rm.

Definition 13.3 If V ⊂ X ⊂ Rn is a finite set and T = {conv(V1), . . . , conv(VL)}
is a triangulation of V , then the interpolated function z̃(x;T) : conv(V) �→ Rm is

z̃(x;T) =
∑
v∈Vj

z∗(v)λv , if x ∈ conv(Vj) (13.21)

where λv ≥ 0,
∑

λv = 1 and x =
∑

v∈Vj
vλv.

For each simplical region conv(Vj) in the triangulation, the set of multipliers λ
is unique and can be found by solving the system of linear equations

λ =

[
v1 · · · vn+1

1 · · · 1

]−1 (
x
1

)
where vi ∈ Vj .

13.3 Partitioning and Interpolation Methods 287

The function z̃(x;T) is piecewise affine, and given by:

z̃(x;T) =

⎡⎢⎣ z∗(v1)
...

z∗(vn+1)

⎤⎥⎦
′ [
v1 · · · vn+1

1 · · · 1

]−1 (
x
1

)
if x ∈ Vj = conv({v1, . . . , vn+1}).

The simplical nature of each region immediately demonstrates that the
interpolation 13.21 is barycentric.

13.3.2 Outer Polyhedral Approximation

The previous section introduced an approach that generates an inner polytopic
approximation of the optimal value function, which results in a triangulation of the
state space. This section introduces an outer polytopic approximation method that
will result in a general polytopic partition of the space, which is often significantly
less conservative than a triangulation, i.e., for the same number of samples it
provides a tighter approximation of the value function.

Implicit Double Description Algorithm: Computing an Outer
Polyhedral Approximation of a Convex Set

We begin by introducing an algorithm, called the implicit double description
method [162], which computes an outer polyhedral approximation in an incremental
fashion that is greedy-optimal in terms of the Hausdorff metric defined below.

The epigraph of the optimal value function plus the specified desired approxi-
mation error is defined as:

epi J∗,γ = {(x, J) : J ≥ J∗(x) + γ(x)}.

The epigraph of a convex function is a convex set. Our goal is to compute a
polyhedron P which is an inner approximation of the epigraph of the optimal

P

J (x)

J

Figure 13.4 Polyhedron P constructed to be an outer approximation of
epi J∗,γ and an inner approximation of epi J∗.

288 13 Approximate Receding Horizon Control

value function and an outer approximation of the optimal value function plus the
specified desired approximation error (Figure 13.4):

epi J∗ ⊇ P ⊇ epi J∗,γ .

Once such an approximation is in hand, we will then use it to compute a polytopic
partition of K∗ over which the approximate control law will be defined.

The quality of approximation is measured in terms of the Hausdorff distance,
which measures the distance between two sets X and Y as:

dH(X,Y) = max
{
supx∈X infy∈Y ‖x− y‖2, supy∈Y infx∈X ‖x− y‖2

}
.

Our goal is to compute the Hausdorff distance between our polytopic approxi-
mation, and epi J∗,γ by solving a convex optimization problem. We first recall the
definition of the projection of a point v onto a convex set S

projS v = arg minx∈S ‖v − x‖22

The following lemma states that we can compute the projection of a point
onto the epigraph of the optimal value function by solving a convex optimization
problem.

Lemma 13.3 The projection of (v, Jv) onto the epigraph epi J∗,γ is the optimizer
of the following problem, (x∗, J∗):

min
z,x

‖x− v‖22 + ‖J (z, x) + γ(x)− Jv‖22

s.t. (x, z) ∈ C.

We can now use the fact that the maximizer of a convex function over a convex
set will always occur at an extreme point of the set to write the Hausdorff distance
as the maximum of the projection of the vertices of the polyhedron P onto the
epigraph, which can be done by testing a finite number of points, since a polyhedron
has a finite number of vertices.

Lemma 13.4 If P is a polyhedron, and P ⊇ epi J∗,γ is a convex set, then the
Hausdorff distance is:

dH(P, epi J∗,γ) = max(v,Jv)∈extreme(P) ‖x∗(v)− v‖22 + ‖J∗(v) + γ(x)− Jv‖22

where (x∗(v), J∗(v)) is the projection of (v, Jv) onto the epigraph.

Algorithm 13.2 below will generate a sequence of outer polyhedral approxima-
tions of the epigraph that are monotonically decreasing in terms of the Hausdorff
distance. In each iteration of the algorithm, the Hausdorff distance is computed,
and the extreme point v of P at which the worst-case error occurs is removed from
P by adding a seperating hyperplane between the point v and the epigraph. The
addition of a seperating hyperplane ensures that the updated polyhedron remains
an outer approximation, and since the worst-case point is removed from the set,

13.3 Partitioning and Interpolation Methods 289

Figure 13.5 Example of one iteration of the implicit double-description
algorithm. Square: Point vmax at which the worst-case error occurs. Circle:
Point z∗(vmax); Projection of vmax onto the set. Line: Separating hyperplane.

P
J

J (x)

(a) Iteration 1.

J (x)+γ(x)

J (x)

P

(b) Iteration 2.

J

J (x)

P

(c) Last iteration.

Figure 13.6 Several steps of the Double Description algorithm with the
termination criterion extreme(P) ⊂ epi J∗(x) satisfied in the last step.

we have that the approximation error is monotonically decreasing in the Hausdorff
distance. The algorithm terminates when all of the vertices of P are contained
in the epigraph of J∗. Figure 13.5 illustrates the process of a single cycle of the
implicit double description algorithm. Figure 13.6 shows a progression of steps until
the termination criterion extreme(P) ⊂ epi J∗(x) is satisfied.

290 13 Approximate Receding Horizon Control

Algorithm 13.2 Approximate Parametric Programming with Stability Guarantee

Input: Parametric Optimization Problem (13.9). Initial polyhedron P ⊃ epi J∗,γ

Output: Polyhedron P such that epi J∗,γ ⊆ P ⊆ epi J∗

Repeat

ForEach v ∈ extreme(P)

z∗(v) = minz∈epi J∗,γ ‖v − z‖22
vmax ← argmaxv∈extreme(P) ‖v − z∗(v)‖
P ← P ∩ {z : [z∗(vmax)− v]′ (z − z∗(vmax)) ≤ 0}

Until extreme(P) ⊂ epi J∗(x)

Approximate Control Law from Polyhedral Approximation

Once an outer approximation P of the epigraph has been computed, then an
approximate control law can be defined as follows. For each facet F of P define the
polytope RF as the projection of the facet F onto the state space

RF = {x : ∃J, (x, J) ∈ F}.

The set of all such polytopes, {RF }, forms a partition of the feasible set of the
controller and we define our approximate control law over this set:

z̃(x) =
∑

v∈extreme(RF)

u∗(v)wv,F (x), if v ∈ RF (13.22)

where wv,F (x) is a barycentric set of functions for the polytope RF . A method to
construct such a function will be described in the next sub-section.

The following theorem demonstrates that this approximate z̃(x) satisfies
condition (13.16).

Theorem 13.3 Let z̃(x) be defined as in (13.22) for a polyhedral approximation
P that satisfies the condition extreme(P) ⊂ epi J∗(x), then condition (13.16) is
satisfied.

Proof:

J∗(x) ≤ J(z̃(x), x) Feasibility of barycentric interpolation

from Lemma 13.1

≤
∑

v∈extreme(RF)

J∗(v)wv,F (x), if v ∈ RF Convexity of J∗

≤
∑

(v,Jv)∈extreme(F)

Jvwv,F (x), if v ∈ RF P ⊆ epi J∗

≤ min
(x,J)∈P

J (v, Jv) are all on a hyperplane

≤ J∗(x) + γ(x) P ⊇ epi J∗,γ

�

13.3 Partitioning and Interpolation Methods 291

Barycentric Functions for Polytopes

Our goal is now to define an easily computable barycentric function for each
polytope RF . If the polytope RF is a simplex, then the barycentric function is
unique, linear and trivially computed and so we focus on the nonsimplical case.
In [285] a very elegant method of computing a barycentric function for arbitrary
polytopes was proposed that can be put to use here.

Lemma 13.5 (Barycentric coordinates for polytopes [285]) Let S =
conv(V) ⊂ Rd be a polytope and for each simple vertex v of S, let bv(x) be
the function

bv(x) =
αv

‖v − x‖2
where αv is the area of the polytope {y : [V − 1x′]y ≤ 0, (v − x)′y = 1}; i.e., the
area of the facet of the polar dual of S−{x} corresponding to the vertex v−x. The
function wv(x) = bv(x)/

∑
v bv(x) is barycentric over the polytope S.

The areas of the facets of the polar duals αv can be precomputed offline and
stored. If there are d + 1 facets incident with the vertex v (i.e., v is simplical),
then the area of the polar facet is det ([a0 · · · ad+1]), where {a0, . . . , ad+1} are the
normals of the incident facets. If the vertex is not simplical, then the area can
be easily computed by perturbing the incident facets [285]. Such computation is
straightforward because both the vertices and halfspaces of each region are available
due to the double-description representation.

13.3.3 Second-Order Interpolants

This section summarizes the hierarchical grid-based approach proposed in [270].
The main idea is to partition the space into a grid, which is then extremely fast
to evaluate online. We first introduce an interpolation method based on second-
order interpolants and demonstrate that it is barycentric. We then discuss a sparse
hierarchical gridding structure, which allows for extremely sparse storage of the
data and rapid evaluation of the function.

Our goal is to define a set of basis functions, one for each sampled vertex of
the grid, whose sum is barycentric within each hypercube of the grid. We begin
by defining the one-dimensional scaling function (hat function), with support on
[−1, 1] as:

φ(x) =

{
1− |x| if x ∈ [−1, 1]

0 otherwise.

For a particular grid point v, with grid width of w, we can extend the hat function
by scaling and shifting:

φv,w(x) = φ

(
x− v

w

)
.

292 13 Approximate Receding Horizon Control

x2 x1

φ
0,

1
(x

)

–1
0

1
–1

0
1

0
0.2
0.4
0.6
0.8

1

Figure 13.7 Plot of the second order interpolant in 2D centered at zero, with
a width of one.

We extend the function to d-dimensions by simply taking the product:

φv,w(x) =

d∏
i=1

φvi,w(xi),

where vi and xi are the ith components of the vectors v and x respectively.
The resulting basis function φ0,1(x) is illustrated in two dimensions in Figure

13.7.
We now define our interpolated approximation as:

z̃(x) =
∑
v∈G

z∗(v)φv,w(x)

where w is the width of the grid, and G is the set of grid vertices.

Lemma 13.6 [270] Let R be the hypercube defined by

R =
w

2
(B∞ ⊕ 1)⊕ v

where B∞ = {x : ‖x‖∞ ≤ 1} is the unit infinity-norm ball. The set of functions
{φv,w(x)} is barycentric within the set R.

Lemma 13.6 states that each hypercube in the grid is in fact barycentric. In
order to apply Algorithm 13.1 we need a method of repartitioning the current
sample points. We do this via a hierarchical approach, in which each hypercube
of the grid is tested for compliance with condition (13.16) and, if it fails, is sub-
divided into 2d more hypercubes. The result is a hierarchical grid, that is very easy
to evaluate online.

What has been discussed so far is termed a “nodal” representation of the
approximate function. It is also possible to define what is termed a “hierarchical
multi-scale” representation, which, at each level of the regridding procedure,
approximates only the residual, rather than the original function. This approach
generally results in an extremely sparse representation of the data, and significantly
ameliorates the downsides of sampling on a grid. See [270] for more details.

13.3 Partitioning and Interpolation Methods 293

x2 x1
–5

0
5

–5
0

5
0

10

20

30

40

Figure 13.8 Example 13.1. Optimal cost J∗(x) and approximation stability
bound J∗(x) + γ(x) above it.

x1x2
–5

0
5

–5
0

5
–10
–5
0
5

10
15

x1

x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

x2 x1
–5

0
5

–5
0

5
0

10

20

30

(a) Sub-optimal solution with 15
vertices. Error: δV = −17.8.

x2 x1
–5

0
5

–5
0

5
–10
–5
0
5

10
15

x1

x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

x2 x1
–5

0
5

–5
0

5
0

10

20

30

(b) Sub-optimal solution with 25
vertices. Error: δV = −4.51.

Figure 13.9 Example 13.1. Error function −δV (top). Points marked are
the vertices with worst-case fit. Partition (triangulation) of the sampled
points (middle). Upper-bound on approximate value function (convex hull
of sample points) (bottom).

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/triangulation_example.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/triangulation_example.m

294 13 Approximate Receding Horizon Control

x2 x1
–5

0
5

–5
0

5
–10
–5
0
5

10
15

x1

x2 x1

x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

–5
0

5

–5
0

5
0

10

20

30

(a) Sub-optimal solution with 35 ver-
tices. Error: δV = −1.26.

x2 x1
–5

0
5

–5
0

5
–10
–5
0
5

10
15

x2 x1

x1
x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

–5
0

5

–5
0

5
0

10

20

30

(b) Sub-optimal solution with 45 ver-
tices. Error: δV = −0.82

Figure 13.10 Example 13.1. Error function −δV (top). Points marked are
the vertices with worst-case fit. Partition (triangulation) of the sampled
points (middle). Upper-bound on approximate value function (convex hull
of sample points) (bottom).

Example 13.1 We demonstrate and compare the three approximation algorithms
introduced in this chapter on a simple example. The result of this comparison
should not be generalized to other problems, since the performance of any given
approximation method will depend strongly on the problem being considered.

Consider the following system:

x(k + 1) =

[
1 1
0 1

]
x(k) +

[
1
0.5

]
u(k)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/triangulation_example.m

13.3 Partitioning and Interpolation Methods 295

x2 x1

x1

x2 x1

–5
0

5

–5
0

5
–10
–5
0
5

10
15

x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

–5
0

5

–5
0

5
0

10

20

30

(a) Sub-optimal solution with 55
vertices. Error: δV = −0.23.

x2 x1

–10
–5
0
5

10
15

–5
0

5

–5
0

5

x1

x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

x2 x1
–5

0
5

–5
0

5
0

10

20

30

(b) Sub-optimal solution with 61
vertices. Error: δV = 0, system
stable.

Figure 13.11 Example 13.1. Error function −δV (top). Points marked are
the vertices with worst-case fit. Partition (triangulation) of the sampled
points (middle). Upper-bound on approximate value function (convex hull
of sample points) (bottom).

with state and input constraints:

x ∈ X = {x | ‖x‖∞ ≤ 5} u ∈ U = {u | ‖u‖∞ ≤ 1}.

We approximate the control law resulting for a standard quadratic-cost MPC problem
with a horizon of 10 and weighting matrices taken to be

Q =

[
0.1 0
0 2

]
, R = 1.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/triangulation_example.m

296 13 Approximate Receding Horizon Control

x1 x2

–5
0

5
–50

5

–1

–0.5

0

0.5

1

(a) Approximated control law

ũ(x).

x1 x2

–1

–0.5

0

0.5

1

ũ
(x

)−
u

∗ (
x
)

–5
0

5
–505

(b) Approximation error ũ(x)−u∗(x).

Figure 13.12 Example 13.1. Approximate control law using triangulation.

x2 x1
–5

0
5

–5
0

5
–10
–5
0
5

10
15

x1

x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

x2 x1

–5
0

5

–5
0

5
0

10

20

30

40

(a) Sub-optimal solution with 5
facets. Error: δV = −18.35.

x2 x1
–5

0
5

–5
0

5
–10
–5
0
5

10
15

x1

x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

x2 x1

–5
0

5

–5
0

5
0

10

20

30

40

(b) Sub-optimal solution with 13
facets. Error: δV = −5.62.

Figure 13.13 Example 13.1. Error function −δV (top). Points marked are
the vertices with worst-case fit. Partition (polyhedral approximation) of
the sampled points (middle). Upper-bound on approximate value function
(convex hull of sample points) (bottom).

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/dd_approx_example.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/dd_approx_example.m

13.3 Partitioning and Interpolation Methods 297

x1
x2 –5

0
5

–5
0

5
–10
–5
0
5

10
15

x1

x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

x1
x2 –5

0
5

–5
0

5
0

10

20

30

40

(a) Sub-optimal solution with 21
facets. Error: δV = −0.77.

x1
x2 –5

0
5

–5
0

5
–10
–5
0
5

10
15

x1

x
2

–5 0 5
–5
–4
–3
–2
–1
0
1
2
3
4
5

x1
x2 –5

0
5

–5
0

5
0

10

20

30

40

(b) Example 13.1. Sub-optimal solu-
tion with 31 facets. Error: δV = 0,
system stable.

Figure 13.14 Example 13.1. Error function −δV (top). Points marked are
the vertices with worst-case fit. Partition (polyhedral approximation) of
the sampled points (middle). Upper-bound on approximate value function
(convex hull of sample points) (bottom).

The MPC problem formulation includes a terminal set and terminal weight, which
are computed as discussed in Chapter 12 as the maximum invariant set for the system
when controlled with the optimal LQR control law.

The optimal value function J∗ for this problem can be seen in Figure 13.8, along with
the approximation target J∗(x) + γ(x) for γ(x) = x′Qx.

Figures 13.9–13.11 shows the evolution of the approximation algorithm using a
triangulation approach, and Figure 13.12 shows the resulting approximate control law

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/wavelet_example.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/dd_approx_example.m

298 13 Approximate Receding Horizon Control

x1

x
2

–5 0
–5
–4
–3
–2
–1
0
1
2
3
4
5

5

Figure 13.15 Example 13.1. Partition generated by the second-order inter-
polant method.

x1
x2

–5
0

5
–50

5

–1

–0.5

0

0.5

1

(a) Approximated control law

ũ(x).

x1
x2

–5
0

5
–505

–1

–0.5

0

0.5

1

(b) Approximation error ũ(x) −
u∗(x).

Figure 13.16 Example 13.1. Approximate control law using second-order
interpolants.

x1
x2

J̃
(x

)

–5
0

5

–5
0

5
0

10

20

30

Figure 13.17 Example 13.1. Approximate value function J̃(x) using second-
order interpolants.

and the approximation error. The approximation error seems quite large but this is all
what is needed when the only objective is to retain stability rather than performance.
Figures 13.13–13.14 show the same evolution, but for the double description/outer
approximation approach. One can see that far fewer sample points are required to
reach a stability certificate.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/wavelet_example.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/wavelet_example.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/wavelet_example.m

13.3 Partitioning and Interpolation Methods 299

Table 13.1 Example 13.1. Comparison of the approximation methods
introduced in Section 13.3. The indicated Online FLOPS for triangulation
are based on linear search.

Data Online Approx error ‖ũ(x)− u∗(x)‖
numbers FLOPS (avg) (max)

Triangulation 120 1,227 3.3% 24.6%
Polyhedral approx 720 752 2.5% 22.6%
Second-order
interpolants

187 26 1.1% 8.3%

The example has also been approximated using the second-order interpolant method
until the stability certification was achieved. Figure 13.15 shows the resulting nodal
partition of the state space. Note that since it would take an infinite number of
hypercubes to approximate a nonorthogonal polytope, a soft-constrained version of
the problem is taken in the domain outside the feasible set (although the stability
certificate is valid only within the feasible set). One can see the approximate control
law, the resulting error and the resulting approximated value function in Figures
13.16 and 13.17, respectively.

Table 13.1 shows the required online data storage and computation time for the
various methods introduced in this chapter for the studied example, as well as the
average and worst-case approximation errors (based on samples). One can see that
for this small example, the second-order interpolants are clearly the best solution.
However, this should not be taken as a clear indicator, or a recommendation for
the method beyond the others, since this would require a thorough computational
comparison of the various methods (or their variants in the literature) on a wide
range of practical problems.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/wavelet_example.m

14

On-Line Control Computation

In previous chapters we have shown how to compute the solution to constrained
finite time optimal control problems. Two approaches can be used. The first
approach consists of solving a mathematical program for a given initial state. The
second approach employs multiparametric programming to compute the solution
as an explicit piecewise affine function of the initial state. This implies that for
constrained linear systems, a Receding Horizon Control (RHC) policy requires
either the on-line solution of a quadratic or linear program, or the evaluation of a
piecewise affine on polyhedra function.

In this chapter we focus on efficient on-line methods for the computation of RHC
control laws. The main drawback of explicit optimal control laws is that the number
of polyhedral regions can grow exponentially with the number of constraints in the
optimal control problem. Section 14.1 presents efficient on-line methods for the
evaluation of explicit piecewise affine control laws.

If the on-line solution of a quadratic or linear program is preferred, Sections
14.2 and 14.3 briefly discuss how to improve the efficiency of a mathematical
programming solver by exploiting the structure of the RHC control problem.

14.1 Storage and On-Line Evaluation of the
PWA Control Law

In Chapter 11 we have shown how to compute the solution to the constrained finite
time optimal control (CFTOC) problem as an explicit piecewise affine function of
the initial state. Such a function is computed off-line by using a multiparametric
program solver, which divides the state space into polyhedral regions, and for each
region determines the linear gain and offset which produces the optimal control
action.

This method reveals its effectiveness when applied to Receding Horizon Control
(RHC). Having a precomputed solution as an explicit piecewise affine on polyhedra
(PPWA) function of the state vector reduces the on-line computation of the RHC

302 14 On-Line Control Computation

control law to a function evaluation, therefore avoiding the on-line solution of a
quadratic or linear program.

The main drawback of such an explicit optimal control law is that the number
of polyhedral regions can grow dramatically with the number of constraints in the
optimal control problem. In this chapter we focus on efficient on-line methods for
the evaluation of such a piecewise affine control law.

The simplest way to implement the piecewise affine feedback laws is to store
the polyhedral cells {Hix ≤ Ki}, perform on-line a search through them to
locate the one which contains x(t) and then look up the corresponding feedback
gain (F i, gi) (note that this procedure can be easily parallelized). This chapter
presents implementation techniques which avoid the storage and the evaluation
of the polyhedra and can significantly reduce the on-line storage demands and
computational complexity of RHC. They exploit the properties of the value function
and the piecewise affine optimal control law of the constrained finite time optimal
control problem.

Let the explicit optimal control law be:

u∗(x) = F ix+ gi, ∀x ∈ Pi, i = 1, . . . , Nr, (14.1)

where F i ∈ Rm×n, gi ∈ Rm, and Pi = {x ∈ Rn : Hix ≤ Ki, Hi ∈ RNi
c×n,

Ki ∈ RNi
c}, i = 1, . . . , Nr is a polyhedral partition of X . In the following Hi

j

denotes the j-th row of the matrix Hi, Ki
j denotes the j-th element of the vector

Ki and N i
c is the number of constraints defining the i-th polyhedron Pi. The

on-line implementation of the control law (14.1) is simply executed according to
the following steps:

Algorithm 14.1

Input: State x(t) at time instant t

Output: Receding horizon control input u(x(t))

Search for the j-th polyhedron that contains x(t), (Hjx(t) ≤ Kj)

u(t) ← F jx(t) + gj

Return u(t), the j-th control law evaluated at x(t)

In Algorithm 14.1, step (2) is critical and it is the only step whose efficiency can
be improved. A simple implementation of step (2) would require searching for the
polyhedral region that contains the state x(t) as in the following algorithm.

Algorithm 14.2

Input: State x(t) at time instant t and polyhedral partition {Pi}N
r

i=1 of the control
law (14.1)

Output: Index j of the polyhedron Pj in the control law (14.1) containing x(t)

i ← 1, notfound← 1

While i ≤ Nr and notfound

j ← 0, stillfeasible← 1

14.1 Storage and On-Line Evaluation of the PWA Control Law 303

While j ≤ N i
c and stillfeasible=1

If Hi
jx(t) > Ki

j Then stillfeasible← 0

Else j ← j + 1

End

If stillfeasible=1 Then notfound← 0 Else i ← i+ 1

End

Return j

Algorithm 14.2 requires the storage of all polyhedra Pi, i.e., (n + 1)NC real
numbers (n numbers for each row of the matrix Hi plus one number for the

corresponding element in the matrix Ki), NC =
∑Nr

i=1 N
i
c , and in the worst case

(the state is contained in the last region of the list) it will give a solution after nNC

multiplications, (n− 1)NC sums and NC comparisons.
In this section, by using the properties of the value function, we show how

Algorithm 14.2 can be replaced by more efficient algorithms that avoid storing the
polyhedral regions Pi, i = 1, . . . , Nr, therefore reducing significantly the storage
demand and the computational complexity.

In the following we will distinguish between optimal control based on LP and
optimal control based on QP.

14.1.1 Efficient Implementation, 1-Norm, ∞-Norm Case

From Corollary 11.5, the value function J∗(x) corresponding to the solution of the
CFTOC problem (12.48) with 1,∞-norm is convex and PWA:

J∗(x) = T i′x+ V i, ∀x ∈ Pi, i = 1, . . . , Nr. (14.2)

By exploiting the convexity of the value function the storage of the polyhedral
regions Pi can be avoided. From the equivalence of the representations of PWA
convex functions (see Section 2.2.5), the function J∗(x) in equation (14.2) can be
represented alternatively as

J∗(x) = max
{
T i′x+ V i, i = 1, . . . , Nr

}
for x ∈ X = ∪Nr

i=1Pi. (14.3)

Thus, the polyhedral region Pj containing x can be identified simply by

searching for the maximum number in the list {T i′x+ V i}Nr

i=1:

x ∈ Pj ⇔ T j ′x+ V j = max
{
T i′x+ V i, i = 1, . . . , Nr

}
. (14.4)

Therefore, instead of searching for the polyhedron j that contains the point x
via Algorithm 14.2, we can just store the value function and identify region j by
searching for the maximum in the list of numbers composed of the single affine
function T i′x+ V i evaluated at x (see Figure 14.1):

304 14 On-Line Control Computation

Table 14.1 Complexity comparison of Algorithm 14.2 and Algorithm 14.3

Algorithm 14.2 Algorithm 14.3

Storage demand (real numbers) (n+ 1)NC (n+ 1)Nr

Number of flops (worst case) 2nNC 2nNr

P4P1 P2 P3

T 2x+V 2

T 3x+V 3

T 4x+V 4

T 1x+V 1
J
∗ (
x
)

Figure 14.1 Example for Algorithm 14.3 in one dimension: For a given point
x ∈ P3 (x = 5) we have J∗(x) = max(T 1x+ V 1, . . . , T 4x+ V 4).

Algorithm 14.3

Input: State x(t) at time instant t and value function 14.2, T i′x+ V i, i = 1, . . . , Nr

Output: Index j of the polyhedron Pj containing x(t) in the control law (14.1)

Compute the list L = {ni = T i′x+ V i, i = 1, . . . , Nr}
Find j such that nj = maxni∈L ni

Return j

The search Algorithm 14.3 requires the storage of (n + 1)Nr real numbers
and will give a solution after nNr multiplications, (n − 1)Nr sums, and Nr − 1
comparisons. In Table 14.1 we compare the complexity of Algorithm 14.3 against
Algorithm 14.2 in terms of storage demand and number of flops. Algorithm 14.3
will outperform Algorithm 14.2 since typically NC " Nr.

14.1.2 Efficient Implementation, 2-Norm Case

Consider the state feedback solution (11.15) of the CFTOC problem (11.9) with
p = 2. Theorem 11.2 states that the value function J∗(x) is convex and piecewise
quadratic on polyhedra and the simple Algorithm 14.3 described in the previous
subsection cannot be used here. Instead, a different approach is described below.
It uses a surrogate of the value function to uniquely characterize the polyhedral
partition of the optimal control law.

14.1 Storage and On-Line Evaluation of the PWA Control Law 305

We will first establish the following general result: given a general polyhedral
partition of the state space, we can locate where the state lies (i.e., in which
polyhedron) by using a search procedure based on the information provided by
an “appropriate” PWA continuous function defined over the same polyhedral
partition. We will refer to such “appropriate” PWA function as a PWA descriptor
function. First we outline the properties of the PWA descriptor function and then
we describe the search procedure itself.

Let {Pi}N
r

i=1 be the polyhedral partition obtained by solving the mp-QP (11.31)
and denote by Ci = {j : Pj is a neighbor of Pi, j = 1, . . . , Nr, j 	= i} the list of
all neighboring polyhedra of Pi. The list Ci has N i

c elements and we denote by
Ci(k) its k-th element.

Definition 14.1 (PWA descriptor function) A continuous real-valued PWA
function

f(x) = fi(x) = Ai′x+Bi, if x ∈ Pi (14.5)

is called a descriptor function if

Ai 	= Aj , ∀j ∈ Ci, i = 1, . . . , Nr. (14.6)

Theorem 14.1 Let f(x) be a PWA descriptor function on the polyhedral
partition {Pi}Nr

i=1.

Let Oi(x) ∈ RNi
c be a vector associated with region Pi, and let the j-th element

of Oi(x) be defined as

Oi
j(x) =

{
+1 fi(x) � fCi(j)(x)
−1 fi(x) < fCi(j)(x).

(14.7)

Then Oi(x) has the following properties:

(i) Oi(x) = Si = const, ∀x ∈ Pi, i = 1, . . . , Nr.

(ii) Oi(x) 	= Si, ∀x /∈ Pi, i = 1, . . . , Nr.

Proof: Let F = Pi ∩ PCi(j) be the common facet of Pi and PCi(j). Define the
linear function

gij(x) = fi(x)− fCi(j)(x). (14.8)

From the continuity of f(x) it follows that gij(x) = 0, ∀x ∈ F . As Pi and PCi(j) are

disjoint convex polyhedra and Ai 	= ACi(j) it follows that gij(ξi) > 0 (or gij(ξi) < 0,
but not both) for any interior point ξi of Pi. Similarly for any interior point ξCi(j) of

PCi(j) we have g
i
j(ξCi(j)) < 0 (or gji (ξi) > 0, but not both). Consequently, gij(x) = 0

is the separating hyperplane between Pi and PCi(j).
(i) Because gij(x) = 0 is a separating hyperplane, the function gij(x) does not

change its sign for all x ∈ Pi, i.e., O
i
j(x) = sij , ∀x ∈ Pi with sij = +1 or sij = −1.

The same reasoning can be applied to all neighbors of Pi to get the vector Si =
{sij} ∈ RNi

c .

(ii) ∀x /∈ Pi, ∃j ∈ Ci such that Hi
jx > Ki

j . Since gij(x) = 0 is a separating

hyperplane Oi
j(x) = −sij . �

306 14 On-Line Control Computation

Equivalently, Theorem 14.1 states that

x ∈ Pi ⇔ Oi(x) = Si, (14.9)

which means that the function Oi(x) and the vector Si uniquely characterize Pi.
Therefore, to check on-line if the polyhedral region i contains the state x it is
sufficient to compute the binary vector Oi(x) and compare it with Si. Vectors
Si are calculated off-line for all i = 1, . . . , Nr, by comparing the values of fi(x)
and fCi(j)(x) for j = 1, . . . , N i

c , for a point x belonging to Pi, for instance, the
Chebyshev center of Pi.

Remark 14.1 Theorem 14.1 does not hold if one stores the closures of critical
regions Pi (see Remark 6.8). In this case one needs to modify Theorem 14.1
as follows

(i) Oi(x) = Si = const, ∀x ∈ int(Pi), i = 1, . . . , Nr,

(ii) Oi(x) �= Si, ∀x /∈ (int(Pi)
⋃

∂Pi), i = 1, . . . , Nr.

The results in the remainder of this section can be easily extended to this case.

In Figure 14.2 a one-dimensional example illustrates the procedure with Nr = 4
regions. The list of neighboring regions Ci and the vector Si can be constructed
by simply looking at the figure: C1 = {2}, C2 = {1, 3}, C3 = {2, 4}, C4 = {3},
S1 = −1, S2 = [−1 1]′, S3 = [1 −1]′, S4 = −1. The point x = 4 is in region 2 and
we have O2(x) = [−1 1]′ = S2, while O3(x) = [−1 − 1]′ 	= S3, O1(x) = 1 	= S1,
O4(x) = 1 	= S4. The failure of a match Oi(x) = Si provides information on a good
search direction(s). The solution can be found by searching in the direction where
a constraint is violated, i.e., one should check the neighboring region Pj for which
Oi

j(x) 	= sij .

f(
x
)

f3(x)

f4(x)

f2(x)

f1(x)

P4P1 P2 P3

Figure 14.2 Example for Algorithm 14.4 in one dimension: For a given point
x ∈ P2 (x = 4) we have O2(x) = [−1 1]′ = S2, while O1(x) = 1 �= S1 = −1,
O3(x) = [−1 − 1]′ �= S3 = [1 − 1]′, O4(x) = 1 �= S4 = −1.

14.1 Storage and On-Line Evaluation of the PWA Control Law 307

The overall procedure is composed of two parts:

1. (off-line) Construction of the PWA function f(x) in (14.5) satisfying (14.6)
and computation of the list of neighbors Ci and the vector Si

2. (on-line) Execution of the following algorithm

Algorithm 14.4

Input: State x(t) at time instant t, list of neighboring regions Ci and the vectors Si

Output: Index i of the polyhedron Pi containing x(t) in the control law (14.1)

i ← 1, I = {1, . . . , Nr}, notfound← 1

While notfound and I �= ∅
I ← I \ i
Compute Oi(x)

If Oi(x) = Si Then notfound← 0

Else i ← Ci(q), where Oi
q(x) �= siq

End

Return i

Algorithm 14.4 does not require the storage of the polyhedra Pi, but only the
storage of one linear function fi(x) per polyhedron, i.e., N

r(n+1) real numbers and
the list of neighbors Ci which requires NC integers. In the worst case, Algorithm
14.4 terminates after Nrn multiplications, Nr(n− 1) sums and NC comparisons.

In Table 14.2 we compare the complexity of Algorithm 14.4 against the standard
Algorithm 14.2 in terms of storage demand and number of flops.

Remark 14.2 Note that the computation of Oi(x) in Algorithm 14.4 requires the
evaluation of N i

c linear functions, but the overall computation never exceeds Nr linear
function evaluations. Consequently, Algorithm 14.4 will outperform Algorithm 14.2,
since typically NC � Nr.

Now that we have shown how to locate the polyhedron in which the state lies
by using a PWA descriptor function, we need a procedure for the construction of
such a function.

The image of the descriptor function is the set of real numbers R. In the
following we will show how the descriptor function can be generated from a vector-
valued function m : Rn → Rs. This general result will be used in the following
subsections.

Table 14.2 Complexity comparison of Algorithm 14.2 and Algorithm 14.4

Algorithm 14.2 Algorithm 14.4

Storage demand (real numbers) (n+ 1)NC (n+ 1)Nr

Number of flops (worst case) 2nNC (2n− 1)Nr +NC

308 14 On-Line Control Computation

Definition 14.2 (Vector-valued PWA descriptor function) A continuous
vector-valued PWA function

m(x) = Āix+ B̄i, if x ∈ Pi, (14.10)

is called a vector-valued PWA descriptor function if

Āi 	= Āj , ∀j ∈ Ci, i = 1, . . . , Nr, (14.11)

where Āi ∈ Rs×n, B̄i ∈ Rs.

Theorem 14.2 Given a vector-valued PWA descriptor function m(x) defined
over a polyhedral partition {Pi}Nr

i=1 it is possible to construct a PWA descriptor
function f(x) over the same polyhedral partition.

Proof: Let Ni,j be the null-space of (Ā
i−Āj)′. Since by the definition Āi−Āj 	=

0 it follows that Ni,j is not full-dimensional, i.e., Ni,j ⊆ Rs−1. Consequently, it is
always possible to find a vector w ∈ Rs such that w(Āi − Āj) 	= 0 holds for all
i = 1, . . . , Nr and ∀j ∈ Ci. Clearly, f(x) = w′m(x) is then a valid PWA descriptor
function. �

As shown in the proof of Theorem 14.2, once we have a vector-valued PWA
descriptor function, practically any randomly chosen vector w ∈ Rs is likely to be
satisfactory for the construction of PWA descriptor function. But, from a numerical
point of view, we would like to obtain a w that is as far away as possible from the
null-spaces Ni,j . We show one algorithm for finding such a vector w.

For a given vector-valued PWA descriptor function we form a set of vectors
ak ∈ Rs, ‖ak‖ = 1, k = 1, . . . , NC/2, by choosing and normalizing one (and only
one) nonzero column from each matrix (Āi − Āj), ∀j ∈ Ci, i = 1, . . . , Nr. The
vector w ∈ Rs satisfying the set of equations w′ak 	= 0, k = 1, . . . , NC/2, can then
be constructed by using the following algorithm. Note that the index k goes to
NC/2 since the term (Āj − Āi) is the same as (Āi − Āj) and thus there is no need
to consider it twice.

Algorithm 14.5

Input: Vectors ai ∈ Rs, i = 1, . . . , N

Output: The vector w ∈ Rs satisfying the set of equations w′ai �= 0, i = 1, . . . , N

w ← [1, . . . , 1]′, R ← 1

While k ≤ NC/2

d ← w′ak

If 0 ≤ d ≤ R Then w ← w + 1
2
(R− d)ak, R ← 1

2
(R+ d)

If −R ≤ d < 0 Then w ← w − 1
2
(R+ d)ak, R ← 1

2
(R− d)

End

Return w

Algorithm 14.5 is based on a construction of a sequence of balls B = {x : x =
w+r, ‖r‖2 ≤ R}. As depicted in Figure 14.3, Algorithm 14.5 starts with the initial

14.1 Storage and On-Line Evaluation of the PWA Control Law 309

BR

R
d

R−d

B

ai x ≤ 0T

aix≥0T

Figure 14.3 Illustration for Algorithm 14.5 in two dimensions.

ball of radius R = 1, centered at w = [1, . . . , 1]′. Iteratively one hyperplane a′kx = 0
at the time is introduced and the largest ball B′ ⊆ B that does not intersect this
hyperplane is designed. The center w of the final ball is the vector w we wanted to
construct, while R gives some information about the degree of nonorthogonality:
|w′ak| ≥ R,∀k.

In the following subsections we will show that the gradient of the value function,
and the optimizer, are vector-valued PWA descriptor functions and therefore we
can use Algorithm 14.5 for the construction of the PWA descriptor function.

Generating a PWA Descriptor Function from the Value Function

Let J∗(x) be the convex and piecewise quadratic (CPWQ) value function obtained
as a solution of the CFTOC (11.9) problem for p = 2:

J∗(x) = qi(x) = x′Qix+ Ti
′x+ Vi, if x ∈ Pi, i = 1, . . . , Nr. (14.12)

In Section 6.3.4 we have proven that for nondegenerate problems the value
function J∗(x) is a C(1) function. We can obtain a vector-valued PWA descriptor
function by differentiating J∗(x). We first need to introduce the following theorem.

Theorem 14.3 ([21]) Assume that the CFTOC (11.9) problem leads to a non-
degenerate mp-QP (11.33). Consider the value function J∗(x) in (14.12) and let
CRi, CRj be the closure of two neighboring critical regions corresponding to the
set of active constraints Ai and Aj, respectively, then

Qi −Qj � 0 or Qi −Qj � 0 and Qi 	= Qj (14.13)

and
Qi −Qj � 0 iff Ai ⊂ Aj . (14.14)

Theorem 14.4 Consider the value function J∗(x) in (14.12) and assume that
the CFTOC (11.9) problem leads to a nondegenerate mp-QP (11.33). Then the
gradient m(x) = ∇J∗(x), is a vector-valued PWA descriptor function.

Proof: From Theorem 6.9 we see that m(x) is a continuous vector-valued PWA
function, while from equation (14.12) we get

m(x) = ∇J∗(x) = 2Qix+ Ti. (14.15)

310 14 On-Line Control Computation

Since from Theorem 14.3 we know that Qi 	= Qj for all neighboring polyhedra,
it follows that m(x) satisfies all conditions for a vector-valued PWA descriptor
function. �

Combining results of Theorem 14.4 and Theorem 14.2 it follows that by using
Algorithm 14.5 we can construct a PWA descriptor function from the gradient of
the value function J∗(x).

Generating a PWA Descriptor Function from the Optimal Inputs

Another way to construct a descriptor function f(x) emerges naturally if we look at
the properties of the optimizer U∗

0 (x) corresponding to the state feedback solution
of the CFTOC problem (11.9). From Theorem 6.7 it follows that the optimizer
U∗
0 (x) is continuous in x and piecewise affine on polyhedra:

U∗
0 (x) = li(x) = F ix+ gi, if x ∈ Pi, i = 1, . . . , Nr, (14.16)

where F i ∈ Rs×n and gi ∈ Rs. We will assume that Pi are critical regions (as
defined in Section 6.1.2). Before going further we need the following lemma.

Lemma 14.1 Consider the state feedback solution (14.16) of the CFTOC prob-
lem (11.9) and assume that the CFTOC (11.9) leads to a nondegenerate mp-
QP (11.33). Let Pi, Pj be two neighboring polyhedra, then F i 	= F j.

Proof: The proof is a simple consequence of Theorem 14.3. As in Theorem
14.3, without loss of generality we can assume that the set of active constraints
Ai associated with the critical region Pi is empty, i.e., Ai = ∅. Suppose that the
optimizer is the same for both polyhedra, i.e., [F i gi] = [F j gj]. Then, the cost
functions qi(x) and qj(x) are also equal. From the proof of Theorem 14.3 this
implies that Pi = Pj , which is a contradiction. Thus we have [F i gi] 	= [F j gj].
Note that F i = F j cannot happen since, from the continuity of U∗

0 (x), this would
imply gi = gj . Consequently we have F i 	= F j . �

From Lemma 14.1 and Theorem 14.2 it follows that an appropriate PWA
descriptor function f(x) can be calculated from the gradient of the optimizer U∗(x)
by using Algorithm 14.5.

Remark 14.3 Note that even if we are implementing a receding horizon control
strategy, the construction of the PWA descriptor function is based on the full
optimization vector U∗(x) and the corresponding matrices F i and gi.

Remark 14.4 In some cases the use of the optimal control profile U∗(x) for the
construction of descriptor function f(x) can be extremely simple. If there is a row
r, r ≤ m (m is the dimension of u) for which (F i)r �= (F j)r, ∀i = 1 . . . , Nr, ∀j ∈ Ci,
it is enough to set Ai′ = (F i)r and Bi = (gi)r, where (F i)r and (gi)r denote the
i-th row of the matrices F i and gi, respectively. The row r has to be the same for all
i = 1 . . . , Nr. In this way we avoid the storage of the descriptor function altogether
since it is equal to one component of the control law, which is stored anyway.

14.1 Storage and On-Line Evaluation of the PWA Control Law 311

14.1.3 Example

As an example, we compare the performance of Algorithm 14.2, 14.3 and 14.4 on
CFTOC problem for the discrete-time system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x(t+ 1) =

⎡⎢⎢⎣
4 −1.5 0.5 −0.25
4 0 0 0
0 2 0 0
0 0 0.5 0

⎤⎥⎥⎦x(t) +

⎡⎢⎢⎣
0.5
0
0
0

⎤⎥⎥⎦u(t)

y(t) =
[
0.083 0.22 0.11 0.02

]
x(t)

(14.17)

resulting from the linear system

y =
1

s4
u (14.18)

sampled at Ts = 1, subject to the input constraint

− 1 ≤ u(t) ≤ 1 (14.19)

and the output constraint

− 10 ≤ y(t) ≤ 10. (14.20)

CFTOC based on LP

To regulate (14.17), we design a receding horizon controller based on the optimiza-
tion problem (12.6), (12.7) where p = ∞, N = 2, Q = diag{5, 10, 10, 10}, R = 0.8,
P = 0, Xf = R4. The PPWA solution of the mp-LP problem comprises 136 regions.
In Table 14.3 we report the comparison between the complexity of Algorithm 14.2
and Algorithm 14.3 for this example.

The average on-line evaluation effort of the PPWA solution for a set of 1000
random points in the state space is 2259 flops (Algorithm 14.2), and 1088 flops
(Algorithm 14.3). We note that the solution using MATLAB R© LP solver (function
linprog.m with interior point algorithm and LargeScale set to “off”) takes 25, 459
flops on average.

CFTOC based on QP

To regulate (14.17), we design a receding horizon controller based on the optimiza-
tion problem (12.6), (12.7)) where N = 7, Q = I, R = 0.01, P = 0, Xf = R4.
The PPWA solution of the mp-QP problem comprises 213 regions. We obtained
a descriptor function from the value function and for this example the choice of

Table 14.3 Complexity comparison of Algorithm 14.2 and Algorithm 14.3 for the example
in Section 14.1.3

Algorithm 14.2 Algorithm 14.3

Storage demand (real numbers) 5690 680
Number of flops (worst case) 9104 1088
Number of flops (average for 1000 random points) 2259 1088

312 14 On-Line Control Computation

Table 14.4 Complexity comparison of Algorithm 14.2 and Algorithm 14.4 for the example
in Section 14.1.3

Algorithm 14.2 Algorithm 14.4

Storage demand (real numbers) 9740 1065
Number of flops (worst case) 15584 3439
Number of flops (average for 1000 random points) 2114 175

w = [1 0 0 0]′ is satisfactory. In Table 14.4 we report the comparison between the
complexity of Algorithm 14.2 and Algorithm 14.4 for this example.

The average computation effort of the PPWA solution for a set of 1000 random
points in the state space is 2114 flops (Algorithm 14.2), and 175 flops (Algorithm
14.4). The solution of the corresponding quadratic program with MATLAB R© QP
solver (function quadprog.m and LargeScale set to “off”) takes 25, 221 flops on
average.

14.1.4 Literature Review

The problem considered in this chapter has been approached by several other
researchers. For instance, in [275] the authors propose to organize the controller
gains of the PWA control law on a balanced search tree. By doing so, the search for
the region containing the current state has on average a logarithmic computation
complexity although it is less efficient in terms of memory requirements. At the
expense of the optimality a similar computational complexity can be achieved with
the approximative point location algorithm described in [160].

The comparison of the proposed algorithms with other efficient solvers in the
literature, e.g., [21, 55, 256, 105, 209, 212, 284, 61, 25] requires the simultaneous
analysis of several issues such as speed of computation, storage demand and real
time code verifiability.

14.2 Gradient Projection Methods Applied to MPC

In this section, we investigate the gradient projection methods from Section 3.3.1
for the iterative solution of MPC problems with a quadratic cost function given as

J∗
0 (x(0)) = min x′

NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk

subj. to xk+1 = Axk +Buk, k = 0, . . . , N − 1
xk ∈ X , uk ∈ U , k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0).

(14.21)

Note that 1- and ∞-norm cost functions (see Section 11.1) cannot be handled
by the gradient (projection) methods discussed in this book since they require a
smooth objective function.

14.2 Gradient Projection Methods Applied to MPC 313

In Section 14.2.1 we first investigate a special case of the general setup in (14.21)
which is input-constrained MPC. In this case, we impose constraints on the control
inputs only, i.e., for the state sets we have X = Xf = Rn. If there are no state
constraints, the MPC problem can be formulated with the sequence of inputs
U0 = [u′

0, . . . , u
′
N−1]

′ as the optimization vector (so-called condensing) where at
the same time the feasible set UN = U × . . .×U remains “simple” if the input set U
was simple (recall from Section 3.3.1 that a “simple” set is a convex set with a
projection operator that can be evaluated efficiently). This allows one to solve the
MPC problem right in the primal domain and thus to achieve linear convergence
with the gradient projection methods of this book.

In the case of input and state constraints, the feasible set of problem (14.21)
does not allow for an easy-to-evaluate projection operator in general, neither in
condensed form nor with the state sequence as an additional optimization vector
(so-called sparse formulation). However, gradient methods can still be applied to
the sparse formulation of the MPC problem if a dual approach, as discussed in
Section 3.3.1, is applied. However, only sublinear convergence can be achieved in the
dual domain. Section 14.2.2 will summarize problem formulation, important aspects
regarding the computation of the dual gradient and optimal step size selection.

14.2.1 Input-Constrained MPC

In order to apply the classic or the fast gradient projection method from Section
3.3.1, we first eliminate the states from the MPC problem (14.21) and rewrite it in
condensed form (see (8.8)) as

J∗
0 (x(0)) = x′(0)Y x(0) + minU0

U0
′HU0 + 2x′(0)FU0

subj. to U0 ∈ UN ,

which resembles the general problem setup for gradient methods given by (3.23).
Since the objective function is twice continuously differentiable, L-smoothness and
strong convexity follow from Lemma (3.1) and Theorem (3.2), respectively. In fact,
the Lipschitz constant L and the strong convexity parameter μ are given by

L = 2λmax(H), μ = 2λmin(H) ,

and are both independent of the initial state x(0). Thus, no computationally
expensive eigenvalue computations are necessary during runtime if the Hessian H
stays constant.

From the definition of H in (8.8) it follows that it is positive definite whenever
the penalty matrix R is positive definite. In this case, the constant μ is positive
and both the classic gradient method given by Algorithm 3.6 and the fast gradient
projection method in Algorithm 3.7 converge linearly.

The projection operator for the feasible set UN has to be computed in every
iteration of any gradient projection method. In the MPC context, this operation
translates to

πUN

(
Yi −

2

L

(
HYi + F ′x(0)

))
, (14.22)

314 14 On-Line Control Computation

where Yi is the previous iterate in case of the classic gradient projection method
or the previous secondary iterate in case of the fast gradient projection method.
Since the feasible set in input-constrained MPC is the direct product of N sets,
evaluation of the projection operator in (14.22) can be separated into N evaluations
of the projection operator πU , i.e., if we let Uf = Yi − 2

L

(
HYi + F ′x(0)

)
, then

πUN (Uf) =
[
πU (uf,1)

′
, . . . , πU (uf,N)

′]′
,

with Uf =
[
u′
f,1, . . . , u

′
f,N

]′
and uf,k ∈ Rm, k = 1, . . . , N .

14.2.2 Input- and State-Constrained MPC

In the input- and state-constrained case, gradient projection methods cannot be
applied in the primal domain, since the projection operator for the feasible set{

uk ∈ U , xk ∈ X , xN ∈ Xf

∣∣xk+1 = Axk +Buk, x0 = x(0), k = 0 . . . N − 1
}

is nontrivial in general, even if the convex sets U , X and Xf allow efficient
projections individually. The inherent complication comes from the intersection
of these sets with the affine set, which is determined by the state update equation.

As an alternative, the input- and state-constrained MPC problem can be solved
in the dual domain by first relaxing the state update equation and then solving
for the associated optimal dual multiplier (or Lagrange multiplier) vector using
gradient methods. This approach was thoroughly discussed in Section 3.3.1 for
a generic convex objective function and a feasible set that can be written as
the intersection of an affine set and a simple set (see (3.27)). If we rewrite the
MPC problem in (14.21) analogously to the generic setup of Section 3.3.1 with the

optimization vector z =
[
x′
0, x

′
1, . . . , x

′
N , u′

0, . . . , u
′
N−1

]′
, we obtain

J∗
0 (x(0)) = min z′Mz

subj. to Gz = Ex(0)
z ∈ K,

(14.23)

where the problem data are defined as

M = blockdiag
{
Q, . . . , Q, P,R, · · · , R

}
,

G = −

⎡⎢⎢⎢⎢⎢⎢⎣

−In 0 · · · · · · 0 0 · · · · · · 0
A −In 0 · · · 0 B 0 · · · 0

0
. . .

. . .
. . .

... 0 B
. . .

...
...

. . . A −In 0
...

. . .
. . . 0

0 · · · 0 A −In 0 · · · 0 B

⎤⎥⎥⎥⎥⎥⎥⎦ ,

E =
[
In, 0n, . . . , 0n

]′
,

K = X × . . .×X × Xf × U × . . .U .

The dual problem is an unconstrained maximization problem with the dual
gradient given as Gz∗(ν)− Ex(0), where

z∗(ν) = arg minz∈K z′Mz + ν′(Gz − Ex(0)) . (14.24)

14.3 Interior Point Method Applied to MPC 315

As a prerequisite for the above statement, the minimizer z∗(ν) must be unique
for every dual multiplier vector ν (see Section 3.3.1). A sufficient condition for
uniqueness of the minimizer is a strongly convex objective function in (14.24). In
view of the definition of matrix M this is the case whenever the penalty matrices
Q,P and R are positive definite, which is not a restrictive assumption in an
application.

The so-called inner problem (14.24) needs to be solved in every outer iteration
of the classic or the fast gradient method in order to determine the dual gradient.
This can be accomplished in one of the following ways.

• Exact analytic solution: This is possible if all penalty matrices are positive
diagonal matrices and all sets X , Xf and U are boxes. In practice, this is a
frequent setup.

• Exact multiparametric solution: By the block-diagonal structure of matrixM
and the structure of set K, the inner problem can be separated into 2N + 1
subproblems. If all sets X , Xf and U are polyhedral, each subproblem can
be pre-solved by means of multiparametric programming with the gradient
of the linear objective term as the parameter.

• Approximate iterative solution: This is the most general approach for the
solution of the inner problem as it only requires simple sets X , Xf and U (not
necessarily polyhedral). Each of the 2N +1 subproblems can then be solved
approximately by a gradient projection method. Note that convergence issues
of the outer gradient method might arise if the accuracy of the approximate
inner solution is too low.

Finally, we note that under mild assumptions, the tight, i.e., smallest possible,
Lipschitz constant of the dual gradient is given by Ld = 1

2‖GM−1/2‖2 which,
same as in the input-constrained case, is independent of the initial state x(0). The
Lipschitz constant determines the step size of the outer gradient method and being
able to compute a tight value ensures the best possible (sublinear) convergence
(see Section 3.3.1).

14.3 Interior Point Method Applied to MPC

All presented interior-point methods can be applied to linear model predictive
control problems with convex constraints. To obtain an efficient method with low
solve times, it is crucial to exploit the sparsity structure of the resulting quadratic
program (or any other form of problem P-IPM (3.30)) when computing the search
directions. Therefore, when using interior point solvers, the MPC problem is
formulated as a sparse QP (sometimes with a different ordering of states and
inputs in the optimization vector). As a result, general sparse routines for solving
linear systems with KKT-structure can be applied to the Newton systems (3.41)
and (3.45), or specific linear system solvers can be used that exploit the MPC-
specific problem structure. A good starting point for details on this topic are the
references [284, 246, 98, 201, 110, 171, 170].

15

Constrained Robust Optimal
Control

In the previous chapters we assumed perfect model knowledge for the plant to
be controlled. This chapter focuses on the case when the model is uncertain. We
focus on discrete-time uncertain linear systems with linear constraints on inputs
and states. Uncertainty is modeled as additive disturbance and/or parametric
uncertainty in the state space matrices. We first introduce the concepts of robust
control design with “open-loop prediction” and “closed-loop prediction.” Then
we discuss how to robustly enforce constraints satisfaction, and present several
objective functions one might be interested in minimizing. For each robust control
design we discuss the conservatism and show how to obtain the optimal control
action by using convex or nonconvex programming.

For robust controllers which can be implemented by using linear and quadratic
programming, we show that the robust optimal control law is a continuous and
piecewise affine function of the state vector. The robust state feedback controller
can be computed by means of multiparametric linear or quadratic programming.
Thus, when the optimal control law is implemented in a moving horizon scheme,
the on-line computation of the resulting controller requires simply the evaluation
of a piecewise affine function.

15.1 Problem Formulation

Consider the linear uncertain system

x(t+ 1) = A(wp(t))x(t) +B(wp(t))u(t) + Ewa(t) (15.1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and input vectors, respectively,
subject to the constraints

x(t) ∈ X , u(t) ∈ U , ∀t ≥ 0. (15.2)

318 15 Constrained Robust Optimal Control

The sets X ⊆ Rn and U ⊆ Rm are polytopes. Vectors wa(t) ∈ Rna and wp(t) ∈ Rnp

are unknown additive disturbances and parametric uncertainties, respectively. The
disturbance vector is

w(t) = [wa(t)′, wp(t)′]′ ∈ W ⊂ Rnw (15.3)

with nw = na + np. We assume that bounds on wa(t) and wp(t) are known. In
particular W = Wa×Wp with wa(t) ∈ Wa and wp(t) ∈ Wp, where Wa ⊂ Rna and
Wp ⊂ Rnp are given polytopes. We also assume that A(·), B(·) are affine functions
of wp

A(wp) = A0 +

np∑
i=1

Aiwp,i
c , B(wp) = B0 +

np∑
i=1

Biwp,i
c (15.4)

where Ai ∈ Rn×n and Bi ∈ Rn×m are given matrices for i = 0 . . . , np and wp,i
c is

the i-th component of the vector wp, i.e., wp = [wp,1
c , . . . , w

p,np
c].

Robust finite time optimal control problems can be formulated by optimizing
over “Open-Loop” policies or “Closed-Loop” policies. We will discuss the two cases
next.

Open-Loop Predictions

Define the cost function as

J0(x(0), U0) = JW

[
p(xN) +

N−1∑
k=0

q(xk, uk)

]
(15.5)

where the operation JW evaluates the cost p(xN) +
∑N−1

k=0 q(xk, uk) for the set
of uncertainties {w0, . . . , wN−1} ∈ W × · · · × W and the input sequence U0. The
following options are typically considered.

• Nominal Cost
In the simplest case, the objective function is evaluated for a single
disturbance profile w̄a

0 , . . . , w̄
a
N−1, w̄

p
0 , . . . , w̄

p
N−1:

JW =

[
p(xN) +

N−1∑
k=0

q(xk, uk)

]

where

⎧⎪⎪⎨⎪⎪⎩
xk+1 = A(wp

k)xk +B(wp
k)uk + Ewa

k

x0 = x(0)
wa

k = w̄a
k , w

p
k = w̄p

k

k = 0, . . . , N − 1.

(15.6)

• Expected Cost
Another option is to consider the probability density function f(w) of the
disturbance w:

Probability [w(t) ∈ W] = 1 =

∫
w∈W

f(w)dw.

15.1 Problem Formulation 319

Then the expected value of a function g(w) of the disturbance w is defined
as:

Ew[g(w)] =

∫
w∈W

g(w)f(w)dw.

In this case we consider the expected cost over the admissible disturbance
set.

JW = Ew0,...,wN−1

[
p(xN) +

N−1∑
k=0

q(xk, uk)

]

where

⎧⎪⎪⎨⎪⎪⎩
xk+1 = A(wp

k)xk +B(wp
k)uk + Ewa

k

x0 = x(0)
wa

k ∈ Wa, wp
k ∈ Wp

k = 0, . . . , N − 1.

(15.7)

• Worst Case Cost
Finally the worst case cost may be of interest

JW = max
w0,...,wN−1

[
p(xN) +

N−1∑
k=0

q(xk, uk)

]

where

⎧⎪⎪⎨⎪⎪⎩
xk+1 = A(wp

k)xk +B(wp
k)uk + Ewa

k

x0 = x(0)
wa

k ∈ Wa, wp
k ∈ Wp

k = 0, . . . , N − 1.

(15.8)

If the 1-norm or ∞-norm is used in the cost function of problems (15.6), (15.7)
and (15.8), then we set

p(xN) = ‖PxN‖p, q(xk, uk) = ‖Qxk‖p + ‖Ruk‖p (15.9)

with p = 1 or p = ∞. If the squared Euclidian norm is used in the cost function of
problems (15.6), (15.7) and (15.8), then we set

p(xN) = x′
NPxN , q(xk, uk) = x′

kQxk + u′
kRuk. (15.10)

Note that in (15.6), (15.7) and (15.8) xk denotes the state vector at time k obtained
by starting from the state x0 = x(0) and applying to the system model

xk+1 = A(wp
k)xk +B(wp

k)uk + Ewa
k

the input sequence u0, . . . , uk−1 and the disturbance sequences wa = {wa
0 , . . . ,

wa
N−1}, wp = {wp

0 , . . . , w
p
N−1}.

Consider the optimal control problem

J∗
0 (x(0)) = minU0

J0(x(0), U0)

subj. to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xk+1 = A(wp

k)xk +B(wp
k)uk + Ewa

k

xk ∈ X , uk ∈ U
k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
∀wa

k ∈Wa, ∀wp
k ∈ Wp

∀k = 0, . . . , N − 1.

(15.11)

320 15 Constrained Robust Optimal Control

where Xf ⊆ Rn is a terminal polyhedral region. In (15.11) N is the time horizon
and U0 = [u′

0, . . . , u
′
N−1]

′ ∈ Rs, s = mN the vector of the input sequence. We
denote by U∗

0 = {u∗
0, . . . , u

∗
N−1} the optimal solution to (15.11).

We denote with XOL
i ⊆ X the set of states xi for which the robust optimal

control problem (15.8)–(15.11) is feasible, i.e.,

XOL
i = {xi ∈ X : ∃(ui, . . . , uN−1) such that xk ∈ X , uk ∈ U , k = i, . . . , N − 1,

xN ∈ Xf ∀ wa
k ∈ Wa, ∀wp

k ∈ Wp k = i, . . . , N − 1,
where xk+1 = A(wp

k)xk +B(wp
k)uk + Ewa

k}.
(15.12)

Problem (15.11) minimizes the performance index JW subject to the constraint
that the input sequence must be feasible for all possible disturbance realizations.
In other words, the nominal, expected or worst-case performance is minimized with
the requirement of constraint fulfillment for all possible realizations of wa, wp.

Remark 15.1 Note that we distinguish between the current state x(k) of system
(15.1) at time k and the variable xk in the optimization problem (15.11), that is
the predicted state of system (15.1) at time k obtained by starting from the state
x0 = x(0) and applying to system xk+1 = A(wp

k)xk + B(wp
k)uk + Ewa

k the input
sequence u0, . . . , uk−1 and the disturbance sequences wp

0 , . . . , w
p
k−1, wa

0 , . . . , w
a
k−1.

Analogously, u(k) is the input applied to system (15.1) at time k while uk is the k-th
optimization variable of the optimization problem (15.11).

The formulation (15.11) is based on an open-loop prediction and thus referred to
as Constrained Robust Optimal Control with open-loop predictions (CROC-OL).
The optimal control problem (15.11) can be viewed as a game played between two
players: the controller U and the disturbance W [24, p. 266–272]. Regardless of the
cost function in (15.11) the player U tries to counteract any feasible disturbance
realization with just one single sequence {u0, . . . , uN−1}. This prediction model
does not consider that at the next time step, the player can measure the state x(1)
and “adjust” his input u(1) based on the current measured state. By not considering
this fact, the effect of the uncertainty may grow over the prediction horizon and
may easily lead to infeasibility of the min problem (15.11). Alternatively, in the
closed-loop prediction scheme presented next, the optimization scheme takes into
account that the disturbance and the controller play one move at a time.

The game is played differently depending on the cost function JW :

• In problem (15.6), (15.11), among all control actions which robustly satisfy
the constraints, the player U chooses the one which minimizes a cost for a
“guessed” sequence played by W .

• In problem (15.7), (15.11), among all control actions which robustly satisfy
the constraints, the player U chooses the one which minimizes an expected
cost over all the sequences, which can be played by W .

• The optimal control problem (15.8) and (15.11) is somehow more involved
and can be viewed as the solution of a zero-sum dynamic game. The player
U plays first. Given the initial state x(0), U chooses his action over the

15.1 Problem Formulation 321

whole horizon {u0, . . . , uN−1}, reveals his plan to the opponent W , who
decides on his actions next {wa

0 , w
p
0 , . . . , w

a
N−1, w

p
N−1} by solving (15.8). By

solving (15.8), (15.11), the player U selects the action corresponding to the
smallest worst-case cost.

Closed-Loop Predictions

The constrained robust optimal control problem based on closed-loop predictions
(CROC-CL) is defined as follows:

J∗
0 (x(0)) = minπ0(·),...,πN−1(·) J0(x(0), U0)

subj. to

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

xk+1 = A(wp
k)xk +B(wp

k)uk + Ewa
k

xk ∈ X , uk ∈ U
uk = πk(xk)
k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
∀wa

k ∈ Wa, ∀wp
k ∈ Wp

∀k = 0, . . . , N − 1.
(15.13)

In (15.13) we allow the same cost functions as in (15.6), (15.7) and (15.8).
In problem (15.13) we look for a set of time-varying feedback policies π0(·),. . .,

πN−1(·) which minimizes the performance index JW and generates input sequences
π0(x0),. . ., πN−1(xN−1) satisfying state and input constraints for all possible
disturbance realizations.

We can formulate the search for the optimal policies π0(·), . . . , πN−1(·) as a
dynamic program.

J∗
j (xj) = min

uj

Jj(xj , uj)

subj. to

{
xj ∈ X , uj ∈ U
A(wp

j)xj +B(wp
j)uj + Ewa

j ∈ Xj+1

}
∀wa

j ∈ Wa, wp
j ∈ Wp

(15.14)

Jj(xj , uj) = JW
[
q(xj , uj) + J∗

j+1(A(w
p
j)xj +B(wp

j)uj + Ewa
j)
]
, (15.15)

for j = 0, . . . , N − 1 and with boundary conditions

J∗
N (xN) = p(xN) (15.16a)

XN = Xf , (15.16b)

where Xj denotes the set of states x for which (15.14)–(15.16) is feasible

Xj = {x ∈ X : ∃u ∈ U s.t. A(wp)x+B(wp)u+ Ewa ∈ Xj+1 ∀wa ∈ Wa, wp ∈Wp},
(15.17)

and the cost operator JW belongs to one of the following classes:

• Nominal Cost

JW =
[
q(xj , uj) + J∗

j+1(A(w̄
p
j)xj +B(w̄p

j)uj + Ew̄a
j)
]
. (15.18)

322 15 Constrained Robust Optimal Control

• Expected Cost

JW = Ewa
j ∈Wa,wp

j∈Wp

[
q(xj , uj) + J∗

j+1(A(w
p
j)xj +B(wp

j)uj + Ewa
j)
]
.

(15.19)

• Worst Case Cost

JW = max
wa

j ∈Wa,wp
j∈Wp

[
q(xj , uj) + J∗

j+1(A(w
p
j)xj +B(wp

j)uj + Ewa
j)
]
.

(15.20)

If the 1-norm or∞-norm is used in the cost function of problems (15.18), (15.19)
and (15.20), then we set

p(xN) = ‖PxN‖p, q(xk, uk) = ‖Qxk‖p + ‖Ruk‖p (15.21)

with p = 1 or p = ∞. If the squared Euclidian norm is used then we set

p(xN) = x′
NPxN , q(xk, uk) = x′

kQxk + u′
kRuk. (15.22)

The reason for including constraints (15.14) in the minimization problem and
not in the inner problem (15.15) is that in (15.15) wa

j and wp
j are free to act

regardless of the state constraints. On the other hand in (15.14), the input uj has
the duty to keep the state within the constraints (15.14) for all possible disturbance
realization. By solving problem (15.14) at step j of the dynamic program, we obtain
the function uj(xj), i.e., the policy πj(·).

Again, the optimal control problem (15.14)–(15.15) can be viewed as a game
between two players: the controller U and the disturbance W . This time the player
U predicts that the game is going to be played as follows. At the generic time j
player U observes xj and responds with uj = πj(xj). Player W observes (xj , uj)
and responds with wa

j and wp
j . Therefore, regardless of the cost function in (15.15)

the player U counteracts any feasible disturbance realization wj with a feedback
controller πj(xj). This prediction model takes into account that the disturbance
and the controller play one move at a time.

The game is played differently depending on the cost function JW .

• In problem (15.14) and (15.18), among all the feedback policies uj = πj(xj)
which robustly satisfy the constraints, the player U chooses the one which
minimizes a cost for a “guessed” action w̄j played by W .

• In problem (15.14) and (15.19), among all the feedback policies uj = πj(xj)
which robustly satisfy the constraints, the player U chooses the one which
minimizes the expected cost at time j.

• The optimal control problem (15.14)–(15.20) is somehow more involved and
can be viewed as the solution of a zero-sum dynamic game. The player U
plays first. At the generic time j player U observes xj and responds with
uj = πj(xj). Player W observes (xj , uj) and responds with the wa

j and wp
j

which lead to the worst case cost. The player W will always play the worst
case action only if it has knowledge of both xj and uj = πj(xj). In fact,
wa

j and wp
j in (15.20) are a function of xj and uj . If U does not reveal his

15.1 Problem Formulation 323

action to player W , then we can only claim that the player W might play
the worst case action. Problem (15.14)–(15.20) is meaningful in both cases.
Robust constraint satisfaction and worst case minimization will always be
guaranteed.

Example 15.1 Consider the system

xk+1 = xk + uk + wk (15.23)

where x, u and w are state, input and disturbance, respectively. Let uk ∈ {−1, 0, 1}
and wk ∈ {−1, 0, 1} be the feasible input and disturbance. Here {−1, 0, 1} denotes the
set with three elements: -1, 0 and 1. Let x(0) = 0 be the initial state. The objective
for player U is to play two moves in order to keep the state x2 at time 2 in the set
[−1, 1]. If U is able to do so for any possible disturbance, then he will win the game.

The open-loop formulation (15.11) is infeasible. In fact, in open-loop U can choose
from nine possible sequences: (0,0), (1,1), (−1,−1), (−1,1) (1,−1), (−1,0), (1,0), (0,1)
and (0,−1). For any of those sequences there will always exist a disturbance sequence
w0, w1 which will bring x2 outside the feasible set [−1,1].

The closed-loop formulation (15.14)–(15.20) is feasible and has a simple feasible
solution: uk = −xk. In this case system (15.23) becomes xk+1 = wk and x2 = w1 lies
in the feasible set [−1, 1] for all admissible disturbances w1. The optimal feedback
policy might be different from uk = −xk and depends on the choice of the objective
function.

15.1.1 State Feedback Solutions Summary

In the following sections we will describe how to compute the solution to CROC-OL
and CROC-CL problems. In particular we will show that the solution to CROC-
OL and CROC-CL problem can be expressed in feedback form where u∗(k) is a
continuous piecewise affine function on polyhedra of the state x(k), i.e., u∗(k) =
fk(x(k)) where

fk(x) = F i
kx+ gik if Hi

kx ≤ Ki
k, i = 1, . . . , Nr

k . (15.24)

Hi
k and Ki

k in equation (15.24) are the matrices describing the i-th polyhedron
CRi

k = {x ∈ Rn : Hi
kx ≤ Ki

k} inside which the feedback optimal control law
u∗(k) at time k has the affine form F i

kx+ gik.
The optimal solution is continuous and has the form (15.24) in the following

cases.

• Nominal or worst-case performance index based on 1- and ∞-norm,

– CROC-OL with no uncertainty in the dynamics matrix A (i.e., A(·) = A)

– CROC-CL

• Nominal performance index based on 2-norm,

– CROC-OL with no uncertainty in the dynamics matrix A (i.e., A(·) = A)

324 15 Constrained Robust Optimal Control

If CROC-OL problems are considered, the set of polyhedra CRi
k, i = 1, . . . , Nr

k

is a polyhedral partition of the set of feasible states XOL
k (15.12) at time k.

If CROC-CL problems are considered, the set of polyhedra CRi
k, i = 1, . . . , Nr

k

is a polyhedral partition of the set of feasible states Xk of problem (15.17) at
time k.

The difference between the feasible sets XOL
k and Xk associated with open-loop

prediction and closed-loop prediction, respectively, are discussed in the next section.

Remark 15.2 CROC-OL and CROC-CL problems with expected cost performance
index are not treated in this book. In general, the calculation of expected costs
over polyhedral domains requires approximations via sampling or bounding even for
disturbances characterized by simple probability distribution functions (e.g., uniform
or Gaussian). Once the cost has been approximated, one can easily modify the
approaches described in this chapter to solve CROC-OL and CROC-CL problems
with expected cost performance index.

15.2 Feasible Solutions

As in the nominal case (Section 11.2), there are two ways to define and compute
the robust feasible sets: the batch approach and the recursive approach. While for
systems without disturbances, both approaches yield the same result, in the robust
case the batch approach provides the feasible set XOL

i of CROC with open-loop
predictions and the recursive approach provides the feasible set Xi of CROC with
closed-loop predictions. From the discussion in the previous sections, clearly we
have XOL

i ⊆ Xi. We will detail the batch approach and the recursive approach next
and at the end of the section we will show how to modify the batch approach in
order to compute Xi.

Batch Approach: Open-Loop Prediction

Consider the set XOL
i (15.12) of feasible states xi at time i for which (15.11) is

feasible, for i = 0, . . . , N , rewritten below

XOL
i = {xi ∈ X : ∃(ui, . . . , uN−1) such that xk ∈ X , uk ∈ U , k = i, . . . , N − 1,

xN ∈ Xf ∀ wa
k ∈ Wa, ∀ wp

k ∈ Wp k = i, . . . , N − 1,
where xk+1 = A(wp

k)xk +B(wp
k)uk + Ewa

k}.

Thus for any initial state xi ∈ XOL
i there exists a feasible sequence of inputs

Ui = [u′
i, . . . , u

′
N−1] which keeps the state evolution in the feasible set X at future

time instants k = i+ 1, . . . , N − 1 and forces xN into Xf at time N for all feasible
disturbance sequences wa

k ∈ Wa, wp
k ∈ Wp, k = i, . . . , N − 1. Clearly XOL

N = Xf .
Next we show how to compute XOL

i for i = 0, . . . , N−1. Let the state and input
constraint sets X , Xf and U be the H-polyhedra Axx ≤ bx, Afx ≤ bf , Auu ≤ bu,
respectively. Assume that the disturbance sets are represented in terms of their

15.2 Feasible Solutions 325

vertices: Wa = conv{wa,1, . . . , wa,nWa } and Wp = conv{wp,1, . . . , wp,nWp }. Define
Ui = [u′

i, . . . , u
′
N−1] and the polyhedron Pi of robustly feasible states and input

sequences at time i,

Pi = {(Ui, xi) ∈ Rm(N−i)+n : GiUi − Eixi ≤ Wi}. (15.25)

In (15.25) Gi, Ei and Wi are obtained by collecting all the following inequalities:

• Input Constraints
Auuk ≤ bu, k = i, . . . , N − 1.

• State Constraints

Axxk ≤ bx, k = i, . . . , N − 1 for all wa
l ∈ Wa, wp

l ∈ Wp, l = i, . . . , k − 1.
(15.26)

• Terminal State Constraints

AfxN ≤ bf , for all wa
l ∈ Wa, wp

l ∈ Wp, l = i, . . . , N − 1. (15.27)

Constraints (15.26)–(15.27) are enforced for all feasible disturbance sequences.
In order to do so, we rewrite constraints (15.26)–(15.27) at time k as a function of
xi and the input sequence Ui

Ax

(
Πk−1

j=i A(w
p
j)xi +

k−1∑
l=i

Πl−1
j=iA(w

p
j)(B(wp

k−1−l)uk−1−l + Ewa
k−1−l)

)
≤ bx.

(15.28)
In general, the constraint (15.28) is nonconvex in the disturbance sequences
wa

i , . . . , w
a
k−1, w

p
i , . . . , w

p
k−1 because of the product Πk−1

j=i A(w
p
j).

Assume that there is no uncertainty in the dynamics matrix A, i.e., A(·) = A.
In this case, since B(·) is an affine function of wp (cf. Equation (15.4)) and since the
composition of a convex constraint with an affine map generates a convex constraint
(Section 1.2), we can use Lemma 10.1 to rewrite constraints (15.26) at time k as

Ax

(
Ak−i−1xi +

k−1∑
l=i

Al−i−1(B(wp
k−1−l)uk−1−l + Ewa

k−1−l)

)
≤ bx,

for all wa
j ∈ {wa,i}nWa

i=1 , wp
j ∈ {wp,i}nWp

i=1 , ∀ j = i, . . . , k − 1,

k = i, . . . , N − 1,

(15.29)

and imposing the constraints at all the vertices of the sets Wa ×Wa × . . .×Wa︸ ︷︷ ︸
i,...,N−1

and Wp ×Wp × . . .×Wp︸ ︷︷ ︸
i,...,N−1

. Note that the constraints (15.29) are now linear in xi

and Ui. The same procedure can be repeated for constraint (15.27).

Remark 15.3 When only additive disturbances are present (i.e., np = 0), vertex
enumeration is not required and a set of linear programs can be used to transform
the constraints (15.26) into a smaller number of constraints than (15.29) as explained
in Lemma 10.2.

326 15 Constrained Robust Optimal Control

Once the matrices Gi, Ei and Wi have been computed, the set XOL
i is a

polyhedron and can be computed by projecting the polyhedron Pi in (15.25) on
the xi space.

Recursive Approach: Closed-Loop Prediction

In the recursive approach we have

Xi = {x ∈ X : ∃u ∈ U such that A(wp
i)x+B(wp

i)u+ Ewa
i ∈ Xi+1,

∀wa
i ∈ Wa, ∀wp

i ∈ Wp} , i = 0, . . . , N − 1

XN = Xf . (15.30)

The definition of Xi in (15.30) is recursive and it requires that for any feasible
initial state xi ∈ Xi there exists a feasible input ui which keeps the next state
A(wp

i)x+B(wp
i)u+Ewa

i in the feasible set Xi+1 for all feasible disturbances wa
i ∈

Wa, wp
i ∈ Wp.

Initializing XN to Xf and solving (15.30) backward in time yields the feasible set
X0 for the CROC-CL (15.14)–(15.16) which, as shown in Example 15.1, is different
from XOL

0 .
Let Xi be the H-polyhedron AXi

x ≤ bXi
. Then the set Xi−1 is the projection

of the following polyhedron⎡⎣ Au

0
AXi

B(wp
i)

⎤⎦ui−1 +

⎡⎣ 0
Ax

AXi
A(wp

i)

⎤⎦xi−1 ≤

⎡⎣ bu
bx

bXi
− Ewa

i

⎤⎦
for all wa

i ∈ {wa,i}nWa

i=1 ,

for all wp
i ∈ {wp,i}nWp

i=1

(15.31)

on the xi−1 space. (Note that we have used Lemma 10.1 and imposed state
constraints at all the vertices of the sets Wa ×Wp.)

Remark 15.4 When only additive disturbances are present (i.e., np = 0), vertex
enumeration is not required and a set of linear programs can be used to transform the
constraints in (15.30) into a smaller number of constraints than (15.31) as explained
in Lemma 10.2.

The backward evolution in time of the feasible sets Xi enjoys the properties
described by Theorems 11.1 and 11.2 for the nominal case. In particular, if a
robust controlled invariant set is chosen as terminal constraint Xf , then set Xi

grows as i becomes smaller and stops growing when it becomes the maximal robust
stabilizable set.

Theorem 15.1 Let the terminal constraint set Xf be a robust control invariant
subset of X . Then,

15.2 Feasible Solutions 327

1. The feasible set Xi, i = 0, . . . , N − 1 is equal to the (N − i)-step robust
stabilizable set:

Xi = KN−i(Xf ,W).

2. The feasible set Xi, i = 0, . . . , N−1 is robust control invariant and contained
within the maximal robust control invariant set:

Xi ⊆ C∞.

3. Xi ⊇ Xj if i < j, i = 0, . . . , N − 1. The size of the feasible Xi set stops
increasing (with decreasing i) if and only if the maximal robust stabilizable
set is finitely determined and N − i is larger than its determinedness index
N̄ , i.e.,

Xi ⊃ Xj if N − N̄ < i < j < N.

Furthermore,
Xi = K∞(Xf ,W) if i ≤ N − N̄ .

Batch Approach: Closed-Loop Prediction

The batch approach can be modified in order to obtain Xi instead of XOL
i . The main

idea is to augment the number of inputs by allowing one input sequence for each
vertex l of the set containing all disturbance sequences over the horizon [0,N-1].
We will explain the approach under the assumption that there is no parametric
uncertainty (w = wa). From causality, the input uj is a function of x0 and the
sequence w0, . . . , wj−1. Therefore, u0 will be unique, u1 a function of the vertices
of the disturbance set Wa, u2 a function of the vertices of the disturbance set
Wa × Wa, and uN−1 a function of Wa ×Wa × . . .×Wa︸ ︷︷ ︸

N−1

. The generic l-th input

sequence can be written as

Ul = [u0, ũ
j1
1 , ũj2

2 , . . . ũ
jN−1

N−1]

where the lower index denotes time, and the upper index is used to associate
a different input for every disturbance realization. For instance, at time 0 the
extreme realizations of additive uncertainty are nWa . At time 1 there is one
input for each realization and thus j1 ∈ {1, . . . , nWa}. At time 2 the number
of extreme realizations of the disturbance sequence w0, w1 is n2

Wa and therefore
j2 ∈ {1, . . . , n2

Wa}. By repeating this argument we have jk ∈ {1, . . . , nk
Wa},

k = 1, . . . , N − 1. In total we will have nN−1
Wa different control sequences Ul and

m
(
1 + nWa + n2

Wa + · · ·+ nN−1
Wa

)
control variables to optimize over.

Figure 15.1 depicts an example where the disturbance set has two vertices w1

and w2 (nWa = 2) and the horizon is N = 4. The continuous line represents the
occurrence of w1, while the dashed line represents the occurrence of w2. Over the
horizon there are eight possible scenarios associated to eight extreme disturbance
realizations. The state x̃j

3 denotes the predicted state at time 3 associated to the
j-th disturbance scenario.

Since the approach is computationally demanding, we prefer to present the main
idea through a very simple example rather than including all the tedious details.

328 15 Constrained Robust Optimal Control

(x0, u0)

(x̃ 1
1 , ũ1

1)

(x̃ 2
1 , ũ2

1)

(x̃ 1
2 , ũ1

2)

(x̃ 2
2 , ũ2

2)

(x̃ 3
2 , ũ3

2)

(x̃ 4
2 , ũ4

2)

(x̃ 1
3 , ũ1

3)

(x̃ 2
3 , ũ2

3)
(x̃ 3

3 , ũ3
3)

(x̃ 4
3 , ũ4

3)
(x̃ 5

3 , ũ5
3)

(x̃ 6
3 , ũ6

3)
(x̃ 7

3 , ũ7
3)

(x̃ 8
3 , ũ8

3)

Figure 15.1 Batch Approach with Closed-Loop Prediction. State propaga-
tion and associated input variables. The disturbance set has two vertices w1

and w2 (nWa = 2) and the horizon is N = 4. The continuous line represents
the occurrence of w1, while the dashed line represents the occurrence of
w2. Over the horizon there are eight possible scenarios associated to eight
extreme disturbance realizations. The state x̃j

3 denotes the predicted state
at time 3 associated to the j-th disturbance scenario.

Example 15.2 Consider the system

xk+1 = xk + uk + wk (15.32)

where x, u and w are state, input and disturbance, respectively. Let uk ∈ [−1, 1] and
wk ∈ [−1, 1] be the feasible input and disturbance. The objective for player U is to
play two moves in order to keep the state at time three x3 in the set Xf = [−1, 1].

• Batch approach
We rewrite the terminal constraint as

x3 = x0 + u0 + u1 + u2 + w0 + w1 + w2 ∈ [−1, 1]
for all w0 ∈ [−1, 1], w1 ∈ [−1, 1], w2 ∈ [−1, 1]

(15.33)

which by Lemma 10.1 becomes

−1 ≤ x0 + u0 + u1 + u2 + 3 ≤ 1
−1 ≤ x0 + u0 + u1 + u2 + 1 ≤ 1
−1 ≤ x0 + u0 + u1 + u2 − 1 ≤ 1
−1 ≤ x0 + u0 + u1 + u2 − 3 ≤ 1

(15.34)

which by removing redundant constraints becomes the constraint

2 ≤ x0 + u0 + u1 + u2 ≤ −2 (15.35)

which is infeasible and thus X0 = ∅. For the sake of clarity we continue with the
procedure as if we did not notice that constraint (15.35) was infeasible.

The set XOL
0 is the projection on the x0 space of the polyhedron P0 of combined

feasible input and state constraints

P0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(u0, u1, u2, x0) ∈ R4 :

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
−1 0 0
0 1 0
0 −1 0
0 0 1
0 0 −1
1 1 1
−1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎣ u0

u1

u2

⎤⎦+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
1
−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x0 ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
1
1
−2
−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

15.2 Feasible Solutions 329

The projection will provide an empty set since the last two constraints correspond
to the infeasible terminal state constraint (15.35).

• Recursive approach
For the recursive approach we have X3 = Xf = [−1, 1]. We rewrite the terminal
constraint as

x3 = x2 + u2 + w2 ∈ [−1, 1] for all w2 ∈ [−1, 1] (15.36)

which by Lemma 10.1 becomes

−1 ≤ x2 + u2 + 1 ≤ 1

−1 ≤ x2 + u2 − 1 ≤ 1
(15.37)

which by removing redundant constraints becomes

0 ≤ x2 + u2 ≤ 0.

The set X2 is the projection on the x2 space of the polyhedron⎡⎢⎢⎣
1 0
−1 0
1 1
−1 −1

⎤⎥⎥⎦[u2

x2

]
≤

⎡⎢⎢⎣
1
1
0
0

⎤⎥⎥⎦ (15.38)

which yields X2 = [−1, 1]. Since X2 = X3 one can conclude that X2 is the maximal
controllable robust invariant set and X0 = X1 = X2 = [−1, 1].

• Batch approach with closed-loop predictions∗

The horizon N is three and therefore we have 2(N−1) = 4 different control
sequences: {u0, ũ1

1, ũ1
2}, {u0, ũ1

1, ũ2
2}, {u0, ũ2

1, ũ3
2}, and {u0, ũ2

1, ũ4
2},

corresponding to the extreme disturbance realizations {w0 = −1, w1 = −1, w2},
{w0 = −1, w1 = 1, w2}, {w0 = 1, w1 = −1, w2} and {w0 = 1, w1 = 1, w2},
respectively.

The terminal constraint is thus rewritten as

−1 ≤ x0 + u0 + ũ1
1 + ũ1

2 − 1− 1 + w2 ≤ 1, ∀ w2 ∈ [−1, 1]

−1 ≤ x0 + u0 + ũ1
1 + ũ2

2 − 1 + 1 + w2 ≤ 1, ∀ w2 ∈ [−1, 1]

−1 ≤ x0 + u0 + ũ2
1 + ũ3

2 + 1− 1 + w2 ≤ 1, ∀ w2 ∈ [−1, 1]

−1 ≤ x0 + u0 + ũ2
1 + ũ4

2 + 1 + 1 + w2 ≤ 1, ∀ w2 ∈ [−1, 1]

−1 ≤ u0 ≤ 1

−1 ≤ ũ1
1 ≤ 1

−1 ≤ ũ2
1 ≤ 1

−1 ≤ ũ1
2 ≤ 1

−1 ≤ ũ2
2 ≤ 1

−1 ≤ ũ3
2 ≤ 1

−1 ≤ ũ4
2 ≤ 1

(15.39)

330 15 Constrained Robust Optimal Control

which becomes by using Lemma 10.1

−1 ≤ x0 + u0 + ũ1
1 + ũ1

2 − 1− 1 + 1 ≤ 1

−1 ≤ x0 + u0 + ũ1
1 + ũ1

2 − 1− 1− 1 ≤ 1

−1 ≤ x0 + u0 + ũ1
1 + ũ2

2 − 1 + 1 + 1 ≤ 1

−1 ≤ x0 + u0 + ũ1
1 + ũ2

2 − 1 + 1− 1 ≤ 1

−1 ≤ x0 + u0 + ũ2
1 + ũ3

2 + 1− 1 + 1 ≤ 1

−1 ≤ x0 + u0 + ũ2
1 + ũ3

2 + 1− 1− 1 ≤ 1

−1 ≤ x0 + u0 + ũ2
1 + ũ4

2 + 1 + 1 + 1 ≤ 1

−1 ≤ x0 + u0 + ũ2
1 + ũ4

2 + 1 + 1− 1 ≤ 1

−1 ≤ u0 ≤ 1

−1 ≤ ũ1
1 ≤ 1

−1 ≤ ũ2
1 ≤ 1

−1 ≤ ũ1
2 ≤ 1

−1 ≤ ũ2
2 ≤ 1

−1 ≤ ũ3
2 ≤ 1

−1 ≤ ũ4
2 ≤ 1.

(15.40)

The set X0 can be obtained by projecting the polyhedron (15.40) in the
(x0, u0, ũ1

1, ũ
2
1, ũ1

2, ũ2
2, ũ3

2, ũ4
2)-space on the x0 space. This yields X0 = [−1, 1],

the same as in the recursive approach.

15.3 State Feedback Solution, Nominal Cost

Theorem 15.2 Consider the CROC-OL (15.11) with cost (15.5), (15.6) and
(15.9) or (15.10). Assume that the parametric uncertainties are in the B matrix
only (A(wp) = A). Then, there exists a solution u∗(0) = fOL

0 (x(0)), f0 : Rn → Rm,
which is continuous and PPWA

fOL
0 (x) = F i

0x+ gi0 if x ∈ CRi
0, i = 1, . . . , Nr

0 (15.41)

where the polyhedral sets CRi
0 = {Hi

0x ≤ ki0}, i = 1, . . . , Nr
0 , are a partition of the

feasible set XOL
0 . Moreover f0 can be found by solving an mp-LP for cost (15.9)

and an mp-QP for cost (15.10). The same result holds for u∗(k) = fOL
k (x(0)),

k = 1, . . . , N − 1.

Proof: The proof can be easily derived from the results in Chapter 11. The
only difference is that the constraints have to be first “robustified” as explained in
Section 15.2. �
Theorem 15.3 There exists a state feedback control law u∗(k) = fk(x(k)), fk :
Xk ⊆ Rn → U ⊆ Rm, solution of the CROC-CL (15.14)–(15.16) with cost (15.18),
(15.21) and k = 0, . . . , N−1 which is time-varying, continuous and piecewise affine
on polyhedra

fk(x) = F i
kx+ gik if x ∈ CRi

k, i = 1, . . . , Nr
k (15.42)

15.4 State Feedback Solution, Worst-Case Cost, 1-Norm and ∞-Norm Case 331

where the polyhedral sets CRi
k = {x ∈ Rn:Hi

kx ≤ Ki
k}, i = 1, . . . , Nr

k are a partition
of the feasible polyhedron Xk. Moreover fi, i = 0, . . . , N −1 can be found by solving
N mp-LPs.

Proof: The proof can be easily derived from the results in Chapter 11. The
only difference is that the constraints have to be first robustified as explained in
Section 15.2. �

15.4 State Feedback Solution, Worst-Case Cost, 1-Norm
and ∞-Norm Case

In this chapter we show how to find a state feedback solution to CROC problems
when a worst case performance index is used. The following results will be used in
the next sections.

Lemma 15.1 Let f : Rs × Rn × Rnw → R and g : Rs × Rn × Rnw → Rng be
functions of (z, x, w) convex in w for each (z, x). Assume that the variable w belongs
to the polyhedron W with vertices {w̄i}NW

i=1 . Then the min-max multiparametric
problem

J∗(x) = minz maxw∈W f(z, x, w)
subj. to g(z, x, w) ≤ 0 ∀w ∈ W (15.43)

is equivalent to the multiparametric optimization problem

J∗(x) = minμ,z μ
subj. to μ ≥ f(z, x, w̄i), i = 1, . . . , NW

g(z, x, w̄i) ≤ 0, i = 1, . . . , NW .
(15.44)

Proof: Easily follows from the fact that the maximum of a convex function
over a convex set is attained at an extreme point of the set, cf. also [259]. �
Corollary 15.1 If f is convex and piecewise affine in (z, x), i.e., f(z, x, w) =
maxi=1,...,nf

{Li(w)z +Hi(w)x +Ki(w)} and g is linear in (z, x) for all w ∈ W,
g(z, x, w) = Lg(w)z + Hg(w)x + Kg(w) (with Lg(·), Hg(·), Kg(·), Li(·), Hi(·),
Ki(·), i = 1, . . . , nf , convex functions), then the min-max multiparametric prob-
lem (15.43) is equivalent to the mp-LP problem

J∗(x) = minμ,z μ
subj. to μ ≥ Lj(w̄i)z +Hj(w̄i)x+Kj(w̄i), i = 1, . . . , NW , j = 1, . . . , nf

Lg(w̄i)z +Hg(w̄i)x ≤ −Kg(w̄i), i = 1, . . . , NW .
(15.45)

Remark 15.5 As discussed in Lemma 10.2, in the case g(z, x, w) = g1(z, x) +
g2(w), the second constraint in (15.44) can be replaced by g1(z, x) ≤ −ḡ, where
ḡ =

[
ḡ1, . . . , ḡng

]′
is a vector whose i-th component is

ḡi = max
w∈W

gi2(w), (15.46)

332 15 Constrained Robust Optimal Control

and gi2(w) denotes the i-th component of g2(w). Similarly, if f(z, x, w) = f1(z, x) +
f2(w), the first constraint in (15.44) can be replaced by μ ≥ f1(z, x) + f̄ , where

f̄i = max
w∈W

f i
2(w). (15.47)

Clearly, this has the advantage of reducing the number of constraints in the
multiparametric program from NWng to ng for the second constraint in (15.44) and
from NWnf to nf for the first constraint in (15.44).

In the following subsections we show how to solve CROC problems in state
feedback form by using multiparametric linear programming.

15.4.1 Batch Approach: Open-Loop Predictions

Theorem 15.4 Consider the CROC-OL (15.5), (15.8), (15.9), (15.11). Assume
that the parametric uncertainties are in the B matrix only (A(wp) = A). Then,
there exists a solution u∗(0) = fOL

0 (x(0)), fOL
0 : Rn → Rm, which is continuous

and PPWA
fOL
0 (x) = F i

0x+ gi0 if x ∈ CRi
0, i = 1, . . . , Nr

0 (15.48)

where the polyhedral sets CRi
0 = {Hi

0x ≤ ki0}, i = 1, . . . , Nr
0 , are a partition of the

feasible set XOL
0 . Moreover f0 can be found by solving an mp-LP. The same result

holds for u∗(k) = fOL
k (x(0)), k = 1, . . . , N − 1.

Proof: Since xk = Akx0 +
∑k−1

k=0 A
i[B(wp

k−1−i)uk−1−i + Ewa
k−1−i] is a linear

function of the disturbanceswa = {wa
0 , . . . , w

a
N−1}, andwp = {wp

0 , . . . , w
p
N−1} for a

fixed input sequence and x0, the cost function in the maximization problem (15.8) is
convex and piecewise affine with respect to the optimization vectorswa andwp and
the parameters U0, x0. The constraints in (15.11) are linear in U0 and x0, for any
wa and wp. Therefore, by Corollary 15.1, problem (15.8)–(15.11) can be solved by
specifying the constraints (15.11) only at the vertices of the set Wa×Wa×. . .×Wa

and Wp × Wp × . . . × Wp and solving an mp-LP. The theorem follows from the
mp-LP properties described in Theorem 6.5. �

Remark 15.6 Note that Theorem 15.4 does not hold when parametric uncertainties
are present also in the A matrix. In this case the predicted state xk is a nonlinear
function of the vector wp.

Remark 15.7 In case of CROC-OL with additive disturbances only (wp(t) = 0) the
number of constraints in (15.11) can be reduced as explained in Remark 15.5.

15.4.2 Recursive Approach: Closed-Loop Predictions

Theorem 15.5 There exists a state feedback control law u∗(k) = fk(x(k)),
fk: Xk ⊆ Rn → U ⊆ Rm, solution of the CROC-CL (15.14)–(15.17) with

15.4 State Feedback Solution, Worst-Case Cost, 1-Norm and ∞-Norm Case 333

cost (15.20), (15.21) and k = 0, . . . , N − 1 which is time-varying, continuous and
piecewise affine on polyhedra

fk(x) = F i
kx+ gik if x ∈ CRi

k, i = 1, . . . , Nr
k (15.49)

where the polyhedral sets CRi
k = {x ∈ Rn : Hi

kx ≤ Ki
k}, i = 1, . . . , Nr

k are a
partition of the feasible polyhedron Xk. Moreover fi, i = 0, . . . , N − 1 can be found
by solving N mp-LPs.

Proof: Consider the first step j = N − 1 of dynamic programming applied to
the CROC-CL problem (15.14)–(15.20) with cost (15.9)

J∗
N−1(xN−1) = min

uN−1

JN−1(xN−1, uN−1) (15.50)

subj. to

⎧⎪⎨⎪⎩
xN−1 ∈ X , uN−1 ∈ U
A(wp

N−1)xN−1 +B(wp
N−1)uN−1 + Ewa

N−1 ∈ Xf

∀wa
N−1 ∈ Wa, ∀wp

N−1 ∈ Wp

(15.51)

JN−1(xN−1, uN−1) = max
wa

N−1∈Wa, wp
N−1∈Wp

⎧⎨⎩
‖QxN−1‖p + ‖RuN−1‖p+
+‖P (A(wp

N−1)xN−1+
+B(wp

N−1)uN−1 + Ewa
N−1)‖p

⎫⎬⎭.

(15.52)

The cost function in the maximization problem (15.52) is piecewise affine and
convex with respect to the optimization vector wa

N−1, w
p
N−1 and the parameters

uN−1, xN−1. Moreover, the constraints in the minimization problem (15.51) are
linear in (uN−1, xN−1) for all vectors wa

N−1, w
p
N−1. Therefore, by Corollary 15.1,

J∗
N−1(xN−1), u

∗
N−1(xN−1) and XN−1 are computable via the mp-LP:

J∗
N−1(xN−1) = min

μ,uN−1

μ

subj. to μ ≥ ‖QxN−1‖p + ‖RuN−1‖p +
+ ‖P (A(w̄p

h)xN−1 +B(w̄p
h)uN−1 + Ew̄a

i)‖p (15.53a)

xN−1 ∈ X , uN−1 ∈ U (15.53b)

A(w̄p
h)xN−1 +B(w̄p

h)uN−1 + Ew̄a
i ∈ XN (15.53c)

∀i = 1, . . . , nWa , ∀h = 1, . . . , nWp .

where {w̄a
i }nWa

i=1 and {w̄p
h}

nWp

h=1 are the vertices of the disturbance sets Wa and
Wp, respectively. By Theorem 6.5, J∗

N−1 is a convex and piecewise affine function
of xN−1, the corresponding optimizer u∗

N−1 is piecewise affine and continuous,
and the feasible set XN−1 is a convex polyhedron. Therefore, the convexity and
linearity arguments still hold for j = N−2, . . . , 0 and the procedure can be iterated
backwards in time j, proving the theorem. The theorem follows from the mp-LP
properties described in Theorem 6.5. �

334 15 Constrained Robust Optimal Control

Remark 15.8 Let na and nb be the number of inequalities in (15.53a) and (15.53c),
respectively, for any i and h. In case of additive disturbances only (nWp = 0) the
total number of constraints in (15.53a) and (15.53c) for all i and h can be reduced
from (na + nb)nWanWp to na + nb as shown in Remark 15.5.

Remark 15.9 The closed-loop solution u∗(k) = fk(x(k)) can be also obtained by
using the modified batch approach with closed-loop prediction as discussed in Section
15.2. The idea there is to augment the number of free inputs by allowing one sequence
ũi
0, . . . ũ

i
N−1 for each vertex i of the disturbance set Wa ×Wa × . . .×Wa︸ ︷︷ ︸

N−1

. The large

number of extreme points of such a set and the resulting large number of inputs and
constraints make this approach computationally hard.

Solution to CROC-CL and CROC-OL via mp-MILP

Theorems 15.2–15.5 propose different ways of finding the PPWA solution to
constrained robust optimal control by using multiparametric programs. The
solution approach presented in this section is more general than the one of
Theorems 15.2–15.5 as it does not exploit convexity, so that it may also be used
in other contexts, for instance for CROC-CL of hybrid systems, or for CROC of
uncertain systems of the type x(t+ 1) = Ax(t) + Bu(t) + Ewa(t) where A and B
belong to a finite discrete set of known matrices.

Consider the multiparametric mixed-integer linear program (mp-MILP)

J∗(x) = min
z

{J(z, x) = c′z}
subj. to Gz ≤ w + Sx.

(15.54)

where z = [zc, zd], zc ∈ Rnc , zd ∈ {0, 1}nd , s = nc + nd, z ∈ Rs is the optimization
vector and x ∈ Rn is the vector of parameters.

For a given polyhedral set K ⊆ Rn of parameters, solving (15.54) amounts to
determining the set K∗ ⊆ K of parameters for which (15.54) is feasible, the value
function J : K∗ → R, and the optimizer function1 z∗ : K∗ → Rs.

The properties of J∗(·) and z∗(·) have been analyzed in Section 6.4.1 and
summarized in Theorem 6.10. Below we state some properties based on these
theorems.

Lemma 15.2 Let J : Rs × Rn → R be a continuous piecewise affine (possibly
nonconvex) function of (z, x),

J(z, x) = Liz +Hix+Ki for [zx] ∈ Ri, (15.55)

where {Ri}nJ
i=1 are polyhedral sets with disjoint interiors, R =

⋃nJ

i=1 Ri is a (possibly
nonconvex) polyhedral set and Li, Hi and Ki are matrices of suitable dimensions.
Then the multiparametric optimization problem

1 In case of multiple solutions, we define z∗(x) as one of the optimizers.

15.4 State Feedback Solution, Worst-Case Cost, 1-Norm and ∞-Norm Case 335

J∗(x) = minz J(z, x)
subj. to Cz ≤ c+ Sx

(15.56)

is an mp-MILP.

Proof: By following the approach of [42] to transform piecewise affine functions
into a set of mixed-integer linear inequalities, introduce the auxiliary binary
optimization variables δi ∈ {0, 1}, defined as

[δi = 1] ↔
[
[zx] ∈ Ri

]
, (15.57)

where δi, i = 1, . . . , nJ , satisfy the exclusive-or condition
∑nJ

i=1 δi = 1, and set

J(z, x) =

nJ∑
i=1

qi (15.58)

qi = [Liz +Hix+Ki]δi (15.59)

where qi are auxiliary continuous optimization vectors. By transforming (15.57)–
(15.59) into mixed-integer linear inequalities [42], it is easy to rewrite (15.56) as a
multiparametric MILP. �

Next we present two theorems which describe how to use mp-MILP to solve
CROC-OL and CROC-CL problems.

Theorem 15.6 By solving two mp-MILPs, the solution U∗
0 (x0) to the CROC-

OL (15.8), (15.9), (15.11) with additive disturbances only (np = 0) can be computed
in explicit piecewise affine form (15.48).

Proof: The objective function in the maximization problem (15.8) is convex
and piecewise affine with respect to the optimization vector wa = {wa

0 , . . . , w
a
N−1}

and the parameters U = {u0, . . . , uN−1}, x0. By Lemma 15.2, it can be solved via
mp-MILP. By Theorem 6.10, the resulting value function J is a piecewise affine
function of U and x0 and the constraints in (15.11) are a linear function of the
disturbance wa for any given U and x0. Then, by Lemma 15.2 and Corollary
15.1 the minimization problem is again solvable via mp-MILP, and the optimizer
U∗ = {u∗

0,. . . ,u
∗
N−1} is a piecewise affine function of x0. �

Theorem 15.7 By solving 2N mp-MILPs, the solution of the CROC-
CL (15.14)–(15.17) problem with cost (15.20), (15.21) and additive disturbances
only (np = 0) can be obtained in state feedback piecewise affine form (15.49).

Proof: Consider the first step j = N − 1 of the dynamic programming solution
to CROC-CL. The cost-to-go at step N − 1 is p(xN) from (15.16). Therefore, the
cost function in the maximization problem is piecewise affine with respect to both
the optimization vector wa

N−1 and the parameters uN−1, xN−1. By Lemma 15.2,
the worst case cost function (15.20) can be computed via mp-MILP, and, from
Theorem 6.10 we know that JN−1(uN−1, xN−1) is a piecewise affine function. Then,
since constraints (15.51) are linear with respect to wa

N−1 for each uN−1, xN−1, we
can apply Corollary 15.1 and Remark 15.5 by solving LPs of the form (10.54).

336 15 Constrained Robust Optimal Control

Then, by Lemma 15.2, the optimal cost J∗
N−1(xN−1) of the minimization problem

(15.14) is again computable via mp-MILP, and by Theorem 6.10 it is a piecewise
affine function of xN−1. By virtue of Theorem 6.10, XN−1 is a (possible nonconvex)
polyhedral set and therefore the above maximization and minimization procedures
can be iterated to compute the solution (15.49) to the CROC-CL problem. �

15.5 Parametrizations of the Control Policies

From the previous sections it is clear that CROC-OL (15.5)–(15.11) is conservative
since we are optimizing an open-loop control sequence that has to cope with all
possible future disturbance realizations, without taking future measurements into
account. The CROC-CL (15.14)–(15.16) formulation overcomes this issue but it
can quickly lead to a problem so large that it becomes intractable.

This section presents an alternative approach which introduces feedback in the
system and, in some cases, can be more efficient than CROC-CL. The idea is
to parameterize the control sequence in the state vector and optimize over these
parameters. The approach is described next for systems with additive uncertainties.

Consider the worst case cost function as

J0(x(0), U0) = maxwa
0 ,...,w

a
N−1

p(xN) +

N−1∑
k=0

q(xk, uk)

subj. to

⎧⎨⎩ xk+1 = Axk +Buk + Ewa
k

wa
k ∈ Wa,

k = 0, . . . , N − 1

(15.60)

where N is the time horizon and U0 = [u′
0, . . . , u

′
N−1]

′ ∈ Rs, s = mN the vector of
the input sequence. Consider the robust optimal control problem

J∗
0 (x0) =min

U0

J0(x0, U0) (15.61)

subj. to

⎧⎪⎪⎨⎪⎪⎩
xk ∈ X , uk ∈ U
xk+1 = Axk +Buk + Ewa

k

xN ∈ Xf

k = 0, . . . , N − 1

⎫⎪⎪⎬⎪⎪⎭ ∀wa
k ∈ Wa

∀k = 0, . . . , N − 1
(15.62)

Consider the parametrization of the control sequence

uk =
k∑

i=0

Lk,ixi + gi, k ∈ {0, . . . , N − 1} (15.63)

with the compact notation:
U0 = Lx+ g,

where x = [x′
0, x

′
1, . . . , x

′
N]

′
and

L =

⎡⎢⎣ L0,0 0 · · · 0
...

. . .
. . .

...
LN−1,0 · · · LN−1,N−1 0

⎤⎥⎦ , g =

⎡⎢⎣ g0
...

gN−1

⎤⎥⎦ (15.64)

15.5 Parametrizations of the Control Policies 337

where L ∈ RmN×nN and g ∈ RmN are unknown feedback control gain and offset,
respectively. With the parametrization (15.63) the robust control problem (15.60)–
(15.62) becomes

JLg
0 (x(0), L, g) = maxwa

0 ,...,w
a
N−1

p(xN) +

N−1∑
k=0

q(xk, uk)

subj. to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xk+1 = Axk +Buk + Ewa
k

wa
k ∈ Wa,

uk =

k∑
i=0

Lk,ixi + gi

k = 0, . . . , N − 1

(15.65)

JLg
0

∗
(x0) =min

L,g
JLg
0 (x0, L, g) (15.66)

subj. to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xk ∈ X , uk ∈ U
xk+1 = Axk +Buk + Ewa

k

uk =

k∑
i=0

Lk,ixi + gi

xN ∈ Xf

k = 0, . . . , N − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∀wa

k ∈ Wa

∀k = 0, . . . , N − 1.

(15.67)

We denote with XLg
0 ⊆ X the set of states x0 for which the robust optimal control

problem (15.66)–(15.67) is feasible, i.e.,

XLg
0 =

{
x0 ∈ Rn : PLg

0 (x0) 	= ∅
}

PLg
0 (x0) =

{
L, g : xk ∈ X , uk ∈ U , k = 0, . . . , N − 1, xN ∈ Xf

∀ wa
k ∈ Wa k = 0, . . . , N − 1,

where xk+1 = Axk +Buk + Ewa
k , uk =

k∑
i=0

Lk,ixi + gi

}
.

(15.68)

Problem (15.65) looks for the worst value of the performance index JLg
0 (x0, L, g)

and the corresponding worst sequences wa∗ as a function of x0 and the controller
gain L and offset g.

Problem (15.66)–(15.67) minimizes (over L and g) the worst performance
subject to the constraint that the input sequence U0 = Lx + g must be feasible
for all possible disturbance realizations. Notice that formulation (15.65)–(15.67) is

based on a closed-loop prediction. Unfortunately the set PLg
0 (x0) is nonconvex, in

general [194]. Therefore, finding L and g for a given x0 may be difficult.
Consider now the parametrization of the control sequence in past disturbances

uk =
k−1∑
i=0

Mk,iw
a
i + vi, k ∈ {0, . . . , N − 1}, (15.69)

338 15 Constrained Robust Optimal Control

which can be compactly written as:

U0 = Mwa + v

where

M =

⎡⎢⎢⎢⎣
0 · · · · · · 0

M1,0 0 · · · 0
...

. . .
. . .

...
MN−1,0 · · · MN−1,N−2 0

⎤⎥⎥⎥⎦ , v =

⎡⎢⎢⎢⎢⎣
v0
...
...

vN−1

⎤⎥⎥⎥⎥⎦ . (15.70)

Notice that since

Ewa
k = xk+1 −Axk −Buk, k ∈ {0, . . . , N − 1}.

the parametrization (15.69) can also be interpreted as a parametrization in the
states. The advantages of using (15.69) are explained next.

With the parametrization (15.69) the robust control problem (15.60)–(15.62)
becomes

JMv
0 (x0,M, v) = maxwa

0 ,...,w
a
N−1

p(xN) +

N−1∑
k=0

q(xk, uk)

subj. to

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xk+1 = Axk +Buk + Ewa
k

wa
k ∈ Wa,

uk =

k−1∑
i=0

Mk,iw
a
i + vi

k = 0, . . . , N − 1

(15.71)

JMv
0

∗
(x0) =min

M,v
JMv
0 (x0,M, v) (15.72)

subj. to

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

xk ∈ X , uk ∈ U
xk+1 = Axk +Buk + Ewa

k

uk =
k−1∑
i=0

Mk,iw
a
i + vi

xN ∈ Xf

k = 0, . . . , N − 1

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
∀wa

k ∈ Wa

∀k = 0, . . . , N − 1.

(15.73)

The problem (15.71)–(15.73) is now convex in the controller parameters M and v.
As solution we obtain u∗(0) = f0(x(0)) = v0(x(0)).

We denote with XMv
0 ⊆ X the set of states x0 for which the robust optimal

control problem (15.72)–(15.73) is feasible, i.e.,

XMv
0 =

{
x0 ∈ Rn : PMv

0 (x0) 	= ∅
}

PMv
0 (x0) =

{
M, v : xk ∈ X , uk ∈ U , k = 0, . . . , N − 1, xN ∈ Xf

∀ wa
k ∈ Wa k = 0, . . . , N − 1, where xk+1 = Axk +Buk + Ewa

k ,

uk =

k−1∑
i=0

Mk,iw
a
i + vi

}
.

(15.74)

15.5 Parametrizations of the Control Policies 339

The following result has been proven in [130], the convexity property has also
appeared in [194][Section 7.4].

Theorem 15.8 Consider the control parameterizations (15.63), (15.69) and the

corresponding feasible sets XLg
0 in (15.68) and XMv

0 in (15.74). Then,

XLg
0 = XMv

0

and PMv
0 (x0) is convex in M and v.

Note that in general XMv
0 and JMv

0
∗
(x0) are different from the corresponding

CROC-CL solutions X0 and J∗
0 (x0). In particular XMv

0 ⊆ X0 and JMv
0

∗
(x0) ≥

J∗
0 (x0).
Next we solve the problem in Example 15.2 by using the approach discussed in

this section. The example will shed some light on how to compute the disturbance
feedback gains by means of convex optimization.

Example 15.3 Consider the system

xk+1 = xk + uk + wk (15.75)

where x, u and w are state, input and disturbance, respectively. Let uk ∈ [−1, 1] and
wk ∈ [−1, 1] be the feasible input and disturbance. The objective for player U is to
play two moves in order to keep the state x3 in the set Xf = [−1, 1].
Rewrite the terminal constraint as

x3 = x0 + u0 + u1 + u2 + w0 + w1 + w2 ∈ [−1, 1]
∀ w0 ∈ [−1, 1], w1 ∈ [−1, 1], w2 ∈ [−1, 1].

(15.76)

The control inputs u are parameterized in past disturbances as in equation (15.69)

u0 = v0
u1 = v1 +M1,0w0

u2 = v2 +M2,0w0 +M2,1w1.
(15.77)

Input constraints and terminal constraint are rewritten as

x0 + v0 + v1 + v2 + (1 +M1,0 +M2,0)w0 + (1 +M2,1)w1 + w2 ∈ [−1, 1]
u0 = v0 ∈ [−1, 1]
u1 = v1 +M1,0w0 ∈ [−1, 1]
u2 = v2 +M2,0w0 +M2,1w1 ∈ [−1, 1]
∀ w0 ∈ [−1, 1], w1 ∈ [−1, 1], w2 ∈ [−1, 1].

(15.78)

There are two approaches to convert the infinite number of constraints (15.78) into
a set of finite number of constraint. The first approach has been already presented
in this chapter and resorts to disturbance vertex enumeration. The second approach
uses duality. We will present both approaches next.

• Enumeration method

Constraint (15.78) are linear in w0, w1 and w2 for fixed v0, v1, v2, M1,0, M2,0,
M2,1. Therefore the worst case will occur at the extremes of the admissible dis-
turbance realizations, i.e., {(1, 1, 1), (1, 1,−1), (−1, 1, 1), (−1, 1,−1), (1,−1, 1),

340 15 Constrained Robust Optimal Control

(1,−1,−1), (−1,−1, 1), (−1,−1,−1)}. Therefore the constraints (15.78) can be
rewritten as:

x0 + v0 + v1 + v2 + (1 +M1,0 +M2,0) + (1 +M2,1) + 1 ∈ [−1, 1]
x0 + v0 + v1 + v2 + (1 +M1,0 +M2,0) + (1 +M2,1)− 1 ∈ [−1, 1]
x0 + v0 + v1 + v2 − (1 +M1,0 +M2,0) + (1 +M2,1) + 1 ∈ [−1, 1]
x0 + v0 + v1 + v2 − (1 +M1,0 +M2,0) + (1 +M2,1)− 1 ∈ [−1, 1]
x0 + v0 + v1 + v2 + (1 +M1,0 +M2,0)− (1 +M2,1) + 1 ∈ [−1, 1]
x0 + v0 + v1 + v2 + (1 +M1,0 +M2,0)− (1 +M2,1)− 1 ∈ [−1, 1]
x0 + v0 + v1 + v2 − (1 +M1,0 +M2,0)− (1 +M2,1) + 1 ∈ [−1, 1]
x0 + v0 + v1 + v2 − (1 +M1,0 +M2,0)− (1 +M2,1)− 1 ∈ [−1, 1]
u0 = v0 ∈ [−1, 1]
u1 = v1 +M1,0 ∈ [−1, 1]
u1 = v1 −M1,0 ∈ [−1, 1]
u2 = v2 +M2,0 +M2,1 ∈ [−1, 1]
u2 = v2 +M2,0 −M2,1 ∈ [−1, 1]
u2 = v2 −M2,0 +M2,1 ∈ [−1, 1]
u2 = v2 −M2,0 −M2,1 ∈ [−1, 1].

(15.79)

A feasible solution to (15.79) can be obtained by solving a linear optimization
problem for a fixed initial condition x0. If we set x0 = 0.8, a feasible solution to
(15.79) is

v0 = −0.8, v1 = 0, v2 = 0
M1,0 = −1, M2,0 = 0, M2,1 = −1

(15.80)

which provides the controller

u0 = −0.8
u1 = −w0

u2 = −w1

(15.81)

which corresponds to
u0 = −0.8
u1 = −x1

u2 = −x2.
(15.82)

• Duality method

Duality can be used to avoid vertex enumeration. Consider the first constraint
in (15.78):

x0 + v0 + v1 + v2 + (1 +M1,0 +M2,0)w0 + (1 +M2,1)w1 + w2 ≤ 1,
∀ w0 ∈ [−1, 1], ∀w1 ∈ [−1, 1], ∀w2 ∈ [−1, 1].

(15.83)

We want to replace it with the most stringent constraint, i.e.,

x0 + v0 + v1 + v2+J∗(M1,0,M2,0,M2,1) ≤ 1 (15.84)

where

J∗(M1,0,M2,0,M2,1) = maxw0,w1,w2 (1 +M1,0 +M2,0)w0 + (1 +M2,1)w1 + w2

subj. to w0 ∈ [−1, 1], w1 ∈ [−1, 1], w2 ∈ [−1, 1].
(15.85)

For fixedM1,0,M2,0,M2,1 the optimization problem in (15.85) is a linear program
and can be replaced by its dual

x0 + v0 + v1 + v2 + d∗(M1,0,M2,0,M2,1) ≤ 1 (15.86)

15.5 Parametrizations of the Control Policies 341

where

d∗(M1,0,M2,0,M2,1) = minλu
i ,λl

i
λu
0 + λu

1 + λu
2 + λl

0 + λl
1 + λl

2

subject to 1 +M1,0 +M2,0 + λl
0 − λu

0 = 0

1 +M2,1 + λl
1 − λu

1 = 0

1 + λl
2 − λu

2 = 0

λu
i ≥ 0, λl

i ≥ 0, i = 0, 1, 2

(15.87)

where λu
i and λl

i are the dual variables corresponding to the upper- and lower-
bounds of wi, respectively. From strong duality we know that for a given v0,
v1, v2, M1,0, M2,0, M2,1 problem (15.84)–(15.85) is feasible if and only if there
exists a set of λu

i and λl
i which together with v0, v1, v2, M1,0, M2,0, M2,1 solves

the system of equalities and inequalities

x0 + v0 + v1 + v2+λu
0 + λu

1 + λu
2 + λl

0 + λl
1 + λl

2 ≤ 1

1 +M1,0 +M2,0 + λl
0 − λu

0 = 0

1 +M2,1 + λl
1 − λu

1 = 0

1 + λl
2 − λu

2 = 0

λu
i ≥ 0, λl

i ≥ 0, i = 0, 1, 2.

(15.88)

We have transformed an infinite dimensional set of constraints in (15.83) into
a finite dimensional set of linear constraints (15.88). By repeating the same
procedure for every constraint in (15.78) we obtain a set of linear constraints. In
particular,

x0 + v0 + v1 + v2 + (1 +M1,0 +M2,0)w0 + (1 +M2,1)w1 + w2 ∈ [−1, 1]
∀ w0 ∈ [−1, 1], w1 ∈ [−1, 1], w2 ∈ [−1, 1]

is transformed into

x0 + v0 + v1 + v2 + λu
0 + λu

1 + λu
2 + λl

0 + λl
1 + λl

2 ≤ 1

−x0 − v0 − v1 − v2 + μu
0 + μu

1 + μu
2 + μl

0 + μl
1 + μl

2 ≤ 1

1 +M1,0 +M2,0 + λl
0 − λu

0 = 0

1 +M2,1 + λl
1 − λu

1 = 0

1 + λl
2 − λu

2 = 0

−1−M1,0 −M2,0 + μl
0 − μu

0 = 0

−1−M2,1 + μl
1 − μu

1 = 0

−1− μl
2 − μu

2 = 0

λu
i , λl

i, μu
i , μl

i ≥ 0, i = 0, 1, 2,

(15.89)

and
u1 = v1 +M1,0w0 ∈ [−1, 1]
∀ w0 ∈ [−1, 1], w1 ∈ [−1, 1], w2 ∈ [−1, 1]

is transformed into
v1 + νu

0 + νl
0 ≤ 1

−v1 + κu
0 + κl

0 ≤ 1

M1,0 + νl
1 − νu

1 = 0

−M1,0 + κl
1 − κu

1 = 0

κu
0 , κl

0, νu
0 , νl

0 ≥ 0,

(15.90)

and
u2 = v2 +M2,0w0 +M2,1w1 ∈ [−1, 1]
∀ w0 ∈ [−1, 1], w1 ∈ [−1, 1], w2 ∈ [−1, 1]

342 15 Constrained Robust Optimal Control

is transformed into
v2 + ρu0 + ρu1 + ρl0 + ρl1 ≤ 1

−v2 + πu
0 + πu

1 + πl
0 + πl

1 ≤ 1

M2,0 + ρl0 − ρu0 = 0

M2,1 + ρl1 − ρu1 = 0

−M2,0 + πl
0 − πu

0 = 0

−M2,1 + πl
1 − πu

1 = 0

ρui , ρli, πu
i , πl

i ≥ 0, i = 0, 1

(15.91)

and the constraint

u0 = v0 ∈ [−1, 1] (15.92)

remains unchanged. The solution to the set of linear of equalities and inequali-
ties (15.89)–(15.92) for a given x0 provides the solution to our problem.

15.6 Example

Example 15.4 Consider the problem of robustly regulating to the origin the system

x(t+ 1) =

[
1 0.1

−0.2 1

]
x(t) +

[
−0.5
1

]
u(t) + wa(t)

subject to the input constraints

U = {u ∈ R : − 3 ≤ u ≤ 1}

and the state constraints

X = {x ∈ R2 : − 10 ≤ x ≤ 10, k = 0, . . . , 3}.

The two-dimensional disturbance wa is restricted to the set Wa = {v : ‖wa‖∞ ≤ 2}.
We use the cost function

‖PxN‖∞ +

N−1∑
k=0

(‖Qxk‖∞ + |Ruk|)

with N = 3, P = Q = [1 1
0 1], R = 1.8 and we set Xf = X .

We compute three robust controllers CROC-OL, CROC-CL and CROC with
disturbance feedback parametrization.

CROC-OL. The min-max state feedback control law u∗(k) = fOL
k (x(0)), k =

1, . . . , N − 1 is obtained by solving the CROC-OL (15.8), (15.9), (15.11). The
polyhedral partition corresponding to u∗(0) consists of 64 regions and it is depicted
in Figure 15.2(a).

CROC-CL. The min-max state feedback control law u∗(k) = fCL
k (x(k)), k =

1, . . . , N − 1 obtained by solving problem (15.14)–(15.16), (15.20), (15.21) using the
approach of Theorem 15.5. The resulting polyhedral partition for k = 0 consists of
14 regions and is depicted in Figure 15.2(b).

15.7 Robust Receding Horizon Control 343

x
2

x1

(a) Example 15.4. Solution to the
CROC-OL problem. Polyhedral
partition of the state space.

x1

x
2

(b) Example 15.4. Solution to the
CROC-CL problem. Polyhedral
partition of the state space.

Figure 15.2 Example 15.4. Polyhedral partition of the state space corre-
sponding to the explicit solution of CROC-OL and CROC-CL at time t = 0.

x
2

x1

(a) Example 15.4. Solution to
the CROC-Parametrized prob-
lem. Polyhedral partition of the
state space.

x1

x
2

X0=X0
Mv

X0
OL

(b) Example 15.4. Sets XOL
0

(dashed line), X0 (continuous
line) and XMv

0 (continuous line).

Figure 15.3 Example 15.4. (a) Polyhedral partition of the state space
corresponding to the explicit solution of CROC-Parametrized at time t = 0.
(b) Sets XOL

0 , X0 and XMv
0 corresponding to the controllers CROC-OL,

CROC-CL and CROC-Parameterized, respectively.

CROC-Parameterized. The min-max state feedback control law u∗(k) =
fpar
k (x(0)), k = 1, . . . , N − 1 obtained by solving problem (15.71)–(15.73) using
the approach described in Example 15.3. The resulting polyhedral partition for
k = 0 consists of 136 regions and is depicted in Figure 15.3(a). Figure 15.3(b) shows
the set of feasible initial states XOL

0 , X0 and XMv
0 corresponding to the controllers

CROC-OL, CROC-CL and CROC-Parameterized, respectively.

15.7 Robust Receding Horizon Control

A robust receding horizon controller for system (15.1)–(15.4) which enforces the
constraints (15.2) at each time t in spite of additive and parametric uncertainties
can be obtained by setting

u(t) = f∗
0 (x(t)), (15.93)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Robust_OL.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Robust_CL.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Robust_Parametrized.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/Robust_Parametrized_Comparison.m

344 15 Constrained Robust Optimal Control

where f∗
0 (x(0)) : R

n → Rm is the solution to the CROC-OL or CROC-CL problems
discussed in the previous sections.

If f0 is computed by solving CROC-CL (15.14)–(15.17) (CROC-OL (15.11)),
then the RHC law (15.93) is called a robust receding horizon controller with
closed-loop (open-loop) predictions. The closed-loop system obtained by control-
ling (15.1)–(15.4) with the RHC (15.93) is

x(k+1) = A(wp)x(k)+B(wp)f0(x(k)) +Ewa = fcl(x(k), w
p, wa), k ≥ 0 (15.94)

If the CROC falls in one of the classes presented in Section 15.1.1 then from the
theorems presented in this chapter we can immediately conclude that the robust
RHC law (15.93) is piecewise affine and thus its on-line computation comprises a
function evaluation.

As discussed in Chapter 12 convergence and persistent feasibility of the
robust receding horizon controller are not guaranteed for nominal receding horizon
controllers. In the robust RHC case it is desirable to obtain robust convergence to
a set O ⊆ Xf (rather than convergence to an equilibrium point) for all X0. In other
words, the goal is to design a RHC control law which drives any feasible state in
X0 into the set O for all admissible disturbances and keeps the states inside the set
O for all future time and for all admissible disturbances. Clearly this is possible
only if O is a robust control invariant set for system (15.1)–(15.4).

We define a distance of a point x ∈ Rn from a nonempty set Y ⊂ Rn as:

d(x,Y) = inf
y∈Y

d(x, y) (15.95)

The following theorem presents sufficient conditions for convergence and
persistent feasibility in the robust case. It can be proven by using the arguments
of Theorem 12.2. Slightly modified versions can be found with proof and further
discussion in [247, p. 213–217, p. 618] and in [23, Section 7.6].

Theorem 15.9 Consider system (15.1)–(15.4), the closed-loop RHC law (15.93)
where f0(x) is obtained by solving the CROC-CL (15.14)–(15.16) with cost
(15.20), (15.21) for x(0) = x and the closed-loop system (15.94). Assume that

(A0) There exist constants c1, c2, c3, c4 > 0 such that

c1d(x,O) ≤ p(x) ≤ c2d(x,O) ∀x ∈ X0 (15.96)

c3d(x,O) ≤ q(x, u) ≤ c4d(x,O) ∀(x, u) ∈ X0 × U (15.97)

(A1) The sets X , Xf , U , Wa, Wp are compact.

(A2) Xf and O are robust control invariants, O ⊆ Xf ⊆ X .

(A3) Jp(x) ≤ 0 ∀x ∈ Xf where

Jp(x) = minu∈U maxwa,wp p(x+)− p(x) + q(x, u)

subj. to

{
wa ∈ Wa, wp ∈ Wp

x+ = A(wp)x+B(wp)u+ Ewa

(15.98)

Then, for all x ∈ X0, limk→∞ d(x(k),O) = 0.

15.8 Literature Review 345

Compare Theorem 15.9 with the nominal MPC stability results in Theorem
12.2.

• Assumption (A0) characterizes stage cost q(x, u) and terminal cost p(x) in
both the nominal and the robust case. In the robust case q and p need to be
zero in O, positive and finitely determined outside O and continuous on the
border of O. Assumption (A0) of Theorem 15.9 guarantees these properties.
Note that this cannot be obtained, for instance, with the cost (15.22)
in (15.8).

• Assumption (A1) characterizes the initial sets in both the nominal and the
robust case. Notice that the compactness of Wa and Wp is required to have
a finite cost in the inner maximization problem. In unconstrained min-max
problems often the stage cost is augmented with the term −ρ2‖w‖ to have
a well defined maximization problem [247] [Section 3.3.3].

• Assumption (A2) characterizes the terminal set in both the nominal and the
robust case. Recall that, as discussed earlier, the set O takes the role of the
origin for the nominal case. The set O must also be a robust invariant.

• Assumption (A3) characterizes the terminal cost in both the nominal and
the robust case. The minimization problem in the nominal cases is replaced
by the min-max problem in the robust case. Robust control invariance of the
set Xf in assumption (A2) of Theorem 15.9 implies that problem (15.98) in
assumption (A3) is always feasible.

Remark 15.10 Robust control invariance of the setO in assumption (A2) of Theorem
15.9 is also implicitly guaranteed by assumption (A3) as shown next.

Because of assumption (A0), assumption (A3) in O becomes

min
u

max
wa,wp

(p(A(wp)x+B(wp)u+ Ewa) ≤ 0 ∀x ∈ O.

From assumption (A4), this can be verified only if it is equal to zero, i.e., if there
exists a u ∈ U such that A(wp)x + B(wp)u + Ewa ∈ O for all wa ∈ Wa wp ∈ Wp

(since O is the only place where p(x) can be zero). This implies the robust control
invariance of O.

15.8 Literature Review

An extensive treatment of robust invariant sets can be found in [57, 58, 51, 59].
The proof to Theorem 10.2 can be fond in [172, 100] For the derivation of
the algorithms 10.4, 10.5 for computing robust invariant sets (and their finite
termination) see [10, 49, 172, 124, 164].

Min-max robust constrained optimal control was originally proposed by
Witsenhausen [289]. In the context of robust MPC, the problem was tackled
by Campo and Morari [78], and further developed in [5] for SISO FIR plants.
Kothare et al. [180] optimize robust performance for polytopic/multimodel and

346 15 Constrained Robust Optimal Control

linear fractional uncertainty, Scokaert and Mayne [259] for additive disturbances,
and Lee and Yu [189] for linear time-varying and time-invariant state space
models depending on a vector of parameters θ ∈ Θ, where Θ is either an ellipsoid
or a polyhedron. Other suboptimal CROC-CL strategies have been proposed
in [180, 29, 181]. For stability and feasibility of the robust RHC (15.1), (15.93) we
refer the reader to [43, 197, 204, 23].

The idea of the parametrization (15.69) appears in the work of Gartska & Wets
in 1974 in the context of stochastic optimization [119]. Recently, it reappeared in
robust optimization work by Guslitzer and Ben-Tal [136, 46], and in the context
of robust MPC in the work of van Hessem & Bosgra, Löfberg and Goulart &
Kerrigan [281, 194, 130].

Part V

Constrained Optimal Control
of Hybrid Systems

16

Models of Hybrid Systems

Hybrid systems describe the dynamical interaction between continuous and discrete
signals in one common framework (see Figure 16.1). In this chapter we focus our
attention on mathematical models of hybrid systems that are particularly suitable
for solving finite time-constrained optimal control problems.

16.1 Models of Hybrid Systems

The mathematical model of a dynamical system is traditionally expressed through
differential or difference equations, typically derived from physical laws governing
the dynamics of the system under consideration. Consequently, most of the
control theory and tools address models describing the evolution of real-valued
signals according to smooth linear or nonlinear state transition functions, typically
differential or difference equations. In many applications, however, the system to
be controlled also contains discrete-valued signals satisfying Boolean relations,
if-then-else conditions, on/off conditions, etc., that also involve the real-valued
signals. An example would be an on/off alarm signal triggered by an analog variable
exceeding a given threshold. Hybrid systems describe in a common framework the
dynamics of real-valued variables, the dynamics of discrete variables, and their
interaction.

In this chapter we will focus on discrete-time hybrid systems, which we will
call discrete hybrid automata (DHA), whose continuous dynamics is described
by linear difference equations and whose discrete dynamics is described by finite
state machines, both synchronized by the same clock [276]. A particular case
of DHA is the class of piecewise affine (PWA) systems [266]. Essentially, PWA
systems are switched affine systems whose mode depends on the current location
of the state vector, as depicted in Figure 16.2. PWA and DHA systems can be
translated into a form, denoted as mixed logical dynamical (MLD) form, that is
more suitable for solving optimization problems. In particular, complex finite time
hybrid dynamical optimization problems can be recast into mixed-integer linear or
quadratic programs as will be shown in Chapter 17.

350 16 Models of Hybrid Systems

Discrete
dynamics
and logic

Binary
outputs

Events Mode
switches

Binary
inputs

Real-valued
outputs

Real-valued
inputs

Continuous
dynamics

Figure 16.1 Hybrid systems. Logic-based discrete dynamics and continuous
dynamics interact through events and mode switches.

In Section 16.7 we will introduce the tool HYSDEL (HYbrid Systems
DEscription Language), a high level language for modeling and simulating DHA.
Therefore, DHA will represent for us the starting point for modeling hybrid
systems. We will show that DHA, PWA, and MLD systems are equivalent model
classes, and in particular that DHA systems can be converted to an equivalent
PWA or MLD form for solving optimal control problems.

After introducing PWA systems, we will go through the steps needed for
modeling a system as a DHA. We will first detail the process of translating
propositional logic involving Boolean variables and linear threshold events over
continuous variables into mixed-integer linear inequalities, generalizing several
results available in the literature, in order to get an equivalent MLD form of a DHA
system. Finally, we will briefly present the tool HYSDEL that allows to describe the
DHA in a textual form and to obtain equivalent MLD and PWA representations
in MATLAB R©.

16.2 Piecewise Affine Systems

PWA systems [266, 145] are defined by partitioning the space of states and inputs
into polyhedral regions (cf. Figure 16.2) and associating with each region different
affine state-update and output equations:

x(t+ 1) = Ai(t)x(t) +Bi(t)u(t) + f i(t) (16.1a)

y(t) = Ci(t)x(t) +Di(t)u(t) + gi(t) (16.1b)

Hi(t)x(t) + J i(t)u(t) ≤ Ki(t) (16.1c)

16.2 Piecewise Affine Systems 351

C7

C2

C4

C1

C6

C3

C5

x-space

Figure 16.2 Piecewise affine (PWA) systems. Mode switches are triggered
by linear threshold events. In each one of the shaded regions the affine mode
dynamics is different.

where x(t) ∈ Rn is the state vector at time t ∈ T and T = {0, 1, . . .} is the set
of nonnegative integers, u(t) ∈ Rm is the input vector, y(t) ∈ Rp is the output
vector, i(t) ∈ I = {1, . . . , s} is the current mode of the system, the matrices Ai(t),
Bi(t), f i(t), Ci(t), Di(t), gi(t), Hi(t), J i(t), Ki(t) are constant and have suitable
dimensions, and the inequalities in (16.1c) should be interpreted component-wise.
Each linear inequality in (16.1c) defines a half-space in Rn and a corresponding
hyperplane, that will be referred to as guardline. Each vector inequality (16.1c)
defines a polyhedron Ci = {[xu] ∈ Rn+m : Hix + J iu ≤ Ki} in the state+input
space Rn+m that will be referred to as cell, and the union of such polyhedral cells as
partition. We assume that Ci are full-dimensional sets of Rn+m, for all i = 1, . . . , s.

A PWA system is called well-posed if it satisfies the following property [40]:

Definition 16.1 Let P be a PWA system of the form (16.1) and let C = ∪s
i=1Ci ⊆

Rn+m be the polyhedral partition associated with it. System P is called well-posed
if for all pairs (x(t), u(t)) ∈ C there exists only one index i(t) satisfying (16.1).

Definition 16.1 implies that x(t+1), y(t) are single-valued functions of x(t) and u(t),
and therefore that state and output trajectories are uniquely determined by the
initial state and input trajectory. A relaxation of definition 16.1 is to let polyhedral
cells Ci share one or more hyperplanes. In this case the index i(t) is not uniquely
defined, and therefore the PWA system is not well-posed. However, if the mappings
(x(t), u(t)) → x(t+ 1) and (x(t), u(t)) → y(t) are continuous across the guardlines
that are facets of two or more cells (and, therefore, they are continuous on their
domain of definition), such mappings are still single valued.

16.2.1 Modeling Discontinuities

Discontinuous dynamical behaviors can be modeled by disconnecting the domain.
For instance, the state-update equation

352 16 Models of Hybrid Systems

x(t+ 1) =

⎧⎨⎩
1

2
x(t) + 1 if x(t) ≤ 0

0 if x(t) > 0
(16.2a)

is discontinuous across x = 0. It can be modeled as

x(t+ 1) =

⎧⎨⎩
1

2
x(t) + 1 if x(t) ≤ 0

0 if x(t) ≥ ε
(16.2b)

where ε > 0 is an arbitrarily small number, for instance the machine precision.
Clearly, system (16.2) is not defined for 0 < x(t) < ε, i.e., for the values of the state
that cannot be represented in the machine. However, the trajectories produced
by (16.2a) and (16.2b) are identical as long as x(t) > ε or x(t) ≤ 0, ∀t ∈ N.

As remarked above, multiple definitions of the state-update and output
functions over common boundaries of sets Ci is a technical issue that arises
only when the PWA mapping is discontinuous. Rather than disconnecting the
domain, another way of dealing with discontinuous PWA mappings is to allow
strict inequalities in the definition of the polyhedral cells in (16.1), or by dealing
with open polyhedra and boundaries separately as in [266]. We prefer to assume
that in the definition of the PWA dynamics (16.1) the polyhedral cells Ci(t)

are closed sets. As will be clear in the next chapter, the closed-polyhedra
description is mainly motivated by the fact that numerical solvers cannot handle
open sets.

Example 16.1 The following PWA system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x(t+ 1) = 0.8

[
cosα(t) − sinα(t)
sinα(t) cosα(t)

]
x(t) +

[
0
1

]
u(t)

y(t) =
[
0 1

]
x(t)

α(t) =

{
π
3

if
[
1 0

]
x(t) ≥ 0

−π
3

if
[
1 0

]
x(t) < 0

(16.3)

is discontinuous at x =

[
0
x2

]
, ∀x2 �= 0. It can be described in form (16.1) as

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x(t+ 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.4

[
1 −

√
3√

3 1

]
x(t) +

[
0
1

]
u(t) if

[
1 0

]
x(t) ≥ 0

0.4

[
1

√
3

−
√
3 1

]
x(t) +

[
0
1

]
u(t) if

[
1 0

]
x(t) ≤ −ε

y(t) =
[
0 1

]
x(t)

(16.4)
for all x1 ∈ (−∞,−ε] ∪ [0,+∞), x2 ∈ R, u ∈ R, and ε > 0.

Figure 16.3 shows the free response of the systems (open-loop simulation of the system
for a constant input u = 0) starting from the initial condition x(0) = [1 0] with
sampling time equal to 0.5s and ε = 10−6.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/pwa_openloop.m

16.2 Piecewise Affine Systems 353

Time

x
1

Time
M

od
e

Figure 16.3 Example 16.1. Free response of state x1 for x(0) = [1 0].

In case the partition C does not cover the whole space Rn+m, well-posedness
does not imply that trajectories are persistent, i.e., that for all t ∈ N a successor
state x(t + 1) and an output y(t) are defined. A typical case of C 	= Rn+m is
when we are dealing with bounded inputs and bounded states umin ≤ u(t) ≤ umax,
xmin ≤ x(t) ≤ xmax. By embedding such ranges in the inequalities (16.1c), the
system becomes undefined outside the bounds, as no index i exists that satisfies
any set of inequalities (16.1c).

As will be clearer in the next chapter, when model (16.1) is used in an optimal
control formulation, any input sequence and initial state that are feasible for the
related optimization problem automatically define unique trajectories over the
whole optimal control horizon.

PWA systems can model a large number of physical processes, as they can model
static nonlinearities through a piecewise affine approximation, or approximate
nonlinear dynamics via multiple linearizations at different operating points.
Moreover, tools exist for obtaining piecewise affine approximations automatically
(see Section 16.8).

When the mode i(t) is an exogenous variable, condition (16.1c) disappears and
we refer to (16.1) as a switched affine system (SAS), see Section 16.3.1.

16.2.2 Binary States, Inputs and Outputs

When dealing with hybrid systems, quite often one encounters some signals that
can only assume a binary value, namely either 0 or 1. In the most general form, let
us assume that the state vector x = [xc

x�
] where xc ∈ Rnc are the continuous states,

x	 ∈ Rn� are the binary states, and n = nc + n	. Similarly, let y ∈ Rpc × {0, 1}p� ,
p = pc + p	, u ∈ Rmc × {0, 1}m� , m = mc +m	. By defining a polyhedral partition
{Ci}s−1

i=0 of the sets of state and input space Rn+m, for any x	 ∈ {0, 1} and u	 ∈
{0, 1} a sufficient condition for the PWA system (16.1) to be well posed is that
the rows and columns of matrices Ai, Bi, Ci, Di corresponding to binary states
and binary outputs are zero and that the corresponding rows of matrices f i, gi are
either 0 or 1, i.e., that the binary state update and output equations are binary
piecewise constant functions.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/pwa_openloop.m

354 16 Models of Hybrid Systems

In the following sections we will treat 0-1 binary variables both as numbers
(over which arithmetic operations are defined) and as Boolean variables (over which
Boolean functions are defined, see Section 16.3.3). The variable type will be clear
from the context.

As an example, it is easy to verify that the hybrid dynamical system

xc(t+ 1) = 2xc(t) + uc(t)− 3u	(t) (16.5a)

x	(t+ 1) = x	(t) ∧ u	(t) (16.5b)

where “∧” represents the logic operator “and,” can be represented in the PWA
form

[
xc

x	

]
(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
2xc(t) + uc(t)

0

]
if x	 ≤

1

2
, u	 ≤

1

2[
2xc(t) + uc(t)− 3

0

]
if x	 ≤

1

2
, u	 ≥

1

2
+ ε

[
2xc(t) + uc(t)

0

]
if x	 ≥

1

2
+ ε, u	 ≤

1

2[
2xc(t) + uc(t)− 3

1

]
if x	 ≥

1

2
+ ε, u	 ≥

1

2
+ ε

(16.5c)

by associating x	 = 0 with x	 ≤ 1
2 and x	 = 1 with x	 ≥ 1

2 + ε for any 0 < ε ≤ 1
2 .

Note that, by assuming x	(0) ∈ {0, 1} and u	(t) ∈ {0, 1} for all t ∈ T, x	(t) will be
in {0, 1} for all t ∈ T.

Example 16.2 Consider the spring-mass-damper system

Mẋ2 = u1 − k(x1)− b(u2)x2

where x1 and x2 = ẋ1 denote the position and the velocity of the mass, respectively,
and u1 a continuous force input. The binary input u2 switches the friction coefficient

b(u2) =

{
b1 if u2 = 1
b2 if u2 = 0.

The spring coefficient switches to a different value at position xm

k(x1) =

{
k1x1 + d1 if x1 ≤ xm

k2x1 + d2 if x1 > xm.

Assume the system description is valid for −5 ≤ x1, x2 ≤ 5, and −10 ≤ u1 ≤ 10.

The system has four modes, depending on the binary input u2 and the position x1.
Assuming that the system parameters are M = 1, b1 = 1, b2 = 50, k1 = 1, k2 = 3,

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/springmass_openloop.m

16.2 Piecewise Affine Systems 355

Time

P
os

it
io

n
x
1

Time

M
od

e

(a) Large damping (u2 = 0).

P
os

it
io

n
x
1

Time

M
od

e

(b) Small damping (u2 = 1).

Figure 16.4 Example 16.2. Open-loop simulation of system (16.6) for u1 = 3
and zero initial conditions.

d1 = 1, d2 = 7.5, xm = 1, after discretizing the dynamics in each mode with a
sampling time of 0.5 time units we obtain the following discrete-time PWA system

x(t+ 1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mode 1[
0.8956 0.0198
−0.0198 −0.0004

]
x(t) + [0.10440.0198]u1(t) +

[−0.0096
−0.0198

]
if x1(t) ≤ 1, u2(t) ≤ 0.5

Mode 2[
0.8956 0.0195
−0.0584 −0.0012

]
x(t) + [0.10440.0195]u1(t) +

[−0.0711
−0.1459

]
if x1(t) ≥ 1 + ε, u2(t) ≤ 0.5

Mode 3[
0.8956 0.3773
−0.3773 0.5182

]
x(t) + [0.10440.3773]u1(t) +

[−0.1044
−0.3773

]
if x1(t) ≤ 1, u2(t) ≥ 0.5

Mode 4[
0.8956 0.3463
−1.0389 0.3529

]
x(t) + [0.10440.3463]u1(t) +

[−0.7519
−2.5972

]
if x(t) ≥ 1 + ε, u2(t) ≥ 0.5

(16.6)

for x1(t) ∈ [−5, 1] ∪ [1 + ε, 5], x2(t) ∈ [−5, 5], u1(t) ∈ [−10, 10], and for any arbitrary
small ε > 0.

Figure 16.4 shows the open-loop simulation of the system for a constant continuous
input u1 = 3, starting from zero initial conditions and for ε = 10−6.

Example 16.3 Consider the following SISO system:

x1(t+ 1) = ax1(t) + bu(t). (16.7)

A logic state x2 ∈ {0, 1} stores the information whether the state of system (16.7)
has ever gone below a certain lower bound xlb or not:

x2(t+ 1) = x2(t)
∨

[x1(t) ≤ xlb]. (16.8)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/springmass_openloop.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/pwalogic_openloop.m

356 16 Models of Hybrid Systems

x
1

x
2

Time steps

u

–10

10

0
1

–10

10

(a) Scenario 1.

Time steps

x
1

x
2

u

–10

10

0
1

–10

10

(b) Scenario 2.

Figure 16.5 Example 16.3. Open-loop simulation of system (16.10) for
different sequences of the input u.

Assume that the input coefficient is a function of the logic state:

b =

{
b1 if x2 = 0
b2 if x2 = 1.

(16.9)

The system can be described by the PWA model:

x(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
a 0
0 0

]
x(t) +

[
b2
0

]
u(t) +

[
0
1

]
if

[
1 0

]
x(t) ≤ xlb

[
a 0
0 1

]
x(t) +

[
b1
0

]
u(t) if

[
1 0
0 −1

]
x(t) ≥

[
xlb + ε
−0.5

]
[
a 0
0 1

]
x(t) +

[
b2
0

]
u(t) if x(t) ≥

[
xlb + ε
0.5

]
(16.10)

for u(t) ∈ R, x1(t) ∈ (−∞, xlb] ∪ [xlb + ε,+∞), x2 ∈ {0, 1}, and for any ε > 0.

Figure 16.5 shows two open-loop simulations of the system, for a = 0.5, b1 = 0.1,
b2 = 0.3, xlb = −1, ε = 10−6. The initial conditions is x(0) = [1, 0]. Note that when
the continuous state x1(t) goes below xlb = −1 at time t, then x�(t+ 1) switches to
1 and the input has a stronger effect on the states from time t + 2 on. Indeed, the
steady state of x1 is a function of the logic state x2.

16.3 Discrete Hybrid Automata

As shown in Figure 16.6, a discrete hybrid automaton (DHA) is formed by
generating the mode i(t) of a switched affine system through a mode selector
function that depends on (i) the discrete state of a finite state machine, (ii) discrete
events generated by the continuous variables of the switched affine system exceeding
given linear thresholds (the guardlines), (iii) exogenous discrete inputs [276]. We
will detail each of the four blocks in the next sections.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/pwalogic_openloop.m

16.3 Discrete Hybrid Automata 357

Figure 16.6 A discrete hybrid automaton (DHA) is the connection of a finite
state machine (FSM) and a switched affine system (SAS), through a mode
selector (MS) and an event generator (EG). The output signals are omitted
for clarity.

16.3.1 Switched Affine System (SAS)

A switched affine system is a collection of affine systems:

xc(t+ 1) = Ai(t)xc(t) +Bi(t)uc(t) + f i(t) (16.11a)

yc(t) = Ci(t)xc(t) +Di(t)uc(t) + gi(t), (16.11b)

where t ∈ T is the time indicator, xc ∈ Rnc is the continuous state vector, uc ∈ Rmc

is the exogenous continuous input vector, yc ∈ Rpc is the continuous output vector,
{Ai, Bi, f i, Ci, Di, gi}i∈I is a collection of matrices of suitable dimensions, and the
mode i(t) ∈ I = {1, . . . , s} is an input signal that determines the affine state update
dynamics at time t. An SAS of the form (16.11) preserves the value of the state
when a mode switch occurs, but it is possible to implement reset maps on an SAS
as shown in [276].

16.3.2 Event Generator (EG)

An event generator is an object that generates a binary vector δe(t) ∈ {0, 1}ne

of event conditions according to the satisfaction of a linear (or affine) threshold
condition. Let h : Rnc × Rnc → {0, 1}ne be a vector function defined as

hi(xc, uc) =

{
1 if Hixc + Jiuc +Ki ≤ 0
0 if Hixc + Jiuc +Ki > 0

358 16 Models of Hybrid Systems

where the lower index i denotes the i-th component of a vector or the i-th row of
a matrix, and H, J , K are constant matrices of suitable dimensions. Then events
are defined as

δe(t) = h(xc(t), uc(t)). (16.12)

In particular, state events are modeled as [δe(t) = 1] ↔ [a′xc(t) ≤ b]. Note that
time events can be modeled as in (16.12) by adding the continuous time as an
additional continuous and autonomous state variable, τ(t + 1) = τ(t) + Ts, where
Ts is the sampling time, and by letting [δe(t) = 1] ↔ [tTs ≥ τ0], where τ0 is a given
time. By doing so, the hybrid model can be written as a time-invariant one. Clearly
the same approach can be used for time-varying events δe(t) = h(xc(t), uc(t), t), by
using time-varying event conditions h : Rnc × Rm × T → {0, 1}ne .

16.3.3 Boolean Algebra

Before we deal in detail with the other blocks constituting the DHA and introduce
further notation, we recall some basic definitions of Boolean algebra. A more
comprehensive treatment of Boolean calculus can be found in digital circuit design
texts, e.g., [86, 142]. For a rigorous exposition see, e.g., [208].

A variable δ is a Boolean variable if δ ∈ {0, 1}, where “δ = 0” means something
is false, “δ = 1” that it is true. A Boolean expression is obtained by combining
Boolean variables through the logic operators ¬ (not), ∨ (or), ∧ (and), ← (implied
by), → (implies), and ↔ (iff). A Boolean function f : {0, 1}n−1 �→ {0, 1} is used
to define a Boolean variable δn as a logic function of other variables δ1, . . . , δn−1:

δn = f(δ1, δ2, . . . , δn−1). (16.13)

Given n Boolean variables δ1, . . . , δn, a Boolean formula F defines a relation

F (δ1, . . . , δn) (16.14)

that must hold true. Every Boolean formula F (δ1, δ2, . . . , δn) can be rewritten in
the conjunctive normal form (CNF)

(CNF)

m∧
j=1

⎛⎝⎛⎝ ∨
i∈Pj

δi

⎞⎠∨⎛⎝ ∨
i∈Nj

∼ δi

⎞⎠⎞⎠ (16.15)

Nj , Pj ⊆ {1, . . . , n}, ∀j = 1, . . . ,m.

As mentioned in Section 16.2.2, often we will use the term binary variable
and Boolean variable without distinction. An improper arithmetic operation
over Boolean variables should be understood as an arithmetic operation over
corresponding binary variables and, vice versa, an improper Boolean function of
binary variables should be interpreted as the same function over the corresponding
Boolean variables. Therefore, from now on we will call “binary” variables both 0-1
variables and Boolean variables.

16.3 Discrete Hybrid Automata 359

δ1∧∼u 2

δ2

∼ δ1

∼ δ3

Red

Green Blue

δ1∧u 2

δ3∧u 1

Figure 16.7 Example of finite state machine.

16.3.4 Finite State Machine (FSM)

A finite state machine (or automaton) (FSM) is a discrete dynamic process that
evolves according to a Boolean state update function:

x	(t+ 1) = f	(x	(t), u	(t), δe(t)), (16.16a)

where x	 ∈ {0, 1}n� is the binary state, u	 ∈ {0, 1}m� is the exogenous binary input,
δe(t) is the endogenous binary input coming from the EG, and f	 : {0, 1}n� ×
{0, 1}m� × {0, 1}ne → {0, 1}n� is a deterministic Boolean function. In this text
we will only refer to synchronous finite state machines, where the transitions may
happen only at sampling times. The adjective synchronous will be omitted for
brevity.

An FSM can be conveniently represented using an oriented graph. An FSM
may also have an associated binary output

y	(t) = g	(x	(t), u	(t), δe(t)), (16.16b)

where y	 ∈ {0, 1}p� and g	 : {0, 1}n� × {0, 1}m� × {0, 1}ne �→ {0, 1}p� .

Example 16.4 Figure 16.7 shows a finite state machine where u� = [u�1 u�2]
′ is

the input vector, and δ = [δ1 . . . δ3]
′ is a vector of signals coming from the event

generator. The Boolean state update function (also called state transition function)
is:

x�(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Red if ((x�(t) = Green)∧ ∼ δ3)∨
((x�(t) = Red)∧ ∼ δ1),

Green if ((x�(t) = Red) ∧ δ1 ∧ u�2)∨
((x�(t) = Blue) ∧ δ2)∨
((x�(t) = Green)∧ ∼ u�1 ∧ δ3),

Blue if ((x�(t) = Red) ∧ δ1∧ ∼ u�2)∨
((x�(t) = Green) ∧ (δ3 ∧ u�1))∨
((x�(t) = Blue)∧ ∼ δ2)).

(16.17)

360 16 Models of Hybrid Systems

By associating a binary vector x� = [x�1
x�2

] to each state (Red = [00], Green = [01], and
Blue = [10]), one can rewrite (16.17) as:

x�1(t+ 1) = (∼ x�1∧ ∼ x�2 ∧ δ1∧ ∼ u�2) ∨
(x�1∧ ∼ δ2) ∨ (x�2 ∧ δ3 ∧ u�1)

x�2(t+ 1) = (∼ x�1∧ ∼ x�2 ∧ δ1 ∧ u�2) ∨
(x�1 ∧ δ2) ∨ (x�2 ∧ δ3∧ ∼ u�1),

where the time index (t) has been omitted for brevity.

Since the Boolean state update function is deterministic, for each state the
conditions associated with all the outgoing arcs are mutually exclusive.

16.3.5 Mode Selector

In a DHA, the dynamic mode i(t) ∈ I = {1, . . . , s} of the SAS is a function of the
binary state x	(t), the binary input u	(t), and the events δe(t). With a slight abuse
of notation, let us indicate the mode i(t) through its binary encoding, i(t) ∈ {0, 1}ns

where ns = 'log2 s(, so that i(t) can be treated as a vector of Boolean variables. Any

discrete variable α ∈ {α1, . . . , αj} admits a Boolean encoding a ∈ {0, 1}d(j), where
d(j) is the number of bits used to represent α1, . . . , αj . For example, α ∈ {0, 1, 2}
may be encoded as a ∈ {0, 1}2 by associating [00] → 0, [01] → 1, [10] → 2.

Then, we define the mode selector by the Boolean function fM : {0, 1}n� ×
{0, 1}m� × {0, 1}ne → {0, 1}ns . The output of this function

i(t) = μ(x	(t), u	(t), δe(t)) (16.18)

is called the active mode of the DHA at time t. We say that a mode switch occurs
at step t if i(t) 	= i(t− 1). Note that, in contrast to continuous-time hybrid models
where switches can occur at any time, in our discrete-time setting, as mentioned
earlier, a mode switch can only occur at sampling instants.

16.3.6 DHA Trajectories

For a given initial condition
[
xc(0)
x�(0)

]
∈ Rnc × {0, 1}n� , and inputs

[
uc(t)
u�(t)

]
∈ Rmc ×

{0, 1}m� , t ∈ T, the state x(t) of the system is computed for all t ∈ T by recursively
iterating the set of equations:

δe(t) = h(xc(t), uc(t), t) (16.19a)

i(t) = μ(x	(t), u	(t), δe(t)) (16.19b)

yc(t) = Ci(t)xc(t) +Di(t)uc(t) + gi(t) (16.19c)

y	(t) = g	(x	(t), u	(t), δe(t)) (16.19d)

xc(t+ 1) = Ai(t)xc(t) +Bi(t)uc(t) + f i(t) (16.19e)

x	(t+ 1) = f	(x	(t), u	(t), δe(t)). (16.19f)

16.4 Logic and Mixed-Integer Inequalities 361

A definition of well-posedness of DHA can be given similarly to Definition 16.1
by requiring that the successor states xc(t + 1), x	(t + 1) and the outputs yc(t),
y	(t) are uniquely defined functions of xc(t), x	(t), uc(t), u	(t) defined by the DHA
equations (16.19).

DHA can be considered as a subclass of hybrid automata (HA) [7]. The main
difference is in the time model: DHA are based on discrete time, HA on continuous
time. Moreover, DHA models do not allow instantaneous transitions, and are
deterministic, contrary to HA where any enabled transition may occur in zero time.
This has two consequences: (i) DHA do not admit live-locks (infinite switches in
zero time); (ii) DHA do not admit Zeno behaviors (infinite switches in finite time).
Finally, in DHA models, guards, reset maps and continuous dynamics are limited
to linear (or affine) functions.

16.4 Logic and Mixed-Integer Inequalities

Despite the fact that DHA are rich in their expressiveness and are therefore quite
suitable for modeling and simulating a wide class of hybrid dynamical systems,
they are not directly suitable for solving optimal control problems because of their
heterogeneous discrete and continuous nature. In this section we want to describe
how DHA can be translated into different hybrid models that are more suitable
for optimization. We highlight the main techniques of the translation process, by
generalizing several results that appeared in the literature [126, 244, 287, 213, 83,
42, 81, 277, 286, 219].

16.4.1 Transformation of Boolean Relations

Boolean formulas can be equivalently represented as integer linear inequalities. For
instance, δ1 ∨ δ2 = 1 is equivalent to δ1 + δ2 ≥ 1 [287]. Some equivalences are
reported in Table 16.1. The results of the table can be generalized as follows.

Lemma 16.1 For every Boolean formula F (δ1, δ2, . . . , δn) there exists a polyhe-
dral set P such that a set of binary values {δ1, δ2, . . . , δn} satisfies the Boolean
formula F if and only if δ = [δ1 δ2 . . . δn]

′ ∈ P .

Proof: Given a formula F , one way of constructing a polyhedron P is to rewrite
F in the conjunctive normal form (16.15), and then simply define P as

P =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
δ ∈ {0, 1}n :

1 ≤
∑
i∈P1

δi +
∑
i∈N1

(1− δi)

...

1 ≤
∑
i∈Pm

δi +
∑
i∈Nm

(1− δi)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (16.20)

�

362 16 Models of Hybrid Systems

Table 16.1 Basic conversion of Boolean relations into mixed-integer
inequalities. Relations involving the inverted literals ∼ δ can be obtained
by substituting (1 − δ) for δ in the corresponding inequalities. More
conversions are reported in [210], or can be derived from (16.15)–(16.20)

Relation Boolean Linear constraints

AND δ1 ∧ δ2 δ1 = 1, δ2 = 1 or δ1 + δ2 ≥ 2
OR δ1 ∨X2 δ1 + δ2 ≥ 1
NOT ∼ δ1 δ1 = 0
XOR δ1 ⊕ δ2 δ1 + δ2 = 1
IMPLY δ1 → δ2 δ1 − δ2 ≤ 0
IFF δ1 ↔ δ2 δ1 − δ2 = 0
ASSIGNMENT δ1 + (1− δ3) ≥ 1
δ3 = δ1 ∧ δ2 δ3 ↔ δ1 ∧ δ2 δ2 + (1− δ3) ≥ 1

(1− δ1) + (1− δ2) + δ3 ≥ 1

The smallest polyhedron P associated with formula F has the following
geometric interpretation: Assume to list all the 0-1 combinations of δi’s satisfying
F (namely, to generate the truth table of F), and think of each combination
as an n-dimensional binary vector in Rn, then P is the convex hull of such
vectors [83, 153, 211]. For methods to compute convex hulls, we refer the reader
to [111].

16.4.2 Translating DHA Components into Linear
Mixed-Integer Relations

Events of the form (16.12) can be expressed equivalently as

hi(xc(t), uc(t), t) ≤ M i(1− δie), (16.21a)

hi(xc(t), uc(t), t) > miδie, i = 1, . . . , ne, (16.21b)

where M i, mi are upper and lower bounds, respectively, on hi(xc(t), uc(t), t).
As we have pointed out in Section 16.2.1, from a computational viewpoint it is
convenient to avoid strict inequalities. As suggested in [287], we modify the strict
inequality (16.21b) into

hi(xc(t), uc(t), t) ≥ ε+ (mi − ε)δie (16.21c)

where ε is a small positive scalar (e.g., the machine precision). Clearly, as for the
case of discontinuous PWA discussed in Section 16.2.1, Equations (16.21) or (16.12)
are equivalent to (16.21c) only for hi(xc(t), uc(t), t) ≤ 0 and hi(xc(t), uc(t), t) ≥ ε.

Regarding switched affine dynamics, we first rewrite the state-update
equation (16.11a) as the following combination of affine terms and if-then-else
conditions:

z1(t) =

{
A1xc(t) +B1uc(t) + f1, if (i(t) = 1),
0, otherwise,

(16.22a)

...

16.5 Mixed Logical Dynamical Systems 363

zs(t) =

{
Asxc(t) +Bsuc(t) + fs, if (i(t) = s),
0, otherwise,

(16.22b)

xc(t+ 1) =

s∑
i=1

zi(t), (16.22c)

where zi(t) ∈ Rnc , i = 1, . . . , s. The output Equation (16.11b) admits a similar
transformation.

A generic if-then-else construct of the form

IF δ THEN z = a1
′
x+ b1

′
u+ f1 ELSE z = a2

′
x+ b2

′
u+ f2, (16.23)

where δ ∈ {0, 1}, z ∈ R, x ∈ Rn, u ∈ Rm, and a1, b1, f1, a2, b2, f2 are constants of
suitable dimensions, can be translated into [45]

(m2 −M1)δ + z ≤ a2
′
x+ b2

′
u+ f2, (16.24a)

(m1 −M2)δ − z ≤ −a2
′
x− b2

′
u− f2, (16.24b)

(m1 −M2)(1− δ) + z ≤ a1
′
x+ b1

′
u+ f1, (16.24c)

(m2 −M1)(1− δ)− z ≤ −a1
′
x− b1

′
u− f1, (16.24d)

where Mi, mi are upper and lower bounds on aix+ biu+ f i, i = 1, 2.
Finally, the mode selector function and binary state-update function of the

automaton are Boolean functions that can be translated into integer linear
inequalities as described in Section 16.4.1. The idea of transforming a well-posed
FSM into a set of Boolean equalities was also presented in [229] where the authors
performed model checking using (mixed) integer optimization on an equivalent set
of integer inequalities.

16.5 Mixed Logical Dynamical Systems

Given a DHA representation of a hybrid process, by following the techniques
described in the previous section for converting logical relations into inequalities
we obtain an equivalent representation of the DHA as a mixed logical dynamical
(MLD) system [42] described by the following relations:

x(t+ 1) = Ax(t) +B1u(t) +B2δ(t) +B3z(t) +B5, (16.25a)

y(t) = Cx(t) +D1u(t) +D2δ(t) +D3z(t) +D5, (16.25b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5, (16.25c)

where x ∈ Rnc × {0, 1}n� is a vector of continuous and binary states, u ∈ Rmc ×
{0, 1}m� are the inputs, y ∈ Rpc × {0, 1}p� the outputs, δ ∈ {0, 1}r� are auxiliary
binary variables, z ∈ Rrc are auxiliary continuous variables which arise in the
transformation (see Example 16.5), and A, B1, B2, B3, C, D1, D2, D3, E1,. . . ,E5

are matrices of suitable dimensions. Given the current state x(t) and input u(t), the

364 16 Models of Hybrid Systems

time-evolution of (16.25) is determined by finding a feasible value for δ(t) and z(t)
satisfying (16.25c), and then by computing x(t+1) and y(t) from (16.25a)–(16.25b).

As MLD models consist of a collection of linear difference equations involving
both real and binary variables and a set of linear inequality constraints, they are
model representations of hybrid systems that can be easily used in optimization
algorithms, as will be described in Chapter 17.

A definition of well-posedness of the MLD system (16.25) can be given similarly
to Definition 16.1 by requiring that for all x(t) and u(t) within a given bounded
set the pair of variables δ(t), z(t) satisfying (16.25c) is unique, so that the
successor state x(t + 1) and output y(t) are also uniquely defined functions of
x(t), u(t) through (16.25a)–(16.25b). Such a well-posedness assumption is usually
guaranteed by the procedure described in Section 16.3.3 used to generate the
linear inequalities (16.25c). A numerical test for well posedness is reported in
[42, Appendix 1]. For a more general definition of well posedness of MLD systems
see [42].

Note that the constraints (16.25c) allow one to specify additional linear
constraints on continuous variables (e.g., constraints over physical variables of the
system), and logical constraints over Boolean variables. The ability to include
constraints, constraint prioritization, and heuristics adds to the expressiveness
and generality of the MLD framework. Note also that despite the fact that the
description (16.25) seems to be linear, clearly the nonlinearity is concentrated in
the integrality constraints over binary variables.

Example 16.5 Consider the following simple switched linear system [42]

x(t+ 1) =

{
0.8x(t) + u(t) if x(t) ≥ 0

−0.8x(t) + u(t) if x(t) < 0
(16.26)

where x(t) ∈ [−10, 10], and u(t) ∈ [−1, 1]. The condition x(t) ≥ 0 can be associated
to an event variable δ(t) ∈ {0, 1} defined as

[δ(t) = 1] ↔ [x(t) ≥ 0] . (16.27)

By using the transformations (16.21a)–(16.21c), Equation (16.27) can be expressed
by the inequalities

−mδ(t) ≤ x(t)−m (16.28a)

−(M + ε)δ(t) ≤ −x(t)− ε (16.28b)

where M = −m = 10, and ε is an arbitrarily small positive scalar. Then (16.26) can
be rewritten as

x(t+ 1) = 1.6δ(t)x(t)− 0.8x(t) + u(t). (16.29)

By defining a new variable z(t) = δ(t)x(t) which, by (16.23)–(16.24) can be
expressed as

z(t) ≤ Mδ(t) (16.30a)

z(t) ≥ mδ(t) (16.30b)

z(t) ≤ x(t)−m(1− δ(t)) (16.30c)

z(t) ≥ x(t)−M(1− δ(t)) (16.30d)

16.7 The HYSDEL Modeling Language 365

the evolution of system (16.26) is ruled by the linear equation

x(t+ 1) = 1.6z(t)− 0.8x(t) + u(t) (16.31)

subject to the linear constraints (16.28) and (16.30). Therefore, the MLD equivalent
representation of (16.26) for x ∈ [−10,−ε]∪[0, 10] and u ∈ [−1, 1] is given by collecting
Equations (16.31), (16.28) and (16.30).

16.6 Model Equivalence

In the previous chapters we have presented three different classes of discrete-time
hybrid models: PWA systems, DHA, and MLD systems. For what we described
in Section 16.3.3, under the assumption that the set of valid states and inputs
is bounded, DHA systems can always be equivalently described as MLD systems.
Also, a PWA system is a special case of a DHA whose threshold events and mode
selector function are defined by the PWA partition (16.1c). Therefore, a PWA
system with bounded partition C can always be described as an MLD system (an
efficient way of modeling PWA systems in MLD form is reported in [42]). The
converse result, namely that MLD systems (and therefore DHA) can be represented
as PWA systems, is less obvious. For any choice of δ, model (16.25) represents an
affine system defined over a polyhedral domain. Under the assumption of well
posedness these domains do not overlap. This result was proved formally in [36,
30, 122].

Such equivalence results are of interest because DHA are most suitable in the
modeling phase, but MLD systems are most suitable for solving open-loop finite
time optimal control problems, and PWA systems are most suitable for solving
finite time optimal control problems in state feedback form, as will be described in
Chapter 17.

16.7 The HYSDEL Modeling Language

A modeling language was proposed in [276] to describe DHA models, called HYbrid
System DEscription Language (HYSDEL). The HYSDEL description of a DHA is
an abstract modeling step. The associated HYSDEL compiler then translates the
description into several computational models, in particular into an MLD model
using the technique presented in Section 16.4, and a PWA form using either the
approach of [122] or the approach of [30]. HYSDEL can generate also a simulator
that runs as a function in MATLAB R©. Both the HYSDEL compiler and the Hybrid
Toolbox can import and convert HYSDEL models.

In this section we illustrate the functionality of HYSDEL through a set of
examples. For more examples and the detailed syntax we refer the interested reader
to [149].

366 16 Models of Hybrid Systems

Example 16.6 Consider the DHA system:

SAS: x′
c(t) =

⎧⎨⎩
xc(t) + uc(t)− 1, if i(t) = 1,
2xc(t), if i(t) = 2,
2, if i(t) = 3,

(16.32a)

EG:

{
δe(t) = [xc(t) ≥ 0],
δf (t) = [xc(t) + uc(t)− 1 ≥ 0],

(16.32b)

MS: i(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if

[
δe(t)
δf (t)

]
= [00] ,

2, if δe(t) = 1,

3, if
[

δe(t)
δf (t)

]
= [01] .

(16.32c)

The corresponding HYSDEL list is reported in Table 16.2.

The HYSDEL list is composed of two parts. The first one, called INTERFACE,
contains the declaration of all variables and parameters, so that it is possible to
make the proper type checks. The second part, IMPLEMENTATION, is composed
of specialized sections where the relations among the variables are described.

The HYSDEL section AUX contains the declaration of the auxiliary variables used
in the model. The HYSDEL section AD allows one to define Boolean variables from
continuous ones, and is based exactly on the semantics of the event generator (EG)

Table 16.2 Sample HYSDEL list of system (16.32).

SYSTEM sample {
INTERFACE {
STATE {
REAL xr [-10, 10]; }

INPUT {
REAL ur [-2, 2]; }

}
IMPLEMENTATION {
AUX {
REAL z1, z2, z3;
BOOL de, df, d1, d2, d3; }

AD {
de = xr >= 0;
df = xr + ur - 1 >= 0; }

LOGIC {
d1 = ~de & ~df;
d2 = de;
d3 = ~de & df; }

DA {
z1 = {IF d1 THEN xr + ur - 1 };
z2 = {IF d2 THEN 2 * xr };
z3 = {IF (~de & df) THEN 2 }; }

CONTINUOUS {
xr = z1 + z2 + z3; }

}}

16.7 The HYSDEL Modeling Language 367

described earlier. The HYSDEL section DA defines continuous variables according
to if-then-else conditions. This section models part of the switched affine system
(SAS), namely the variables zi defined in (16.22a)–(16.22b). The CONTINUOUS
section describes the linear dynamics, expressed as difference equations. This section
models (16.22c). The section LOGIC allows one to specify arbitrary functions of
Boolean variables.

Example 16.7 Consider again the PWA system described in Example 16.1. Assume
that [−5, 5] × [−5, 5] is the set of states x(t) of interest and u(t) ∈ [−1, 1]. By using
HYSDEL the PWA system (16.3) is described as in Table 16.3 and the equivalent
MLD form is obtained

Table 16.3 HYSDEL model of the PWA system described in Example 16.1

/* 2x2 PWA system */

SYSTEM pwa {

INTERFACE {
STATE { REAL x1 [-5,5];

REAL x2 [-5,5];
}

INPUT { REAL u [-1,1];
}

OUTPUT{ REAL y;
}

PARAMETER {
REAL alpha = 60*pi/180;
REAL C = cos(alpha);
REAL S = sin(alpha);
REAL MLD_epsilon = 1e-6; }

}

IMPLEMENTATION {
AUX { REAL z1,z2;

BOOL sign; }
AD { sign = x1<=0; }

DA { z1 = {IF sign THEN 0.8*(C*x1+S*x2)
ELSE 0.8*(C*x1-S*x2) };

z2 = {IF sign THEN 0.8*(-S*x1+C*x2)
ELSE 0.8*(S*x1+C*x2) }; }

CONTINUOUS { x1 = z1;
x2 = z2+u; }

OUTPUT { y = x2; }
}

}

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/pwa_openloop.m

368 16 Models of Hybrid Systems

x(t+ 1) = [1 0
0 1] z(t) + [01]u(t)

y(t) = [0 1]x(t)⎡⎢⎢⎢⎢⎢⎣
−5−ε

5
c1
c1
−c1
−c1
c1
c1
−c1
−c1

⎤⎥⎥⎥⎥⎥⎦ δ(t) +

⎡⎢⎢⎢⎢⎣
0 0
0 0
−1 0
1 0
−1 0
1 0
0 −1
0 1
0 −1
0 1

⎤⎥⎥⎥⎥⎦ z(t) ≤

⎡⎢⎢⎢⎢⎢⎣
1 0
−1 0
−0.4 −c2
0.4 c2
−0.4 c2
0.4 −c2
c2 −0.4
−c2 0.4
−c2 −0.4
c2 0.4

⎤⎥⎥⎥⎥⎥⎦x(t) +

⎡⎢⎢⎢⎢⎣
−ε
5
c1
c1
0
0
c1
c1
0
0

⎤⎥⎥⎥⎥⎦
where c1 = 4(

√
3 + 1), c2 = 0.4

√
3, ε = 10−6. Note that in Table 16.3 the OUTPUT

section allows to specify a linear map for the output vector y.

Example 16.8 Consider again the hybrid spring-mass-damper system described in
Example 16.2. Assume that [−5, 5]× [−5, 5] is the set of states x and [−10, 10] the set
of continuous inputs u1 of interest. By using HYSDEL, system (16.6) is described as
in Table 16.4 and an equivalent MLD model with 2 continuous states, 1 continuous
input, 1 binary input, 9 auxiliary binary variables, 8 continuous variables, and 58
mixed-integer inequalities is obtained.

Example 16.9 Consider again the system with a logic state described in
Example 16.3. The MLD model obtained by compiling the HYSDEL list of Table
16.5 is

x(t+ 1) = [0 0
0 1] δ(t) + [10] z(t)⎡⎢⎢⎢⎣

−9 0
11 0
0 0
0 0
0 0
0 0
0 −1
1 −1
−1 1

⎤⎥⎥⎥⎦ δ(t) +

⎡⎢⎢⎢⎣
0
0
−1
1
−1
1
0
0
0

⎤⎥⎥⎥⎦ z(t) ≤

⎡⎢⎢⎢⎣
0
0

−0.3
0.3
−0.1
0.1
0
0
0

⎤⎥⎥⎥⎦u(t) +

⎡⎢⎢⎢⎣
1 0
−1 0
−0.5 −14
0.5 −14
−0.5 14
0.5 14
0 −1
0 0
0 1

⎤⎥⎥⎥⎦x(t) +

⎡⎢⎢⎢⎣
1
10
14
14
0
0
0
0
0

⎤⎥⎥⎥⎦
where we have assumed that [−10, 10] is the set of states x1 and [−10, 10] the set of
continuous inputs u of interest. In Table 16.5 the AUTOMATA section specifies the
state transition equations of the finite state machine (FSM) as a collection of Boolean
functions.

16.8 Literature Review

The lack of a general theory and of systematic design tools for systems having such
a heterogeneous dynamical discrete and continuous nature led to a considerable
interest in the study of hybrid systems. After the seminal work published in 1966
by Witsenhausen [288], who examined an optimal control problem for a class of
hybrid-state continuous-time dynamical systems, there has been a renewed interest
in the study of hybrid systems. The main reason for such an interest is probably
the recent advent of technological innovations, in particular in the domain of
embedded systems, where a logical/discrete decision device is “embedded” in a

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/springmass_openloop.m
http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/pwalogic_openloop.m

16.8 Literature Review 369

Table 16.4 HYSDEL model of the spring-mass-damper system described in Example 16.2.
The A and B values are set according to equation (16.6).

/* Spring-Mass-Damper System
*/

SYSTEM springmass {

INTERFACE { /* Description of variables and constants */

STATE {
REAL x1 [-5,5];
REAL x2 [-5,5];

}

INPUT { REAL u1 [-10,10];
BOOL u2;

}

PARAMETER {
/* Spring breakpoint */
REAL xm;

/* Dynamic coefficients */
REAL A111,A112,A121,A122,A211,A212,A221,A222;
REAL A311,A312,A321,A322,A411,A412,A421,A422;
REAL B111,B112,B121,B122,B211,B212,B221,B222;
REAL B311,B312,B321,B322,B411,B412,B421,B422;

}
}

IMPLEMENTATION {
AUX {

REAL zx11,zx12,zx21,zx22,zx31,zx32,zx41,zx42;
BOOL region;

}

AD { /* spring region */
region = x1-xm <= 0;

}

DA {
zx11 = { IF region & u2 THEN A111*x1+A112*x2+B111*u1+B112};
zx12 = { IF region & u2 THEN A121*x1+A122*x2+B121*u1+B122};
zx21 = { IF region & ~u2 THEN A211*x1+A212*x2+B211*u1+B212};
zx22 = { IF region & ~u2 THEN A221*x1+A222*x2+B221*u1+B222};
zx31 = { IF ~region & u2 THEN A311*x1+A312*x2+B311*u1+B312};
zx32 = { IF ~region & u2 THEN A321*x1+A322*x2+B321*u1+B322};
zx41 = { IF ~region & ~u2 THEN A411*x1+A412*x2+B411*u1+B412};
zx42 = { IF ~region & ~u2 THEN A421*x1+A422*x2+B421*u1+B422};

}

CONTINUOUS { x1=zx11+zx21+zx31+zx41;
x2=zx12+zx22+zx32+zx42;

}
}

}

370 16 Models of Hybrid Systems

Table 16.5 HYSDEL model of the system with logic state described in Example 16.3.

/* System with logic state */

SYSTEM SLS {
INTERFACE { /* Description of variables and constants */

STATE {
REAL x1 [-10,10];
BOOL x2;

}
INPUT { REAL u [-10,10];

}
PARAMETER {

/* Lower Bound Point */
REAL xlb = -1;

/* Dynamic coefficients */
REAL a = .5;
REAL b1 =.1;
REAL b2 =.3;

}
}

IMPLEMENTATION {
AUX {BOOL region;

REAL zx1;
}
AD { /* PWA Region */

region = x1-xlb <= 0;
}
DA { zx1={IF x2 THEN a*x1+b2*u ELSE a*x1+b1*u};
}
CONTINUOUS { x1=zx1;
}
AUTOMATA { x2= x2 | region;
}

}
}

physical dynamical environment to change the behavior of the environment itself.
Another reason is the availability of several software packages for simulation and
numerical/symbolic computation that support the theoretical developments.

Several modelling frameworks for hybrid systems have appeared in the litera-
ture. We refer the interested reader to [8, 127] and the references therein. Each
class is usually tailored to solve a particular problem, and many of them look
largely dissimilar, at least at first sight. Two main categories of hybrid systems were
successfully adopted for analysis and synthesis [66]: hybrid control systems [195,
196], where continuous dynamical systems and discrete/logic automata interact
(see Figure 16.1), and switched systems [266, 67, 155, 292, 261], where the state
space is partitioned into regions, each one being associated with different continuous
dynamics (see Figure 16.2).

16.8 Literature Review 371

Today, there is a widespread agreement in defining hybrid systems as dynamical
systems that switch among many operating modes, where each mode is governed
by its own characteristic dynamical laws, and mode transitions are triggered by
variables crossing specific thresholds (state events), by the lapse of certain time
periods (time events), or by external inputs (input events) [8]. In the literature,
systems whose mode only depends on external inputs are usually called switched
systems, the others switching systems.

Complex systems organized in a hierarchial manner, where, for instance, discrete
planning algorithms at the higher level interact with continuous control algorithms
and processes at the lower level, are another example of hybrid systems. In these
systems, the hierarchical organization helps to manage the complexity of the
system, as higher levels in the hierarchy require less detailed models (also called
abstractions) of the lower levels functions.

Hybrid systems arise in a large number of application areas and are attracting
increasing attention in both academic theory-oriented circles as well as in industry,
for instance in the automotive industry [16, 157, 62, 125, 74, 214]. Moreover, many
physical phenomena admit a natural hybrid description, like circuits involving
relays or diodes [28], biomolecular networks [6], and TCP/IP networks in [150].

In this book we work exclusively with dynamical systems formulated in discrete
time. Therefore this chapter focuses on hybrid models formulated in discrete
time. Though the effects of sampling can be neglected in most applications,
some interesting mathematical phenomena occurring in hybrid systems, such as
Zeno behaviors [158] do not exist in discrete time, as switches can only occur
at sampling instants. On the other hand, most of these phenomena are usually a
consequence of the continuous-time switching model, rather than the real behavior.
Our main motivation for concentrating on discrete-time models is that optimal
control problems are easier to formulate and to solve numerically than continuous-
time formulations.

In the theory of hybrid systems, several problems were investigated in the last
few years. Besides the issues of existence and computation of trajectories described
in Section 16.1, several other issues were considered. These include: equivalence of
hybrid models, stability and passivity analysis, reachability analysis and verification
of safety properties, controller synthesis, observability analysis, state estimation
and fault detection schemes, system identification, stochastic and event-driven
dynamics. We will briefly review some of these results in the next paragraphs and
provide pointers to some relevant literature references.

Equivalence of Linear Hybrid Systems

Under the condition that the MLD system is well-posed, the result showing that
an MLD systems admits an equivalent PWA representation was proved in [36].
A slightly different and more general proof is reported in [30], where the author
also provides efficient MLD to PWA translation algorithms. A different algorithm
for obtaining a PWA representation of a DHA is reported in [122].

The fact that PWA systems are equivalent to interconnections of linear systems
and finite automata was pointed out by Sontag [267]. In [148, 40] the authors proved

372 16 Models of Hybrid Systems

the equivalence of discrete-time PWA/MLD systems with other classes of discrete-
time hybrid systems (under some assumptions) such as linear complementarity
(LC) systems [146, 279, 147], extended linear complementarity (ELC) systems [94],
and max-min-plus-scaling (MMPS) systems [95].

Stability Analysis

Piecewise quadratic Lyapunov stability is becoming a standard in the stability
analysis of hybrid systems [155, 96, 102, 233, 234]. It is a deductive way to prove
the stability of an equilibrium point of a subclass of hybrid systems (piecewise
affine systems). The computational burden is usually low, at the price of a
convex relaxation of the problem, that leads to possibly conservative results. Such
conservativeness can be reduced by constructing piecewise polynomial Lyapunov
functions via semidefinite programming by means of the sum of squares (SOS)
decomposition of multivariate polynomials [230]. SOS methods for analyzing
stability of continuous-time hybrid and switched systems are described in [238].
For the general class of switched systems of the form ẋ = fi(x), i = 1, . . . , s, an
extension of the Lyapunov criterion based on multiple Lyapunov functions was
introduced in [67]. The reader is also referred to the book by Liberzon [191].

The research on stability criteria for PWA systems has been motivated by the
fact that the stability of each component subsystem is not sufficient to guarantee
stability of a PWA system (and vice versa). Branicky [67], gives an example where
stable subsystems are suitably combined to generate an unstable PWA system.
Stable systems constructed from unstable ones have been reported in [278]. These
examples point out that restrictions on the switching have to be imposed in order
to guarantee that a PWA composition of stable components remains stable.

Passivity analysis of hybrid models has received little attention, except for
the contributions of [77, 199, 295] and [236], in which notions of passivity for
continuous-time hybrid systems are formulated, and of [31], where passivity and
synthesis of passifying controllers for discrete-time PWA systems are investigated.

Reachability Analysis and Verification of Safety Properties

Although simulation allows to probe a model for a certain initial condition and
input excitation, any analysis based on simulation is likely to miss the subtle
phenomena that a model may generate, especially in the case of hybrid models.
Reachability analysis (also referred to as “safety analysis” or “formal verification”),
aims at detecting if a hybrid model will eventually reach unsafe state configurations
or satisfy a temporal logic formula [7] for all possible initial conditions and input
excitations within a prescribed set. Reachability analysis relies on a reach set
computation algorithm, which is strongly related to the mathematical model of
the system. In the case of MLD systems, for example, the reachability analysis
problem over a finite time horizon (also referred to as bounded model checking)
can be cast as a mixed-integer feasibility problem. Reachability analysis was also

16.8 Literature Review 373

investigated via bisimulation ideas, namely by analyzing the properties of a simpler,
abstracted system instead of those of the original hybrid dynamics [182].

Timed automata and hybrid automata have proved to be a successful modeling
framework for formal verification and have been widely used in the literature. The
starting point for both models is a finite state machine equipped with continuous
dynamics. In the theory of timed automata, the dynamic part is the continuous-
time flow ẋ = 1. Efficient computational tools complete the theory of timed
automata and allow one to perform verification and scheduling of such models.
Timed automata were extended to linear hybrid automata [7], where the dynamics
is modeled by the differential inclusion a ≤ ẋ ≤ b. Specific tools allow one to verify
such models against safety and liveness requirements. Linear hybrid automata were
further extended to hybrid automata where the continuous dynamics is governed
by differential equations. Tools exist to model and analyze those systems, either
directly or by approximating the model with timed automata or linear hybrid
automata (see the survey paper [265]).

Control

The majority of the control approaches for hybrid systems is based on optimal
control ideas (see the survey [291]). For continuous-time hybrid systems, most
authors either studied necessary conditions for a trajectory to be optimal [235, 271],
or focused on the computation of optimal/suboptimal solutions by means of
dynamic programming or the maximum principle [128, 245, 143, 144, 80, 292,
192, 261, 264, 266, 273, 70, 141, 196, 128, 69, 252, 71] The hybrid optimal control
problem becomes less complex when the dynamics is expressed in discrete-time,
as the main source of complexity becomes the combinatorial (yet finite) number
of possible switching sequences. As will be shown in Chapter 17, optimal control
problems can be solved for discrete-time hybrid systems using either the PWA
or the MLD models described in this chapter. The solution to optimal control
problems for discrete-time hybrid systems was first outlined by Sontag in [266].
In his plenary presentation [202] at the 2001 European Control Conference Mayne
presented an intuitively appealing characterization of the state feedback solution to
optimal control problems for linear hybrid systems with performance criteria based
on quadratic and piecewise linear norms. The detailed exposition presented in the
first part of Chapter 17 follows a similar line of argumentation and shows that the
state feedback solution to the finite time optimal control problem is a time-varying
piecewise affine feedback control law, possibly defined over nonconvex regions.

Model Predictive Control for discrete-time PWA systems and their stability and
robustness properties have been studied in [68, 60, 32, 188, 185, 186]. Invariant sets
computation for PWA systems has also been studied in [187, 4].

Observability and State Estimation

Observability of hybrid systems is a fundamental concept for understanding if a
state observer can be designed for a hybrid system and how well it will perform.

374 16 Models of Hybrid Systems

In [36] the authors show that observability properties (as well as reachability
properties) can be very complex and present a number of counterexamples that rule
out obvious conjectures about inheriting observability/controllability properties
from the composing linear subsystems. They also provide observability tests based
on linear and mixed-integer linear programming.

State estimation is the reconstruction of the value of unmeasurable state
variables based on output measurements. While state estimation is primarily
required for output-feedback control, it is also important in problems of monitoring
and fault detection [41, 17]. Observability properties of hybrid systems were directly
exploited for designing convergent state estimation schemes for hybrid systems
in [103].

Identification

Identification techniques for piecewise affine systems were recently developed [104,
255, 163, 39, 165, 282, 227], that allow one to derive models (or parts of models)
from input/output data.

Extensions to Event-driven and Stochastic Dynamics

The discrete-time methodologies described in this chapter were employed in [73]
to tackle event-based continuous-time hybrid systems with integral continuous
dynamics, called integral continuous-time hybrid automata (icHA). The hybrid
dynamics is translated into an equivalent MLD form, where continuous-time is
an additional state variable and the index t counts events rather than time steps.
Extensions of DHA to discrete-time stochastic hybrid dynamics were proposed
in [33], where discrete-state transitions depend on both deterministic and stochastic
events.

17

Optimal Control of
Hybrid Systems

In this chapter we study the finite time, infinite time and receding horizon optimal
control problem for the class of hybrid systems presented in the previous chapter.
We establish the structure of the optimal control law and derive several different
algorithms for its computation. For finite time problems with linear and quadratic
objective functions we show that the time varying feedback law is piecewise affine.

17.1 Problem Formulation

Consider the PWA system (16.1) subject to hard input and state constraints

Ex(t) + Lu(t) ≤ M (17.1)

for t ≥ 0, and rewrite its restriction over the set of states and inputs defined
by (17.1) as

x(t+ 1) = Aix(t) +Biu(t) + f i if
[
x(t)
u(t)

]
∈ C̃i (17.2)

where {C̃i}s−1
i=0 is the new polyhedral partition of the sets of state+input space

Rn+m obtained by intersecting the sets Ci in (16.1c) with the polyhedron described
by (17.1). In this chapter we will assume that the sets Ci are polytopes.

Define the cost function

J0(x(0), U0) = p(xN) +

N−1∑
k=0

q(xk, uk) (17.3)

where xk denotes the state vector at time k obtained by starting from the state
x0 = x(0) and applying to the system model

xk+1 = Aixk +Biuk + f i if [xk
uk

] ∈ C̃i (17.4)

the input sequence u0, . . . , uk−1.

376 17 Optimal Control of Hybrid Systems

If the 1-norm or∞-norm is used in the cost function (17.3), then we set p(xN) =
‖PxN‖p and q(xk, uk) = ‖Qxk‖p + ‖Ruk‖p with p = 1 or p = ∞ and P , Q, R full
column rank matrices. Cost (17.3) is rewritten as

J0(x(0), U0) = ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p. (17.5)

If the squared Euclidian norm is used in the cost function (17.3), then we set
p(xN) = x′

NPxN and q(xk, uk) = x′
kQxk + u′

kRuk with P � 0, Q � 0 and R � 0.
Cost (17.3) is rewritten as

J0(x(0), U0) = x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk. (17.6)

Consider the constrained finite time optimal control problem (CFTOC)

J∗
0 (x(0)) = min

U0

J0(x(0), U0) (17.7a)

subj. to

⎧⎨⎩ xk+1 = Aixk +Biuk + f i if [xk
uk

] ∈ C̃i

xN ∈ Xf

x0 = x(0)
(17.7b)

where the column vector U0 = [u′
0, . . . , u

′
N−1]

′ ∈ RmcN × {0, 1}m�N , is the
optimization vector, N is the time horizon and Xf is the terminal region.

In general, the optimal control problem (17.7) may not have a minimizer for
some feasible x(0). This is caused by discontinuity of the PWA system in the input
space. We will assume, however, that a minimizer U0

∗(x(0)) exists for all feasible
x(0). Also the optimizer function U∗

0 may not be uniquely defined if the optimal
set of problem (17.7) is not a singleton for some x(0). In this case U∗

0 denotes one
of the optimal solutions.

We will denote by Xk ⊆ Rnc × {0, 1}n� the set of states xk that are feasible
for (17.7):

Xk =

⎧⎪⎪⎨⎪⎪⎩x ∈ Rnc × {0, 1}n�

∣∣∣∣∣∣∣∣
∃u ∈ Rmc × {0, 1}m� ,
∃i ∈ {1, . . . , s}
[xu] ∈ C̃i and
Aix+Biu+ f i ∈ Xk+1

⎫⎪⎪⎬⎪⎪⎭ ,

k = 0, . . . , N − 1
XN = Xf .

(17.8)

The definition of Xi requires that for any initial state xi ∈ Xi there exists a
feasible sequence of inputs Ui = [u′

i, . . . , u
′
N−1] which keeps the state evolution

in the feasible set X at future time instants k = i + 1, . . . , N − 1 and forces xN

into Xf at time N . The sets Xk for i = 0, . . . , N play an important role in the
solution of the optimal control problem. They are independent of the cost function
and of the algorithm used to compute the solution to problem (17.7). As in the
case of linear systems (see Chapter 11.2) there are two ways to rigourously define
and compute the sets Xi: the batch approach and the recursive approach. In this

17.2 Properties of the State Feedback Solution, 2-Norm Case 377

chapter we will not discuss the details on the computation of Xi. Also, we will not
discuss invariant and reachable sets for hybrid systems. While the basic concepts
are identical to those presented in Section 10.1 for linear systems, the discussion
of efficient algorithms requires a careful treatment which goes beyond the scope of
this book. The interested reader is referred to the work in [131, 121] for a detailed
discussion on reachable and invariant sets for hybrid systems.

In the following we need to distinguish between optimal control based on the
squared 2-norm and optimal control based on the 1-norm or ∞-norm. Note that
the results of this chapter also hold when the number of switches is weighted in the
cost function (17.3), if this is meaningful in a particular situation.

In this chapter we will make use of the following definition. Consider sys-
tem (17.2) and recall that, in general, x = [xc

x�
] where xc ∈ Rnc are the continuous

states and x	 ∈ Rn� are the binary states and u ∈ Rmc × {0, 1}m� where uc ∈ Rmc

are the continuous inputs and u	 ∈ Rm� are the binary inputs (Section 16.2.2). We
will make the following assumption.

Assumption 17.1 For the discrete-time PWA system (17.2) the mapping
(xc(t), uc(t)) �→ xc(t+ 1) is continuous.

Assumption 17.1 requires that the PWA function that defines the update of the
continuous states is continuous on the boundaries of contiguous polyhedral cells,
and therefore allows one to work with the closure of the sets C̃i without the need
of introducing multivalued state update equations. With abuse of notation in the
next sections C̃i will always denote the closure of C̃i. Discontinuous PWA systems
will be discussed in Section 17.7.

17.2 Properties of the State Feedback Solution,
2-Norm Case

Theorem 17.1 Consider the optimal control problem (17.7) with cost (17.6) and
let assumption 17.1 hold. Then, there exists a solution in the form of a PWA state
feedback control law

u∗
k(x(k)) = F i

kx(k) + gik if x(k) ∈ Ri
k, (17.9)

where Ri
k, i = 1, . . . , Nk is a partition of the set Xk of feasible states x(k), and the

closure R̄i
k of the sets Ri

k has the following form:

R̄i
k = {x : x(k)′Li

k(j)x(k) +M i
k(j)

′
x(k) ≤ N i

k(j),

j = 1, . . . , ni
k}, k = 0, . . . , N − 1,

(17.10)

and
x(k + 1) = Aix(k) +Biu∗

k(x(k)) + f i

if
[

x(k)
u∗
k(x(k))

]
∈ C̃i, i = {1, . . . , s}. (17.11)

378 17 Optimal Control of Hybrid Systems

Proof: The piecewise linearity of the solution was first mentioned by Sontag in
[266]. In [202] Mayne sketched a proof. In the following we will give the proof for
u∗
0(x(0)), the same arguments can be repeated for u∗

1(x(1)), . . . , u
∗
N−1(x(N − 1)).

• Case 1. (ml = nl = 0) no binary inputs and states
Depending on the initial state x(0) and on the input sequence U = [u′

0,. . .,
u′
k], the state xk is either infeasible or it belongs to a certain polyhedron

C̃i, k = 0, . . . , N − 1. The number of all possible locations of the state

sequence x0, . . . , xN−1 is equal to s
N . Denote by {vi}s

N

i=1 the set of all possible
switching sequences over the horizon N , and by vki the k-th element of the
sequence vi, i.e., v

k
i = j if xk ∈ C̃j .

Fix a certain vi and constrain the state to switch according to the sequence
vi. Problem (17.3)–(17.7) becomes

J∗
vi
(x(0)) = min

{U0}
J0(U0, x(0)) (17.12a)

subj. to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xk+1 = Avk

i xk +Bvk
i uk + fvk

i

[xk
uk

] ∈ C̃vk
i

k = 0, . . . , N − 1
xN ∈ Xf

x0 = x(0)

(17.12b)

Problem (17.12) is equivalent to a finite time optimal control problem for a
linear time-varying system with time-varying constraints and can be solved
by using the approach described in Chapter 11. The first move u0 of its
solution is the PPWA feedback control law

ui
0(x(0)) = F̃ i,jx(0) + g̃i,j , ∀x(0) ∈ T i,j , j = 1, . . . , Nri (17.13)

where Di =
⋃Nri

j=1 T i,j is a polyhedral partition of the convex set Di of

feasible states x(0) for problem (17.12). Nri is the number of regions of the
polyhedral partition of the solution and it is a function of the number of
constraints in problem (17.12). The upper index i in (17.13) denotes that
the input ui

0(x(0)) is optimal when the switching sequence vi is fixed.

The set X0 of all feasible states at time 0 is X0 =
⋃sN

i=1 Di and in general
it is not convex. Indeed, as some initial states can be feasible for different
switching sequences, the sets Di, i = 1, . . . , sN , in general, can overlap. The
solution u∗

0(x(0)) to the original problem (17.3)–(17.7) can be computed in
the following way. For every polyhedron T i,j in (17.13),

1. If T i,j ∩ T l,m = ∅ for all l 	= i, l = 1, . . . , sN , and for all m 	= j, m =
1, . . . , Nrl, then the switching sequence vi is the only feasible one for all
the states belonging to T i,j and therefore the optimal solution is given
by (17.13), i.e.,

u∗
0(x(0)) = F̃ i,jx(0) + g̃i,j , ∀x(0) ∈ T i,j . (17.14)

2. If T i,j intersects one or more polyhedra T l1,m1 ,T l2,m2 , . . ., the states
belonging to the intersection are feasible for more than one switching

17.2 Properties of the State Feedback Solution, 2-Norm Case 379

sequence vi, vl1 , vl2 , . . . and therefore the corresponding value functions
J∗
vi
, J∗

vl1
,J∗

vl2
, . . . in (17.12a) have to be compared in order to compute

the optimal control law.
Consider the simple case when only two polyhedra overlap, i.e., T i,j ∩
T l,m = T (i,j),(l,m) 	= ∅. We will refer to T (i,j),(l,m) as a double feasibility
polyhedron. For all states belonging to T (i,j),(l,m) the optimal solution is:

u∗
0(x(0)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̃ i,jx(0) + g̃i,j , ∀x(0) ∈ T (i,j),(l,m) :

J∗
vi(x(0)) < J∗

vl(x(0))

F̃ l,mx(0) + g̃l,m, ∀x(0) ∈ T (i,j),(l,m) :
J∗
vi(x(0)) > J∗

vl(x(0)){
F̃ i,jx(0) + g̃i,j or

F̃ l,mx(0) + g̃l,m
∀x(0) ∈ T (i,j),(l,m) :

J∗
vi(x(0)) = J∗

vl(x(0))

(17.15)

Because J∗
vi

and J∗
vl

are quadratic functions of x(0) on T i,j and T l,m

respectively, we find the expression (17.10) of the control law domain.
The sets T i,j \T l,m and T l,m \T i,j are two single feasibility P-collections
which can be partitioned into a set of single feasibility polyhedra, and thus
be described through (17.10) with Li

k = 0.

In order to conclude the proof, the general case of n intersecting polyhedra
has to be discussed. We follow three main steps. Step 1: generate one
polyhedron of nth-ple feasibility and 2n−2 P-collections possibly empty and
disconnected, of single, double, . . ., (n−1)th-ple feasibility. Step 2: the ith-ple
feasibility P-collection is partitioned into several ith-ple feasibility polyhedra.
Step 3: any ith-ple feasibility polyhedron with i > 1 is further partitioned
into at most i subsets (17.10) where in each one of them a certain feasible
value function is greater than all the others. The procedure is depicted in
Figure 17.1 when n = 3.

• Case 2. binary inputs, m	 	= 0
The proof can be repeated in the presence of binary inputs, m	 	= 0. In
this case the switching sequences vi are given by all combinations of region
indices and binary inputs, i.e., i = 1, . . . , (s·m)

N . For each sequence vi there
is an associated optimal continuous component of the input as calculated in
Case 1.

• Case 3. binary states, nl 	= 0
The proof can be repeated in the presence of binary states by a simple
enumeration of all the possible nN

	 discrete state evolutions.
�

From the result of the theorem above one immediately concludes that the value
function J∗

0 is piecewise quadratic:

J∗
0 (x(0)) = x(0)′Hi

1x(0) +Hi
2

′
x(0) +Hi

3 if x(0) ∈ Ri
0. (17.16)

The proof of Theorem 17.1 gives useful insights into the properties of the sets
Ri

k in (17.10). We will summarize them next.

380 17 Optimal Control of Hybrid Systems

1

2

3

1,3

1,2

1,2,3

(a) Step 1.

1

2

3

(b) Step 2 and Step 3.

Figure 17.1 Graphical illustration of the main steps for the proof of Theorem
17.1 when 3 polyhedra intersect. Step 1: the three intersecting polyhedra are
partitioned into: one polyhedron of triple feasibility (1,2,3), 2 polyhedra of
double feasibility (1, 2) and (1, 3), 3 polyhedra of single feasibility (1),(2),(3).
The sets (1), (2) and (1,2) are neither open nor closed polyhedra. Step 2: the
single feasibility sets of (1), (2) and (3) are partitioned into six polyhedra.
Step 3: value functions are compared inside the polyhedra of multiple
feasibility.

Each set Ri
k has an associated multiplicity j which means that j switching

sequences are feasible for problem (17.3)–(17.7) starting from a state x(k) ∈ Ri
k.

If j = 1, then Ri
k is a polyhedron. In general, if j > 1 the boundaries of Ri

k

can be described either by an affine function or by a quadratic function. In the
sequel boundaries which are described by quadratic functions but degenerate to
hyperplanes or sets of hyperplanes will be considered affine boundaries.

Quadratic boundaries arise from the comparison of value functions associated
with feasible switching sequences, thus a maximum of j − 1 quadratic boundaries
can be present in a j-ple feasible set. The affine boundaries can be of three types.

• Type a: they are inherited from the original j-ple feasible P-collection. In
this case across such boundaries the multiplicity of the feasibility changes.

• Type b: they are artificial cuts needed to describe the original j-ple feasible
P-collection as a set of j-ple feasible polyhedra. Across type b boundaries
the multiplicity of the feasibility does not change.

• Type c: they arise from the comparison of quadratic value functions which
degenerate in an affine boundary.

In conclusion, we can state the following lemma

Lemma 17.1 The value function J∗
k

1. is a quadratic function of the states inside each Ri
k

2. is continuous on quadratic and affine boundaries of type b and c

3. may be discontinuous on affine boundaries of type a,

17.2 Properties of the State Feedback Solution, 2-Norm Case 381

and the optimizer u∗
k

1. is an affine function of the states inside each Ri
k

2. is continuous across and unique on affine boundaries of type b

3. is nonunique on quadratic boundaries, except possibly at isolated points

4. may be nonunique on affine boundaries of type c

5. may be discontinuous across affine boundaries of type a

Based on Lemma 17.1 above one can highlight the only source of discontinuity
of the value function: affine boundaries of type a. The following corollary gives a
useful insight on the class of possible value functions.

Corollary 17.1 J∗
0 is a lower-semicontinuous PWQ function on X0.

Proof: The proof follows from the result on the minimization of lower-
semicontinuous point-to-set maps in [47]. Below we give a simple proof without
introducing the notion of point-to-set maps.

Only points where a discontinuity occurs are relevant for the proof, i.e., states
belonging to boundaries of type a. From assumption 17.1 it follows that the feasible
switching sequences for a given state x(0) are all the feasible switching sequences
associated with any set Rj

0 whose closure R̄j
0 contains x(0). Consider a state x(0)

belonging to boundaries of type a and the proof of Theorem 17.1. The only case of
discontinuity can occur when (i) a j-ple feasible set P1 intersects an i-ple feasible
set P2 with i < j, (ii) there exists a point x(0) ∈ P1, P2 and a neighborhood
N (x(0)) with x, y ∈ N (x(0)), x ∈ P1, x /∈ P2 and y ∈ P2, y /∈ P1. The proof
follows from the previous statements and the fact that J∗

0 (x(0)) is the minimum of
all J∗

vi
(x(0)) for all feasible switching sequences vi. �

The result of Corollary 17.1 will be used extensively in the next sections. Even
if value function and optimizer are discontinuous, one can work with the closure
R̄j

k of the original sets Rj
k without explicitly considering their boundaries. In fact,

if a given state x(0) belongs to several regions R̄1
0,. . . ,R̄

p
0, then the minimum value

among the optimal values (17.16) associated with each region R̄1
0, . . . , R̄p

0 allows us
to identify the region of the set R1

0, . . . ,R
p
0 containing x(0).

Next we show some interesting properties of the optimal control law when we
restrict our attention to smaller classes of PWA systems.

Corollary 17.2 Assume that the PWA system (17.2) is continuous, and that
E = 0 in (17.1) and Xf = Rn in (17.7) (which means that there are no state

constraints, i.e., P̃ is unbounded in the x-space). Then, the value function J∗
0

in (17.7) is continuous.

Proof: Problem (17.7) becomes a multiparametric program with only input
constraints when the state at time k is expressed as a function of the state
at time 0 and the input sequence u0, . . . , uk−1, i.e., xk = fPWA((· · · (fPWA

(x0, u0), u1), . . . , uk−2), uk−1). J0 in (17.3) will be a continuous function of x0 and

382 17 Optimal Control of Hybrid Systems

u0, . . . , uN−1 since it is the composition of continuous functions. By assumptions
the input constraints on u0, . . . , uN−1 are convex and the resulting set is compact.
The proof follows from the continuity of J and Theorem 5.2. �

Note that E = 0 is a sufficient condition for ensuring that constraints (17.1)
are convex in the optimization variables u0, . . . , un. In general, even for continuous
PWA systems with state constraints it is difficult to find weak assumptions ensuring
the continuity of the value function J∗

0 . Ensuring the continuity of the optimal
control law u(k) = u∗

k(x(k)) is even more difficult. A list of sufficient conditions for
U∗
0 to be continuous can be found in [106]. In general, they require the convexity (or

a relaxed form of it) of the cost J0(U0, x(0)) in U0 for each x(0) and the convexity
of the constraints in (17.7) in U0 for each x(0). Such conditions are clearly very
restrictive since the cost and the constraints in problem (17.7) are a composition
of quadratic and linear functions, respectively, with the piecewise affine dynamics
of the system.

The next theorem provides a condition under which the solution u∗
k(x(k)) of

the optimal control problem (17.3)–(17.7) is a PPWA state feedback control law.

Theorem 17.2 Assume that the optimizer U0
∗(x(0)) of (17.3)–(17.7) is unique

for all x(0). Then the solution to the optimal control problem (17.3)–(17.7) is a
PPWA state feedback control law of the form

u∗
k(x(k)) = F i

kx(k) + gik if x(k) ∈ Pi
k k = 0, . . . , N − 1, (17.17)

where Pi
k, i = 1, . . . , Nr

k , is a polyhedral partition of the set Xk of feasible states
x(k).

Proof: In Lemma 17.1 we concluded that the value function J∗
0 (x(0)) is

continuous on quadratic type boundaries. By hypothesis, the optimizer u∗
0(x(0))

is unique. Theorem 17.1 implies that F̃ i,jx(0) + g̃i,j = F̃ l,mx(0) + g̃l,m, ∀x(0)
belonging to the quadratic boundary. This can occur only if the quadratic boundary
degenerates to a single feasible point or to affine boundaries. The same arguments
can be repeated for u∗

k(x(k)), k = 1, . . . , N − 1. �

Remark 17.1 Theorem 17.2 relies on a rather strong uniqueness assumption.
Sometimes, problem (17.3)–(17.7) can be modified in order to obtain uniqueness
of the solution and use the result of Theorem 17.2 which excludes the existence of
ellipsoidal sets. It is reasonable to believe that there are other conditions under which
the state feedback solution is PPWA without claiming uniqueness.

Example 17.1 Consider the following simple system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t+ 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[
0 −1
1 0

]
x(t) +

[
0.2
0

]
u(t) +

[
−0.2
0.2

]
if x(t) ∈ C1 = {x : [0 1]x ≥ 0}[

0 −1
1 0

]
x(t) +

[
0.2
0

]
u(t)−

[
0.2
−0.2

]
if x(t) ∈ C2 = {x : [0 1]x < 0}

x(t) ∈ [−0.5,−0.5]× [0.5, 0.5]
u(t) ∈ [−1000, 1000]

(17.18)

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PWA_multfeas.m

17.2 Properties of the State Feedback Solution, 2-Norm Case 383

x1

x
2

(a) v1 = {1, 1}
x1

x
2

(b) v2 = {1, 2}

x1

x
2

(c) v2 = {2, 1}
x1

x
2

(d) v4 = {2, 2}

Figure 17.2 Example 17.1. Problem (17.12) with cost (17.6) is solved for
different vi, i = 1, . . . , 4. Control law u∗

0(x0) is PPWA. State space partition
is shown.

x1

x
2

(a) Feasibility domain obtained as
the union of the domains shown in
Figure 17.2. All regions are polyhe-
dra of multiple feasibility.

v1 v3

v2 v4

x1

x
2

(b) Regions of the state space
partition where the switching
sequences v1 = {1, 1}, v2 = {1, 2},
v3 = {2, 1}, v4 = {2, 2} are
optimal.

Figure 17.3 Example 17.1. State space partition corresponding to the
optimal control law.

384 17 Optimal Control of Hybrid Systems

and the optimal control problem (17.7) with cost (17.6), N = 2, Q =[
1 −0.1

−0.1 1

]
, R = 10, P = 10Q, Xf = X .

The possible switching sequences are v1 = {1, 1}, v2 = {1, 2}, v3 = {2, 1}, v4 = {2, 2}.
The solution to problem (17.12) is depicted in Figure 17.2. In Figure 17.3(a) the four
solutions are intersected. All regions are polyhedra of multiple feasibility. In Figure
17.3(b) we plot with different shadings the regions of the state space partition where
the switching sequences v1 = {1, 1}, v2 = {1, 2}, v3 = {2, 1}, v4 = {2, 2} are optimal.

17.3 Properties of the State Feedback Solution,
1-Norm, ∞-Norm Case

The results of the previous section can be extended to piecewise linear cost
functions, i.e., cost functions based on the 1-norm or the ∞-norm.

Theorem 17.3 Consider the optimal control problem (17.7) with cost (17.5),
p = 1, ∞ and let assumption 17.1 hold. Then there exists a solution in the form
of a PPWA state feedback control law

u∗
k(x(k)) = F i

kx(k) + gik if x(k) ∈ Pi
k, (17.19)

where Pi
k, i = 1, . . . , Nr

k is a polyhedral partition of the set Xk of feasible states
x(k).

Proof: The proof is similar to the proof of Theorem 17.1. Fix a certain switching
sequence vi, consider the problem (17.3)–(17.7) and constrain the state to switch
according to the sequence vi to obtain problem (17.12). Problem (17.12) can be
viewed as a finite time optimal control problem with a performance index based on
1-norm or ∞-norm for a linear time varying system with time varying constraints
and can be solved by using the multiparametric linear program as described in
Chapter 11.4. Its solution is a PPWA feedback control law

ui
0(x(0)) = F̃ i,jx(0) + g̃i,j , ∀x ∈ T i,j , j = 1, . . . , Nri, (17.20)

and the value function J∗
vi

is piecewise affine on polyhedra and convex. The rest
of the proof follows the proof of Theorem 17.1. Note that in this case the value
functions to be compared are piecewise affine and not piecewise quadratic. �

17.4 Computation of the Optimal Control Input via Mixed
Integer Programming

In the previous section the properties enjoyed by the solution to hybrid optimal
control problems were investigated. Despite the fact that the proofs are constructive

17.4 Computation of the Optimal Control Input via Mixed Integer Programming 385

(as shown in the figures), they are based on the enumeration of all the possible
switching sequences of the hybrid system, the number of which grows exponentially
with the time horizon. Although the computation is performed off-line (the
on-line complexity is the one associated with the evaluation of the PWA control
law (17.17)), more efficient methods than enumeration are desirable. Here we show
that the MLD framework can be used to avoid the complete enumeration. In fact,
when the model of the system is an MLD model and the performance index is
quadratic, the optimization problem can be cast as a Mixed-Integer Quadratic
Program (MIQP). Similarly, 1-norm and ∞-norm performance indices lead to
Mixed-Integer Linear Programs (MILPs) problems. In the following we detail the
translation of problem (17.7) with cost (17.5) or (17.6) into a mixed integer linear
or quadratic program, respectively, for which efficient branch and bound algorithms
exist.

Consider the equivalent MLD representation (16.25) of the PWA system (17.2).
Problem (17.7) is rewritten as:

J∗
0 (x(0)) = min

U0

J0(x(0), U0) (17.21a)

subj. to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
xk+1 = Axk +B1uk +B2δk +B3zk
yk = Cxk +D1uk +D2δk +D3zk +D5

E2δk + E3zk ≤ E1uk + E4xk + E5

xN ∈ Xf

x0 = x(0)

(17.21b)

Note that the cost function (17.21a) is of the form

J0(x(0), U0) = ‖PxN‖p +
N−1∑
k=0

‖Qxk‖p + ‖Ruk‖p + ‖Qδδk‖p + ‖Qzzk‖p (17.22)

when p = 1 or p = ∞ or

J0(x(0), U0) = x′
NPxN +

N−1∑
k=0

x′
kQxk + u′

kRuk + δ′kQδδk + z′kQzzk (17.23)

when p = 2.
The optimal control problem (17.21) with the cost (17.22) can be formulated as

a Mixed Integer Linear Program (MILP). The optimal control problem (17.21) with
the cost (17.23) can be formulated as a Mixed Integer Quadratic Program (MIQP).
The compact form for both cases is

min
ε

ε′H1ε+ ε′H2x(0) + x(0)′H3x(0) + c′1ε+ c′2x(0) + c

subj. to Gε ≤ w + Sx(0)

(17.24)

where H1, H2, H3, c1, c2, G, w, S are matrices of suitable dimensions, ε = [ε′c, ε
′
d]

where εc, εd represent continuous and discrete variables, respectively and H1, H2,
H3, are null matrices if problem (17.24) is an MILP.

386 17 Optimal Control of Hybrid Systems

The translation of (17.21) with cost (17.23) into (17.24) is simply obtained by
substituting the state update equation

xk = Akx0 +

k−1∑
j=0

Aj(B1uk−1−j +B2δk−1−j +B3zk−1−j) (17.25)

The optimization vector ε in (17.24) is ε = {u0, . . . , uN−1, δ0, . . . , δN−1, z0, . . . ,
zN−1}.

The translation of (17.21) with cost (17.22) into (17.24) requires the introduc-
tions of slack variables as shown in Section 11.4 for the case of linear systems. In
particular, for p = ∞, Qz = 0 and Qδ = 0, the sum of the components of any
vector {εu0 , . . . , εuN−1, ε

x
0 , . . . , ε

x
N} that satisfies

−1mεuk ≤ Ruk, k = 0, 1, . . . , N − 1

−1mεuk ≤ −Ruk, k = 0, 1, . . . , N − 1

−1nε
x
k ≤ Qxk, k = 0, 1, . . . , N − 1

−1nε
x
k ≤ −Qxk, k = 0, 1, . . . , N − 1

−1nε
x
N ≤ PxN ,

−1nε
x
N ≤ −PxN ,

(17.26)

represents an upper bound on J∗
0 (x(0)), where 1k is a column vector of ones

of length k, and where x(k) is expressed as in (17.25). Similarly to what was
shown in [78], it is easy to prove that the vector ε = {εu0 , . . . , εuN−1, ε

x
0 , . . . , ε

x
N ,

u(0), . . . , u(N − 1)} that satisfies equations (17.26) and simultaneously minimizes

J(ε) = εu0 + · · ·+ εuN−1 + εx0 + · · ·+ εxN (17.27)

also solves the original problem, i.e., the same optimum J∗
0 (x(0)) is achieved.

Therefore, problem (17.21) with cost (17.22) can be reformulated as the following
MILP problem

min
ε

J(ε)

subj. to −1mεuk ≤ ±Ruk, k = 0, 1, . . . , N − 1

−1nε
x
k ≤ ±Q

⎛⎝Akx0 +

k−1∑
j=0

Aj(B1uk−1−j+

B2δk−1−j +B3zk−1−j)

⎞⎠ k = 0, . . . , N − 1

−1nε
x
N ≤ ±P

⎛⎝ANx0 +

N−1∑
j=0

Aj(B1uk−1−j+

B2δk−1−j +B3zk−1−j)

⎞⎠
xk+1 = Axk +B1uk +B2δk +B3zk, k ≥ 0
E2δk + E3zk ≤ E1uk + E4xk + E5, k ≥ 0
xN ∈ Xf

x0 = x(0)

(17.28)

17.4 Computation of the Optimal Control Input via Mixed Integer Programming 387

where the variable x(0) in (17.28) appears only in the constraints as a parameter
vector.

Given a value of the initial state x(0), the MIQP (17.24) or the MILP (17.28)
can be solved to get the optimizer ε∗(x(0)) and therefore the optimal input U∗

0 (0).
In the next Section 17.5 we will show how multiparametric programming can be
also used to efficiently compute the piecewise affine state feedback optimal control
law (17.9) or (17.19).

Example 17.2 Consider the problem of steering in three steps the simple piecewise
affine system presented in Example 16.1 to a small region around the origin. The
system state update equations are⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x(t+ 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.4

[
1 −

√
3√

3 1

]
x(t) +

[
0
1

]
u(t) if

[
1 0

]
x(t) ≥ 0

0.4

[
1

√
3

−
√
3 1

]
x(t) +

[
0
1

]
u(t) if

[
1 0

]
x(t) ≤ −ε

y(t) =
[
0 1

]
x(t)

(17.29)
subject to the constraints

x(t) ∈ [−5, 5]× [−5, 5]
u(t) ∈ [−1, 1].

(17.30)

The MLD representation of system (17.29)–(17.30) was reported in Example 16.7.

The finite time constrained optimal control problem (17.7) with cost (17.5) with
p = ∞, N = 3, P = Q = [1 0

0 1], R = 1, and Xf = [−0.01, 0.01]× [−0.01, 0.01], can be
solved by considering the optimal control problem (17.21) with cost (17.22) for the
equivalent MLD representation and solving the associated MILP problem (17.24).

The resulting MILP has 27 variables (|ε| = 27) which are x ∈ R2, δ ∈ {0, 1}, z ∈ R2,
u ∈ R, y ∈ R over 3 steps plus the real-valued slack variables εu0 , ε

u
1 , ε

u
2 and εx1 , ε

x
2 ,

εx3 (note that εx0 is not needed). The number of mixed-integer equality constraints
is 9 resulting from the 3 equality constraints of the MLD systems over 3 steps. The
number of mixed-integer inequality constraints is 110.

The finite time constrained optimal control problem (17.7) with cost (17.6), N = 3,
P = Q = [1 0

0 1], R = 1, and Xf = [−0.01 0.01] × [−0.01 0.01], can be solved by
considering the optimal control problem (17.21) with cost (17.23) for the equivalent
MLD representation and solving the associated MIQP problem (17.24).

The resulting MIQP has 21 variables (|ε| = 21) which are x ∈ R2, δ ∈ {0, 1}, z ∈ R2,
u ∈ R, y ∈ R over 3 steps. The number of mixed-integer equality constraints is
9 resulting from the 3 equality constraints of the MLD systems over 3 steps. The
number of mixed-integer inequality constraints is 74.

17.4.1 Mixed-Integer Optimization Methods

With the exception of particular structures, mixed-integer programming problems
involving 0-1 variables are classified as NP -complete, which means that in the
worst case, the solution time grows exponentially with the problem size.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/onlineMILP.m

388 17 Optimal Control of Hybrid Systems

Despite the combinatorial nature of these problems, excellent solvers for MILPs
and MIQPs have become available over the last 10–15 years. As discussed in
Chapter 2.4, the most obvious way to solve an MIQP (MILP) is to enumerate all
the integer values and solve the corresponding QPs (LPs). By comparing the QPs
(LPs) optimal costs one can derive the optimizer and the optimal cost of the MIQP
(MILP). This is far from being efficient. The book [108] is a good reference for a
long list of algorithmic approaches to efficiently solve mixed integer programming
problems.

One simple idea called “Branch and Bound” has become the basis of many
efficient solvers. We will explain the basic ideas behind Branch and Bound solvers
with the help of a simple example.

Example 17.3 Illustrative Example for Branch and Bound Procedure We refer to
Figure 17.4. Assume that we are solving an MILP with three 0-1 integer variables
xd,1, xd,2, xd,3.

1. In a first step we relax the integer constraints, i.e., we allow the variables
xd,1, xd,2, xd,3 to vary continuously between 0 and 1. We find the minimum of
the Relaxed LP to be 10, which must be a lower bound on the solution.

2. We fix one of the integer variables xd,1 at 0 and 1, respectively, and leave the
others relaxed. We solve the two resulting LPs and obtain 13 and 12, which are
new improved lower bounds on the solutions along the two branches.

3. Heuristically we decide to continue on the branch with xd,1 = 1, because the
lower bound is lower than with xd,1 = 0. We now fix one of the remaining integer
variables xd,2 at 0 and 1, respectively, and leave xd,3 relaxed. We solve the two
resulting LPs and obtain 16 and 14, which are new improved lower bounds on
the solution along the two branches.

10

13 12

∞ 19 16 14

15 17

Relaxed LP

xd,3=1

xd,2=1xd,2=0xd,2=1xd,2=0

xd,1=0 xd,1=1

xd,3=0

LB=10

Infeasible 19>UB 16>UB

UB=15 15<UB=17

Optimal
solution

Figure 17.4 Illustration of Branch and Bound procedure.

17.5 State Feedback Solution via Batch Approach 389

4. Heuristically we decide again to continue on the branch with xd,2 = 1, because
the lower bound is lower than with xd,2 = 0. We now fix the remaining integer
variable xd,3 at 0 and 1, respectively. We solve the two resulting LPs and obtain
15 and 17. We can conclude now that 15 is an upper bound on the solution and
the integer choices leading to 17 are nonoptimal. We can also stop the further
exploration of node 16 because this lower bound is higher than the established
upper bound of 15.

5. We explore node 13 and find the integer choices either to be infeasible or to lead
to a lower bound of 19 which is again higher than the established upper bound
of 15. Thus no further explorations are necessary and 15 is confirmed to be the
optimal solution.

More generally, the Branch and Bound algorithm for MILPs involves solving
and generating a set of LP subproblems in accordance with a tree search, where
the nodes of the tree correspond to LP subproblems. Branching generates child-
nodes from parent-nodes according to branching rules, which can be based, for
instance, on a-priori specified priorities on integer variables, or on the amount by
which the integer constraints are violated. Nodes are labeled either as pending, if
the corresponding LP problem has not yet been solved, or fathomed, if the node
has already been fully explored. The algorithm stops when all nodes have been
fathomed.

The success of the branch and bound algorithm relies on the fact that whole
subtrees can be excluded from further exploration by fathoming the corresponding
root nodes. This happens if the corresponding LP subproblem is either infeasible
or an integer solution is obtained. In the second case, the corresponding value of
the cost function serves as an upper bound on the optimal solution of the MILP
problem, and is used to further fathom any other nodes having either a greater
optimal value or lower bound.

17.5 State Feedback Solution via Batch Approach

Multiparametric programming [115, 101, 44, 63] has been used to compute the
PWA form of the optimal state feedback control law u∗(x(k)) for linear system.
By generalizing the results of the previous chapters to hybrid systems, the state
vector x(0), which appears in the objective function and in the linear part of
the right-hand side of the constraints (17.24), can be considered as a vector of
parameters. Then, for performance indices based on the ∞-norm or 1-norm, the
optimization problem can be treated as a multiparametric MILP (mp-MILP), while
for performance indices based on the 2-norm, the optimization problem can be
treated as a multiparametric MIQP (mp-MIQP). Solving an mp-MILP (mp-MIQP)
amounts to expressing the solution of the MILP (MIQP) (17.24) as a function of
the parameters x(0).

In Section 6.4.1 we have presented an algorithm for solving mp-MILP problems,
while, to the authors’ knowledge, there does not exist an efficient method for solving
general mp-MIQPs. In Section 17.6 we will present an algorithm that efficiently

390 17 Optimal Control of Hybrid Systems

solves the specific mp-MIQPs derived from optimal control problems for discrete-
time hybrid systems.

17.6 State Feedback Solution via Recursive Approach

In this section we propose an efficient algorithm for computing the solution to
the finite time optimal control problem for discrete-time linear hybrid systems.
It is based on a dynamic programming recursion and a multiparametric linear
or quadratic programming solver. The approach represents an alternative to the
mixed-integer parametric approach presented earlier.

The PWA solution (17.9) will be computed proceeding backwards in time using
two tools: a linear or quadratic multiparametric programming solver (depending on
the cost function used) and a special technique to store the solution which will be
illustrated in the next sections. The algorithm will be presented for optimal control
based on a quadratic performance criterion. Its extension to optimal control based
on linear performance criteria is straightforward.

17.6.1 Preliminaries and Basic Steps

Consider the PWA map ζ defined as

ζ : x ∈ Ri �→ Fix+ gi for i = 1, . . . , NR, (17.31)

where Ri, i = 1, . . . , NR are subsets of the x−space. Note that if there exist
l,m ∈ {1, . . . , NR} such that for x ∈ Rl ∩ Rm, Flx + gl 	= Fmx + gm the map
ζ (17.31) is not single valued.

Definition 17.1 Given a PWA map (17.31) we define fPWA(x) = ζo(x) as the
ordered region single-valued function associated with (17.31) when

ζo(x) = Fjx+ gj | x ∈ Rj and ∀i < j : x /∈ Ri,
j ∈ {1, . . . , NR},

and write it in the following form

ζo(x) =

⏐⏐⏐⏐⏐⏐A
F1x+ g1 if x ∈ P1

...
FNRx+ gNR if x ∈ PNR .

Note that given a PWA map (17.31) the corresponding ordered region single-valued
function ζo changes if the order used to store the regions Ri and the corresponding
affine gains change. For illustration purposes consider the example depicted in
Figure 17.5, where x ∈ R, NR = 2, F1 = 0, g1 = 0, R1 = [−2, 1], F2 = 1, g2 = 0,
R2 = [0, 2].

17.6 State Feedback Solution via Recursive Approach 391

x
z(
x
)

F1x+ g1

F2x+ g2

(a) Multivalued PWA map ζ.

x

z12(x)=
F1x+ g1 if x∈R1

F2x+ g2 if x∈R2

(b) Ordered region single valued
function ζ12.

x

z21(x)=
F1x+ g1 if x∈R1

F2x+ g2 if x∈R2

(c) Ordered region single valued
function ζ21.

Figure 17.5 Illustration of the ordered region single valued function.

In the following, we assume that the sets Rk
i in the optimal solution (17.9) can

overlap. When we refer to the PWA function u∗
k(x(k)) in (17.9) we will implicitly

mean the ordered region single-valued function associated with the map (17.9).

Example 17.4 Let J∗
1 : P1 → R and J∗

2 : P2 → R be two quadratic functions,
J∗
1 (x) = x′L1x + M ′

1x + N1 and J∗
2 (x) = x′L2x + M ′

2x + N2, where P1 and P2

are convex polyhedra and J∗
i (x) = +∞ if x /∈ Pi, i ∈ {1, 2}. Let u∗

1 : P1 → Rm,
u∗
2 : P2 → Rm be vector functions. Let P1 ∩ P2 = P3 �= ∅ and define

J∗(x) = min{J∗
1 (x), J

∗
2 (x)} (17.32)

u∗(x) =

{
u∗
1(x) if J∗

1 (x) ≤ J∗
2 (x)

u∗
2(x) if J∗

1 (x) ≥ J∗
2 (x)

(17.33)

where u∗(x) can be a set valued function. Let L3 = L2 − L1, M3 = M2 − M1,
N3 = N2 −N1. Then, corresponding to the three following cases

(i) J∗
1 (x) ≤ J∗

2 (x) ∀x ∈ P3

(ii) J∗
1 (x) ≥ J∗

2 (x) ∀x ∈ P3

(iii) ∃x1, x2 ∈ P3|J∗
1 (x1) < J∗

2 (x1) and J∗
1 (x2) > J∗

2 (x2)

392 17 Optimal Control of Hybrid Systems

the expressions (17.32) and a real-valued function that can be extracted from (17.33)
can be written equivalently as:

(i)

J∗(x) =

⏐⏐⏐⏐0 J∗
1 (x) if x ∈ P1

J∗
2 (x) if x ∈ P2

(17.34)

u∗(x) =

⏐⏐⏐⏐0 u∗
1(x) if x ∈ P1

u∗
2(x) if x ∈ P2

(17.35)

(ii) as in (17.34) and (17.35) by switching the indices 1 and 2

(iii)

J∗(x) =

⏐⏐⏐⏐⏐⏐0
min{J∗

1 (x), J
∗
2 (x)} if x ∈ P3

J∗
1 (x) if x ∈ P1

J∗
2 (x) if x ∈ P2

(17.36)

u∗(x) =

⏐⏐⏐⏐⏐⏐⏐⏐0
u∗
1(x) if x ∈ P3

⋂
{x | x′L3x+M ′

3x+N3 ≥ 0}
u∗
2(x) if x ∈ P3

⋂
{x | x′L3x+M ′

3x+N3 ≤ 0}
u∗
1(x) if x ∈ P1

u∗
2(x) if x ∈ P2

(17.37)

where (17.34), (17.35), (17.36), and (17.37) have to be considered as PWA and
PPWQ functions in the ordered region sense.

Example 17.4 shows how to

• avoid the storage of the intersections of two polyhedra in Case (i) and (ii)

• avoid the storage of possibly nonconvex regions P1 \ P3 and P2 \ P3

• work with multiple quadratic functions instead of quadratic functions defined
over nonconvex and nonpolyhedral regions.

The three points listed above will be the three basic ingredients for storing and
simplifying the optimal control law (17.9). Next we will show how to compute it.

Remark 17.2 In Example 17.4 the description (17.36)–(17.37) of Case (iii) can
always be used but the on-line evaluation of the control u∗(x) is rather involved
requiring a series of set membership and comparison evaluations. To assess if the
simpler description of u∗(x) of Case (i) or Case (ii) could be used instead, one needs
to solve indefinite quadratic programs of the form

minx x′L3x+M ′
3x+N3

subj. to x ∈ P3
(17.38)

which are nontrivial, in general.

17.6 State Feedback Solution via Recursive Approach 393

17.6.2 Multiparametric Programming with Multiple Quadratic Functions

Consider the multiparametric program

J∗(x) = minu l(x, u) + q(f(x, u))
subj. to f(x, u) ∈ P,

(17.39)

where P ⊆ Rn is a compact set, f : Rn×Rm → Rn, q : P → R, and l : Rn×Rm → R
is a convex quadratic function of x and u. We aim at determining the region X
of variables x such that the program (17.39) is feasible and the optimum J∗(x) is
finite, and at finding the expression u∗(x) of (one of) the optimizer(s). We point
out that the constraint f(x, u) ∈ P implies a constraint on u as a function of x
since u can assume only values where f(x, u) is defined.

Next we show how to solve several forms of problem (17.39).

Lemma 17.2 (one to one problem) Problem (17.39) where f is linear, q is
quadratic and strictly convex, and P is a polyhedron can be solved by one mp-QP.

Proof: See Chapter 6.3.1.

Lemma 17.3 (one to one problem of multiplicity d) Problem (17.39) where
f is linear, q is a multiple quadratic function of multiplicity d and P is a polyhedron
can be solved by d mp-QPs.

Proof: The multiparametric program to be solved is

J∗(x) = minu l(x, u) + min{q1(f(x, u)), . . . , qd(f(x, u))
subj. to f(x, u) ∈ P (17.40)

and it is equivalent to

J∗(x) = min

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minu l(x, u) + q1(f(x, u)),
subj. to f(x, u) ∈ P,

...
minu l(x, u) + qd(f(x, u))
subj. to f(x, u) ∈ P

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
. (17.41)

The ith subproblems in (17.41)

J∗
i (x) = min

u
l(x, u) + qi(f(x, u)) (17.42)

subj. to f(x, u) ∈ P (17.43)

is a one to one problem and therefore it is solvable by an mp-QP. Let the solution
of the i-th mp-QPs be

ui(x) = F̃ i,jx+ g̃i,j , ∀x ∈ T i,j , j = 1, . . . , Nri, (17.44)

where T i =
⋃Nri

j=1 T i,j is a polyhedral partition of the convex set T i of feasible x for

the ith sub-problem and Nri is the corresponding number of polyhedral regions.

394 17 Optimal Control of Hybrid Systems

The feasible set X satisfies X = T 1 = · · · = T d since the constraints of the d
sub-problems are identical.

The solution u∗(x) to the original problem (17.40) is obtained by comparing
and storing the solution of d mp-QP subproblems (17.42)–(17.43) as explained
in Example 17.4. Consider the case d = 2, and consider the intersection of the
polyhedra T 1,i and T 2,l for i = 1, . . . , Nr1, l = 1, . . . , Nr2. For all T 1,i ∩ T 2,l =
T (1,i),(2,l) 	= ∅ the optimal solution is stored in an ordered way as described in
Example 17.4, while paying attention to the fact that a region could be already
stored. Moreover, when storing a new polyhedron with the corresponding value
function and optimizer, the relative order of the regions already stored must not
be changed. The result of this Intersect and Compare procedure is

u∗(x) = F ix+ gi if x ∈ Ri,

Ri = {x : x′Li(j)x+M i(j)′x ≤ N i(j), j = 1, . . . , ni},
(17.45)

where R =
⋃NR

j=1 Rj is a polyhedron and the value function

J∗(x) = J̃∗
j (x) if x ∈ Dj , j = 1, . . . , ND, (17.46)

where J̃∗
j (x) are multiple quadratic functions defined over the convex polyhedra Dj .

The polyhedron Dj can contain several regionsRi or can coincide with one of them.
Note that (17.45) and (17.46) have to be considered as PWA and PPWQ functions
in the ordered region sense.

If d > 2 then the value function in (17.46) is intersected with the solution of
the third mp-QP subproblem and the procedure is iterated by making sure not
to change the relative order of the polyhedra and the corresponding gain of the
solution constructed in the previous steps. The solution will still have the same
form (17.45)–(17.46). �

Lemma 17.4 (one to r problem) Problem (17.39) where f is linear, q is a
lower-semicontinuous PPWQ function defined over r polyhedral regions and strictly
convex on each polyhedron, and P is a polyhedron, can be solved by r mp-QPs.

Proof: Let q(x) = qi if x ∈ Pi the PWQ function where the closures P̄i of
Pi are polyhedra and qi strictly convex quadratic functions. The multiparametric
program to solve is

J∗(x) = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minu l(x, u) + q1(f(x, u)),
subj. to f(x, u) ∈ P̄1

f(x, u) ∈ P
...,
minu l(x, u) + qr(f(x, u))}
subj. to f(x, u) ∈ P̄r

f(x, u) ∈ P

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (17.47)

The proof follows the lines of the proof of the previous theorem with the
exception that the constraints of the i-th mp-QP subproblem differ from the
j-th mp-QP subproblem, i 	= j.

17.6 State Feedback Solution via Recursive Approach 395

The lower-semicontinuity assumption on q(x) allows one to use the closure of the
sets Pi in (17.47).The cost function in problem (17.39) is lower-semicontinuous since
it is a composition of a lower-semicontinuous function and a continuous function.
Then, since the domain is compact, problem (17.47) admits a minimum. Therefore
for a given x, there exists one mp-QP in problem (17.47) which yields the optimal
solution. The procedure based on solving mp-QPs and storing the results as in

Example 17.4 will be the same as in Lemma 17.3 but the domain R =
⋃NR

j=1 Rj of
the solution can be a P-collection. �

If f is PPWA defined over s regions then we have a s to X problem where X
can belong to any of the problems listed above. In particular, we have an s to r
problem of multiplicity d if f is PPWA and defined over s regions and q is a multiple
PPWQ function of multiplicity d, defined over r polyhedral regions. The following
lemma can be proven along the lines of the proofs given before.

Lemma 17.5 Problem (17.39) where f is linear and q is a lower-semicontinuous
PPWQ function of multiplicity d, defined over r polyhedral regions and strictly
convex on each polyhedron, is a one to r problem of multiplicity d and can be solved
by r · d mp-QPs.
An s to r problem of multiplicity d can be decomposed into s one to r problems of
multiplicity d. An s to one problem can be decomposed into s one to one problems.

17.6.3 Algorithmic Solution of the Bellman Equations

In the following we will substitute the PWA system Equation (17.2) with the shorter
form

x(k + 1) = f̃PWA(x(k), u(k)) (17.48)

where f̃PWA : C̃ → Rn and f̃PWA(x, u) = Aix+Biu+ f i if [xu] ∈ C̃i, i = 1, . . . , s,
and {C̃i} is a polyhedral partition of C̃.

Consider the dynamic programming formulation of the CFTOC problem (17.6)–
(17.7),

J∗
j (x(j)) = min

uj

x′
jQxj + u′

jRuj + J∗
j+1(f̃PWA(x(j), uj)) (17.49)

subj. to f̃PWA(x(j), uj) ∈ Xj+1 (17.50)

for j = N − 1, . . . , 0, with terminal conditions

XN = Xf (17.51)

J∗
N (x) = x′Px, (17.52)

where Xj is the set of all states x(j) for which problem (17.49)–(17.50) is
feasible:

Xj = {x ∈ Rn| ∃u, f̃PWA(x, u) ∈ Xj+1}. (17.53)

396 17 Optimal Control of Hybrid Systems

Assume for the moment that there are no binary inputs and binary states,
m	 = n	 = 0. The Bellman Equations (17.49)–(17.52) can be solved backwards in
time by using a multiparametric quadratic programming solver and the results of
the previous section.

Consider the first step of the dynamic program (17.49)–(17.52)

J∗
N−1(xN−1) = min{uN−1} x′

N−1QxN−1 + u′
N−1RuN−1 +J∗

N (f̃PWA(xN−1, uN−1))

(17.54)

subj. to f̃PWA(xN−1, uN−1) ∈ Xf . (17.55)

The cost to go function J∗
N (x) in (17.54) is quadratic, the terminal region Xf is

a polyhedron and the constraints are piecewise affine. Problems (17.54)–(17.55) is
an s to one problem that can be solved by solving s mp-QPs. From the second
step j = N − 2 to the last one j = 0 the cost to go function J∗

j+1(x) is a lower-
semicontinuous PPWQ with a certain multiplicity dj+1, the terminal region Xj+1 is
a P-collection and the constraints are piecewise affine. Therefore, problem (17.49)–
(17.52) is an s to Nr

j+1 problem with multiplicity dj+1 (where N
r
j+1 is the number of

polyhedra of the cost to go function J∗
j+1), that can be solved by solving sNr

j+1dj+1

mp-QPs (Lemma 17.5). The resulting optimal solution will have the form (17.9)
considered in the ordered region sense.

In the presence of binary inputs the procedure can be repeated, with the
difference that all the possible combinations of binary inputs must be enumerated.
Therefore, a one to one problem becomes a 2m� to one problem and so on. In the
presence of binary states the procedure can be repeated either by enumerating
them all or by solving a dynamic programming algorithm at time step k from a
relaxed state space to the set of binary states feasible at time k + 1.

Next we summarize the main steps of the dynamic programming algorithm
discussed in this section. We use boldface characters to denote sets of polyhedra,
i.e., R = {Ri}i=1,...,|R|, where Ri is a polyhedron and |R| is the cardinality of
the set R. Furthermore, when we say SOLVE an mp-QP we mean to compute and
store the triplet Sk,i,j of expressions for the value function, the optimizer, and the
polyhedral partition of the feasible space.

In Algorithm 17.1, the structure Sk,i,j stores the matrices defining quadratic
function J∗

k,i,j,l(·), affine function u∗
k,i,j,l(·), and polyhedra Rk,i,j,l, for all l:

Sk,i,j =
⋃
l

{(
J∗
k,i,j,l(x), u∗

k,i,j,l(x), Rk,i,j,l

)}
, (17.56)

where the indices in (17.56) have the following meaning: k is the time step, i
indexes the piece of the “cost-to-go” function that the DP algorithm is considering,
j indexes the piece of the PWA dynamics the DP algorithm is considering, and l
indexes the polyhedron in the mp-QP solution of the (k, i, j)th mp-QP problem.

The “KEEP only triplets” Step of Algorithm 17.1 aims at discarding regions
Rk,h that are completely covered by some other regions that have lower cost.
Obviously, if there are some parts of the region Rk,h that are not covered at all
by other regions (first condition) we need to keep them. Note that comparing the
cost functions is, in general, nonconvex optimization problem. One might consider

17.6 State Feedback Solution via Recursive Approach 397

solving the problem exactly, but since algorithm works even if some removable
regions are kept, we usually formulate an LMI relaxation of the problem at hand.

The output of Algorithm 17.1 is the state feedback control law (17.9) considered
in the ordered region sense. The online implementation of the control law
requires simply the evaluation of the PWA controller (17.9) in the ordered region
sense.

Algorithm 17.1

Input: CFTOC problem (17.3)–(17.7)

Output: Solution (17.9) in the ordered region sense

RN ← {Xf}
J∗
N,1(x) ← x′Px

For k = N − 1, . . . , 1

For i = 1, . . . , |Rk+1|
For j = 1, . . . , s

Sk,i,j ← {}
Solve the mp-QP

Sk,i,j ← minuk x′
kQxk + u′

kRuk + J∗
k+1,i(Ajxk +Bjuk + fj)

subj. to

{
Ajxk +Bjuk + fj ∈ Rk+1,i

[xk
uk

] ∈ C̃j

End

End

Rk ← {Rk,i,j,l}i,j,l. Denote by Rk,h its elements, and by J∗
k,h and u∗

k,h(x)
the associated costs and optimizers, with h ∈ {1, . . . , |Rk|}
Keep only triplets (J∗

k,h(x), u∗
k,h(x), Rk,h) for which ∃x ∈ Rk,h : x /∈

Rk,d, ∀d �= h OR ∃x ∈ Rk,h : J∗
k,h(x) < J∗

k,d(x), ∀d �= h

Createmultiplicity information and additional regions for an ordered region
solution as explained in Example 17.4

End

17.6.4 Examples

Example 17.5 Consider the control problem of steering the piecewise affine
system (17.29) to a small region around the origin. The constraints and cost function
of Example 17.2 are used. The state feedback solution u∗

0(x(0)) was determined by
using the approach presented in the previous section. When the infinity norm is used
in the cost function, the feasible state space X0 at time 0 is divided into 84 polyhedral
regions and it is depicted in Figure 17.6(a). When the squared Euclidean norm is used
in the cost function, the feasible state space X0 at time 0 is divided into 92 polyhedral
regions and is depicted in Figure 17.6(b).

Note that as explained in Section 17.6.2 for the case of the squared Euclidian norm,
the optimal control law is stored in a special data structure where:

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PWA_mpc.m

398 17 Optimal Control of Hybrid Systems

x1

x
2

(a) Partition of the feasible state
space X0 when the infinity norm
is used in the cost function (Nr

3 =
84)

x1

x
2

(b) Partition of the feasible state
space X0 when the squared Euclid-
ian norm is used in the cost func-
tion (Nr

3 = 92)

Figure 17.6 Example 17.5. State space control partition for u∗
0(x(0))

1. The ordering of the regions is important.

2. The polyhedra can overlap.

3. The polyhedra can have an associated value function of multiplicity d > 1.
Thus, d quadratic functions have to be compared on-line in order to compute
the optimal control action.

Example 17.6 Consider the hybrid spring-mass-damper system described in
Example 16.2

x(t+1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0.90 0.02
−0.02 −0.00

]
x(t) +

[
0.10
0.02

]
u1(t) +

[−0.01
−0.02

]
if x1(t) ≤ 1, u2(t) ≤ 0.5

[
0.90 0.02
−0.06 −0.00

]
x(t) +

[
0.10
0.02

]
u1(t) +

[−0.07
−0.15

]
if x1(t) ≥ 1 + ε, u2(t) ≤ 0.5

[
0.90 0.38
−0.38 0.52

]
x(t) +

[
0.10
0.38

]
u1(t) +

[−0.10
−0.38

]
if x1(t) ≤ 1, u2(t) ≥ 0.5

[
0.90 0.35
−1.04 0.35

]
x(t) +

[
0.10
0.35

]
u1(t) +

[−0.75
−2.60

]
if x(t) ≥ 1 + ε, u2(t) ≥ 0.5

(17.57)
subject to the constraints

x(t) ∈ [−5, 5]× [−5, 5]
u(t) ∈ [−1, 1].

(17.58)

We solve the finite time constrained optimal control problem (17.7) with cost
(17.6) with N = 3, P = Q = [1 0

0 1], R = [0.2 0
0 1]. The state feedback solution

was determined by using the approach presented in the previous section in two
cases: without terminal constraint (Figure 17.7(a)) and with terminal constraint
Xf = [−0.01 0.01]× [−0.01 0.01] (Figure 17.7(b)).

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/SMD_mpc.m

17.7 Discontinuous PWA Systems 399

x
2

x1

(a) Partition with no terminal con-

straint (Nr
3 = 183).

x
2

x1

(b) Partition with terminal con-

straint (Nr
3 = 181).

Figure 17.7 Example 17.6. State space optimal control partition for u∗
0(x(0)).

17.7 Discontinuous PWA Systems

Without assumption 17.1 the optimal control problems (17.3)–(17.7) may be
feasible but may not admit an optimizer for some x(0) (the problem in this case
would be to find an infimum rather than the minimum).

Under the assumption that the optimizer exists for all states x(k), the approach
explained in the previous sections can be applied to discontinuous systems by
considering three elements. First, the PWA system (17.2) has to be defined
on each polyhedron of its domain and all its lower dimensional facets. Second,
dynamic programming has to be performed “from” and “to” any lower dimensional
facet of each polyhedron of the PWA domain. Finally, value functions are not
lower-semicontinuous, which implies that Lemma 17.4 cannot by used. Therefore,
when considering the closure of polyhedral domains in multiparametric program-
ming (17.47), a postprocessing is necessary in order to remove multiparametric
optimal solutions which do not belong to the original set but only to its closure.
The tedious details of the dynamic programming algorithm for discontinuous PWA
systems are not included here but can be immediately extracted from the results
of the previous sections.

In practice, the approach just described for discontinuous PWA systems can
easily be numerically prohibitive. The simplest approach from a practical point of
view is to introduce gaps between the boundaries of any two polyhedra belonging
to the PWA domain (or, equivalently, to shrink by a quantity ε the size of every
polyhedron of the original PWA system). This way, one deals with PWA systems
defined over a disconnected union of closed polyhedra. By doing so, one can use
the approach discussed in this chapter for continuous PWA systems. However,
the optimal controller will not be defined at the points in the gaps. Also, the
computed solution might be arbitrarily different from the original solution to
problems (17.3)–(17.7) at any feasible point x. Despite this, if the magnitude ε
of the gaps is close to the machine precision and comparable to sensor/estimation
errors, such an approach can very appealing in practice. In some cases this approach
might be the only one that is computationally tractable for computing controllers

400 17 Optimal Control of Hybrid Systems

for discontinuous hybrid systems fulfilling state and input constraints that are
implementable in real-time.

Without assumption 17.1, problems (17.3)–(17.7) is well defined only if an
optimizer exists for all x(0). In general, this is not easy to check. The dynamic
programming algorithm described here could be used for such a test but the details
are not included in this book.

17.8 Receding Horizon Control

Consider the problem of regulating the PWA system (17.2) to the origin. Receding
Horizon Control (RHC) can be used to solve such a constrained regulation problem.
The control algorithm is identical to the one outlined in Chapter 12 for linear
systems. Assume that a full measurement of the state x(t) is available at the current
time t. Then, the finite time optimal control problem

J∗
t (x(t)) = min

Ut→t+N|t
Jt(x(t), Ut→t+N |t) (17.59a)

subj. to

⎧⎨⎩ xt+k+1|t = Aixt+k|t +Biut+k|t + f i if
[xt+k|t
ut+k|t

]
∈ C̃i

xt+N |t ∈ Xf

xt|t = x(t)
(17.59b)

is solved at each time t, where Ut→t+N |t = {ut|t, . . . , ut+N−1|t}.
Let U∗

t = {u∗
t|t, . . . , u

∗
t+N−1|t} be the optimal solution of (17.59) at time t. Then,

the first sample of U∗
t is applied to system (17.2):

u(t) = u∗
t|t. (17.60)

The optimization (17.59) is repeated at time t+1, based on the new state xt+1|t+1 =
x(t+ 1), yielding a moving or receding horizon control strategy.

Based on the results of previous sections the state feedback receding horizon
controller (17.59)–(17.60) can be immediately obtained in two ways: (i) solve the
MIQP/MILP (17.24) for xt|t = x(t) or (ii) by setting

u(t) = f∗
0 (x(t)), (17.61)

where f∗
0 : Rn → Rnu is the piecewise affine solution to the CFTOC (17.59)

computed as explained in Section 17.6. The explicit form (17.61) has the advantage
of being easier to implement, and provides insight on the type of action of the
controller in different regions of the state space.

17.8.1 Stability and Feasibility Issues

As discussed in Chapter 12 the feasibility and stability of the receding horizon
controller (17.59)–(17.60) is, in general, not guaranteed.

Theorem 12.2 in Chapter 12 can be immediately modified for the hybrid
case: persistent feasibility and Lyapunov stability are guaranteed if the terminal

17.8 Receding Horizon Control 401

constraint Xf is a control invariant set (assumption (A2) in Theorem 12.2) and the
terminal cost p(xN) is a control Lyapunov function (assumption (A3) in Theorem
12.2). In the hybrid case the computation of control invariant sets and control
Lyapunov functions is computationally more involved. As in the linear case, Xf = 0
satisfies the aforementioned properties and it thus represents a very simple, yet
restrictive, choice for guaranteeing persistent feasibility and Lyapunov stability.

17.8.2 Examples

Example 17.7 Consider the problem of regulating the piecewise affine system (17.29)
to the origin. The constrained finite time optimal control problem (17.7) is solved with
N = 3, P = Q = [1 0

0 1], R = 1, and Xf = [−0.01 0.01]×[−0.01 0.01]. Its state feedback
solution (17.9) u∗(x(0)) = f∗

0 (x(0)) at time 0 is implemented in a receding horizon
fashion, i.e., u(x(k)) = f∗

0 (x(k)).

time

x
1

an
d
x
2

(a) State trajectories (x1 dashed line

and x2 solid line).

time

u

(b) Optimal input.

Figure 17.8 Example 17.7. MPC control of system (17.29) when the infinity
norm is used in the objective.

time

x
1

an
d
x
2

(a) State trajectories (x1 dashed

line and x2 solid line).

time

u

(b) Optimal input.

Figure 17.9 Example 17.7. MPC control of system (17.29) when the squared
Euclidian norm is used in the objective.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/PWA_mpc.m

402 17 Optimal Control of Hybrid Systems

The state feedback control law with cost (17.5) with p = ∞ was computed in Example
17.5 and consists of 84 polyhedral regions. None of them has multiplicity higher
than 1. Figure 17.8 shows the corresponding closed-loop trajectories starting from
the initial state x(0) = [−2 2]′.

The state feedback control law with cost (17.6) was computed in Example 17.5 and
consists of 92 polyhedral regions, some of which have multiplicity higher than 1.
Figure 17.9 shows the corresponding closed-loop trajectories starting from the initial
state x(0) = [−2 2]′.

Example 17.8 Consider the problem of regulating the hybrid spring-mass-damper
system (17.57) described in Examples 16.2 and 17.6 to the origin. The finite time
constrained optimal control problem (17.7) with cost (17.6) is solved with N = 3,
P = Q = [1 0

0 1], R = [0.2 0
0 1]. Its state feedback solution (17.9) u∗(x(0)) = f∗

0 (x(0)) at
time 0 is implemented in a receding horizon fashion, i.e., u(x(k)) = f∗

0 (x(k)).

time

x
1

an
d
x
2

(a) State trajectories (x1 dashed

line and x2 solid line).

time

u
1

an
d
u
2

(b) Optimal inputs (u1 solid line and

binary input u2 dashed line).

Figure 17.10 Example 17.8. MPC control of system (17.57) without terminal
constraint.

time

x
1

an
d
x
2

(a) State trajectories (x1 dashed

line and x2 solid line).

time

u
1

an
d
u
2

(b) Optimal inputs (u1 solid line

and binary input u2 dashed line).

Figure 17.11 Example 17.8. MPC control of system (17.57) with terminal
constraint.

http://www.mpc.berkeley.edu/mpc-course-material/bookexamples/SMD_mpc.m

17.8 Receding Horizon Control 403

The state feedback solution was determined in Example 17.6 for the case of no
terminal constraint (Figure 17.7(a)). Figure 17.10 depicts the corresponding closed-
loop trajectories starting from the initial state x(0) = [3 4]′.

The state feedback solution was determined in Example 17.6 for terminal constraint
Xf = [−0.01, 0.01] × [−0.01, 0.01] (Figure 17.7(b)). Figure 17.11 depicts the
corresponding closed-loop trajectories starting from the initial state x(0) = [3 4]′.

Comparing the two controllers, we find that the terminal constraint leads to a more
aggressive behavior. In addition, in the case with terminal constraint we observe the
coordination of the binary and continuous inputs. The small damping coefficient is
switched on to increase the effect of the continuous input. The damping is increased
again once the steady-state value is approached.

References

[1] J. Acevedo and E.N. Pistikopoulos. A multiparametric programming approach
for linear process engineering problems under uncertainty. Ind. Eng. Chem. Res.,
36:717–728, 1997.

[2] I. Adler and R.D.C. Monteiro. A geometric view of parametric linear programming.
Algorithmica, 8(2):161–176, 1992.

[3] A. Alessio and A. Bemporad. A survey on explicit model predictive control. In
L. Magni, D. Raimondo, and F. Allgöwer, eds., Nonlinear Model Predictive Control,
Vol. 384 of Lecture Notes in Control and Information Sciences, 345–369. Springer
Verlag, 2009.

[4] A. Alessio, M. Lazar, A. Bemporad, and W.P.M.H. Heemels. Squaring the circle:
An algorithm for obtaining polyhedral invariant sets from ellipsoidal ones. Auto-
matica, 43(12):2096–2103, 2007.

[5] J.C. Allwright and G.C. Papavasiliou. On linear programming and robust model-
predictive control using impulse-responses. Systems & Control Letters, 18:159–164,
1992.

[6] R. Alur, C. Belta, F. Ivančić, V. Kumar, M. Mintz, G.J. Pappas, H. Rubin, and
J. Schug. Hybrid modeling and simulation of biomolecular networks. In M.D. Di
Benedetto and A. Sangiovanni Vincentelli, eds., Hybrid Systems: Computation and
Control, Vol. 2034 of Lecture Notes in Computer Science, 19–33. Springer Verlag,
2001.

[7] R. Alur, C. Courcoubetis, T.A. Henzinger, and P.H. Ho. Hybrid automata:
An algorithmic approach to the specification and verification of hybrid systems. In
R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, eds., Hybrid Systems, Vol.
736 of Lecture Notes in Computer Science, 209–229. Springer Verlag, 1993.

[8] P.J. Antsaklis. A brief introduction to the theory and applications of hybrid
systems. Proc. IEEE, Special Issue on Hybrid Systems: Theory and Applications,
88(7): 879–886, July 2000.

[9] L. Armijo. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific J. of Mathematics, 16(1):1–3, 1966.

[10] J.P. Aubin. Viability theory. Systems & Control: Foundations & Applications.
Birkhäuser, 1991.

[11] D. Avis. A revised implementation of the reverse search vertex enumeration
algorithm. In Gil Kalai and Günter M. Ziegler, eds., Polytopes — Combinatorics
and Computation, pages 177–198. Birkhäuser Basel, Basel, 2000.

406 References

[12] D. Avis, D. Bremner, and R. Seidel. How good are convex hull algorithms?
Computational Geometry, 7(5):265–301, 1997.

[13] T.A. Badgwell and K.R. Muske. Disturbance model design for linear model
predictive control. In Proc. American Control Conf., Vol. 2, 1621–1626, 2002.

[14] V.L. Bageshwar and F. Borrelli. On a property of a class of offset-free model
predictive controllers. IEEE Trans. Automat. Control, 54(3):663–669, March 2009.

[15] E. Balas. Projection with a minimum system of inequalities. Computational
Optimization and Applications, 10:189–193, 1998.

[16] A. Balluchi, L. Benvenuti, M. Di Benedetto, C. Pinello, and A. Sangiovanni-
Vincentelli. Automotive engine control and hybrid systems: Challenges and
opportunities. Proc. IEEE, 88(7):888–912, 2000.

[17] A. Balluchi, L. Benvenuti, M.D. Di Benedetto, and A. Sangiovanni-Vincentelli.
Design of observers for hybrid systems. In C.J. Tomlin and M.R. Greenstreet, eds.,
Hybrid Systems: Computation and Control, Vol. 2289 of Lecture Notes in Computer
Science, 76–89. Springer Verlag, Berlin Heidelberg New York, 2002.

[18] B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer. Non-Linear
Parametric Optimization. Akademie-Verlag, Berlin, 1982.

[19] M. Baotić. An efficient algorithm for multi-parametric quadratic programming.
Technical Report AUT02-05, Automatic Control Laboratory, ETH Zurich, Switzer-
land, February 2002.

[20] M. Baotić. Gradient of the value function in parametric convex optimization
problems. Technical report, Faculty of Electrical Engineering and Computing.
University of Zagreb, Croatia, 2013. URL: https://arxiv.org/abs/1607.00366.

[21] M. Baotić, F. Borrelli, A. Bemporad, and M. Morari. Efficient on-line computation
of constrained optimal control. SIAM J. Control Optim., 5:2470–2489, September
2008.

[22] M. Baotić and F.D. Torrisi. Polycover. Technical Report AUT03-11, Automatic
Control Laboratory, ETHZ, Switzerland, 2003.

[23] M. Barić. Constrained Control – Computations, Performance and Robustness.
Dr. sc. thesis, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland,
October 2008.

[24] T. Basar and G.J. Olsder. Dynamic Noncooperative Game Theory. Classics in
Applied Mathematics. SIAM, Philadelphia, 2nd edn., 1998.

[25] F. Bayat, T.A. Johansen, and A.A. Jalali. Using hash tables to manage the time-
storage complexity in a point location problem: Application to explicit model
predictive control. Automatica, 47(3):571–577, 2011.

[26] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear Programming and Network
Flows. John Wiley & Sons, Inc., New York, 4th edn., December 2009.

[27] M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming: Theory and
Algorithms. John Wiley & Sons, Inc., New York, 2nd edn., 1993.

[28] A.G. Beccuti, G. Papafotiou, R. Frasca, and M. Morari. Explicit hybrid model
predictive control of the DC-DC boost converter. In Proc. IEEE PESC, Orlando,
FL, USA, June 2007.

[29] A. Bemporad. Reducing conservativeness in predictive control of constrained
systems with disturbances. In Proc. 37th IEEE Conf. on Decision and Control,
pages 1384–1391, Tampa, FL, USA, 1998.

[30] A. Bemporad. Efficient conversion of mixed logical dynamical systems into an
equivalent piecewise affine form. IEEE Trans. Automat. Control, 49(5):832–838,
2004.

https://arxiv.org/abs/1607.00366

References 407

[31] A. Bemporad, G. Bianchini, and F. Brogi. Passivity analysis and passification of
discrete-time hybrid systems. IEEE Trans. Automat. Control, 54(4):1004–1009,
2008.

[32] A. Bemporad, F. Borrelli, and M. Morari. Piecewise linear robust model predictive
control. In Proc. European Control Conf., Porto, Portugal, October 2001.

[33] A. Bemporad and S. Di Cairano. Optimal control of discrete hybrid stochastic
automata. In M. Morari and L. Thiele, eds., Hybrid Systems: Computation and
Control, Vol. 3414 of Lecture Notes in Computer Science, pages 151–167. Springer
Verlag, 2005.

[34] A. Bemporad, A. Casavola, and E. Mosca. Nonlinear control of constrained linear
systems via predictive reference management. IEEE Trans. Automat. Control,
42(3):340–349, 1997.

[35] A. Bemporad, L. Chisci, and E. Mosca. On the stabilizing property of SIORHC.
Automatica, 30(12):2013–2015, 1994.

[36] A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and controlla-
bility of piecewise affine and hybrid systems. IEEE Trans. Automat. Control,
45(10):1864–1876, 2000.

[37] A. Bemporad and C. Filippi. An algorithm for approximate multiparametric convex
programming. Comput. Optim. Appl., 35(1):87–108, 2006.

[38] A. Bemporad, K. Fukuda, and F.D. Torrisi. Convexity recognition of the union of
polyhedra. Computational Geometry, 18:141–154, 2001.

[39] A. Bemporad, A. Garulli, S. Paoletti, and A. Vicino. A bounded-error approach to
piecewise affine system identification. IEEE Trans. Automat. Control, 50(10):1567–
1580, October 2005.

[40] A. Bemporad, W.P.M.H. Heemels, and B. De Schutter. On hybrid systems and
closed-loop MPC systems. IEEE Trans. Automat. Control, 47(5):863–869, May
2002.

[41] A. Bemporad, D. Mignone, and M. Morari. Moving horizon estimation for hybrid
systems and fault detection. In Proc. American Control Conf., pages 2471–2475,
Chicago, IL, June 1999.

[42] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and
constraints. Automatica, 35(3):407–427, March 1999.

[43] A. Bemporad and M. Morari. Robust model predictive control: A survey. In
A. Garulli, A. Tesi, and A. Vicino, eds. Robustness in Identification and Control,
Vol. 245 of Lecture Notes in Control and Information Sciences, pages 207–226.
Springer Verlag, 1999.

[44] A. Bemporad, M. Morari, V. Dua, and E.N. Pistikopoulos. The explicit linear
quadratic regulator for constrained systems. Automatica, 38(1):3–20, January 2002.

[45] A. Bemporad, F.D. Torrisi, and M. Morari. Discrete-time hybrid modeling and
verification of the batch evaporator process benchmark. European J. Control,
7(4):382–399, 2001.

[46] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust
solutions of uncertain linear programs. Math. Program., 99:351–376, 2004.

[47] C. Berge. Topological Spaces. Dover Publications, Mineola, NY, 1997.

[48] A.B. Berkelaar, K. Roos, and T. Terlaky. The optimal set and optimal partition
approach to linear and quadratic programming. In T. Gal and H.J. Greenberg,
eds. Advances in Sensitivity Analysis and Parametric Programming, Vol. 6 of
International Series in Operations Research & Management Science, chapter 6.
Kluwer Academic Publishers, 1997.

408 References

[49] D.P. Bertsekas. Control of Uncertain Systems with a set–membership description
of the uncertainty. PhD thesis, MIT, 1971.

[50] D.P. Bertsekas. Infinite-time reachability of state-space regions by using feedback
control. IEEE Trans. Automat. Control, 17:604–613, October 1972.

[51] D.P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, Massachusetts, 1995.

[52] D.P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Mas-
sachusetts, 2nd edn., 1999.

[53] D.P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II. Athena
Scientific, Belmont, Massachusetts, 2nd edn., 2001.

[54] D.P. Bertsekas and I.B. Rhodes. On the minimax reachability of target sets and
target tubes. Automatica, 7:233–247, 1971.

[55] L.T. Biegler and V.M. Zavala. Large-scale nonlinear programming using IPOPT:
An integrating framework for enterprise-wide dynamic optimization. Computers &
Chemical Engineering, 33(3):575–582, 2009.

[56] R.R. Bitmead, M. Gevers, and V. Wertz. Adaptive Optimal Control: The Thinking
Man’s GPC. International Series in Systems and Control Engineering. Prentice
Hall, 1990.

[57] F. Blanchini. Ultimate boundedness control for uncertain discrete-time systems
via set-induced Lyapunov functions. IEEE Trans. Automat. Control, 39(2):428–
433, February 1994.

[58] F. Blanchini. Set invariance in control — a survey. Automatica, 35(11):1747–1768,
November 1999.

[59] F. Blanchini and S. Miani. Set-Theoretic Methods in Control. Birkhäuser, 2009.

[60] F. Borrelli, M. Baotić, A. Bemporad, and M. Morari. Dynamic programming for
constrained optimal control of discrete-time linear hybrid systems. Automatica,
41:1709–1721, October 2005.

[61] F. Borrelli, M. Baotić, J. Pekar, and G. Stewart. On the computation of linear
model predictive control laws. Automatica, 46(6):1035–1041, 2010.

[62] F. Borrelli, A. Bemporad, M. Fodor, and D. Hrovat. An MPC/hybrid system
approach to traction control. IEEE Trans. Control Syst. Tech., 14(3):541–552, May
2006.

[63] F. Borrelli, A. Bemporad, and M. Morari. A geometric algorithm for multi-
parametric linear programming. J. Opt. Theory and Applications, 118(3), Septem-
ber 2003.

[64] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011.

[65] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
March 2004.

[66] M.S. Branicky. Studies in hybrid systems: modeling, analysis, and control. PhD
thesis, LIDS-TH 2304, MIT, Cambridge, MA, 1995.

[67] M.S. Branicky. Multiple Lyapunov functions and other analysis tools for
switched and hybrid systems. IEEE Trans. Automat. Control, 43(4):475–482, April
1998.

[68] M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unified framework for hybrid
control: model and optimal control theory. IEEE Trans. Automat. Control,
43(1):31–45, 1998.

References 409

[69] M.S. Branicky and S.K. Mitter. Algorithms for optimal hybrid control. In
Proc. 34th IEEE Conf. on Decision and Control, New Orleans, LA, USA,
December 1995.

[70] M.S. Branicky and G. Zhang. Solving hybrid control problems: Level sets and
behavioral programming. In Proc. American Control Conf., Chicago, Illinois, USA,
June 2000.

[71] M. Buss, O. von Stryk, R. Bulirsch, and G. Schmidt. Towards hybrid optimal
control. AT – Automatisierungstechnik, 48:448–459, 2000.

[72] R. Cagienard, P. Grieder, E.C. Kerrigan, and M. Morari. Move blocking strategies
in receding horizon control. J. of Proc. Control, 17(6):563–570, 2007.

[73] S. Di Cairano, A. Bemporad, and J. Júlvez. Event-driven optimization-based con-
trol of hybrid systems with integral continuous-time dynamics. Automatica, 45(5):
1243–1251, 2009.

[74] S. Di Cairano, A. Bemporad, I. Kolmanovsky, and D. Hrovat. Model predictive
control of magnetically actuated mass spring dampers for automotive applications.
Int. J. Control, 80(11):1701–1716, 2007.

[75] F.M. Callier and C.A. Desoer. Linear System Theory. Springer Texts in Electrical
Engineering. Springer-Verlag New York, 1991.

[76] E.F. Camacho and C. Bordons. Model Predictive Control. Advanced Textbooks in
Control and Signal Processing. Springer, London, 1999.

[77] M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher. On linear passive
complementarity systems. European J. of Control, 8(3):220–237, 2002.

[78] P.J. Campo and M. Morari. Robust model predictive control. In Proc. American
Control Conf., Vol. 2, pages 1021–1026, 1987.

[79] P.J. Campo and M. Morari. Model predictive optimal averaging level control.
AIChE J., 35(4):579–591, 1989.

[80] C.G. Cassandras, D.L. Pepyne, and Y.Wardi. Optimal control of a class of hybrid
systems. IEEE Trans. Automat. Control, 46(3):3981–415, 2001.

[81] T.M. Cavalier, P.M. Pardalos, and A.L. Soyster. Modeling and integer program-
ming techniques applied to propositional calculus. Comput. Oper. Res., 17(6):561–
570, 1990.

[82] S.N. Cernikov. Contraction of finite systems of linear inequalities (in Russian).
Doklady Akademiia Nauk SSSR, 152(5):1075–1078, 1963. (English translation in
Soviet Mathematics - Doklady, Vol. 4, No. 5 (1963), pp.1520–1524).

[83] V. Chandru and J.N. Hooker. Optimization methods for logical inference. Wiley-
Interscience, 1999.

[84] H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability. Automatica, 304(10):1205–1218, 1998.

[85] D. Chmielewski and V. Manousiouthakis. On constrained infinite-time linear
quadratic optimal control. Systems & Control Letters, 29(3):121–130, November
1996.

[86] D. Christiansen. Electronics Engineers’ Handbook, 4th edn. IEEE Press/McGraw
Hill, Inc., 1997.

[87] F.J. Christophersen. Optimal Control and Analysis for Constrained Piecewise
Affine Systems. Dr. sc. thesis, ETH, Zürich, Switzerland, August 2006.

[88] F.J. Christophersen and M. Morari. Further Results on ‘Infinity Norms as Lya-
punov Functions for Linear Systems’. IEEE Trans. Automat. Control, 52(3):547–
553, March 2007.

410 References

[89] D.W. Clarke, C. Mohtadi, and P.S. Tuffs. Generalized Predictive Control – part I.
the basic algorithm. Automatica, 23(2):137–148, March 1987.

[90] C. R. Cutler. Personal communication to M. Morari, 2010.

[91] C.R. Cutler and B.C. Ramaker. Dynamic matrix control—a computer control
algorithm. In Proc. American Control Conf., Vol. WP5-B, San Francisco, CA,
USA, 1980.

[92] G.B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, NJ, June 1963.

[93] G.B. Dantzig, J. Folkman, and N. Shapiro. On the continuity of the minimum set of
a continuous function. J. of Mathematical Analysis and Applications, 17:519–548,
1967.

[94] B. De Schutter and B. De Moor. The extended linear complementarity problem
and the modeling and analysis of hybrid systems. In P. Antsaklis, W. Kohn,
M. Lemmon, A. Nerode, and S. Sastry, eds. Hybrid Systems V, Vol. 1567 of Lecture
Notes in Computer Science, pages 70–85. Springer, 1999.

[95] B. De Schutter and T. van den Boom. Model predictive control for max-plus-linear
discrete event systems. Automatica, 37(7):1049–1056, July 2001.

[96] R. DeCarlo, M. Branicky, S. Pettersson, and B. Lennartson. Perspectives and
results on the stability and stabilizability of hybrid systems. Proc. IEEE,
88(7):1069–1082, 2000.

[97] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex
optimization with inexact oracle. Mathematical Programming, 146:37–75, 2014.

[98] A. Domahidi, A. Zgraggen, M.N. Zeilinger, M. Morari, and C.N. Jones. Efficient
interior point methods for multistage problems arising in receding horizon control.
In Proc. 51st IEEE Conf. on Decision and Control, 668–674, Maui, HI, USA,
December 2012.

[99] J.A. De Doná. Input Constrained Linear Control. PhD thesis, Control Group,
Department of Engineering, University of Cambridge, Cambridge, 2000.

[100] C.E.T. Dórea and J.C. Hennet. (a,b)-invariant polyhedral sets of linear discrete-
time systems. J. Opt. Theory and Applications, 103(3):521–542, 1999.

[101] V. Dua and E.N. Pistikopoulos. An algorithm for the solution of multiparametric
mixed integer linear programming problems. Ann. Oper. Res., 99:123–139, 2000.

[102] G. Ferrari-Trecate, F.A. Cuzzola, D. Mignone, and M. Morari. Analysis of discrete-
time piecewise affine and hybrid systems. Automatica, 38(12):2139–2146, 2002.

[103] G. Ferrari-Trecate, D. Mignone, and M. Morari. Moving horizon estimation for
hybrid systems. IEEE Trans. Automat. Control, 47(10):1663–1676, 2002.

[104] G. Ferrari-Trecate, M. Muselli, D. Liberati, and M. Morari. A clustering technique
for the identification of piecewise affine systems. Automatica, 39(2):205–217,
February 2003.

[105] H.J. Ferreau, M. Diehl, and H.G. Bock. An online active set strategy to overcome
the limitations of explicit MPC. Int. J. Robust Nonlinear Control, 18:816–830,
2008.

[106] A.V. Fiacco. Sensitivity analysis for nonlinear programming using penalty meth-
ods. Math. Program., 10(3):287–311, 1976.

[107] A.V. Fiacco. Introduction to sensitivity and stability analysis in nonlinear program-
ming. Academic Press, London, UK, 1983.

[108] C.A. Floudas. Nonlinear and Mixed-Integer Optimization. Oxford University Press,
1995.

References 411

[109] S. Fortune. Voronoi diagrams and Delaunay triangulations. In J.E. Goodman and
J. O’Rourke, eds. Handbook of Discrete and Computational Geometry, pages 513–
528. CRC Press, 2nd edn., 2004.

[110] G. Frison, H.H.B. Sørensen, B. Dammann, and J.B. Jørgensen. High-performance
small-scale solvers for linear Model Predictive Control. In Proc. European Control
Conf., pages 128–133, June 2014.

[111] K. Fukuda. cdd, cddplus and cddlib homepage, 2016. Swiss Federal Institute of
Technology, Zurich. URL: http://www.inf.ethz.ch/personal/fukudak/cdd home/
index.html.

[112] K. Fukuda. Polyhedral computation FAQ, 2004. URL: https://www.inf.ethz.ch/
personal/fukudak/polyfaq/polyfaq.html.

[113] K. Fukuda, Th.M. Liebling, and C. Lütolf. Extended convex hull. Computational
Geometry, 20:13–23, 2001.

[114] K. Fukuda and A. Prodon. Double description method revisited. In M. Deza,
R. Euler, and I. Manoussakis, eds. Combinatorics and Computer Science, Vol.
1120 of Lecture Notes in Computer Science, pages 91–111. Springer-Verlag,
1996.

[115] T. Gal. Postoptimal Analyses, Parametric Programming, and Related Topics. de
Gruyter, Berlin, 2nd edn., 1995.

[116] T. Gal and H.J. Greenberg (Eds.). Advances in Sensitivity Analysis and Parametric
Programming, Vol. 6 of International Series in Operations Research & Management
Science. Kluwer Academic Publishers, 1997.

[117] T. Gal and J. Nedoma. Multiparametric linear programming.Management Science,
18:406–442, 1972.

[118] C.E. Garćıa and A.M. Morshedi. Quadratic programming solution of dynamic
matrix control (QDMC). Chem. Eng. Communications, 46:73–87, 1986.

[119] S.J. Gartska and R.J.B. Wets. On decision rules in stochastic programming.
Mathematical Programming, 7:117–143, 1974.

[120] S.I. Gass and T.L. Saaty. The computational algorithm for the parametric objective
function. Naval Research Logistics Quarterly, 2:39–45, 1955.

[121] T. Geyer. Low Complexity Model Predictive Control in Power Electronics and
Power Systems. Dr. sc. thesis, ETH, Zürich, Switzerland, March 2005.

[122] T. Geyer, F.D. Torrisi, and M. Morari. Efficient Mode Enumeration of Com-
positional Hybrid Models. In A. Pnueli and O. Maler, eds. Hybrid Systems:
Computation and Control, Vol. 2623 of Lecture Notes in Computer Science, pages
216–232. Springer Verlag, 2003.

[123] T. Geyer, F.D. Torrisi, and M. Morari. Optimal complexity reduction of polyhedral
piecewise affine systems. Automatica, 44(7):1728–1740, July 2008.

[124] E.G. Gilbert and K.T. Tan. Linear systems with state and control constraints: the
theory and applications of maximal output admissible sets. IEEE Trans. Automat.
Control, 36(9):1008–1020, 1991.

[125] N. Giorgetti, A. Bemporad, H.E. Tseng, and D. Hrovat. Hybrid model predictive
control application towards optimal semi-active suspension. Int. J. Control,
79(5):521–533, 2006.

[126] F. Glover. Improved linear integer programming formulations of nonlinear integer
problems. Management Science, 22(4):455–460, 1975.

[127] R. Goebel, R.G. Sanfelice, and A.R. Teel. Hybrid dynamical systems. IEEE Control
Systems Magazine, 29(2):28–93, 2009.

http://www.inf.ethz.ch/personal/fukudak/cdd_home/index.html
http://www.inf.ethz.ch/personal/fukudak/cdd_home/index.html
https://www.inf.ethz.ch/personal/fukudak/polyfaq/polyfaq.html
https://www.inf.ethz.ch/personal/fukudak/polyfaq/polyfaq.html

412 References

[128] K. Gokbayrak and C.G. Cassandras. A hierarchical decomposition method for
optimal control of hybrid systems. In Proc. 38th IEEE Conf. on Decision and
Control, pages 1816–1821, Phoenix, AZ, December 1999.

[129] G.C. Goodwin and K. S. Sin. Adaptive Filtering, Prediction and Control. Prentice-
Hall, Englewood Cliffs, NJ, 1984.

[130] P.J. Goulart, E.C. Kerrigan, and J.M. Maciejowski. Optimization over state
feedback policies for robust control with constraints. Automatica, 42(4):523–533,
2006.

[131] P. Grieder. Efficient Computation of Feedback Controllers for Constrained Systems.
Dr. sc. thesis, ETH, Zürich, Switzerland, 2004.

[132] P. Grieder, F. Borrelli, F.D. Torrisi, and M. Morari. Computaion of the constrained
infinite horizon linear quadratic regulator. Technical Report AUT02-09, Automatic
Control Laboratory, ETH Zurich, Switzerland, July 2002.

[133] P. Grieder, F. Borrelli, F.D. Torrisi, and M. Morari. Computation of the const-
rained infinite time linear quadratic regulator. Automatica, 40(4):701–708, April
2004.

[134] P. Grieder, M. Kvasnica, M. Baotić, and M. Morari. Low complexity control of
piecewise affine systems with stability guarantee. In Proc. American Control Conf.,
pages 1196–1201, Boston, USA, June 2004.

[135] B. Grünbaum. Convex Polytopes. Springer Verlag, 2nd edn., 2003.

[136] E. Guslitzer. Uncertainty-immunized solutions in linear programming. Master’s
thesis, Technion (Israel Institute of Technology), Haifa, Israel, 2002.

[137] P.O. Gutman. Online use of a linear programming controller. In G. Ferrate and
E.A. Puente, eds. Software for Computer Control 1982. IFAC/IFIP Symposium,
pages 313–318. Pergamon, Oxford, 1983.

[138] P.O. Gutman. A linear programming regulator applied to hydroelectric reservoir
level control. Automatica, 22(5):533–541, 1986.

[139] P.O. Gutman and M. Cwikel. Admissible sets and feedback control for discrete-time
linear dynamical systems with bounded control and states. IEEE Trans. Automat.
Control, 31(4):373–376, 1986.

[140] P.O. Gutman and M. Cwikel. An algorithm to find maximal state constraint sets
for discrete-time linear dynamical systems with bounded control and states. IEEE
Trans. Automat. Control, 32(3):251–254, 1987.

[141] A. Hassibi and S. Boyd. Quadratic stabilization and control of piecewise-linear
systems. In Proc. American Control Conf., Philadelphia, Pennsylvania, USA, June
1998.

[142] J.P. Hayes. Introduction to Digital Logic Design. Addison-Wesley Publishing
Company, Inc., 1993.

[143] S. Hedlund and A. Rantzer. Optimal control of hybrid systems. In Proc. 38th
IEEE Conf. on Decision and Control, pages 3972–3976, Phoenix, AZ, December
1999.

[144] S. Hedlund and A. Rantzer. Convex dynamic programming for hybrid systems.
IEEE Trans. Automat. Control, 47(9):1536–1540, September 2002.

[145] W.P.M.H Heemels, B. de Schutter, and A. Bemporad. On the equivalence of classes
of hybrid dynamical models. In Proc. 40th IEEE Conf. on Decision and Control,
pages 364–369, Orlando, Florida, 2001.

[146] W.P.M.H. Heemels. Linear complementarity systems: a study in hybrid dynamics.
PhD thesis, Dept. of Electrical Engineering, Eindhoven University of Technology,
The Netherlands, 1999.

[147] W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity
systems. SIAM J. Appl. Math., 60(4):1234–1269, 2000.

References 413

[148] W.P.M.H. Heemels, B. de Schutter, and A. Bemporad. Equivalence of hybrid
dynamical models. Automatica, 37(7):1085–1091, July 2001.

[149] M. Herceg, M. Kvasnica, C.N. Jones, and M. Morari. Multi-Parametric Toolbox
3.0. In Proc. European Control Conf., pages 502–510, Zürich, Switzerland, July
17–19 2013.

[150] J.P. Hespanha, S. Bohacek, K. Obraczka, and J. Lee. Hybrid modeling of TCP
congestion control. In M.D. Di Benedetto and A. Sangiovanni Vincentelli, eds.
Hybrid Systems: Computation and Control, Vol. 2034 of Lecture Notes in Computer
Science, pages 291–304. Springer Verlag, 2001.

[151] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of Convex Analysis.
Springer, 2001.

[152] W.M. Hogan. Point-to-set maps in mathematical programming. SIAM Rev.,
15(3):591–603, July 1973.

[153] J.N. Hooker. Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction. Wiley, New York, 2000.

[154] A. Jadbabaie, Y. Jie, and J. Hauser. Stabilizing receding horizon control of
nonlinear systems: a control Lyapunov function approach. In Proc. American
Control Conf., June 1999.

[155] M. Johannson and A. Rantzer. Computation of piece-wise quadratic Lyapunov
functions for hybrid systems. IEEE Trans. Automat. Control, 43(4):555–559, 1998.

[156] T.A. Johansen and A. Grancharova. Approximate explicit constrained linear model
predictive control via orthogonal search tree. IEEE Trans. Automat. Control,
48(5):810–815, May 2003.

[157] T.A. Johansen, J. Kalkkuhl, J. Lüdemann, and I. Petersen. Hybrid control stra-
tegies in ABS. In Proc. American Control Conf., Arlington, VA, June 2001.

[158] K.H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry. On the regularization of
Zeno hybrid automata. Systems & Control Letters, 38:141–150, 1999.

[159] C.N. Jones, M. Barić, and M. Morari. Multiparametric Linear Programming with
Applications to Control. European J. Control, 13(2-3):152–170, March 2007.

[160] C.N. Jones, P. Grieder, and S. Raković. A Logarithmic-Time Solution to the Point
Location Problem for Closed-Form Linear MPC. In Proc. IFAC World Congress,
Prague, Czech Republic, July 2005.

[161] C.N. Jones, E.C. Kerrigan, and J.M. Maciejowski. Equality set projection: A new
algorithm for the projection of polytopes in halfspace representation. Technical
Report CUED Technical Report CUED/F-INFENG/TR.463, Department of Engi-
neering, Cambridge University, UK, 2004.

[162] C.N. Jones and M. Morari. Polytopic approximation of explicit model predictive
controllers. IEEE Trans. Automat. Control, 55(11):2542–2553, November 2010.

[163] P. Julian, M. Jordan, and A. Desages. Canonical piecewise-linear approximation
of smooth functions. IEEE Trans. Circuits and Systems — I: Fundamental Theory
and Applications, 45(5):567–571, May 1998.

[164] A.A. Julius and A.J. van der Schaft. The maximal controlled invariant set of
switched linear systems. In Proc. 41st IEEE Conf. on Decision and Control, Las
Vegas, NV, USA, December 2002.

[165] A. Juloski, S. Weiland, and M. Heemels. A Bayesian approach to identification of
hybrid systems. In Proc. 43rd IEEE Conf. on Decision and Control, 2004.

[166] N.K. Karmarkar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984.

[167] S. Keerthi and E. Gilbert. Computation of minimum-time feedback control laws
for discrete-time systems with state-control constraints. IEEE Trans. Automat.
Control, 32(5):432–435, 1987.

414 References

[168] S.S. Keerthi and E.G. Gilbert. Optimal infinite-horizon feedback control laws for
a general class of constrained discrete-time systems: stability and moving-horizon
approximations. J. Opt. Theory and Applications, 57:265–293, 1988.

[169] S.S. Keerthi and K. Sridharan. Solution of parametrized linear inequalities by
Fourier elimination and its applications. J. Opt. Theory and Applications, 65(1):
161–169, 1990.

[170] A. Kelman and F. Borrelli. Parallel nonlinear predictive control. In Proc. 50th
Annual Allerton Conf. on Communication, Control, and Computing (Allerton),
pages 71–78, Oct 2012.

[171] A. Kelman, J. Kong, S. Vichik, K. Chiang, and F. Borrelli. BLOM: The berkeley
library for optimization modeling. In Proc. American Control Conf., pages 2900–
2905, June 2014.

[172] E.C. Kerrigan. Robust Constraint Satisfaction: Invariant Sets and Predictive Con-
trol. PhD thesis, Department of Engineering, University of Cambridge, Cambridge,
UK, 2000.

[173] E.C. Kerrigan and J.M. Maciejowski. Soft constraints and exact penalty functions
in model predictive control. In Proc. UKACC International Conf. (Control 2000),
Cambridge, UK, September 2000.

[174] E.C. Kerrigan and J.M. Maciejowski. Designing model predictive controllers with
prioritised constraints and objectives. In Proc. IEEE International Symposium on
Computer Aided Control System Design, pages 33–38, 2002.

[175] E.C. Kerrigan and J.M. Maciejowski. On robust optimization and the optimal
control of constrained linear systems with bounded state disturbances. In Proc.
European Control Conf., Cambridge, UK, September 2003.

[176] H.K. Khalil. Nonlinear Systems. Prentice Hall, 2nd edn, 1996.

[177] H. Kiendl, J. Adamy, and P. Stelzner. Vector norms as Lyapunov functions for
linear systems. IEEE Trans. Automat. Control, 37(6):839–842, June 1992.

[178] D. Klatte and G. Thiere. Error bounds for solutions of linear equations and
inequalities. ZOR - Math. Methods Oper. Res., 41:191–214, 1995.

[179] I. Kolmanovsky and E.G. Gilbert. Theory and computation of disturbance
invariant sets for discrete-time linear systems. Math. Probl. Eng., 4:317–367, 1998.

[180] M.V. Kothare, V. Balakrishnan, and M. Morari. Robust constrained model
predictive control using linear matrix inequalities. Automatica, 32(10):1361–1379,
1996.

[181] B. Kouvaritakis, J.A. Rossiter, and J. Schuurmans. Efficient robust predictive
control. IEEE Trans. Automat. Control, 45(8):1545–1549, 2000.

[182] G. Lafferriere, G.J. Pappas, and S. Sastry. Reachability analysis of hybrid systems
using bisimulations. In Proc. 37th IEEE Conf. on Decision and Control, pages
1623–1628, Tampa, FL, USA, 1998.

[183] J.P. LaSalle. Stability theory for difference equations. In Jack Hale, eds. Studies
in Ordinary Differential Equations, Vol. 14 of MAA Studies in Mathematics, pages
1–31. Mathematical Assoc. of Amer., 1977.

[184] J.P. LaSalle. The Stability and Control of Discrete Processes, Vol. 62 of Applied
Mathematical Sciences. Springer Verlag, New York, 1986.

[185] M. Lazar and W.P.M.H. Heemels. Predictive control of hybrid systems: Input-to-
state stability results for sub-optimal solutions. Automatica, 45(1):180–185, 2009.

[186] M. Lazar, W.P.M.H. Heemels, and A.R. Teel. Lyapunov functions, stability and
input-to-state stability subtleties for discrete-time discontinuous systems. IEEE
Trans. Automat. Control, 54(10):2421–2425, 2009.

References 415

[187] M. Lazar, W.P.M.H. Heemels, S. Weiland, and A. Bemporad. Stabilizing model
predictive control of hybrid systems. IEEE Trans. Automat. Control, 51(11):
1813–1818, 2006.

[188] M. Lazar, D. M. de la Peña, W.P.M.H. Heemels, and T. Alamo. On input-to-state
stability of min-max nonlinear model predictive control. Systems & Control Letters,
57:39–48, 2008.

[189] J. H. Lee and Z. Yu. Worst-case formulations of model predictive control for
systems with bounded parameters. Automatica, 33(5):763–781, 1997.

[190] F.L. Lewis and V.L. Syrmos. Optimal Control. John Wiley & Sons, Inc., New York,
1995.

[191] D. Liberzon. Switching in Systems and Control. Systems and Control: Foundations
and Application. Birkhäuser, Boston, MA, June 2003.

[192] B. Lincoln and A. Rantzer. Optimizing linear system switching. In Proc. 40th IEEE
Conf. on Decision and Control, pages 2063–2068, Orlando, FL, USA, 2001.

[193] Y.-C. Liu and C. B. Brosilow. Simulation of large scale dynamic systems—I.
modular integration methods. Computers & Chemical Engineering, 11(3):241–253,
1987.

[194] J. Löfberg. Minimax approaches to robust model predictive control. PhD thesis,
Linköping University, Sweden, April 2003.

[195] J. Lygeros, D.N. Godbole, and S. Sastry. A game theoretic approach to hybrid
system design. In R. Alur and T. Henzinger, eds. Hybrid Systems III, Vol. 1066 of
Lecture Notes in Computer Science, pages 1–12. Springer Verlag, 1996.

[196] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for
hybrid systems. Automatica, 35(3):349–370, 1999.

[197] J.M. Maciejowski. Predictive Control with Constraints. Prentice Hall, 2002.

[198] U. Maeder, F. Borrelli, and M. Morari. Linear offset-free Model Predictive Control.
Automatica, 45(10):2214–2222, 2009.

[199] S. Mahapatra. Stability of Hybrid Haptic Systems. PhD thesis, University of Illinois,
Chicago, Illinois, 2003.

[200] O.L. Mangasarian and J.B. Rosen. Inequalities for stochastic nonlinear program-
ming problems. Operations Research, 12(1):143–154, 1964.

[201] J. Mattingley and S. Boyd. CVXGEN: A code generator for embedded convex
optimization. Optimization and Engineering, 13:1–27, 2012.

[202] D.Q. Mayne. Constrained Optimal Control. European Control Conference, Semi-
nario de Vilar, Porto, Portugal, Plenary Lecture, September 2001.

[203] D.Q. Mayne. Control of constrained dynamic systems. European J. of Control,
7:87–99, 2001.

[204] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert. Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789–814, June
2000.

[205] T.A. Meadowcroft, G. Stephanopoulos, and C. Brosilow. The Modular Multivari-
able Controller: 1: Steady-state properties. AIChE J., 38(8):1254–1278, 1992.

[206] S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM
J. on Optimization, 2(4):575–601, November 1992.

[207] S. Mehrotra and R.D.C. Monteiro. Parametric and range analysis for interior point
methods. Technical report, Dept. of Systems and Industrial Engineering, University
of Arizona, Tucson, USA, 1992.

[208] E. Mendelson. Introduction to mathematical logic. Van Nostrand, 1964.

416 References

[209] J.A. Mendez, B. Kouvaritakis, and J.A. Rossiter. State space approach to
interpolation in MPC. Int. J. Robust Nonlinear Control, 10(1):27–38, January 2000.

[210] D. Mignone. Control and Estimation of Hybrid Systems with Mathematical Opti-
mization. Dr. sc. thesis, ETH, Zürich, Switzerland, 2002.

[211] D. Mignone, A. Bemporad, and M. Morari. A framework for control, fault
detection, state estimation and verification of hybrid systems. In Proc. American
Control Conf., pages 134–138, June 1999.

[212] R. Milman and E.J. Davison. A fast MPC algorithm using nonfeasible active set
methods. J. Opt. Theory and Applications, 139(3):591–616, 2008.

[213] G. Mitra, C. Lucas, and S. Moody. Tool for reformulating logical forms into zero-
one mixed integer programs. European J. Oper. Res., 71:262–276, 1994.

[214] R. Möbus, M. Baotić, and M. Morari. Multi-objective adaptive cruise control.
In O. Maler and A. Pnueli, eds. Hybrid Systems: Computation and Control,
Vol. 2623 of Lecture Notes in Computer Science, pages 359–374. Springer Verlag,
2003.

[215] M. Morari and G. Stephanopoulos. Minimizing unobservability in inferential
control schemes. Int. J. Control, 31:367–377, 1980.

[216] M. Morari and G. Stephanopoulos. Studies in the synthesis of control structures
for chemical processes; Part III: Optimal selection of secondary measurements
within the framework of state estimation in the presence of persistent unknown
disturbances. AIChE J., 26:247–260, 1980.

[217] K.G. Murty. Linear Programming. Wiley-Interscience Publication, 1983. 1st edn.

[218] K.R. Muske and T.A. Badgwell. Disturbance modeling for offset-free linear model
predictive control. J. of Proc. Control, 12:617–632, 2002.

[219] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley,
1988.

[220] Y. Nesterov. Introductory Lectures on Convex Optimization. A Basic Course.
Springer, 2004.

[221] Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, 103(1):127–152, 2005.

[222] Y. Nesterov and A. Nemirovski. Interior-Point Polynomial Algorithms in Convex
Programming. Society for Industrial Mathematics, 1994.

[223] J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, 2nd
edn., 2006.

[224] J.M. Ortega and W.C. Rheinboldt. Iterative solution of nonlinear equations
in several variables, Vol. 30. Society for Industrial and Applied Mathematics,
1987.

[225] G. Pannocchia. Robust disturbance modeling for model predictive control
with application to multivariable ill-conditioned processes. J. of Proc. Control,
13(8):693–701, 2003.

[226] G. Pannocchia and J.B. Rawlings. Disturbance models for offset-free model
predictive control. AIChE J., 49(2):426–437, 2003.

[227] S. Paoletti. Identification of Piecewise Affine Models. PhD thesis, Dept. Informa-
tion Engineering, University of Siena, Italy, 2004.

[228] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in optimiza-
tion, 1(3):123–231, 2013.

[229] T. Park and P.I. Barton. Implicit model checking of logic-based control systems.
AIChE J., 43(9):2246–2260, 1997.

References 417

[230] P.A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods
in robustness and optimization. Ph.D. thesis, California Institute of Technology,
Pasadena, CA, USA, 2000.

[231] P. Patrinos and H. Sarimveis. Convex parametric piecewise quadratic optimization:
Theory and Algorithms. Automatica, 47(8):1770–1777, 2011.

[232] D. M. De La Pena, A. Bemporad, and C. Filippi. Robust explicit MPC based
on approximate multiparametric convex programming. IEEE Trans. Automat.
Control, 51(8):1399–1403, 2006.

[233] S. Pettersson and B. Lennartson. Stability and robustness for hybrid systems. In
Proc. 35th IEEE Conf. on Decision and Control, pages 1202–1207, Kobe, Japan,
1996.

[234] S. Pettersson and B. Lennartson. Exponential stability of hybrid systems using
piecewise quadratic Lyapunov functions resulting in LMIs. In Proc. IFAC World
Congress, pages 103–108, Beijing, China, July 1999.

[235] B. Piccoli. Necessary conditions for hybrid optimization. In Proc. 38th IEEE Conf.
on Decision and Control, Phoenix, AZ, USA, December 1999.

[236] A. Pogromski, M. Jirstrand, and P. Spangeus. On stability and passivity of a class
of hybrid systems. In Proc. 37th IEEE Conf. on Decision and Control, pages 3705–
3710, Tampa, Florida, USA, 1998.

[237] A. Polanski. On infinity norms as Lyapunov functions for linear systems. IEEE
Trans. Automat. Control, 40(7):1270–1274, July 1995.

[238] S. Prajna and A. Papachristodoulou. Analysis of switched and hybrid systems –
beyond piecewise quadratic methods. In Proc. American Control Conf., Vol. 4,
pages 2779–2784, 2003.

[239] A.I. Propoi. Use of linear programming methods for synthesizing sampled–data
automatic systems. Autom. Remote Control, 24(7):837–844, 1963.

[240] S.J. Qin and T.A. Badgwell. An overview of industrial model predictive control
technology. In Chemical Process Control - V, Vol. 93, no. 316, pages 232–256.
AIChE Symposium Series - American Institute of Chemical Engineers, 1997.

[241] S.J. Qin and T.A. Badgwell. A survey of industrial model predictive control
technology. Control Engineering Practice, 11:733–764, 2003.

[242] S.V. Raković, P. Grieder, M. Kvasnica, D.Q. Mayne, and M. Morari. Computation
of invariant sets for piecewise affine discrete time systems subject to bounded
disturbances. In Proc. 43rd IEEE Conf. on Decision and Control, pages 1418–
1423, December 2004.

[243] S.V. Rakovic, E.C. Kerrigan, and D.Q. Mayne. Reachability computations for
constrained discrete-time systems with state- and input-dependent disturbances.
In Proc. 42nd IEEE Conf. on Decision and Control, pages 3905–3910, December
2003.

[244] R. Raman and I.E. Grossmann. Relation between MILP modeling and logical
inference for chemical process synthesis. Computers & Chemical Engineering,
15(2):73–84, 1991.

[245] A. Rantzer and M. Johansson. Piecewise linear quadratic optimal control. IEEE
Trans. Automat. Control, 45(4):629–637, April 2000.

[246] C.V. Rao, S.J. Wright, and J.B. Rawlings. Application of Interior-Point methods
to model predictive control. J. Opt. Theory and Applications, 99(3):723–757,
December 1998.

[247] J.B. Rawlings and D.Q. Mayne. Model Predictive Control: Theory and Design. Nob
Hill Publishing, 2009.

418 References

[248] J. Richalet, A. Rault, J.L. Testud, and J. Papon. Algorithmic control of industrial
processes. In Proc. 4th IFAC symposium on identification and system parameter
estimation, Vol. WP5-B, pages 1119–1167, 1976.

[249] J. Richalet, A. Rault, J.L. Testud, and J. Papon. Model predictive heuristic control-
application to industrial processes. Automatica, 14:413–428, 1978.

[250] S. Richter. Computational Complexity Certification of Gradient Methods for Real-
Time Model Predictive Control. Dr. sc. thesis, ETH, Zurich, Switzerland, November
2012.

[251] S. Richter, C.N. Jones, and M. Morari. Certification Aspects of the Fast Gradient
Method for Solving the Dual of Parametric Convex Programs.Math. Methods Oper.
Res., 77(3):305–321, January 2013.

[252] P. Riedinger, F.Kratz, C. Iung, and C. Zanne. Linear quadratic optimization for
hybrid systems. In Proc. 38th IEEE Conf. on Decision and Control, Phoenix,
Arizona USA, December 1999.

[253] S.M. Robinson. Some continuity properties of polyhedral multifunctions. Mathe-
matical Programing Study, 14:206–214, 1981.

[254] S.M. Robinson and R.H. Day. A sufficient condition for continuity of optimal sets
in mathematical programming. J. Math. Anal. Appl., 45:506–511, 1974.

[255] J. Roll, A. Bemporad, and L. Ljung. Identification of piecewise affine systems via
mixed-integer programming. Automatica, 40(1):37–50, 2004.

[256] L.O. Santos, P.A.F.N.A. Afonso, J.A.A.M. Castro, N.M.C. Oliveira, and L.T.
Biegler. On-line implementation of nonlinear MPC: an experimental case study.
Control Engineering Practice, 9(8):847–857, 2001.

[257] M. Schechter. Polyhedral functions and multiparametric linear programming.
J. Opt. Theory and Applications, 53(2):269–280, May 1987.

[258] C. Scherer and S. Weiland. Linear Matrix Inequalities in Control. Technical report,
Center for Systems and Control, Delft University of Technology, The Netherlands,
January 2005. Available from http://goo.gl/D82c0Y.

[259] P.O.M. Scokaert and D.Q. Mayne. Min-max feedback model predictive control for
constrained linear systems. IEEE Trans. Automat. Control, 43(8):1136–1142, 1998.

[260] P.O.M. Scokaert and J.B. Rawlings. Constrained linear quadratic regulation. IEEE
Trans. Automat. Control, 43(8):1163–1169, 1998.

[261] C. Seatzu, D. Corona, A. Giua, and A. Bemporad. Optimal control of continuous-
time switched affine systems. IEEE Trans. Automat. Control, 51(5):726–741,
2006.

[262] M.M. Seron, J.A. DeDoná, and G.C. Goodwin. Global analytical model predictive
control with input constraints. In Proc. 39th IEEE Conf. on Decision and Control,
pages 154–159, 2000.

[263] J. Serra. Image Analysis and Mathematical Morphology, Vol II: Theoretical
Advances. Academic Press, 1988.

[264] M.S. Shaikh and P.E. Caines. On the optimal control of hybrid systems: optimiza-
tion of trajectories, switching times and location schedules. In 6th Int. Workshop
on Hybrid Systems: Computation and Control, Prague, The Czech Republic, 2003.

[265] B.I. Silva, O. Stursberg, B.H. Krogh, and S. Engell. An assessment of the current
status of algorithmic approaches to the verification of hybrid systems. In Proc. 40th
IEEE Conf. on Decision and Control, pages 2867–2874, Orlando, FL, December
2001.

[266] E.D. Sontag. Nonlinear regulation: The piecewise linear approach. IEEE Trans.
Automat. Control, 26(2):346–358, April 1981.

http://goo.gl/D82c0Y

References 419

[267] E.D. Sontag. Interconnected automata and linear systems: A theoretical framework
in discrete-time. In R. Alur, T.A. Henzinger, and E.D. Sontag, eds. Hybrid Systems
III—Verification and Control, number 1066 in Lecture Notes in Computer Science,
pages 436–448. Springer Verlag, 1996.

[268] J. Spjotvold, E.C. Kerrigan, C.N. Jones, P. Tøndel, and T.A Johansen. On the
facet-to-facet property of solutions to convex parametric quadratic programs.
Automatica, 42(12):2209–2214, December 2006.

[269] R. Suard, J. Löfberg, P. Grieder, M. Kvasnica, and M. Morari. Efficient computa-
tion of controller partitions in multi-parametric programming. In Proc. 43rd IEEE
Conf. on Decision and Control, pages 3643–3648, Bahamas, December 2004.

[270] S. Summers, C.N. Jones, J. Lygeros, and M. Morari. A multiresolution approxi-
mation method for fast explicit model predictive control. IEEE Trans. Automat.
Control, 56(11):2530–2541, Nov 2011.

[271] H.J. Sussmann. A maximum principle for hybrid optimal control problems. In
Proc. 38th IEEE Conf. on Decision and Control, Phoenix, Arizona USA, December
1999.

[272] M. Sznaier and M.J. Damborg. Suboptimal control of linear systems with state and
control inequality constraints. In Proc. 26th IEEE Conf. on Decision and Control,
Vol. 1, pages 761–762, 1987.

[273] C.J. Tomlin, J. Lygeros, and S.S. Sastry. A game theoretic approach to controller
design for hybrid systems. Proc. IEEE, 88(7):949–970, July 2000.

[274] P. Tøndel, T.A. Johansen, and A. Bemporad. An algorithm for multi-parametric
quadratic programming and explicit MPC solutions. In Proc. 40th IEEE Conf. on
Decision and Control, December 2001.

[275] P. Tøndel, T.A. Johansen, and A. Bemporad. Evaluation of piecewise affine control
via binary search tree. Automatica, 39(5):945–950, 2003.

[276] F.D. Torrisi and A. Bemporad. HYSDEL — A tool for generating computational
hybrid models. IEEE Trans. Control Syst. Tech., 12(2):235–249, March 2004.

[277] M.L. Tyler and M. Morari. Propositional logic in control and monitoring problems.
Automatica, 35(4):565–582, 1999.

[278] V.I. Utkin. Variable structure systems with sliding modes. IEEE Trans. Automat.
Control, 22(2):212–222, April 1977.

[279] A.J. van der Schaft and J.M. Schumacher. Complementarity modelling of hybrid
systems. IEEE Trans. Automat. Control, 43:483–490, 1998.

[280] R.J. Vanderbei. Linear Programming, Vol. 196 of International Series in Operations
Research & Management Science. Springer US, Boston, MA, 2014.

[281] D.H. van Hessem and O.H. Bosgra. A conic reformulation of model predictive
control including bounded and stochastic disturbances under state and input
constraints. In Proc. 41st IEEE Conf. on Decision and Control, pages 4643–4648,
Las Vegas, NV, USA, 2002.

[282] R. Vidal, S. Soatto, Y. Ma, and S. Sastry. An algebraic geometric approach to
the identification of a class of linear hybrid systems. In Proc. 42nd IEEE Conf. on
Decision and Control, pages 167–172, Maui, Hawaii, 2003.

[283] D.W. Walkup and R.J.-B. Wets. A Lipschitzian characterizations of convex
polyhedra. Proc. American Mathematical Society, 20:167–173, 1969.

[284] Y. Wang and S. Boyd. Fast model predictive control using online optimization.
IEEE Trans. Control Syst. Tech., 18(2):267 –278, March 2010.

[285] J. Warren, S. Schaefer, A. Hirani, and M. Desbrun. Barycentric coordinates for
convex sets. Adv. Comput. Math., 27(3):319–338, 2007.

420 References

[286] H.P. Williams. Logical problems and integer programming. Bulletin of the Institute
of Mathematics and Its Applications, 13:18–20, 1977.

[287] H.P. Williams. Model Building in Mathematical Programming. John Wiley & Sons,
3rd edn., 1993.

[288] H. Witsenhausen. A class of hybrid-state continuous-time dynamic systems. IEEE
Trans. Automat. Control, 11(2):161–167, 1966.

[289] H.S. Witsenhausen. A min-max control problem for sampled linear systems. IEEE
Trans. Automat. Control, 13(1):5–21, 1968.

[290] S.J. Wright. Primal-Dual Interior Point Methods. SIAM, 1997.

[291] X. Xu and P.J. Antsaklis. Results and perspectives on computational methods
for optimal control of switched systems. In O. Maler and A. Pnueli, eds. Hybrid
Systems: Computation and Control, Vol. 2623 of Lecture Notes in Computer
Science, pages 540–555. Springer Verlag, 2003.

[292] X. Xu and P.J. Antsaklis. Optimal control of switched systems based on param-
eterization of the switching instants. IEEE Trans. Automat. Control, 49(1):2–16,
2004.

[293] L.A. Zadeh and L.H. Whalen. On optimal control and linear programming. IRE
Trans. Automat. Control, 7:45–46, 1962.

[294] E. Zafiriou and M. Morari. A general controller synthesis methodology based on
the IMC structure and the H2-, H∞- and μ-optimal control theories. Computers
& Chemical Engineering, 12(7):757–765, 1988.

[295] M. Zefran, F. Bullo, and M. Stein. A notion of passivity for hybrid systems. In Proc.
40th IEEE Conf. on Decision and Control, pages 768–773, Orlando, FL, 2001.

[296] G.M. Ziegler. Lectures on Polytopes. Graduate Texts in Mathematics. Springer
Verlag, 1994.

Index

Active Constraints, 5
Algebraic Riccati Equation, 168
Approximate Receding Horizon Control

Barycentric Interpolation, 280
Partitioning and Interpolation

Methods, 285
Second-Order Interpolants, 291
Stability, 278

Barycentric Interpolation, 280

Complementary Slackness, 13
Constrained Least-Squares Problems, 30
Constrained LQR, 211

algorithm, 224
Constrained Optimal Control, 147

Batch Approach, 149
Dynamic Programming, 150
Infinite Horizon, 152
Recursive Approach, 150
Value Function Iteration, 153

Constraint Qualifications, 12
Control Lyapunov Function, 255
Convergence Rates, 34
Convex Hull, 79
Convex Optimization Problems, 8
Convex Piecewise Linear

Optimization, 26
Convexity, 6

Operations Preserving, 7
Critical Region, 108

Descent Method, 35, 36
Discrete Hybrid Automata, 356
Discrete Time Riccati Equation, 166
Dual variables, 11

Efficient On-Line Algorithms, 302
descriptor function, 305

Fast Gradient Method, 39

Gradient Method, 36
Gradient Projection Methods, 47

Hybrid System
2-norm Optimal Control, 377
∞-norm Optimal Control, 384
Optimal Control, 375
Optimal Control via Mixed-Integer

Programming, 384
Hybrid Systems

Binary States, Inputs, and Outputs,
353

Discrete Hybrid Automata, 356
Finite State Machine, 359
HYSDEL Modeling Language, 365
Logic and Mixed-Integer Inequalities,

361
Mixed Logical Dynamical Systems,

363
Model Equivalences, 365
Modeling Discontinuities, 351
Models, 349
Piecewise Affine Systems, 350

HYSDEL, 365

Interior Point Methods, 52
Invariant Set, 183

Control Invariant, 192
Max Control Invariant, 192
Max LQR Invariant, 223
Max Positive Invariant, 190
Max Robust Positive Invariant,

205
Positive Invariant, 190
Robust Control Invariant, 206
Robust Positive Invariant, 205

422 Index

Karush-Kuhn-Tucker Conditions, 14

Lagrange Dual Problem, 11
Lagrange Duality, 10
Lagrange Multipliers, 11
Lagrangian, 10
Line Search Methods, 46
Linear Constrained Optimal Control, 211

Feasible Sets, 213
State Feedback Solution, 221

Linear Program, 20
Dual of, 22
KKT Conditions, 23

Linear Quadratic Regulator, 163
Batch Approach, 164
Infinite Time Solution, 168
Recursive Approach, 165

Logic and Mixed-Integer Inequalities,
361

LQR, 163
Lyapunov Equation, 159
Lyapunov Function, 157

1/∞ norm, 161
Quadratic, 159
Radially Unbounded, 158

Lyapunov Inequality, 161
Lyapunov Stability, 156

Definition, 156
Global, 158

Maximal Controllable Set, 194
Maximal Robust Controllable Set, 208
Minimum-Time Control, 239
Minkowski Difference

of P-collections, 89
of Polytopes, 83

Mixed Integer Linear Programming, 30
Mixed Integer Quadratic Programming, 30
Mixed Logical Dynamical Systems, 363
Model Predictive Control, 244
mp-LP, 110

Algorithm, 122
Formulation, 110
Nonunique Optimizer, 117
Properties, 112, 120
Set of Active Constraints, 115

mp-QP, 125
Algorithm, 134
Formulation, 125
Properties, 127, 131
Set of Active Constraints, 130

Multiparametric Mixed-Integer Program,
136

Multiparametric Program, 95
Example, 99
General Results, 98
Main Properties, 103

Newton’s Method, 43
N -Step Controllable Set, 184
N -Step Reachable Set, 184
N -Step Robust Controllable Set, 196

Optimization Problem, 3

Point-to-Set Maps, 101
Continuity, 101
Continuous Selections, 103

Polyhedron, 73
Affine Mappings of, 87
Chebyshev Ball, 80
Envelope, 79
Minimal Representation, 78
Minkowski Sum, 85
Open, 76
P-collection, 76
Projection, 81
Ray, 74
Set-Difference, 82
Union, 86
Union of P-collections, 90
Valid Inequality, 75
Vertex Enumeration, 80

Polytopal Complexes, 76
Polytope, 73
Pontryagin Difference

of Polytopes, 83
Pontryagin Difference¿of P-collections,

89
PWA System

2-norm Optimal Control, 377
∞-norm Optimal Control, 384

Quadratic Program, 27
Dual of, 28
KKT Conditions, 29

Receding Horizon Control, 244
receding horizon control, 274
RHC

Feasibility Issue, 251
Implementation, 244
Observer Design, 267
Offset-Free Reference Tracking,

266
Stability Issue, 253

Robust Pre
Computation for Linear Systems

with Inputs, 199
Computation for Linear Systems

with Parametric Uncertainty,
202

Computation for Linear Systems
without Inputs, 197

Definition, 196

Index 423

Robust Suc
Definition, 196
Computation for Linear Systems with

Inputs, 199
Computation for Linear Systems with

Parametric Uncertainty, 202
Computation for Linear Systems

without Inputs, 197
Robust Invariant Set, 195
Robust Reachable Set, 197

Strong Duality, 12

Triangulation, 286

Unconstrained Optimal Control
1/∞ Norm, 171

Wolfe Conditions, 46

	Cover
	Half-title

	Title page

	Copyright information

	Dedication

	Table of contents

	Preface
	Acknowledgments
	Symbols and Acronyms
	Part
I Basics of Optimization
	1 Main Concepts
	 1.1 Optimization Problems
	 1.1.1 Continuous Problems
	 1.1.2 Integer and Mixed-Integer Problems

	 1.2 Convexity
	 1.3 Optimality Conditions
	 1.3.1 Optimality Conditions for Unconstrained Problems

	 1.4 Lagrange Duality Theory
	 1.4.1 Strong Duality and Constraint Qualifications
	 1.4.2 Certificate of Optimality

	 1.5 Complementary Slackness
	 1.6 Karush-Kuhn-Tucker Conditions
	 1.6.1 Geometric Interpretation of KKT Conditions

	2 Linear and Quadratic Optimization
	 2.1 Polyhedra and Polytopes
	 2.2 Linear Programming
	 2.2.1 Geometric Interpretation and Solution Properties
	 2.2.2 Dual of LP
	 2.2.3 KKT condition for LP
	 2.2.4 Active Constraints and Degeneracies
	 2.2.5 Convex Piecewise Affine Optimization

	 2.3 Quadratic Programming
	 2.3.1 Geometric Interpretation and Solution Properties
	 2.3.2 Dual of QP
	 2.3.3 KKT conditions for QP
	 2.3.4 Active Constraints and Degeneracies
	 2.3.5 Constrained Least-Squares Problems

	 2.4 Mixed-Integer Optimization

	3 Numerical Methods for Optimization
	 3.1 Convergence
	 3.2 Unconstrained Optimization
	 3.2.1 Gradient Methods
	 3.2.2 Newton’s Method
	 3.2.3 Line Search Methods

	 3.3 Constrained Optimization
	 3.3.1 Gradient Projection Methods
	 3.3.2 Interior Point Methods
	 3.3.3 Active Set Methods

	4 Polyhedra and P-Collections
	 4.1 General Set Definitions and Operations
	 4.2 Polyhedra and Representations
	 4.3 Polytopal Complexes
	 4.3.1 Functions on Polytopal Complexes

	 4.4 Basic Operations on Polytopes
	 4.4.1 Minimal Representation
	 4.4.2 Convex Hull
	 4.4.3 Envelope
	 4.4.4 Vertex Enumeration
	 4.4.5 Chebyshev Ball
	 4.4.6 Projection
	 4.4.7 Set-Difference
	 4.4.8 Pontryagin Difference
	 4.4.9 Minkowski Sum
	 4.4.10 Polyhedra Union
	 4.4.11 Affine Mappings and Polyhedra

	 4.5 Operations on P-Collections
	 4.5.1 Set-Difference
	 4.5.2 Polytope Covering
	 4.5.3 Union of P-Collections

	Part
II Multiparametric Programming
	5 Multiparametric Nonlinear Programming
	 5.1 Introduction to Multiparametric Programs
	 5.2 General Results for Multiparametric Nonlinear Programs

	6 Multiparametric Programming: A Geometric Approach
	 6.1 Multiparametric Programs with Linear Constraints
	 6.1.1 Formulation
	 6.1.2 Definition of Critical Region
	 6.1.3 Reducing the Dimension of the Parameter Space

	 6.2 Multiparametric Linear Programming
	 6.2.1 Formulation
	 6.2.2 Critical Regions, Value Function and Optimizer: Local Properties
	 6.2.3 Propagation of the Set of Active Constraints
	 6.2.4 Nonunique Optimizer
	 6.2.5 Value Function and Optimizer: Global Properties
	 6.2.6 mp-LP Algorithm

	 6.3 Multiparametric Quadratic Programming
	 6.3.1 Formulation
	 6.3.2 Critical Regions, Value Function and Optimizer: Local Properties
	 6.3.3 Propagation of the Set of Active Constraints
	 6.3.4 Value Function and Optimizer: Global Properties
	 6.3.5 mp-QP Algorithm

	 6.4 Multiparametric Mixed-Integer Linear Programming
	 6.4.1 Formulation and Properties
	 6.4.2 Geometric Algorithm for mp-MILP
	 6.4.3 Solution Properties

	 6.5 Multiparametric Mixed-Integer Quadratic Programming
	 6.5.1 Formulation and Properties

	 6.6 Literature Review

	Part
III Optimal Control
	7 General Formulation and Discussion
	 7.1 Problem Formulation
	 7.2 Solution via Batch Approach
	 7.3 Solution via Recursive Approach
	 7.4 Optimal Control Problem with Infinite Horizon
	 7.4.1 Value Function Iteration
	 7.4.2 Receding Horizon Control

	 7.5 Lyapunov Stability
	 7.5.1 General Stability Conditions
	 7.5.2 Quadratic Lyapunov Functions for Linear Systems
	 7.5.3 1/∞ Norm Lyapunov Functions for Linear Systems

	8 Linear Quadratic Optimal Control
	 8.1 Problem Formulation
	 8.2 Solution via Batch Approach
	 8.3 Solution via Recursive Approach
	 8.4 Comparison of the Two Approaches
	 8.5 Infinite Horizon Problem

	9 Linear 1/∞ Norm Optimal Control
	 9.1 Problem Formulation
	 9.2 Solution via Batch Approach
	 9.3 Solution via Recursive Approach
	 9.4 Comparison of the two Approaches
	 9.5 Infinite Horizon Problem

	Part
IV Constrained Optimal Control of Linear Systems
	10 Controllability, Reachability and Invariance
	 10.1 Controllable and Reachable Sets
	 10.1.1 Computation of Controllable and Reachable Sets

	 10.2 Invariant Sets
	 10.3 Robust Controllable and Reachable Sets
	 10.3.1 Linear Systems with Additive Uncertainty and without Inputs
	 10.3.2 Linear Systems with Additive Uncertainty and Inputs
	 10.3.3 Linear Systems with Parametric Uncertainty

	 10.4 Robust Invariant Sets

	11 Constrained Optimal Control
	 11.1 Problem Formulation
	 11.2 Feasible Solutions
	 11.3 2-Norm Case Solution
	 11.3.1 Solution via QP
	 11.3.2 State Feedback Solution via Batch Approach
	 11.3.3 State Feedback Solution via Recursive Approach
	 11.3.4 Infinite Horizon Problem
	 11.3.5 CLQR Algorithm
	 11.3.6 Examples

	 11.4 1-Norm and ∞-Norm Case Solution
	 11.4.1 Solution via LP
	 11.4.2 State Feedback Solution via Batch Approach
	 11.4.3 State Feedback Solution via Recursive Approach
	 11.4.4 Example
	 11.4.5 Infinite -Time Solution

	 11.5 State Feedback Solution, Minimum-Time Control
	 11.6 Comparison of the Design Approaches and Controllers

	12 Receding Horizon Control
	 12.1 RHC Idea
	 12.2 RHC Implementation
	 12.3 RHC Main Issues
	 12.3.1 Feasibility of RHC
	 12.3.2 Stability of RHC

	 12.4 State Feedback Solution of RHC, 2-Norm Case
	 12.5 State Feedback Solution of RHC, 1-Norm, ∞-Norm Case
	 12.6 Tuning and Practical Use
	 12.7 Offset-Free Reference Tracking
	 12.8 Literature Review

	13 Approximate Receding Horizon Control
	 13.1 Stability of Approximate Receding Horizon Control
	 13.2 Barycentric Interpolation
	 13.2.1 Feasibility
	 13.2.2 Suboptimality
	 13.2.3 Constructive Algorithm

	 13.3 Partitioning and Interpolation Methods
	 13.3.1 Triangulation
	 13.3.2 Outer Polyhedral Approximation
	 13.3.3 Second-Order Interpolants

	14 On-Line Control Computation
	 14.1 Storage and On-Line Evaluation of the PWA Control Law
	 14.1.1 Efficient Implementation, 1-Norm, ∞-Norm Case
	 14.1.2 Efficient Implementation, 2-Norm Case
	 14.1.3 Example
	 14.1.4 Literature Review

	 14.2 Gradient Projection Methods Applied to MPC
	 14.2.1 Input-Constrained MPC
	 14.2.2 Input- and State-Constrained MPC

	 14.3 Interior Point Method Applied to MPC

	15 Constrained Robust Optimal Control
	 15.1 Problem Formulation
	 15.1.1 State Feedback Solutions Summary

	 15.2 Feasible Solutions
	 15.3 State Feedback Solution, Nominal Cost
	 15.4 State Feedback Solution, Worst-Case Cost, 1-Norm and ∞-Norm Case
	 15.4.1 Batch Approach: Open-Loop Predictions
	 15.4.2 Recursive Approach: Closed-Loop Predictions

	 15.5 Parametrizations of the Control Policies
	 15.6 Example
	 15.7 Robust Receding Horizon Control
	 15.8 Literature Review

	Part
V Constrained Optimal Control of Hybrid Systems
	16 Models of Hybrid Systems
	 16.1 Models of Hybrid Systems
	 16.2 Piecewise Affine Systems
	 16.2.1 Modeling Discontinuities
	 16.2.2 Binary States, Inputs and Outputs

	 16.3 Discrete Hybrid Automata
	 16.3.1 Switched Affine System (SAS)
	 16.3.2 Event Generator (EG)
	 16.3.3 Boolean Algebra
	 16.3.4 Finite State Machine (FSM)
	 16.3.5 Mode Selector
	 16.3.6 DHA Trajectories

	 16.4 Logic and Mixed-Integer Inequalities
	 16.4.1 Transformation of Boolean Relations
	 16.4.2 Translating DHA Components into Linear Mixed-Integer Relations

	 16.5 Mixed Logical Dynamical Systems
	 16.6 Model Equivalence
	 16.7 The HYSDEL Modeling Language
	 16.8 Literature Review

	17 Optimal Control of Hybrid Systems
	 17.1 Problem Formulation
	 17.2 Properties of the State Feedback Solution, 2-Norm Case
	 17.3 Properties of the State Feedback Solution, 1-Norm, ∞-Norm Case
	 17.4 Computation of the Optimal Control Input via Mixed Integer Programming
	 17.4.1 Mixed-Integer Optimization Methods

	 17.5 State Feedback Solution via Batch Approach
	 17.6 State Feedback Solution via Recursive Approach
	 17.6.1 Preliminaries and Basic Steps
	 17.6.2 Multiparametric Programming with Multiple Quadratic Functions
	 17.6.3 Algorithmic Solution of the Bellman Equations
	 17.6.4 Examples

	 17.7 Discontinuous PWA Systems
	 17.8 Receding Horizon Control
	 17.8.1 Stability and Feasibility Issues
	 17.8.2 Examples

	References
	Index

