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Mixed Logical Dynamical (MLD) systems were intro-
duced as a new system type by the authors recently. The
MLD form is capable to model a broad class of systems
arising in many applications, among them: linear hy-
brid systems; sequential logical systems (finite state ma-
chines, automata); piecewise linear systems. The paper
reviews this modeling paradigm and gives an overview
of the many control related problems (optimal feedback,
estimation, fault detection) which can be formulated and
solved in this framework. Generally, the on-line solu-
tion of Mixed-Integer Linear Programs or Mixed-Integer

Quadratic Programs is required. Strategic formulations
and taylored search procedures are proposed, so that
this task should be feasible for problems of reasonable
size.

1 Introduction

In many applications, systems include both conti-
nuous and discrete components, such as on/off switches
or valves, gears or speed selectors. Discrete characteri-
stics are also often introduced by the control system or
the specifications which are expressed by a series of if-
then-else rules. Such systems consisting of continuous
and discrete “components” are commonly referred to as
hybrid systems (no formal definition exists to the aut-
hors’ knowledge). Hybrid systems arise in a large num-
ber of application areas but the understanding of these
systems is rather limited at present. In practice the con-
trol of hybrid systems is left to schemes based on heuri-
stic rules inferred from practical plant operation. For the
time being, the most common analysis tool is exhaustive
simulation.

Our interest in hybrid systems is motivated by several
clearly discernible trends in the process industries which
point toward an extended need for new tools to design
control and supervisory schemes for these systems and
to analyze their performance. First, there has been the
trend for Programmable Logic Controllers (PLC) and
Digital Control Systems (DCS) to approach each other
in terms of functionality and the underlying hardware.
With the cost of computing power falling rapidly, the
hardware capabilities of DCSs and PLCs are expected
to become indistinguishable in the next decade. To take
full advantage of this trend, tools are needed to tackle
the combination of sequence, logic and continuous con-
trol tasks in a transparent and efficient manner.

Second, the traditional layers of the control hierarchy
(measurements, regulatory control, supervisory control,
real time optimization, scheduling and planning) have
shown a tendency to merge and the clear boundaries
which once existed have disappeared. To make this con-
fluence of the different layers possible new modelling
tools are needed which can describe such systems in a
unified manner and thus provide the information to al-
low the control system to make appropriate decisions for
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such hybrid systems.
In summary, the rapid advances in computer and in-

formation technology are enabling the closer integrati-
on of the various decision and control tasks which we-
re traditionally distributed among a broad set of deci-
sion makers ranging from PLCs at the lowest level to
planning and scheduling departments at the highest le-
vel. This integration should eventually lead to a smoo-
ther, more responsive and more competitive functioning
of the entire organization. It requires the development
of new tools for the analysis and synthesis of such lar-
ge complex systems involving continuous and discrete
states whose behavior is governed by dynamics, logical
statements and constraints.

The premise of the work described in this paper is that
all questions and problems related to hybrid systems are
inherently difficult because of their combinatorial na-
ture. Consequently all useful techniques must involve
significant off-line and/or on-line computation. Against
this background we describe a new system type, Mixed
Logic Dynamical (MLD) systems, introduced by the au-
thors recently. We argue that many practical problems
can be represented in MLD form. Control, estimation,
and verification of MLD systems require the solution
of Mixed-Integer Linear (or Quadratic) Programs (MIL-
Ps or MIQPs). Because efficient techniques not only for
MILPs but also for MIQPs are becoming available, this
new approach holds much promise for tackling realistic
size problems.

The purpose of this paper is to give the reader an over-
view of the ideas and tools becoming available in this
area and to give him/her an appreciation for their poten-
tial. New ideas on modeling and optimization techniques
will be sketched.

2 Mixed Logic Dynamical (MLD)
Systems

Any modeling framework for hybrid systems must be
a compromise which circumvents some of the comple-
xities and leads naturally to the formulation of analysis
and controller synthesis techniques which are managea-
ble for practical problems. Our formulation is motivated
by the following considerations.
• A discrete time description avoids some of the com-

plex behaviors, like an infinite number of switches in
an infinitesimal time span. as studied, for example, by
[17].
• Limiting the formalism to discrete time is not overly

restrictive from a practical point of view because of
the sampled-data nature of the control systems, which
determine the evolution of these hybrid systems.
• We restrict the dynamics to be linear with the excep-

tion that some of the state variables are binary. This
greatly simplifies the analysis, but nevertheless per-
mits the description of a broad class of systems.
As we are interested in systems which have both logic

and dynamics, we wish to establish a link between the
two worlds. In particular, we need to establish how to

build statements from operating events concerning phy-
sical dynamics. The key idea is to use techniques des-
cribed, for example, in [28, 10, 24] to transform propo-
sitional logic into mixed-integer linear inequalities, i.e.
linear inequalities involving both continuous variables
x ∈ Rn and binary/logical variables δ∈ {0,1}.

The resulting Mixed Logic Dynamical (MLD) sy-
stems are described through the following linear rela-
tions

x(t+1) = Ax(t)+B1u(t)+B2δ(t)+B3z(t) (1a)
y(t) =Cx(t)+D1u(t)+D2δ(t)+D3z(t) (1b)

E2δ(t)+E3z(t)≤ E1u(t)+E4x(t)+E5 (1c)

where

x=

[
xc
x�

]
, xc ∈ R

nc , x� ∈ {0,1}
n� , n� nc+n�

is the state of the system, with the xc components conti-
nuous and the x� components 0-1 . The outputs y and the
inputs u are partitioned similarly. The auxiliary logical
and continuous variables are represented by δ∈ {0,1} r�

and z ∈ Rrc , respectively.
The justification for the MLD form is that it is capa-

ble to model a broad class of systems arising in many
applications [7]: linear hybrid systems; sequential logi-
cal systems (finite state machines, automata); nonlinear
dynamic systems, where the nonlinearity can be expres-
sed through combinational logic; some classes of dis-
crete event systems; constrained linear systems. (Here
the terms “combinational” and “sequential” are borro-
wed from digital circuit design jargon.) More import-
antly, the MLD formalism leads to the formulation of
various verification, control and estimation problems in
terms of MILPs or MIQPs, for which efficient algo-
rithms are available. These problems have not been suc-
cessfully addressed by other tools or only with a much
higher computational effort. In a sense the ends justify
the means here.

A simple illustrative example will be presented next.
It will be followed by some new procedures to put pro-
positional logic into MLD form.

2.1 Example
Consider for instance the simple automaton and linear

system depicted in Fig. 1, and described by the relations



[x�(t) = 0] ∧ [xc ≤ 0] → [x�(t+1) = 0]
[x�(t) = 0] ∧ [xc > 0] → [x�(t+1) = 1]
[x�(t) = 1] → [x�(t+1) = 0]
xc(t+1) = axc(t)+bu(t)

(2)

The (0-1) finite state x�(t) remains in 0 as long as the
continuous state xc(t) is non-positive. If xc(t)> 0 at so-
me t, then xc generates a digital impulse, i.e. x�(t+1) =
1, x�(t+2) = 0. Hence the automaton’s dynamics is dri-
ven by events generated by the underlying linear system.
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x = 0 x =1
x ≤ 0c

x > 0c

xcu

Bild 1: Automaton driven by conditions on an underlying dynamic
system

Let x� [x′c x′�]
′, and introduce the auxiliary logical varia-

bles δ1(t), δ2(t) defined as

[δ1(t) = 1] ↔ [xc(t)≤ 0] (3a)
δ2(t) = x�(t+1) (3b)

Equation (3a) can be rewritten as

xc(t)≤M(1−δ1(t)) (4a)
xc(t)≥ ε+(m− ε)δ1(t) (4b)

where M and m are upper and lower bounds on xc, re-
spectively, and ε> 0 is a small tolerance (machine pre-
cision). Moreover, from (2), it follows that

[δ2(t) = 1] ↔ [x�(t) = 0] ∧ [δ1(t) = 0]

or δ2(t) = (1− x�(t))(1−δ1(t)). Hence,

δ2(t)≤ (1−δ1(t)) (5a)
δ2(t)≤ (1− x�(t)) (5b)
δ2(t)≥ (1−δ1(t))+(1− x�(t))−1 (5c)

The mixed-integer linear inequalities (4)-(5) define the
automaton part in system (2), which hence is an MLD
system.

2.2 Expressing Propositional Logic in MLD Form
Logic components of hybrid systems can be described

with propositional logic formulas. Proper processing of
the propositional logic problem can produce large bene-
fits for the numerical solution of the mixed integer pro-
gram, which results in the analysis as well as controller
and estimator synthesis problems for MLD systems.

There are three ways, how logic propositions can be
translated into linear inequalities. These are:
• the substitution method
• the conjunctive normal form approach
• the truth table method
2.2.1 Substitution Method

In the substitution method the propositional logic for-
mula is successively simplified by introducing additio-
nal binary variables for the subexpressions occurring in
it [10]. The linear inequalities describing the overall lo-
gic proposition are given by the set of all linear inequali-
ties introduced during the substitution procedure. A sim-
ple example illustrates the method:

Example Assume that in a reactor the heater should
be turned on if either of the two following conditions is
true:
• The temperature of the reactants is low and there is

sufficient mass in the reactor
• The system operator increases the production rate
This qualitative description can be translated into the fol-
lowing logic proposition

[δH = 1]⇐
(
[δT = 0]∧ [δM = 1]

)
∨ [δu = 1] (6)

Here, all δ’s are Boolean variables with the following
meaning: δH is a control signal to the heating, δT and δM
are temperature and mass indicators, δu is the external
operator signal. Using the substitution method, we in-
troduce a new Boolean variable δi, denoting the internal
causes for the heating being turned on. This variable is
defined as:

[δi = 1]⇔ [δT = 0]∧ [δM = 1] (7)

Using the tables in [7] this relation can be directly trans-
lated into linear inequalities. The original expression re-
duces to

[δH = 1]⇐ [δi = 1]∨ [δu = 1] (8)

for which the translation into equivalent inequalities is
also given in tables [7].

The substitution method has the advantage that no
preprocessing of the logic expression is required. The
big disadvantage however is that additional variables are
introduced, that enlarge the description of the logic rela-
tion.
2.2.2 Conjunctive Normal Form

The introduction of additional Boolean variables can
be avoided, if the expression is first translated into con-
junctive normal form (CNF) [10]. Each term in the CNF
(i.e. each disjunction) gives rise to one inequality. This
is again illustrated for the example above. The CNF of
the logic expression in (6) is:

([δu = 0]∨ [δH = 1])∧ ([δH = 1]∨ [δT = 1]∨ [δM = 0])∧
([δH = 0]∨ [δM = 1]∨ [δu = 1])∧ ([δH = 0]∨ [δT = 0]∨ [δu = 1])

For the whole expression to be true, each bracket must
be true, i.e. the following four inequalities must be
satisfied:

1−δu+δH ≥ 1 (9)
δH+δT +1−δM ≥ 1 (10)
1−δH+δM+δu ≥ 1 (11)

1−δH+1−δT +δu ≥ 1 (12)

2.2.3 Truth Table Methods
Recently, we succeeded [22] in developing the fol-

lowing alternative method which generates a set of li-
near inequalities corresponding to any complex logi-
cal expression without introducing any auxiliary varia-
bles. First, for each binary expression of binary varia-
bles Xn= F(X1,X2, . . .Xn−1) the truth table is calculated,
showing the result Xn for each possible combination of
values for X1,X2, . . . row by row. We proved [22] that the
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polytope P obtained as the convex hull of the points de-
fined by the rows of the truth table describes the logical
expression with a minimal number of binary variables.

Note that the last two methods do not require the in-
troduction of additional Boolean variables. They require,
however, a pre-processing of the logic proposition.

2.3 Automated Model Generation
The transformation of first principles hybrid system

descriptions into MLD form requires the application of
a set of given rules, like the transformation technique
just described. It is lengthy and tedious and is therefo-
re a task that is preferably automated. A compiler has
been developed [3] that produces the matrices A, Bi, C,
Di and Ei in (1). The problem specification language to
the compiler is HYSDEL (HYbrid System DEscription
Language).

3 Theoretical Properties of Mixed
Logic Dynamical Systems

In principle, the inequality (1c) might be satisfied for
many values of δ(t) and/or z(t). In order to define trajec-
tories in the x and y-space for system (1), we wish that
x(t + 1) and y(t) are uniquely determined by x(t) and
u(t), i.e., that the system is well posed. A simple nume-
rical test for checking this property has been developed
and is reported in [7]. It is based on a feasibility check
of an MILP.

Needless to say, well-posedness is a minimal requi-
rement for the MLD description to be meaningful. For
control, reachability and controllability must be under-
stood. For estimation, reconstructibility and observabili-
ty are important properties.

These questions of controllability, observability, etc.
are inherently difficult [1, 20] but some progress has be-
en made [4]. To illustrate the ideas and the unusual be-
havior which can occur we will briefly discuss our work
on observability here. Similar to [19, 25] we can defi-
ne incremental observability without loss of generality
in the following manner. The MLD system (1) is incre-
mentally observable if and only if there exists a scalar
w> 0 such that, ∀x1,x2 ∈ X (0),

T−1

∑
t=0

‖y(t,x1)− y(t,x2)‖∞ ≥ w‖x1− x2‖1 (13)

For fixed values of T and w the incremental observability
of an MLD system can be checked by solving an MILP.
The parameters T and w appearing in this definition have
practical significance. If w is very small state estimation
would become difficult in the presence of noise. If T is
very large, long observation periods would be required
to arrive at state estimates.

Incremental observability must be tested on a case-
by-case basis via condition (13). No structural proper-
ties are apparent. Even for a piece-wise linear system, a
special case of an MLD system, the observability mea-
sure T is not related to the order of the constituting linear

systems as is the case for LTI systems. Also the combi-
nation of observable LTI systems into a piecewise linear
system is not necessarily observable. The reverse does
not hold either. The combination of LTI systems which
are by themselves not observable may be observable [4].

4 Control

First open loop optimal controllers will be formula-
ted. Then the closed loop effect is accomplished by ap-
plying these open-loop optimal controllers iteratively in
a receding horizon fashion.

4.1 Optimal Control of MLD Systems
For an MLD system of form (1), consider the follo-

wing problem. Given an initial state x0 and a final ti-
me T , find (if it exists) the control sequence uT−1

0 �
{u(0),u(1), . . . ,u(T−1)}which transfers the state from
x0 to x f and minimizes the performance index

J(uT−1
0 ,x0)�

T−1

∑
t=0
‖u(t)−u f ‖

2
Q1
+‖δ(t,x0,u

t
0)−δf ‖

2
Q2
+

‖z(t,x0,u
t
0)−z f ‖

2
Q3
+‖x(t,x0,u

t−1
0 )−x f ‖

2
Q4
+‖y(t,x0,u

t−1
0 )−y f ‖

2
Q5

(14)

subject to the terminal constraint

x(T,x0,u
T−1
0 ) = x f (15)

and the MLD system dynamics (1a), where ‖x‖2
Q� x′Qx;

Qi =Q′i ≥ 0, i= 1, . . . ,5, are given weight matrices, and
x f , u f , δf , z f , y f satisfy (1) in steady state for x(t+1) =
x(t) = x f .

This problem can be solved as a Mixed-Integer Qua-
dratic Program (MIQP).

4.2 Predictive Control
Finding a stabilizing control law for an MLD sy-

stem is not easy, because the system is neither linear
nor even smooth. Model predictive control [16] provi-
des tools to succeed in this task. In brief, one has to
solve an optimization problem of the form (14)–(15) at
each time step t, by finding an optimal input sequence
{u∗(t + k)}k=0,...,T−1. Then, only the first move is app-
lied to the plant, i.e. u(t) = u∗(t+0), and the whole op-
timization procedure is repeated at time t+1, when new
measurements x(t+1) are available.

By appropriately defining the concepts of equilibrium
and stability for MLD systems, and by using Lyapunov
arguments it can be proven [7] that the control law, ob-
tained by repeatedly solving (14)–(15) at each time step
t, stabilizes the system.

>From the proof it follows that local minima do not
affect stability, although the performance deteriorates.
This is particularly appealing when the available com-
putational power does not allow the full solution of the
MIQP problem (14)–(15).
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5 Moving Horizon Estimation for MLD
Systems

The dual problem of model predictive control, i.e. the
moving horizon estimation problem can also be formu-
lated in terms of an MIQP. The goals of such an esti-
mation can be varied, like state estimation, fault detecti-
on or disturbance estimation. The common feature in all
these problems is the minimization of a quadratic cost
function involving the quantities to be estimated. Con-
trary to the control problem, the estimation horizon ex-
tends backwards in time, allowing at time t to estimate
the quantities of interest at times prior to t.

One important application of moving horizon estima-
tion is fault detection. Many techniques for fault detec-
tion are modeling faults as additive unknown inputs af-
fecting a linear system. Fault detection is then equivalent
to determining if the estimated inputs exceed a certain
threshold value. The MLD system framework allows the
designer the formulation of more realistic fault detection
problems. Faults can also be modeled as unmeasured bi-
nary disturbances affecting the system in a multiplicati-
ve manner. A faulty actuator, for example, is represented
much more accurately in this manner.

To perform fault detection in the MLD framework, we
assume that the dynamics of the system in the presence
of each fault is known. To model the possibly faulty be-
havior of the system, we extend the MLD framework by
adding three unmeasured variables:
• Fault, i.e. binary disturbance φ(t) ∈ {0,1} f

• Input disturbance ξ(t) ∈ Rn

• Output disturbance ζ(t) ∈ Rp

At each time t the estimates of the faults φ̂(t) and
states x̂(t) are obtained by solving a least squares pro-
blem (MIQP) over a horizon extending backwards in ti-
me. Under certain mild assumptions the stability of the
estimator can be guaranteed [6].

6 Computational Aspects

One drawback of the methods summarized in this pa-
per lies in the complexity of the MILPs and MIQPs that
must be solved. These types of optimization problems
exhibit an exponential increase of the worst case com-
plexity with an increasing number of binary variables.
However, this does not necessarily preclude the appli-
cation of the method. There are at least three ways to
alleviate this problem:
• Devise new branch and bound strategies
• Deal with suboptimal solutions
• Move as many computations as possible offline

6.1 New Branch and Bound Strategies
Branch and bound methods are considered widely to

be best for the solution of mixed integer quadratic pro-
grams [14]. However, branch and bound does not define
a particular algorithm, but rather a whole class of me-
thods that differ in the implementation details. Common

to all branch and bound methods for mixed integer pro-
gramming problems is the generation of a set of easier
subproblems arranged in a tree structure [23, 15]. Let us
assume that the MIQP is given in the following form:

min
x

xT Qx+bT x (16)

subject to Cx+d ≤ 0
x=
[ xc

xd

]
, xc ∈ R

nc

xd ∈ {0,1}
nd (17)

The idea of solving MIQPs with branch and bound
methods relies on the relaxation of the integrality cons-
traints (17), i.e. binary variables are allowed to span over
the whole continuous interval [0,1]. We shall refer to a
relaxed problem as a subproblem. The optimal values of
the subproblems, if they exist, represent lower bounds
on the optimal value of the original MIQP [14].

The other idea the branch and bound methods rely on
is the concept of separation, i.e. the generation of new
subproblems. Let ξ be a vector of dimension nd and let
the symbol � mean that the corresponding entry of ξ is
relaxed, i.e. free to span the interval [0,1]. We associate
the original MIQP without integrality constraints (17)
with

ξ0 = [� , � , . . . , �]︸ ︷︷ ︸
nd times

(18)

The vector ξ0 will be assigned to the root of a binary
tree. The separation of the original MIQP or any sub-
problem into relaxed QPs is done by setting selected in-
teger variables to 0 or 1. The resulting new QP problems
are assigned to the children of the node. We denote each
child by a vector ξ j, ξ j ∈ {�,0,1}

nd . If the i-th compo-
nent ξi

j = 0 (or ξi
j = 1), then the QP corresponding to

that node is solved by setting the i-th binary variable to
0 (or 1). If ξi

j = �, then the i-th binary variable of ξ j is
regarded as free within [0,1]. As an example, consider
an MIQP with 3 binary variables. The corresponding bi-
nary tree is shown in Fig. 2.

[*,*,*]

[1,*,*][0,*,*]

[0,0,*] [0,1,*] [1,0,*] [1,1,*]

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

Bild 2: The binary tree for a MIQP with 3 integer variables. Each no-
de is marked with the corresponding vector ξ j . The numbers denote
the order how the problems are solved in the depth first strategy.

One important decision that affects the average com-
putational times is the order in which the subproblems
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are solved, i.e. the tree exploring or node selection stra-
tegy [15]. Two standard choices are:
Depth First Strategy: The QPs are solved by a last-in

first-out (LIFO) rule.
Breadth First Strategy: The problems at depth N are

not solved before all problems at depths N− 1 have
been solved.
This choice is important because the solution of one

subproblem ξ might give us the certificate, that all the
future subproblems generated from ξ, cannot yield the
optimal solution. In this case there will be no point in
wasting computational time to solve them.

The average solution time can vary considerably ac-
cording to the tree exploring strategy. We have experi-
mented successfully with a strategy which assumes that
the binary variables change only infrequently over the
considered time horizon [5]. In fact, typically binary va-
riables δ(t) are associated with conditions on continuous
states x(t), for instance [δ(t) = 1]↔ [x(t)≥ 0]. Because
the continuous components satisfy dynamic equations,
their inertia will, in general, prevent frequent switches
of the indicator variable δ(t). This phenomenon is even
more pronounced when integer variables represent the
occurrence of faults that do not occur very often and that
are not recoverable. This involves an irreversible physi-
cal damage, and the integer variable will switch at most
once its value over the horizon [t−T,t].

The tree exploring strategy proposed in [5] chooses
to solve those relaxed problems first, that have few swit-
ches in the binary variables. The switches are determi-
ned via the vector ξ j assigned to each subproblem.

6.2 Suboptimal Solutions
The available time for the online computations is of-

ten limited by hard bounds. For our computations it is
therefore necessary to consider the possibility that we
have to deal with suboptimal solutions of the mixed inte-
ger optimization problems. For control purposes it is not
critical to find the global optimum to guarantee stability,
a feasible suboptimal solution suffices [7]. However, we
would like to use the available time to solve those sub-
problems that are most promising in giving the optimal
solution. Indeed, it can occur, that the optimal solution
is found quite early, but the branch and bound algorithm
keeps on doing many computations just to verify that the
currently best solution is actually the global optimum.

The method described in [5] and briefly outlined in
the previous section has proven its usefulness also in the
case, where for each MIQP we limited the number of
QPs the algorithm is allowed to solve. If the assumption
is fulfilled that the optimum is likely to have few swit-
ches of the binary variables over the horizon, the me-
thod will already have gone through those candidates at
the time when we are stopping the computations. This
amounts to cutting off the verification process, which
simply confirms that the currently best solution is the
global optimum.

6.3 Move Computations Offline
One obvious approach to deal with the problem com-

plexity is to move as many computations as possible

Bild 3: Hybrid automaton for the controller

offline and to restrict the online computations to a mi-
nimum. This goal can be achieved to some extent in the
modeling phase, by using as few binary variables as pos-
sible (see section 2.2).

6.4 Some Remarks about the Solvers
CPLEX [18] is the most widely used commercial co-

de for solving MILPs. We have used the research codes
by Fletcher and Leyffer [14] and by Sahinidis [26] to
solve the MIQPs arising in the optimal control and esti-
mation problems. There the key is to pair an efficient
sparse QP code for the relaxed problems with a good
tree exploring strategy.

7 Examples

The following examples are chosen to communica-
te the power and versatility of the proposed framework.
More details and examples can be found in [7].

7.1 Verification of an Automotive Electronic Height
Control System

The chassis level of a car is controlled by a pneuma-
tic suspension system. The level is raised by pumping
air into the system, and lowered by opening an esca-
pe valve. For the sake of simplicity, as in [27, 12], we
consider an abstract model including only one wheel.
The suspension system is commanded by a logic con-
troller, whose behavior is represented in Fig. 3. In short,
the controller switches the compressor on when the level
of the chassis is below a certain outer tolerance OTl, off
when it reaches again an inner tolerance ITl. It opens the
valve when the level is above OTh, and closes it again
when the level decreases below ITh. Because of high-
frequency disturbances due to irregularities of the road
surface, the controller switches based on a filtered ver-

sion f (t) =
1

1+as
h(t) of the measured level h of the

chassis. The filter is reset to f = 0 each time f returns
within the inner range [ITl, ITh]. The compressor can lift
the chassis at a rate cp(t)∈ [cpmin cpmax], and the escape
valve can lower it at a rate ev(t) ∈ [evmin evmax].

The study of this system was first proposed in [27],
and reconsidered in [12] and [13]. The aim is to verify
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that the automotive control system satisfies certain dri-
ving comfort requirements. A verification algorithm for
MLD systems was proposed in [8] and subsequently im-
plemented in Matlab. The algorithm considers the time-
evolution of polyhedral subsets in the state space. Using
MILPs it determines whether some unsafe region can be
reached for some inputs or disturbances.

The algorithm uses interpreted m-code and terminates
in 25 min on a Sun SPARCstation 20 with 64 Mb RAM.
The research standard HyTech [2] required 62 min on a
Sun SparcStation 20 with 128 Mb RAM. In [13], the au-
thor reports computation times of up to one day. These
data establish the technique based on the MLD formula-
tion as a credible alternative.

7.2 Predictive Control
The three tank system represented in Fig. 4 has been

adopted recently as a standard benchmark problem for
fault detection and reconfigurable control [21, 9]. Here
we used a simplified physical description of the system
(more details can be found in [11, 6]). The equations
describing the system are simple material balances. The
switched nature arises from the fact that flow through
the upper horizontal pipes occurs only when the level
has reached the level of the pipe. The MLD description

V1 V2

V13 V23

VL1 VN3

hV

h3

h1

Q1 Q2

Q23V2

Q23V23

Q13V1

Q13V13

QL1 QN3

h2

Bild 4: COSY Three-Tank Benchmark.

can be readily derived according to [6].
We applied the model predictive control scheme des-

cribed in section 4 to solve a regulation problem. In or-
der to stabilize the system to a desired setpoint, the feed-
back control law resulting from the optimization (14) is
adopted with a horizon of T = 5. Fig. 5 shows the resul-
ting trajectories for the states [h1,h3]. The hysteresis of
the switching valve V1 was removed for simplicity.

7.3 Fault Detection
For the tank system described in the last section we

applied the fault detection scheme described in section 5
and in [6]. A switching controller for valve V1 is used to
keep the liquid level in the middle tank at some desired
value. The following two types of faults are considered:
The fault φ1 denotes a leak in tank 1 and the fault φ2
implies that valve V1 is blocked closed. Note that the
failure of valve V1 is modeled as a multiplicative fault.
In Fig. 6 we simulated the occurrence of the faults at
different times.
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0.3

0.4

time

h 1   
h 2

Bild 5: Closed-loop regulation problem for the control of the tank
system
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Bild 6: Simulation of a leak in tank 1 (φ1) from t = 20 until t = 60,
and a blocking valve (φ2) from t = 40 until t = 80.

Both faults are detected correctly with a few time
steps of delay. Note however that during the startup there
are a few false alarms of fault φ2, i.e. blocking of valve
V1. These wrongly detected faults are due to the fact, that
the level in tank 1 has not yet reached the height of val-
ve V1. Therefore no liquid can pass through V1, which
is indistinguishable from a blocked valve V1. To avoid
this problem it is very natural to formulate the clause
[h1 ≤ hv]⇒ φ2 = 0. This is just an additional constraint
that can be added to the other constraints of the optimi-
zation problem. With this correction, the fault estimates
are free of any errors.

8 Conclusions

Via the Mixed Logic Dynamical (MLD) System for-
mulation we are capable of describing a wide range of
practical control problems, involving, for example, li-
near hybrid systems; sequential logical systems (fini-
te state machines, automata); nonlinear dynamical sy-
stems, where the nonlinearity can be expressed through
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combinational logic; some classes of discrete event sy-
stems; constrained linear systems, etc. The solution of
these problems can be posed in terms of Mixed-Integer
Linear (or Quadratic) Programs (MILPs or MIQPs). Be-
cause efficient techniques not only for MILPs but also
for MIQPs are becoming available, this new approach
holds much promise for tackling realistic size problems.
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