Hybrid Toolbox for Matlab

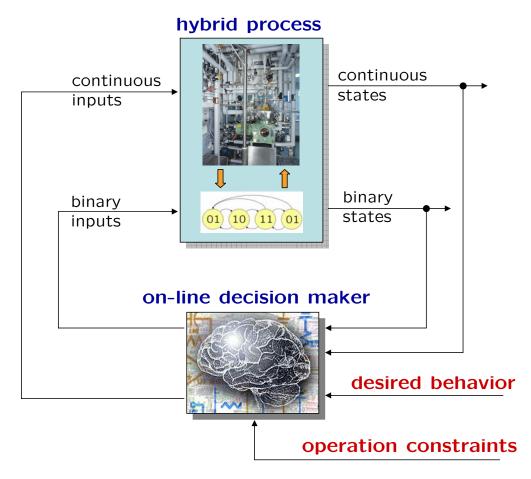
Alberto Bemporad

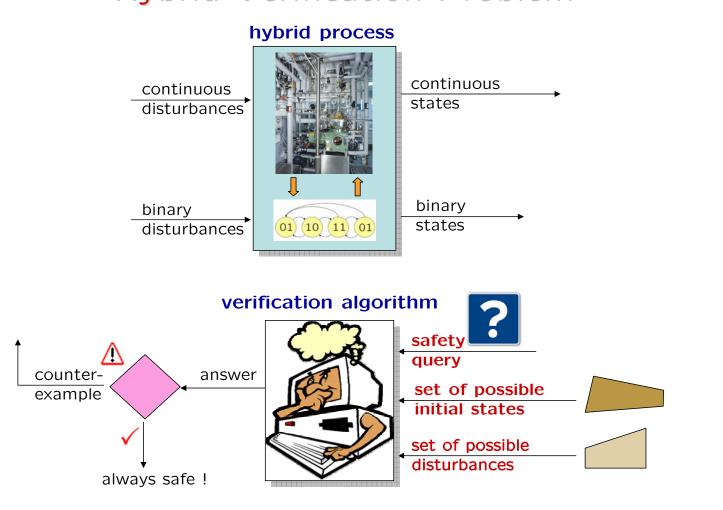
http://www.dii.unisi.it/hybrid

Control and Optimization of Hybrid and Embedded Systems

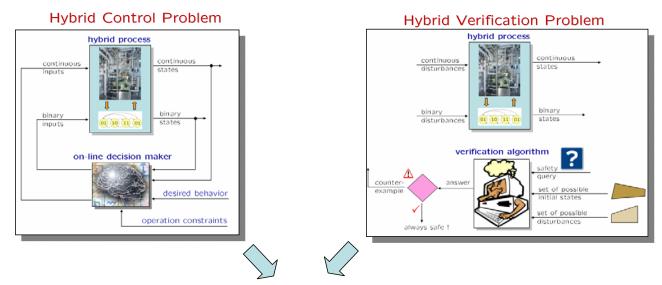
Dept. of Information Engineering University of Siena, Italy (founded in 1240)

Hybrid Control Problem



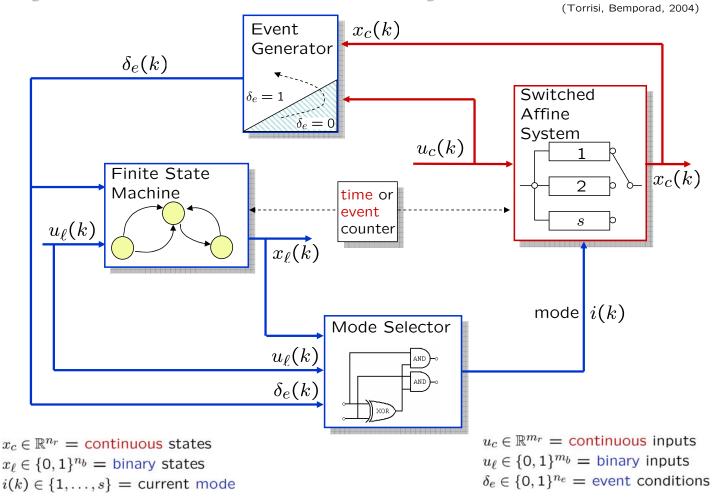


Model-based Optimization Approach

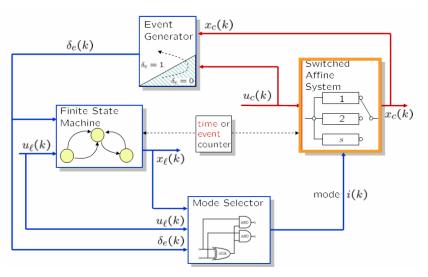


- Need for a <u>hybrid model</u> of the process reproducing the behavior of the process (simulation)
- A model suitable for controller synthesis and verification
- A model for which computational tools can be applied

Hybrid Model: Discrete Hybrid Automaton



Switched Affine System

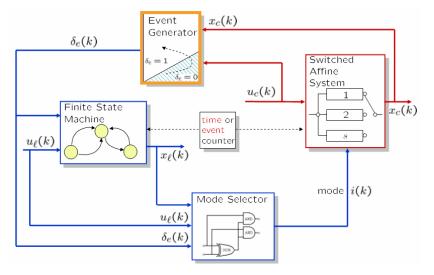


The affine dynamics depend on the current mode i(k):

 $x_c(k+1) = A_{i(k)}x_c(k) + B_{i(k)}u_c(k) + f_{i(k)}$

 $x_c \in \mathbb{R}^{n_c}, \ u_c \in \mathbb{R}^{m_c}$

Event Generator



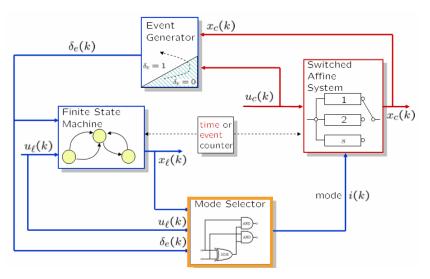
Event variables are generated by linear threshold conditions over continuous states, continuous inputs, and time:

$$[\delta_e^i(k) = 1] \leftrightarrow [H^i x_c(k) + K^i u_c(k) \le W^i]$$

 $x_c \in \mathbb{R}^{n_c}, \ u_c \in \mathbb{R}^{m_c}, \ \delta_e \in \{0, 1\}^{n_e}$

Example: $[\delta=1] \leftrightarrow [x_c(k) \ge 0]$

Mode Selector



The active mode i(k) is selected by a Boolean function of the current binary states, binary inputs, and event variables:

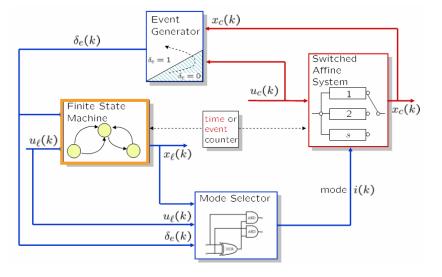
$$i(k) = f_{\mathsf{M}}(x_{\ell}(k), u_{\ell}(k), \delta_{e}(k))$$
 $x_{\ell} \in \{0, 1\}^{n_{\ell}}, u_{\ell} \in \{0, 1\}^{m_{\ell}}, \delta_{e}\{0, 1\}^{n_{e}}$

3 modes

Example:

$$i(k) = \begin{bmatrix} \neg u_{\ell}(k) \lor x_{\ell}(k) \\ u_{\ell}(k) \land x_{\ell}(k) \end{bmatrix} \longrightarrow \frac{\frac{u_{\ell}/x_{\ell}}{0} \quad 0 \quad 1}{1 \quad |i = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad |i = \begin{bmatrix} 1 \\ 1 \end{bmatrix}} \quad \text{the system has}$$

Finite State Machine

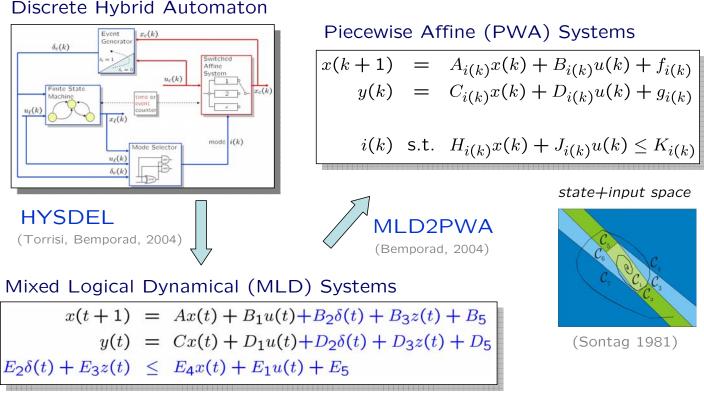


The binary state of the finite state machine evolves according to a Boolean state update function:

 $x_{\ell}(k+1) = f_{\mathsf{B}}(x_{\ell}(k), u_{\ell}(k), \delta_{e}(k)) \qquad x_{\ell} \in \{0, 1\}^{n_{\ell}}, \ u_{\ell} \in \{0, 1\}^{m_{\ell}}, \ \delta_{e} \in \{0, 1\}^{n_{e}}$

Example: $x_{\ell}(k+1) = \neg \delta_e(k) \lor (x_{\ell}(k) \land u_{\ell}(k))$

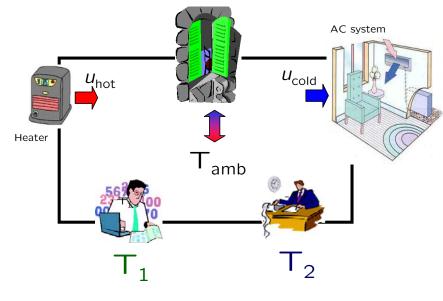
Computational Hybrid Models



(Bemporad, Morari 1999)

The translation from DHA to MLD/PWA is done automatically (using symbolic/mathematical programming tools)

Example: Room Temperature



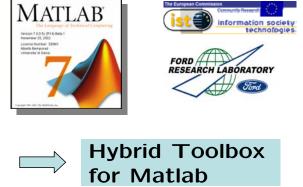
Hybrid Dynamics

- #1 turns the heater (air conditioning) on whenever he is cold (hot)
- If #2 is cold he turns the heater on. unless #1 is hot
- If #2 is hot he turns the air conditioning on, unless #1 is cold
- Otherwise, heater and air conditioning are off
- $\dot{T}_1 = -\alpha_1(T_1 T_{amb}) + k_1(u_{hot} u_{cold})$ (body temperature dynamics of #1)
- $\dot{T}_2 = -\alpha_2(T_2 T_{amb}) + k_2(u_{hot} u_{cold})$ (body temperature dynamics of #2)

go to demo /demos/hybrid/heatcool.m

HYSDEL Model

```
SYSTEM heatcool (
INTERFACE {
    STATE { REAL T1 [-10,50];
             REAL T2 [-10,50];
    INPUT ( REAL Tamb [-10,50];
        - }
    PARAMETER (
        REAL Ts, alpha1, alpha2, k1, k2;
        REAL Thot1, Tcold1, Thot2, Tcold2, Uc, Uh;
IMPLEMENTATION (
        AUX { REAL uhot, ucold;
               BOOL hot1, hot2, cold1, cold2;
        AD { hot1 = T1>=Thot1;
hot2 = T2>=Thot2;
               cold1 = T1<=Tcold1;
cold2 = T2<=Tcold2;</pre>
        -}
        DA ( uhot = (IF cold1 | (cold2 & ~hot1) THEN Uh ELSE 0);
               ucold = { IF hot1 | (hot2 & ~cold1) THEN Uc ELSE 0 };
        }
        CONTINUOUS ( T1 = T1+Ts*(-alpha1*(T1-Tamb)+k1*(uhot-ucold));
                       T2 = T2+Ts*(-alpha2*(T2-Tamb)+k2*(uhot-ucold));
        }
```



(Bemporad, 2003-2005)

http://www.dii.unisi.it/hybrid/toolbox

>>S=mld('heatcoolmodel',Ts)

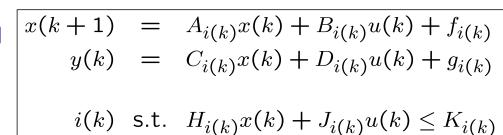
get the MLD model in Matlab

>>[XX,TT]=sim(S,x0,U);

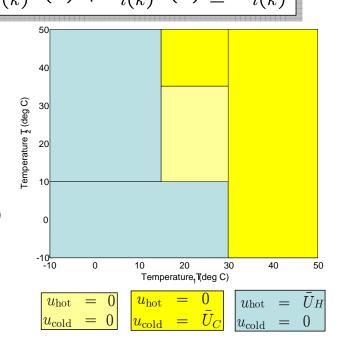
simulate the MLD model

Hybrid PWA Model

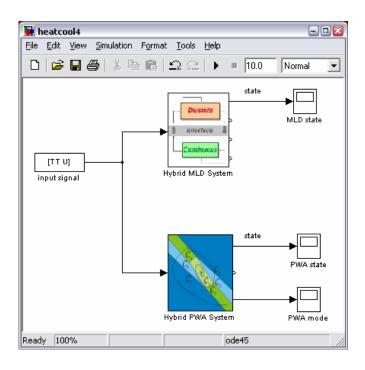
>>P=pwa(S);

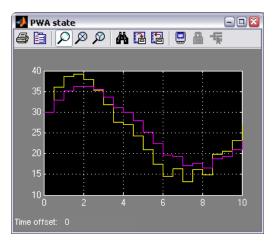


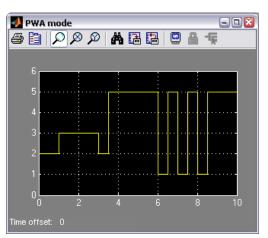
- 1 continuous input: (room temperature $T_{\rm amb}$)
- 5 polyhedral regions (partition does not depend on input)



Simulation in Simulink







Verification of DHA/MLD/PWA

Verification Algorithm

- **QUERY**: Is the target set X_f reachable after N steps from some initial state $x_0 \in X_0$ for some input profile $u \in U$?
- Computation: Solve the mixed-integer linear program (MILP)

min 0 $\begin{array}{l}
\text{min } 0 \\
x(k+1) &= Ax(k) + B_1u(k) + B_2\delta(k) + B_3z(k) \\
E_2\delta(k) + E_3z(k) \leq E_1u(k) + E_4x(k) + E_5 \\
S_uu(k) &\leq T_u \quad (u(k) \in U) \\
k = 0, 1, \dots, N-1 \\
\end{array}$ s.t. $\begin{array}{l}
S_0x(0) \leq T_0 \quad (x(0) \in X_0) \\
S_fx(N) \leq T_f \quad (x(N) \in X_f)
\end{array}$

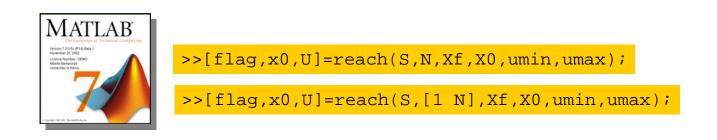
with respect to $u(0),\delta(0),z(0),..., u(N-1),\delta(N-1),z(N-1),x(0)$

Alternative solutions:

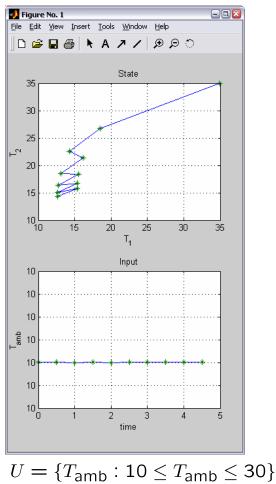
- Exploit the special structure of the problem and use polyhedral (Torrisi, 2003)
- Use abstractions (LPs) + SAT solvers (Giorgetti, Pappas, 2005)

Verification Example

- MLD model: room temperature system
- $X_f = \{ \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} : 10 \le T_1, T_2 \le 15 \}$ (set of unsafe states)
- $X_0 = \{ \begin{bmatrix} T_1 \\ T_2 \end{bmatrix} : 35 \le T_1, T_2 \le 40 \}$ (set of initial states)
- $U = \{T_{amb} : 10 \le T_{amb} \le 30\}$ (set of possible inputs)
- N=10 (time horizon)



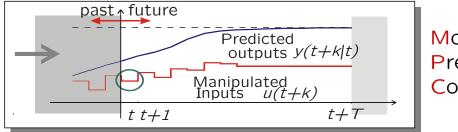
Verification Example



D	2	Х 🖻	il 10	0 04) T	? <	Current Dire	ctory: C:V
Sho	rtcuts	How	to Add	🗷 Wha	t's New			
110		ບມ່ງປະບ	OIVE	varac	avarra	wic.	DATO:	
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	\mathtt{MIP}	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	\mathtt{MIP}	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng
No	MIP	objec	tive	value	availa	able.	Exiti	.ng

 $U = \{T_{amb} : 20 \le T_{amb} \le 30\}$

Controller Synthesis



Model Predictive (MPC) Control

• At time *t* solve with respect to $U \triangleq \{u(t), u(t+1), \dots, u(t+T-1)\}$ the finite-horizon open-loop, optimal control problem:

$$\min_{\substack{u(t),...,u(t+T-1) \\ \text{subject to}}} \sum_{k=0}^{T-1} \|R(y(t+k|t) - r(t+k))\|_p + \|Qu(t+k)\|_p$$

$$\text{subject to} \begin{cases} \mathsf{MLD or PWA model} \\ x(t|t) = x(t) \end{cases}$$

$$p = 1, 2, \infty \quad \|v\|_2 = v'v \quad \|v\|_\infty = \max|v_i| \quad \|v\|_1 = \sum v_i \end{cases}$$

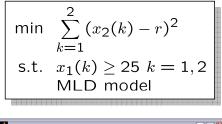
- Apply only $u(t) = u^*(t)$ (discard the remaining optimal inputs);
- Repeat the whole optimization at time t+1

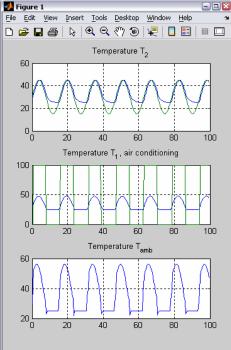
Hybrid MPC - Example

>>refs.x=2; % just weight state #2
>>Q.x=1;
>>Q.rho=Inf; % hard constraints
>>Q.norm=2; % quadratic costs
>>N=2; % optimization horizon
>>limits.xmin=[25;-Inf];

>>C=hybcon(S,Q,N,limits,refs);

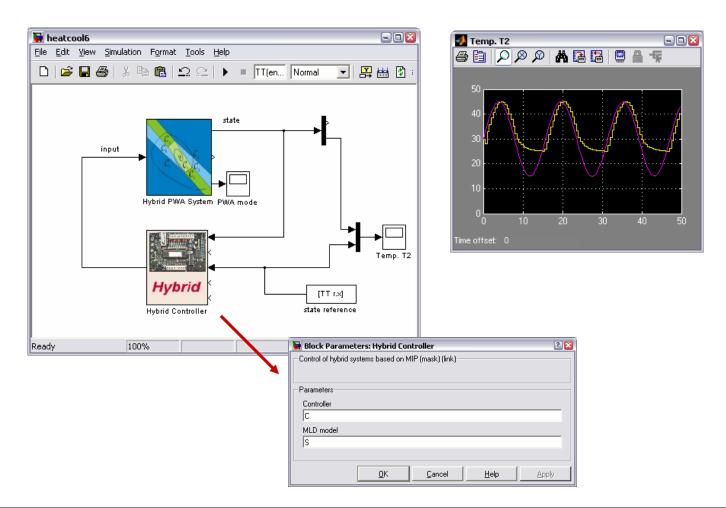
>> C
Hybrid controller based on MLD model S <heatcoolmodel.hys>
2 state measurement(s)
0 output reference(s)
1 state reference(s)
0 reference(s) on auxiliary continuous z-variables
20 optimization variable(s) (8 continuous, 12 binary)
46 mixed-integer linear inequalities
sampling time = 0.5, MILP solver = 'glpk'
Type "struct(C)" for more details.
>>





>>[XX,UU,DD,ZZ,TT]=sim(C,S,r,x0,Tstop);

Hybrid MPC - Example



On-Line vs Off-Line Optimization

 $\min_{U} J(U(x(t))) = \sum_{k=0}^{T-1} ||Rx(t+k|t)||_p + ||Qu(t+k)||_p$ subject to $\begin{cases} \mathsf{MLD} \mod k \\ x(t|t) = x(t) \end{cases}$

• On-line optimization: given x(t) solve the problem at each time step t.

Mixed-Integer Linear/Quadratic Program (MILP/MIQP)

- Good for large sampling times (e.g., 1 h) / expensive hardware but not for fast sampling (e.g. 10 ms) / cheap hardware !
- Off-line optimization: solve the MILP/MIQP <u>for all x(t)</u>

$$\min_{\zeta} J(\zeta, x(t)) = \begin{cases} f'\zeta & \infty/1\text{-norms} \\ \zeta'H\zeta + f'\zeta & \text{quadratic forms} \end{cases}$$

s.t. $G\zeta \leq W + Fx(t)$

multi-parametric programming

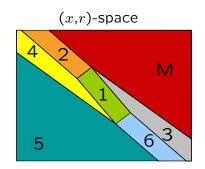
Explicit Hybrid MPC

$$\min_{U} J(U, x, r) = \sum_{k=0}^{T-1} ||R(y(k) - r)||_p + ||Qu(k)||_p$$

subject to
$$\begin{cases} \mathsf{PWA model} \\ x(0) = x \end{cases}$$

- Solution u(x,r) found via a combination of
 - Dynamic programming or enumeration of feasible mode sequences, multiparametric linear or quadratic programming, and polyhedral computation. (Borrelli, Baotic, Bemporad, Morari, 2003) (Mayne, ECC 2001)
- The MPC controller is piecewise affine in x,r

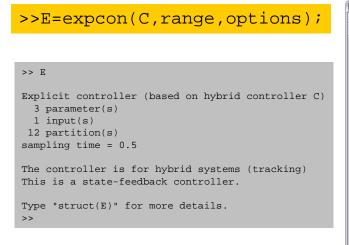
$$u(x,r) = \begin{cases} F_1 x + E_1 r + g_1 & \text{if } H_1[x] \le K_1 \\ \vdots & \vdots \\ F_M x + E_M r + g_M & \text{if } H_M[x] \le K_M \end{cases}$$

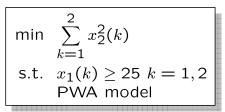


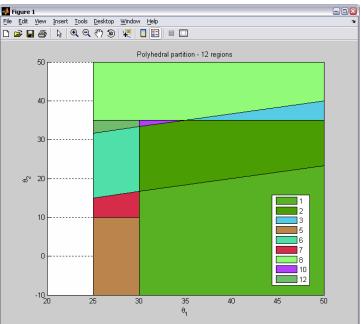
(Alessio, Bemporad, 2005)

Note: in the quadratic case the partition may not be fully polyhedral

Explicit Hybrid MPC - Example

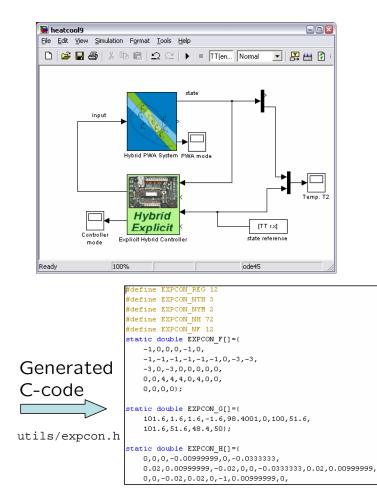


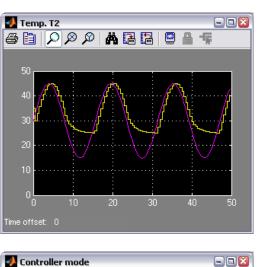


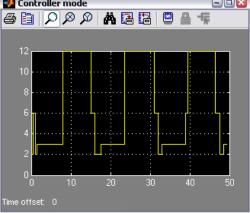


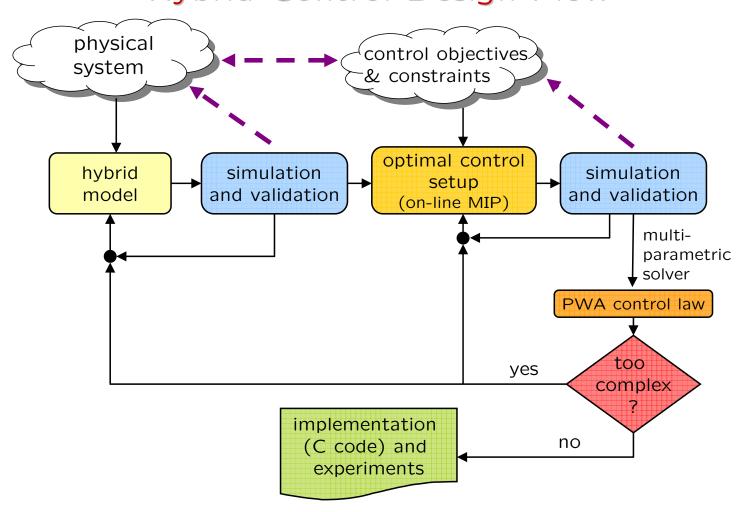
Section in the (T_1, T_2) -space for $T_{ref} = 30$

Explicit Hybrid MPC - Example





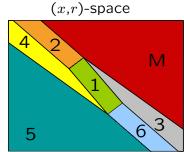




Conclusions

- Discrete hybrid automata are simple yet versatile models of hybrid systems, and lead immediately computationally-useful models
- Optimization-based control handles performance specs and constraints in a natural and direct way. Quite complex hybrid systems can be controlled using on-line mixed-integer programming
- Piecewise affine MPC controllers can be synthesized, off-line, and implemented as look-up tables of linear gains

$$u(x,r) = \begin{cases} F_1 x + E_1 r + g_1 & \text{if } H_1\left[\frac{x}{r}\right] \le K_1 \\ \vdots & \vdots \\ F_M x + E_M r + g_M & \text{if } H_M\left[\frac{x}{r}\right] \le K_M \end{cases}$$



• Hybrid Toolbox for Matlab available to assist controller design: modeling, simulation, verification, MPC, code generation

