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■ Resource-constrained systems (mass-marked products subject
to hard economic constraints)

■ Often used in unpredictable environments

■ The time when results are delivered is important

■ Many simultaneously running control applications
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■ Reality: gap between communities (real-time, control, ...)

■ Why? Misconceptions

◆ Real-time engineers assume hard deadlines for control algorithms

◆ Control engineers assume determinism in the computing platform

■ Need: Closer interaction between communities

■ Today, emerging areas closing the gap

◆ computing of control systems

◆ control of computing systems
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Linear time-invariant continuous-time system state-space form

dx(t)

dt
= Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

Discrete form, with sampling period h [1]

xk+1 = Φ(h)xk + Γ(h)uk

yk = Cxk,
(2)

where Φ(t) and Γ(t) are obtained using the following

Φ(t) = eAt, Γ(t) =
∫ t

0 eAsBds, (3)
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Timing of the basic model is not realistic
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Adding a time delay to model an input/output latency due to the
computation of the control algorithm or the insertion of a network
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Continuous-time system with time delay τ

dx(t)

dt
= Ax(t) + Bu(t − τ)

y(t) = Cx(t)
(4)

Discrete form, with τ ≤ h

xk+1 = Φ(h)xk + Φ(h − τ)Γ(τ)uk−1 + Γ(h − τ)uk.

yk = Cxk,
(5)

where Φ(t) and Γ(t) are also obtained using (3).
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State-space form for (5), extended model:
[

xk+1

zk+1

]

=

[
Φ(h) Φ(h − τ)Γ(τ)

0 0

] [
xk

zk

]

+

[
Γ(h − τ)

I

]

uk (6)

where zk ∈ R
m×1 represent past control signals.

This notation slightly differs from conventional notation [1] to
stress dependencies on h and τ .

The notation may be still misleading: uk is applied τ time units
after xk is taken.
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Notation issues:
kth operation vs. timing

-

6
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?
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xk

tk
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6
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Let’s obtain system (5) by looking at the dynamics from xk to
xk+1. Denote the system state at time tk+τ as xk+τ . Then

From xk to xk+τ → xk+τ = Φ(τ)xk + Γ(τ)uk−1

From xk+τ to xk+1 → xk+1 = Φ(h − τ)xk+τ + Γ(h − τ)uk

All together → xk+1 = Φ(h − τ) (Φ(τ)xk + Γ(τ)uk−1) + Γ(h − τ)uk

= Φ(h − τ)Φ(τ)xk + Φ(h − τ)Γ(τ)uk−1 + Γ(h − τ)uk

= Φ(h)xk + Φ(h − τ)Γ(τ)uk−1 + Γ(h − τ)uk

= model (5)
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For closed loop operation of (6), given

uk = −K(h, τ)

[
xk

zk

]

(7)

where K(h, τ) is the state feedback gain, the system evolution is

[
xk+1

zk+1

]

=

([
Φ(h) Φ(h − τ)Γ(τ)

0 0

]

−

[
Γ(h − τ)

I

]

k(h, τ)

)[
xk

zk

]

=

= Φcl(h, τ)

[
xk

zk

] (8)

Note: K depends on
“future” parameters,
h and τ
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The extended form (6) also can model networked control systems

Controller

τca

D/A Plant A/D

τscNetwork

Delays controller-to-actuator τca and sensor-to-controller τsc can
be integrated into τ in (6).
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Example. Double integrator differential equation:

d2y

dt2
= u (9)

If y and ẏ are x1 and x2, a state space form is given by

ẋ(t) =

[
0 1
0 0

]

x(t) +

[
0
1

]

u(t)

y(t) =
[

1 0
]
x(t)

(10)

Discrete-time model, with period h and delay τ

xk+1 =

[
1 h

0 1

]

xk +

[
τ
(
h − τ

2

)

τ

]

uk−1 +

[
(h−τ)2

2
h − τ

]

uk (11)
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If h = 0.1s and τ = 0.01s, the state space form is given by

xk+1 =





1 0.1 0.001
0 1 0.01
0 0 0



xk +





0.004
0.09
1



uk (12)

Closing the loop with uk = −
[

271.7 21.86 0.23
]
xk , the

closed loop poles are λ1 = −0.3, λ2 = −0.1, λ3 = −0.9

■ With a faster micro τ = 0.005, poles go at λ1 = 0.0082−0.2850i, λ2 =
0.0082 + 0.2850i, λ3 = −1.5513

■ With a slower micro τ = 0.02, λ1 = −0.4910+0.9516i, λ2 = −0.4910−
0.9516i, λ3 = 0.1316, with |λ1| = |λ2| = 1.0708
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Random delay (with τ ∈
[

0.005 0.015
]
, where τd = 0.01 )

0 1 2
−2

−1

0

1

2

Random period (with h ∈
[

0.05 0.15
]
, where hd = 0.1 )

0 1 2
−2

−1

0

1

2

0 1 2
−50

0

50
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■ Timing is a key aspect !!!!

■ The extended model (5) permits to model timing aspects.

■ And the implementation should also enforce the timing.
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Let’s implement a controller: an infinite loop with a periodic ac-
tivity to be executed every sampling period h

Periodic activity:

read input(yk); //assuming that yk = xk

uk = −Lxk;
write output(uk);

Which is the right code?
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Let’s implement a controller: an infinite loop with an algorithm
to be executed every sampling period h. First attempt:

loop

PeriodicActivity;
WaitTime(h);

end loop

The computation time of PeriodicActivity is not accounted for.
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Let’s implement a controller: an infinite loop with an algorithm
to be executed every sampling period h. Second attempt:

loop

Start = CurrentTime();
PeriodicActivity;
Stop = CurrentTime();
C := Stop - Start;
WaitTime(h - C);

end loop

An interrupt causing suspension may occur between the
assignment and WaitTime; or overrun problem.
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■ Methodologies for guaranteeing timeliness are required.

■ Real-time technology ([2] or [3]) is the candidate: in real-time

computing the correctness of the system depends not only on

the logical result of the computation but also on the time at

which the results are produced [4].
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Task (or message) basic parameters:

C1 C2

R1 R2

DD

T T

Tasks: periodic, sporadic, aperiodic
hard, soft, best effort
time or event triggered
pre-emptive, not pre-emptive
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■ Scheduling problem: how to assign tasks to the proces-
sor/network such that the set of (timing) constraints is met.

■ Scheduling approaches:

◆ offline scheduling: the time axis is divided in intervals of
equal length (time slots), each task is statically allocated
in a slot in order to meet the desired request rate, and
the execution in each slot is activated by a timer.

◆ online scheduling: each task is assigned a priority, schedul-
ing feasibility is verified using analytical techniques, and
tasks are executed on a priority-based kernel.
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Example (D = h)

task h C
A 200 ms 75 ms
B 300 ms 50 ms
C 100 ms 25 ms

Off-L.

0 100 200 300 400 500 600

Earliest Deadline First [5]: Feasibility test
n∑

i=1

Ci

hi

≤ 1

EDF

0 100 200 300 400 500 600

What happens if tasks execute less than C?
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Off-L.

0 100 200 300 400 500 600

EDF

0 100 200 300 400 500 600

Run-time schedule with execution time of first job of A is 2

Off-L.

0 100 200 300 400 500 600

EDF

0 100 200 300 400 500 600
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Observations on off-line scheduling

■ Disadvantages

◆ Keeping strict periodic execution is not possible

◆ Hard to build, modify or expand

◆ Lacks flexibility to adapt to resource availability or varying application
demands

■ Advantages

◆ Simple implementation enforcing precise timing (no real-time oper-
ating system required)

◆ Low run-time overhead
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Example of what strict timing may mean....
Game: Let’s try drawing a time line to execute tasks, keeping a
constant distance between consecutive job start-times

task h C
A 200 ms 75 ms
B 300 ms 25 ms

0 100 200 300 400 500 600

Assume A takes longer, e.g., C= 100 ms.

Can we still keep the constant distance?
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Example of hard to modify: Let’s draw a time-line to execute

task h C
A 200 ms 75 ms
B 300 ms 50 ms

0 100 200 300 400 500 600

Assume a new task C with h = 100 ms and C= 25 ms. We have
to rebuild the whole schedule !!!!

0 100 200 300 400 500 600
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Note on offline scheduling: cyclic executives are the traditional
offline scheduling approach for control applications [6], and widely
used in industry.

System Initialization

?
Data Input

?
Task Processing

?
Data Output

?
Idle Loop

-

Periodic

Interrupt

HHY
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Observations about on-line scheduling

■ Disadvantages

◆ Keeping strict periodic execution is not possible

◆ Needs operating system support (overhead)

■ Advantages

◆ Easy to build, analyze, modify or expand

◆ Provides flexibility to adapt to resource availability or varying appli-
cation demands
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Previous example with a new schedule given by Fixed Priority
online scheduling. Which is the priority assignment?

task h C
A 200 ms 75 ms
B 300 ms 50 ms
C 100 ms 25 ms

Off-L.

0 100 200 300 400 500 600

EDF

0 100 200 300 400 500 600

FP

0 100 200 300 400 500 600
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Enforcing the timing assumed in mathematical models using real-
time technology

C1 C2

R1 R2

DD
T T

Hard real-time periodic task model

-

6

?

6

Controller
6

?

Release Release

time

Deadline

Input Output

Naif control task model

■ task period equal to sampling period T=h

■ sampling and actuation occur at the beginning and termination of each
job execution

■ and task deadline bounding the time delay, D≥ τ
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In the previous model for implementing controllers,

■ if D= τ : the expected timing from the model in closed loop
operation (8) is perfectly kept !!! However, task set schedu-
lability is severely reduced !!!

■ if D> τ : task set schedulability is increased (more tasks can
be executed) at the expenses of introducing time uncertainty
in sampling and actuation operations.
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(RT) Computing introduces time uncertainty in periods and delays

rk−1 rk rk+1 rk+2

Ik−1 Ok−1 Ik Ok Ik+1 Ok+1

τk−1 τk τk+1

hk−1 hk

■ Job released at rk = kh

■ Sampling jitter: {hk}

■ Latency jitter: {τk}
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(RT) Computing introduces time uncertainty in periods and delays

Approaches:

■ Ignore the problem

■ Design the controller to be robust against time uncertainty

■ Design the computing to minimize or eliminate the time un-
certainty
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Traditional approaches to time uncertainty

■ Smith predictor

■ Modified z-transform

■ State-space lifting techniques

Limitation: ideal delays or mutirate (periodic) systems.

Alternative solutions
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Remember the standard model (6)
[

xk+1

zk+1

]

=

[
Φ(h) Φ(h − τ)Γ(τ)

0 0

] [
xk

zk

]

+

[
Γ(h − τ)

I

]

uk

where xk+1 = x(kh + h) and zk+1 = z(kh + h)

If h and τ vary at each job execution, the model is given by
[

xk+1

zk+1

]

=

[
Φ(hk) Φ(hk − τk)Γ(τk)

0 0

] [
xk

zk

]

+

[
Γ(hk − τk)

I

]

uk (13)

where xk+1 = x(
k+1∑

i=0

hi) and zk+1 = z(
k+1∑

i=0

hi)
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(13) is a family of models. Observations:

■ Given the {hk, τk} values, a specific system is obtained and
it can be analyzed

■ Controllability and observability

■ Stability
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Given the {hk, τk} values, a specific system is obtained and it can
be analyzed. Example.

d2y

dt2
= u

Let’s locate the continuous closed
loop poles at λ1,2 = −1.5 ± 10 ∗ i.

task h C=τ

A 120 ms 40 ms
B 90 ms 40 ms

K120,40 =
[

75.8572 10.1051 0.3435
]

K90,40 =
[

83.5998 9.7351 0.3225
]

0 2 4 6
−0.5

0

0.5
(120,40)ms

0 2 4 6
−0.5

0

0.5
(90,40)ms

In isolation
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Given the {hk, τk} values, a specific system is obtained and it can
be analyzed. Example.

Offline schedule (in ms)

0 100 200 300 400

0 2 4 6
−0.5

0

0.5
(90,40)ms

0 2 4 6
−0.5

0

0.5
(120,40)ms
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Given the {hk, τk} values, a specific system is obtained and it can
be analyzed. Example.

0 100 200 300 400

h1 = 90 h2 = 110 h3 = 160

τ1 = 40 τ2 = 40 τ3 = 80

Let’s approach A as a switched system:

Φcl(h, τ) ∈ {Φcl(90, 40), Φcl(110, 40), Φcl(160, 80)}

with
K90,40 =

[
83.5998 9.7351 0.3225

]

K110,40 =
[

78.4894 10.0117 0.3377
]

K160,80 =
[

65.0282 12.7871 0.8149
] 0 2 4 6

−0.5

0

0.5
switching
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Given the {hk, τk} values, a specific system is obtained and it can
be analyzed. Is the previous analysis enough?

Example of unstable switched sequence A2A1A2A1 . . . where each
subsystem Ai is stable. Given

xk+1 = Axk, k ≥ 0, x0 = x0, A ∈ {A1, A2} (14)

with A1 =

[
0.9 0.2
−0.2 −0.9

]

, A2 =

[
0.9 −0.2
0.2 −0.9

]

, x0 =

[
1
−1

]

0 0.5 1
−1

−0.5

0

0.5

1

Ak
1

0 0.5 1
−1

−0.5

0

0.5

1

Ak
2

0 2 4
−5

0

5

(A2A1)
k
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Controllability

■ Is (13) controllable? Yes. (See proof in appendix 1)

■ Therefore, we can find {uk} to bring the system to xeq

■ However, to compute {uk}, we need to know beforehand
{hk, τk}

■ ... which in the general case, it’s not known !!!

Observation (feasibility problem): to compute uk we need to know
{hk, τk}
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Observability

■ Is (13) observable? Yes, if the output matrix outputs the
additional variable. (See proof in appendix 2)

■ No feasibility problems exist (past hk, τk and uk are known).

Remark

Although (13) is controllable and observable, the admissible time
variability is not known.
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Stability. Looking at matrices

■ Single closed loop matrix

stable ⇔ ρ(Φcl(h, τ)) < 1 (15)

■ Sequence of closed-loop matrices

stable ⇔ ρ(Φcl(h1, τ1) · Φcl(h2, τ2) · . . . · Φcl(hn, τn)) < 1 (16)

■ Closed-loop matrices randomly taken from a finite set Ω [7]

Ω stable ⇔ ∃P > 0 : ΩT PΩ − P < 0, ∀Ω ∈ ΩK , K ≥ 0 (17)
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Stability. ... References

■ Delays: For time-varying but bounded delays, simply checked
in a Bode plot [8]

■ Sampling periods: For uncertain sampled data systems,
treated as hybrid system and using Lyapunov functions with
discontinuities [9]
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(RT) Computing introduces time uncertainty in periods and delays

Approaches:

■ Ignore the problem

■ Design the controller to be robust against time uncertainty

■ Design the computing to minimize or eliminate the time un-
certainty
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Design the computing to minimize/eliminate the time uncertainty

Naif approach [10]

-

6 6

Computation
6

?

Release Release

time

Input Output

One-sample approach [5], [11]

-

6 6

Computation
6

?

Release Release

time

Input Output

One-shot approach [12]

-

6 6

Computation
6

? ?

Release
Output

Release
Output

time

Input
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Design the computing to minimize/eliminate the time uncertainty

Model (6) in closed-loop form is based on two synchronization
points, on a time reference given by the sampling instants.

[
xk+1

zk+1

]

=

[
Φ(h) Φ(h − τ)Γ(τ)

0 0

] [
xk

zk

]

+

[
Γ(h − τ)

I

]

uk

uk =
[

K1 K2

]
[

xk

zk

]

= K1xk + K2zk with K1 ∈ R
1×n, K2 ∈ R

1×m

-

6
xk−1

tk−1

?

uk−1

tk−1+τ

-�τ

-� h@
@@R

6
xk

tk

?

uk

tk+τ

-�τ

-� h@
@@R

6

tk+1
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Design the computing to minimize/eliminate the time uncertainty

Constructing the one-shot task model: changing time coordinates
to a time reference given by the actuation instants.

xk+τ+1 = Φ(h)xk+τ + Γ(h)uk, with uk = Kxk+τ with L ∈ R
1×n. (18)

xk+τ has to be predicted from xk:

xk+τ = Φ(τ)xk + Γ(τ)uk−1. (19)

-

6
xk−1

tk−1

?

uk−1

tk−1+τ

-�τ

-� h@
@@R

6
xk

tk
?

uk

tk+τ

-�τ

-� h@
@@R

6

tk+1

-

6

tk−1

xk−1 xk−1+τ

?
tk−1+τ

uk−1

-� h
-

?
6

tk

xk xk+τ

?
tk+τ

uk

-� h
-

?
6

tk+1

xk+1 xk+1+τ

?
tk+1+τ

uk+1

-

?
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Design the computing to minimize/eliminate the time uncertainty

■ All closed loop dynamics given by (18) and (19) (i.e., one-
shot) can be obtained by (6) (standard).

■ All closed loop dynamics given by (6) can be obtained by (18)
and (19) if m = n.

The standard model is more general.... but one-shot admits ir-
regular sampling

-

6
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C ?
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6
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Design the computing to minimize/eliminate the time uncertainty

Evaluation: Naif, one-sample, switching, one-shot, split [13]

h C
T1 12 6
T2 20 6

T1

T2

0 12 20 24 36 40 48 60

Voltage stabilizer (RCRC circuit)

ẋ(t) =

[
0 1

−918.2 −90.9

]

x(t) +

[
0

918.2

]

u(t)
0 10 20 30 40 50 60 Time [s]

J [u]

0

0.5

1

1.5

2

2.5

3

3.5

x 10
5

(1)
(2)
(3)

(4)
(5)

(1) One-shot task model

(2) Switching task model

(3) One-sample task model

(4) Split task model  

(5) Naif task model
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1. Real-time computing of control systems

(a) Timing and implementation

(b) Problems and solutions

2. Control of real-time control systems

(a) Overview

(b) Representative examples
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control
task plant

control
task plant

control
task plant

resources

resource
manager

Control of real-time control systems, also known as

■ (Optimal) Sampling period selection

■ Feedback scheduling

■ Event-based scheduling



2nd HYCON PhD School on Hybrid Systems (2007) - Networked and Embedded Control Systems

Overview

58 / 98

Objective: to efficiently use resources when control loops share
limited resources. Main flavors:

■ Maximize aggregated control loop performance by fully and
cleverly exploiting the available resources

⇓

Feedback scheduling (FS)

■ Minimize resource utilization while bounding inter-sampling
dynamics ⇓

Event-based scheduling (ES)
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Common formulation: optimization problem

minimize (maximize): penalty (benefit) on control performance
with respect to: sampling periods / job execution
subject to: closed loop stability

task set schedulability

Two type of results

■ Optimal sampling periods (e.g., [14], [15],[16],[17],[18])

■ Optimal job sequence (e.g., [19], [20]1, [21])

1Based on bounding the inter-sampling dynamics.
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Common idea: to bound the inter-sample dynamics or to ensure
stability (e.g., [22], [23], [24], [25], [26], [27]). Approaches:

■ Integrate an analog event detector, e.g. [22] or [24]

■ Assume a coordinator aware of all plant states, e.g., [23]

■ Enforce a minimum inter-execution time, e.g., [26]

■ Observe the occurrence of the event (self-triggered), e.g., [25], [27]
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Which What Who When How

Criterion it is Solution Timing Sched.
solved Constraints

[14] Set96 Optimizat. TT Coord. Offline Periods Static periodic EDF
[22] Arz99 Bound d. ET Task Online Periods Aperiodic ET Missing
[23] Zha99 Bound d. ET Coord. Online Job Aperiodic ET EFS
[15] Eke00 Optimizat. TT Coord. Online Periods Varying periodic EDF
[19] Reh00 Optimizat. TT Coord. Offline Sequences Static pseudo periodic Cyc. Ex.
[20] Hri01 Bound d. TT Coord. Offline Sequences Static pseudo periodic Cyc. Ex.
[16] Mar04 Optimizat. TT Coord. Online Periods Varying periodic EDF
[17] Pal05 Optimizat. TT Coord. Offline Periods Static periodic EDF
[18] Hen05 Optimizat. TT Coord. Online Periods Varying periodic EDF
[21] Ben06 Optimizat. TT Coord. Online Sequences Dynamic pseudo per. Flex.C.E
[25] Tab06 Bound d. ET Task Online Periods Aperiodic TT WiP
[26] Joh07 Bound d. ET Task Online Periods Sporadic TT Spor.
[27] Lem07 Bound d. ET Task Online Periods Aperiodic TT Elastic S.
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ready

idle

run

dispatch

preemption

dispatch

end cycleresume

time-driven operation

ready run

dispatch

end cycle

control-driven operation
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1. Real-time computing of control systems

(a) Timing and implementation

(b) Problems and solutions

2. Control of real-time control systems

(a) Overview

(b) Representative examples
■ periods (optimization)

■ sequences (optimization)

■ event-based

control
task plant

control
task plant

control
task plant

resources

control
task plant

control
task plant

control
task plant

resources

resource
manager
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[14] On task schedulability in real-time control systems

■ Set of n control tasks sharing a CPU

■ Performance index for each control task (cost):

∆J(fi) = JD(fi) − J

■ A minimum frequency for each task fmi must be guaranteed
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[14] On task schedulability in real-time control systems

min ∆J =
n∑

i=1

ωi∆Ji =
n∑

i=1

ωiαie
−βifi

with respect to f1, f2, . . . , fn

subject to
n∑

i=1

Cifi ≤ A, 0 < A ≤ 1

fi ≥ fmi, i = 1, . . . , n

(20)

Solution:
It statically sets several frequencies ≥ fmi and the rest = fmi



2nd HYCON PhD School on Hybrid Systems (2007) - Networked and Embedded Control Systems

Representative examples (periods)

66 / 98

[16] Optimal state feedback based resource allocation for
resource-constrained control tasks. Key observation:

Plant 1 dynamics without SM

r l

r h

0 2 4 6 8 10 12 Time [s]

Plant 1 dynamics

Plant 2 dynamics

Perturbation

r l

r h

0 2 4 6 8 10 12 Time [s]

Plant 2 dynamics without SM

Plant 1 dynamics with SM

Plant 2 dynamics with SM

Perturbation

1

1

2

2
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[16] Optimal state feedback based resource allocation for
resource-constrained control tasks

■ Set of n control tasks sharing a CPU

■ A minimum resource share is guaranteed per task: ri,min =
ci

hi,max

■ Performance index for each control task (benefit): αiri + βi

■ Instantaneous feedback: ei = |xk|
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[16] Optimal state feedback based resource allocation for
resource-constrained control tasks

max
n∑

i=1

ωipi(ri)ei =
n∑

i=1

ωi(αiri + βi)|xk|

with respect to r1, r2, . . . , rn

subject to
n∑

i=1

∆ri ≤ Us(t) and ∆ri ≥ 0, i = 1, . . . , n

where ri = ri,min + ∆ri and Us(t) = available slack(t)

(21)

Solution: Assign all slack to the task whose plant has the largest
error, where slack is the unused and thus available resources
Drawback: Instantaneous feedback, e.g. |xk|, may be not helpful
in certain scenarios
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[18] Optimal on-line sampling period assignment for real-time con-
trol tasks based on plant state information

■ Set of n control tasks sharing a CPU

■ Performance index for each control task based on a finite
horizon prediction (cost):

J(x0, h, Tfbs) = xT
0 Sx0 + Tfbs J̄ (22)

where

◆ J̄ = 1
h

(
tr S(h)R1(h) + Jv(h)

)
is the stationary cost per time unit

◆ xT
0 Sx0 is the transient cost, where S is the solution to:
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[18] Optimal on-line sampling period assignment for real-time con-
trol tasks based on plant state information

■ the algebraic Riccati equation (23) for optimal controllers providing the
optimal cost (24) for a standard quadratic cost function (25)

S = ΦT
SΦ + Q1 − (ΦT

SΓ + Q12)(Γ
T
SΓ + Q2)

−1(ΓT
SΦ + Q

T
12) (23)

J = x
T
0 Sx0 +

N−1∑

k=0

(

tr S(h)R1(h) + Jv(h)
)

(24)

J = Ev

{N−1∑

k=0

(

x(kh)T
Q1x(kh) + 2x(kh)T

Q12u(kh) + u(kh)T
Q2u(kh) + Jv(h)

)}

(25)

■ the Lyapunov equation (26) for an arbitrary state feedback control law
u(kh) = −Kx(kh), to be evaluated in (24)

S = (Φ− ΓL)T
S(Φ− ΓL) + Q1 −Q12L− L

T
Q

T
12 + L

T
Q2L (26)

Note that Φ, Γ, Q1, Q12, Q2, Jv, R1, and S all depend on the sampling interval h.
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[18] Optimal on-line sampling period assignment for real-time con-
trol tasks based on plant state information

min
n∑

i=1

Ji(xi(t0), hi, Tfbs)

with respect to h1, h2, . . . , hn

subject to
n∑

i=1

Ci

hi

≤ 1

hi ≥ 0, i = 1, . . . , n

(27)

Solution:
Finding an analytical solution in the general case is not possible.
But an approximate general solution exists and works [28]
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Operation of [16] (Tfbs → hi) or [18] (Tfbs >> h).
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[19] Integration of off-line scheduling and optimal control

■ Set of n control tasks sharing a CPU

■ Repeated cycle divided into p slots, cycle of length Tp

■ Tasks execute within slots

■ LQ controllers

min
ûi

E

[

x̄T
i S̄ix̄i(n) +

n∑

i=1

[
x̄i

ūi

]T [
Q̄1 Q̄12

Q̄T
12 Q̄2

]

i

[
x̄i

ūi

]]

such that x̄i(k + 1) = Āix̄i(k) + B̄iūi(k) + Ḡiv̄i(k)

(28)

■ Let s denote a scheduling sequence and Sp a set of schedules
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[19] Integration of off-line scheduling and optimal control

Finding the optimal schedule formulated as a combinatorial opti-
mization problem

min f per(s, p)

when s ∈ Sp

p = 1 . . . Tp

(29)

where f per(s, p) is a performance measure derived from (28)

Solution: A periodic schedule ŝ(t) = s1s2 . . . sps1 . . . , where ŝ(t)
indicates the controller run at time t, and a periodic linear feed-
back law such that uŝ(t) = Ktxŝ(t)(t)
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[23] Stable and real-time scheduling of a class of hybrid dynamic
systems

■ N continuous dynamic plants

ẋi = Aixi + biui, i = 1, . . . , N (30)

■ Discrete-event scheduling

Event(i, Tk) =

{
1 if ‖xi(Tk)‖ = max

j=1,...,N
‖xj(Tk)‖ at Tk

0 otherwise
(31)

During t ∈
[

Tk Tk + h
)

planti runs in closed loop (rest in open loop)

■ Objective: to ensure stability
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[23] Stable and real-time scheduling of a class of hybrid dynamic
systems

■ Control design specification: to ensure asymptotical and ex-
ponential stability for all plants

■ Outcome:

◆ Sufficient conditions

◆ Stabilizing feedback gains

Observation: similar to previous feedback-scheduling approaches
but using an event-based scheduling and single feedback gains.
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[25] Preliminary results on state-triggered scheduling of stabilizing
control tasks

■ Closed loop continuous time system with discrete controller

ẋ = f(x, k(x + e)) where e(t) = x(ti) − x(t) (32)

■ Event-triggered executions:

|e(t)| ≤ σ|x(t)|

to enforce stability

e1

σ

σ

abs(x)
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[25] Preliminary results on state-triggered scheduling of stabilizing
control tasks

■ avoids accumulation points

■ provides estimates of the time

between consecutives executions

e1

e2

e3

e4

σ

σ
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Simulation: Some feedback scheduling approaches vs. jitters.
Three control tasks controlling RCRC circuits. Evaluation using
a quadratic cost function.

Approach Original Indep. Proc.

Static approach 109.05 105.82
Off-line RM [14] 121.85 96.59
On-line FS [15] 99.92 98.74
On-line instantaneous FS [16] 90.63 64.41
On-line finite horizon FS [28] 100.61 86.99
Heuristic on-line cyclic scheduling [19] 62.43 62.48
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Implementation: one-shot task model.

R1

C1 C2

R2

+

-
Vin Vout

Software Hardware

PIC18f458

Control

Vload

x1 measured

0 5 10 15 20 25 time [s]
0

1

2

3

4

5

6

7

8

9

10
x 10   [units]

8

One Shot (1)

(1)

(2)

(3)

(4)

Reference (2)

One Sample (3)

Naif (4)



2nd HYCON PhD School on Hybrid Systems (2007) - Networked and Embedded Control Systems

Miscellaneous - Feedback scheduling

83 / 98

Implementation: FS - [16] (left) and [18]+[28] (right)
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TrueTime (http://www.control.lth.se/truetime/)

Simulation of Networked and Embedded Control Systems

■ Matlab/Simulink-based simulator for real-time control sys-
tems.

■ Facilitates co-simulation of controller task execution in real-
time kernels, network transmissions, battery-powered devices,
and continuous plant dynamics.
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■ Networked and embedded control systems are everywhere

◆ Resources

◆ Timing

◆ Dynamic behavior

■ Overcoming separation of concerns

◆ Real-time computing of control systems

◆ Control of real-time control systems



2nd HYCON PhD School on Hybrid Systems (2007) - Networked and Embedded Control Systems

Appendix 1 (controllability)

86 / 98

Controllability. Is (13) controllable? Yes.

Proof. We assume that the standard system (2) is controllable

Wc = det(
[
Γ ΦΓ · · · Φn−1Γ

]
), det(Wc) 6= 0 (33)

Let us define

φa(hk, τk) =

[
Φ(hk) Φ(hk − τk)Γ(τk)

0 0

]

(34)

Γa(hk, τk) =

[
Γ(hk − τk)

I

]

(35)

xa(k) =

[
x(k)

u(k − 1)

]

(36)
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Let the system state at k = n be

x(n) =
n∏

i=1

φa(hn−i+1, τn−i+1)x(0) + WcU (37)

with

Wc =









Γa(hn, τn)
︸ ︷︷ ︸

for j=n

. . .

(
n−1∏

i=1

φa(hn−i+1, τn−i+1)

)

Γa(h1, τ1)

︸ ︷︷ ︸

for j=1









(38)

U =
[
uT (n − 1) . . . uT (0)

]T
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Subtituting (34) and (35) into (38) we obtain

Wc =








j=n
︷ ︸︸ ︷

Γ0(hnτn) · · ·

j=1
︷ ︸︸ ︷
(

n−2∏

i=1

Φ(hn−i+1)

)

Γ1(h2, τ2) +

(
n−1∏

i=1

Φ(hn−i+1)

)

Γ0(h1, τ1)

I · · · 0








(39)

For MIMO systems, (13) is controllable if det(Wc) 6= 0. Devel-
oping the determinant from the last row, and setting τk = 0 and
hk = h, we obtain condition (33)
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det(Wc) is a continuous function of a continuous variable

det(Wc) : R
nxn → R

(h1, h2, . . . , hn, τ1, τ2, . . . , τn) → det(Wc [h1, h2, . . . , hn, τ1, τ2, . . . , τn])

If the original system (2) is controllable, then

∃(h1, h2, . . . , hn, τ1, τ2, . . . , τn) | det(Wc) 6= 0

And due to continuity

∃B((h1, h2, . . . , hn, τ1, τ2, . . . , τn), δ) | det(Wc) 6= 0

�
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Observability. Is (13) observable? Yes, if the output matrix out-
puts the additional variable.

Proof. We assume that the standard system (2) is observable

Wo = det













C

CΦ(h)
...

CΦn−1(h)













, det(Wo) 6= 0 (40)

and we use definitions (34), (35) and (36), and we set as output
matrix

Ca =

[
C 0
0 I

]

(41)
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Without losing generality, if uk = 0, the initial state can be ob-
served in n steps, being n the order of (13)

ya(0) = Caxa(0)

ya(1) = Caxa(1) = Cφa(h1, τ1)xa(0)

...

ya(n) = Ca

n−1∏

i=1

φa(hn−i+1, τn−i+1)xa(0) (42)

From (42), the obserbability matrix is

Wo =







Ca

...

Ca

n−1∏

i=1

φa(hn−i+1, τn−i+1)







(43)
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Subtituting (41) and (34) into (43) we obtain

Wo =











C 0
0 I
...

...

C
n−1∏

i=1

Φ(hn−i+1) C
n−2∏

i=1

Φ(hn−i+1)Φ(h1 − τ1)Γ(τ1)

0 0











(44)

For MIMO systems, Wo ∈ R
2n×n. Therefore, we can construct

W ∗
o with n rows of Wo. Then, (13) is observable if det(W ∗

o ) 6= 0.
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For W ∗
o we pick rows 2, 3, 5, 7, . . . , n − 1 of Wo

W ∗

o =









0 I

CΦ(h1) CΦ(h1 − τ1)Γ(τ1)
...

...

C
n−1∏

i=1

Φ(hn−i+1) C
n−2∏

i=1

Φ(hn−i+1)Φ(h1 − τ1)Γ(τ1)









(45)

With constant period and τ = 0 we obtain

W ∗

o =







0 I

CΦ 0
...

...
CΦn−1 0







(46)
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Developing the determinant of (46) by the first row

det(W ∗

o ) = ± det









CΦ
...

CΦn−1







 = ± det









C
...

CΦn−2







 det(Φ) (47)

Note: det(Φ) 6= 0 and recall (40) ⇒ det(W ∗
o ) 6= 0.

As before, det(Wo) is a continuous function of a continuous vari-
able. If the original system (2) is controllable, then

∃(h1, h2, . . . , hn, τ1, τ2, . . . , τn) | det(W ∗

o ) 6= 0

And due to continuity

∃B((h1, h2, . . . , hn, τ1, τ2, . . . , τn), δ) | det(W ∗

o ) 6= 0
�
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