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Reachability Analysis and Verification 
Lecture 1: Transition Systems & Verification
• Verification of Transition Systems
• Simulation and Bisimulation
• Application to Hybrid Systems
Lecture 2: Hybrid System Reachability
• Polyhedral Approximations
• CheckMate (a tool)
• Low-Order Representations
Lecture 3: Linear Hybrid Automata
• LHA Reachability
• Approximating Richer Dynamics
• PHAVer (a tool)
• Iterative Relaxation Abstractions



2

3:48

Lecture 1: Transition Systems 
& Verification

Bruce H. Krogh
Carnegie Mellon University

krogh@ece.cmu.edu
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Outline

• Verification of Transition Systems
• Simulation and Bisimulation
• Application to Hybrid Systems
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Transition System (TS)

T = (Q,→, Q0,L, L)

• states Q

• transitions →⊆ Q×Q

• initial states Q0 ⊆ Q

• labels (atomic propositions) L

• labeling function L : Q→ 2L

qo

A

q1

B

q2

B

q4

B
q3

B

Note: We assume the transition relation is total, i.e., ∀ q ∈ Q,∃ q0 ∈
Q 3 q → q0.

6:48

Paths & Runs

path: π = q0q1 . . . ∈ Q
ω, qi → qi+1 ∀ i ≥ 0

run: a path for which q0 ∈ Q0

qo

A

q1

B

q2

B

q4

B
q3

B

e.g., π = q0q1(q3q2)ω  is a run.
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Predecessors (Pre) and Successors (Post)

For P ⊆ Q

predecessors: Pre(P ) = {q ∈ Q | ∃ p ∈ P, q → p}

successors: Post(P ) = {q ∈ Q | ∃ p ∈ P, p→ q}

qo

A

q1

B

q2

B

q4

B
q3

B
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Q finite transition 
system or 
temporal logic 
specification

MODEL 
CHECKING
PROGRAM

PROPERTY IS TRUE OR 
A COUNTER EXAMPLE

propagates 
sets of states, 
not individual 
trajectories

Formal Verification - Model Checking

INPUTS

COMPUTATION

RESULTS

TRANSITION
SYSTEM

PROPERTY
TO VERIFY

Model checking is algorithmic (guaranteed to terminate).
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Where does verification fit in the 
control system design flow?

test

feature specification

code

production

executable spec.

code generation

simulation

rapid prototype

executable spec.

CACSD

model checking

Objective:
Verify design 
behaviors for the 
entire range of 
operating conditions.

Potential role of 
formal verification

Pre-CACSD1

1CACSD = computer aided control system design

10:48
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Computation TreeTS

“unwind” paths 

s0

s1
s2

s2

s1

s0

s1

s2

The Computation Tree
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s1
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Path Formulas

• Temporal Operators (along a path)
– G : for all states (globally)
– F : at some future state
– X : next state
– U : until (f U g, f is true until g is true)

• Example: G(a → X(b))

a

ba
cb

s0

s1
s2

a

ba

cb

cb

s2

s1

s0

s1

s2

ba

s1

s1
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s1

ba

s1
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ba
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Branching Time Logic - CTL

• Path Quantifiers (from a state)
– A : For all computation paths (universal quantification)
– E : There exists a computation path (existential quantification)

• CTL (computation tree logic)
– a temporal operator must be preceded by a path quantifier

AG(a ∨ b) AF(b) EF(cb) EX(EG(cb))

a

ba

ba

cb

cb

s2s1

s0

s1 s2

a

ba

ba

cb

cb

s2s1

s0

s1

a

ba

ba

cb

cb

s2s1

s0

s1

a
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ba

cb

cb

s2s1

s0

s1
s2 s2 s2
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LTL and CTL*

• LTL (linear temporal logic)
– includes only path formulas
– applies to all paths starting from initial states (implicit A 

before the path formulas)
• CTL*

– negations, conjunctions and disjunctions of CTL and LTL 
formulas (sufficient set: ¬, Ç, X, U, E)

• Expressive power

CTL*LTL CTL

A(FGp) AG(EFp)

A(FGp) Ç AG(EFp)

14:48

CTL Model Checking

Problem: Given a TS T and a CTL formula f, determine 
if f is true for all initial states Q0.

Solution: Compute predicate Pf = { q ∈ Q | q ² f } and 
see if Q0 ⊆ P.

• Symbolic Model Checking
– identify basic CTL operators with greatest fixpoint (gfp) or 

least fixpoint (lfp) of predicate transformers
– apply gpf, lfp, and set operations as needed inductively over 

subformulas of f to obtain Pf
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Predicate Transformers and Fixpoints1

• predicate: equate CTL expressions with predicates 
over Q 
– e.g. P = ab′c′ ∨ bc = {s0,s2}     (where ′ ≡ ¬)

• predicate transformer: τ : 2Q → 2Q

– e.g. : τ(P) = P ∧ c′
– for P = ab′c′ ∨ bc, τ(P) = (ab′c′ ∨ bc) ∧ c′ = ab′c′ = {s0}

• fixpoint : P = τ(P)
– e.g. P=ab′c′ is a fixpoint of τ(P) = P ∧ c′

a

ba
cb

s0

s1
s2

1 Fixpoint is a shortened form of the more precise term, fixed point.

16:48

Greatest and Least Fixpoints

• greatest fixpoint of τ: 
– gfp Z [τ(Z)] ,

P ⊆ Q 3 P = τ(P) and if P′ = τ(P′), P′ ⊆ P.
• least fixpoint of τ: 

– lfp Z [τ(Z)] ,
P ⊆ Q 3 P = τ(P) and if P′ = τ(P′), P ⊆ P′.

• τ monotonic ⇒ gfp Z [τ(Z)] and lfp Z [τ(Z)] exist.
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lfp and gfp algorithms

function gfp(τ)
P := true (i.e., Q)
P′ = τ(P)
while (P ≠ P′) do

P := P′
P′ := τ(P)

endwhile
return(P)

end

For τ monotonic:

function lfp(τ)
P := false (i.e., ∅)
P′ = τ(P)
while (P ≠ P′) do

P := P′
P′ := τ(P)

endwhile
return(P)

end

P ↑ lfp Z [τ(Z)] P ↓ gfp Z [τ(Z)]

For Q finite, maximum number of steps = |Q|

18:48

Fixpoint Characterizations for CTL Operators

• AG(p) = gfp Z [p ∧ AX Z]
• EG(p) = gfp Z [p ∧ EX Z]
• AF(p) = lfp Z [p ∨ AX Z]
• EF(p) = lfp Z [p ∨ EX Z]
• A(p1 U p2) = lfp Z [p2 ∨ (p1 ∧ AX Z)]
• E(p1 U p2) = lfp Z [p2 ∨ (p1 ∧ EX Z)]

Intuitively: 
gfp corresponds to properties that should always 
hold, lfp corresponds to eventualities.
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ACTL: Universal Properties

• When approximations are used to prove properties of 
a system (abstractions or simulations), only universal 
properties can be shown (properties true for all paths 
in the computation tree).

• ACTL , CTL with
– only universal path quantification (A: for all paths)
– negations applied only to atomic propositions to avoid 

implicit existential path quantification (i.e., ¬ A is not 
permitted) 

20:48

Reachability

Specification: No “bad states” are reached.

Solution: Atomic proposition b , bad state, f = AG(¬b).
• Q0 ⊆ AG(¬b) = gfp Z [¬b ∧ AX Z]

function gfp(τ)
P := Q
P′ = ¬b ∧ AX P
while (P ≠ P′) do

P := P′
P′ := ¬b ∧ AX P

endwhile
return(P)

end

{q ∈ Q | ¬b ∧ Post(q) Å P = P }

“backward” reachability: 
eliminates all paths to bad states
one transition at time.

?
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Alternative Solution: Forward Reachability

P := Q0
while true do

if P Å ¬b return “unsafe”
if Post(P) ⊆ P return “safe”
P := P ∪ Post(P)

end while

This is the approach used by explicit state model 
checkers.

22:48

Outline

• Verification of Transition Systems
• Simulation and Bisimulation
• Application to Hybrid Systems
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Simulation Relations

Def. T2 simulates T1 (T2ºT1) if there is a simulation rela-
tion between T1 and T2.

Ti = (Qi,→i, Qi0,L, Li), i = 1, 2. ψ ⊆ Q1 × Q2 is a
simulation relation between T1 and T2 if:

i. ∀ q10 ∈ Q10, ∃ q20 ∈ Q20 3 (q10, q20) ∈ ψ
(each initial state in T1 has a corresponding initial state in T2)

ii. if (q1, q2) ∈ ψ

a. L1(q1) = L2(q2) (corresponding states have the same labels)

b. q1 →1 q
0
1 ⇒ ∃ q02 ∈ Q2 3 q2 →2 q

0
2 ∧ (q

0
1, q

0
2) ∈ ψ

(each transition in T1 has a corresponding trasition in T2)

24:48

Simulation & Path Correspondence

π1 = q0q1q2 . . . corresponds to π2 = q
0
0q
0
1q
0
2 . . . ⇐⇒

∀ i = 0, 1, 2, . . . (q0i, q
0
i) ∈ ψ.

qo

A

q1

B

q2

B

q4

B
q3

B

T1 T2

Note: Corresponding paths have the same label sequence.

s1
A

s2
B

s3
A

ψ = {(qo, s1), (qo, s3), (q1, s2), (q2, s2), (q3, s2), (q4, s2)}

Proposition. If T2 º T1, then for any path π1 in T1 there
exists a corresponding path π2 in T2, where π2 depends on
the particular simulation relation ψ between T1 and T2.
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Application of Simulation

Note: An ACTL property not true for T2 may still be true for T1 (since 
T1 has a smaller set of paths). Counterexamples for an ACTL 
property in T2 (paths violating the property) that satisfy the 
property for T1 are called spurious counterexamples for T1

Basic approach to verification:  Given a TS T1 and an ACTL property p, 
construct a TS T2 º T1 for which p can be checked efficiently.

If T2 º T1: 
• ACTL properties (universal properties) true for the set of all

paths in for T2 are true for all label sequences for T1.
Why do we care?
• it may be easier to check an ACTL property for T2 than for T1

(especially if T2 has a finite number of states and T1 has an 
infinite number of states!)

26:48

Verification Using Simulation: Example

• ACTL property true for T′ ⇒ true for T
– e.g., AG(AX(AÇB)), A or B is always true in the next state

• universal property not true for T′ may be true for T
– e.g., AF(B), B is always eventually true

qo

A

q1

B

q2

B

q4

B
q3

B

T T 0

s1
A

s2
B

s3
A
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Bisimulation

T1 and T2 are bisimulation equivalent (denoted T1≡T2) if
T1 º T2 and T2 º T1.

qo

A

q1

B

q2

B

q4

B
q3

B

T1

T1 ≡ T2 but T1 /≡ T3 (Why?)

s1
A

s2
B

r1
A

r2
B

r3
B

T2

T3

28:48

Bisimulation

qo

A

q1

B

q2

B

q4

B
q3

B

T1

Bisimulation equivalance is established by the existence of a
bisimulation relation B ⊆ Q1×Q2, where B is a simulation
relation between T1 and T2 and B

−1 is a simulation relation
between T2 and T1.

E.g. B = {(qo, r1), (q1, r2), (q2, r2), (q3, r3), (q4, s3)}.

r1
A

r2
B

r3
B

T2
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Application of Bisimulation

If T ′≡ T: 
• CTL properties (universal & existential) are true for T ′ ⇔ they 

are true for T.

Again ...
• it may be easier to check a CTL property for T ′ than for T

(especially if T ′ has a finite number of states and T has an 
infinite number of states!)

So having a bisimulation is better than simulation, BUT ...
the basic approach (finding a bisimulation for which verification 
is efficient) may not be possible.

More to come on this issue. 

30:48

Verification Using Bisimulation: Example

qo

A

q1

B

q2

B

q4

B
q3

B

r1
A

r2
B

r3
B

T T 0

• existential property true for T′ ⇔ true for T
– e.g., EF(AX(¬A)), there exists a state such that A is not true 

for all next states
• universal property true for T′ ⇔ true for T

– e.g., AF(B), B is eventually true



16

31:48

Constructing a Bisimulation:
Quotient Transition Systems

The basic idea:
• partition (“quotient”) the set of states, grouping states 

with the same labels (a consistent partition)
• construct a transition relation between the partitions 

reflecting the underlying transition relation
• if necessary, refine the partition until a bisimulation is 

reached

Note:  The quotient transition system (QTS) created on 
each iteration simulates the original labeled transition 
system.

32:48

Constructing a Bisimulation:
Example

qo

A

q1

B

q2

B

q4

B
q3

B

P2

B
P1

A

qo

q1

q2

q4q3

R3

B
R2

B

R1

A

qo

q1

q2

q4q3

s1
A

s2
B

r1
A

r2
B

r3
B

simulation

bisimulation

partition

refine
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Quotient Transition System (QTS)

Given a labeled transition system T = (Q,→, Q0,L, L)
and a consistent partition1 P of Q, the quotient transition
system of T is defined as T/P = (P ,→P , Q0/P ,L, LP),
where

i. P →P P
0 ⇐⇒ ∃ q ∈ P, q0 ∈ P 0 3 q → q0

ii. Q0/P = {P ∈ P | P ⊆ Q0}

iii. ∀ P ∈ P , LP(P ) = L(q) for q ∈ P .

1 P is consistent if and only if ∀ P ∈ P and ∀ q, q0 ∈ P , L(q) = L(q0) and
q ∈ Q0 ⇐⇒ q0 ∈ Q0.

34:48

QTS and Simulation
Lemma. Given a consistent partition P, T/P º T .
pf. Let ψ = {(q, P ) ∈ Q×P | q ∈ P}. Suppose (q, P ) ∈ ψ

and q → q0. P is a partition of Q, so ∃P 0 ∈ P 3 q0 ∈ P 0.
P →T/P P

0, since q → q0. Therefore, ψ is a simulation
relation between T and T/P .

qo

A

q1

B

q2

B

q4

B
q3

B

P2

B
P1

A

qo

q1

q2

q4q3

T T/P

ψ = {(qo, P1), (q1, P2), (q2, P2), (q3, P2), (q4, P2)}
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QTS and Bisimulation

Proposition. ψ = {(q, P ) ∈ Q× P | q ∈ P} is
a bisimulation relation between T and T/P
⇐⇒ ∀ P, P 0 ∈ P, P ∩ Pre(P 0) ∈ {∅, P}.

qo

A

q1

B

q2

B

q4

B
q3

B
R3

B
R2

B

R1

A

qo

q1

q2

q4q3

T T/P
P1

P2
P3

E.g., P1 ∩ Pre(P2) = P1 and P1 ∩ Pre(P3) = ∅.

If there is a transition from any state in P to P′, 
there is a transition from every state in P to P′.

36:48

Proof of Bisimulation Condition

pf. ⇒ Suppose ψ above is a bisimulation between T and T/P . For
any P, P 0 ∈ P 3 P ∩ Pre(P 0) 6= ∅, P →T/P P

0. Therefore, if q ∈ P
(i.e., (q, P ) ∈ ψ), there must be a q0 3 (q0, P 0) ∈ ψ (i.e., q0 ∈ P 0)
and q → q0. Therefore, Pre(P 0) ⊇ P .
⇐ We already showed ψ is a simulation relation between T and T/P .
Suppose P ∈ P, q ∈ P , and P →T/P P

0. By the definition of →T/P ,
P ∩ Pre(P 0) 6= ∅. Hence, P ∩ Pre(P 0) = ∅, which implies ∃q0 ∈
P 0 3 q → q0. Therefore, ψ is a bisimulation between T and T/P .

Proposition. ψ = {(q, P ) ∈ Q× P | q ∈ P} is
a bisimulation relation between T and T/P
⇐⇒ ∀ P, P 0 ∈ P, P ∩ Pre(P 0) ∈ {∅, P}.
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Computing Bisimulations
Bisimulation Procedure (BP)
% given an inital consistent partition P0
P :=P0
% build the transition relation
∀ P ∈ P, P ost(P ) := {P 0 ∈ P|Post(P ) ∩ P 0 6= ∅}
% termination condition
while ∃ P, P 0 ∈ P 3 P ∩ Pre(P 0) /∈ {∅, P}
{ % refine partition (split P )

P1 := P ∩ Pre(P 0) ; P2 := P − Pre(P 0)
P := (P − {P}) ∪ {P1, P2}
% update the transition relation
Post(P1) := Post(P ∩ Pre(P

0))
Post(P2) := Post(P − Pre(P 0))

}

Note: Context implies wheter
Pre/Post operators
apply to T or T/P.

38:48

Bisimulation Procedure: Example

qo

A

q1

B

q2

B

q4

B
q3

B

P2

B
P1

A

qo

q1

q2

q4q3

R3

B
R2

B

R1

A

qo

q1

q2

q4q3

initial partition:

refine

P0 = {Q0, Q−Q0})

for P = {q1, q2, q3, q4}
P 0 = {q0}
P ∩ Pre(P 0) = {q1, q2} /∈ {∅, P}

termination condition fails:

P1 := P ∩ Pre(P 0)

P2 := P − Pre(P 0)
termination condition satisfied:

∀ P,P 0 ∈ P, P ∩ Pre(P 0) ∈ {∅, P}



20

39:48

A Sufficient Condition for Bisimulation
Proposition. If ∀ P, P 0 ∈ P , Post(P )∩P 0 = {∅, Post(P )},
then T ≡ T/P .

If there is a transition from P to any state in P ′, 
the all transitions from P go to P ′.

pf. Post(P ) ∩ P 0 = ∅ ⇒ P ∩ Pre(P 0) = ∅;
Post(P ) ∩ P 0 = Post(P )⇒ P ∩ Pre(P 0) = P .
The result follows from the previous proposition.

40:48

Verification Using Bisimulation 

construction of the 
transition relation &  

termination

representation 
of sets of states

class of 
system

construct
initial partitionHS model

bisimulation
procedure

finite
bisimulation:     

model
checker

PROPERTY IS TRUE OR 
A COUNTEREXAMPLE

CTL
specification

TS: T

T/PThese issues
are particularly
critical when T

is a hybrid 
system.
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Verification Using Simulation

construct
initial partitionHS model

construct
QTS      

finite
simulation:     

model
checker

PROPERTY IS TRUE

ACTL
specification

TS: T

T/P

FALSE FOR      T/P

false for
T?

PROPERTY IS FALSE

YES
NO

refine 
partition

always terminates
provided the transition

relation can be constructed

bisimulation test
or check 

counterexample
T/P

42:48

Outline

• Verification of Transition Systems
• Simulation and Bisimulation
• Application to Hybrid Systems
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Applying Model Checking to Hybrid Systems

• interpret a hybrid system as a transition system 
(with an infinite state space) 

• compute a finite-state quotient transition system 
(bisimulation or simulation)

• perform model checking on the finite-state system

Is this approach feasible?

44:48

Termination of BP - Decidability

Hybrid Automata (flows,guards,jumps)

Linear Hybrid Automata (P,P,P)

Rectangular Automata (In,In,In)

Multirate Automata (Zn,In,In)

Timed Automata (1n, In,{reset,continue}n )

Stopwatch Automata

Initialized

Initialized
isomorphic

bisim

O-minimal hybrid systems

Uninitialized

P = polyhedra, I = intervals, Z = integers, 1 = {1}, reset = {0}
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associate 
predicates 
with discrete 
states

HS Verification Using Simulation

construct
initial partitionHS model

construct
QTS      

finite
simulation:     

model
checker

PROPERTY IS TRUE

ACTL
specification

HS: H

T/P

FALSE FOR      T/P

false for
T?

PROPERTY IS FALSE

YES
NO

refine 
partition

discrete transition semantics

typically cannot
determine this

partition entry sets

compute transition relation
(continuous system reachability)

T/P

46:48

HS Discrete Transition Semantics

)q(I
)(eG

entry states

)'q(I

)( 0tx

)( 1
−tx

U
)(

),(
eGx

xeR
∈

))(,()( 11
−∈ txeRtxnR nR

discrete transition: (q,x) = (q,x(to)) → (q′, x′) = (q′,x(t1))
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HS Verification Using Simulation 

Primary Issues
• representation of sets of continuous states
• computation of the QTS transition relation
• termination

Next lecture: HS Reachability

48:48

Principal References
E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT 

Press, 2000.
R. Alur, T. A. Henzinger, G. Lafferriere, G. J. Pappas, Discrete 

abstractions of hybrid systems, Proceedings of the IEEE, vol. 
88, No. 7, July 2000, pp. 971-984.
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Lecture 2: Hybrid System Reachability

Bruce H. Krogh
Carnegie Mellon University

krogh@ece.cmu.edu

2:74

associate 
predicates 
with discrete 
states

HS Verification Using Simulation

construct
initial partitionHS model

construct
QTS      

finite
simulation:     

model
checker

PROPERTY IS TRUE

ACTL
specification

HS: H

T/P

FALSE FOR      T/P

false for
T?

PROPERTY IS FALSE

YES
NO

refine 
partition

discrete transition semantics, TH

typically cannot
determine this

partition entry sets

compute transition relation
(continuous system reachability)

T/P
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Outline

• Polyhedral Approximations
• CheckMate
• Low-Order Representations

4:74

HS Discrete Transition Semantics

)q(I
)(eG

entry states

)'q(I

)( 0tx

)( 1
−tx

U
)(

),(
eGx

xeR
∈

))(,()( 11
−∈ txeRtxnR nR

discrete transition: (q,x) = (q,x(to)) → (q′, x′) = (q′,x(t1))



3

5:74

Approximating Transitions in TH/P

π

(π'1,p',q')

π'1
π'2

(π'2,p',q')

(π,p,q)

p p'

q q'

6:74

and a set of initial states, X0, 
• conservatively approximate the set of reachable states 

R[0,T](X0) from time t = 0 to t = T.

),(xfx =&

Reachability for Continuous Dynamics

• Given a continuous dynamic system,
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Polyhedral Flow Pipe Approximations

X0

t1

t2

t3
t4

t5 t6 t7

t8

t9
• divide R[0,T](X0) into [tk,tk+1] segments

• enclose each segment with a convex polytope

• R[0,T](X0) = union of polytopes

8:74

S

c4

c3

c2c1

Wrapping Hyperplanes
Around a Set (1)

Step 1: 
• Choose normal 

vectors, c1,...,cm
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S

c4

c3

c2
c1

Wrapping Hyperplanes 
Around a Set (2)

Step 2:
• Adjust each hyperplane

so that it just touches S
• By solving for each i

optimization problem

xcd T
iSxi ∈

= max

10:74

],[
..

),(max

1

00

0,0

+∈
∈

=

kk

T
itxi

ttt
Xxts

xtxcd

• Embed simulation into objective function computation 
routine

)( 0],[ 1
XR

kk tt +

Wrapping a Flow Pipe Segment

• Given normal vectors ci, “shrink wrap”
in a polytope by solving for each i
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Flow Pipe Segment Approximation

Vertices(X0) at tk

Vertices(X0) at tk+1

Step 1.
a. Simulate trajectories 
from each vertex of X0.

Step 2.
Solve 
optimization 
for di

flow pipe segment 
approximated by 
{ x | ci

Tx ≤ di, ∀i }

b. Take the convex hull
and identify outward
normal vectors.

12:74

X x x0 1 20 8 1 0= ≤ ≤ ={ . , }

&

& . ( )
x x
x x x x

1 2

2 1
2

2 10 2 1
=
= − − −

Van der Pol Equation

Uniform time step
Δtk = 0.5

Initial Set

Example 1: Van der Pol Equation
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• ⇒ analytical solutionbAxx +=&

∫ −
ΔΔ+ +=

t AAt
t

At
ttt bdeeXReXR

00],0[0],[ )(ˆ)(ˆ ττ

∫ −+=
t AAtAt bdeexextx

000 ),( ττ

Improvements for Linear Systems

• Flow pipe segment computation depends only on time step Δt
• A segment can be obtained by applying affine transformation to 

another segment with the same Δt

• No longer need to embed numerical integration into optimization

14:74

Transforming a Polytope

CT-1y ≤ d+CT-1v

Polytope TP + v

Cx ≤ d

Polytope P

y = Tx+v

PT v

∫ −
ΔΔ+ +=

t AAt
t

At
ttt bdeeXReXR

00],0[0],[ )(ˆ)(ˆ ττ
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A =
− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 0
0 0 1
1 2 2

1
1
1

2
1
1

2
2
1

1
2
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, , ,   and 

Vertices for X0

Uniform time step
Δtk = 0.1

Example 2: Linear System

• Compute first segment
• Then transform it with eAΔt 49 times

16:74

ε

)(],[ PR
ttt δ+

),( *
0xtx

n/ε

εδδ ≤++ ))(),(ˆ( ],[],[ PRPRdist
tt tttt

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−= +

0

)(
*
0 1
)),((

x
tLL tt ee

L
xtxf

n δε δδ

Approximation Error

• Time step
• Size of X0
• Lipschitz constant
• Vector field
• Dimension

• Can be made 
arbitrarily small for 
each segment

)(ˆ
],[ PR

ttt δ+
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Flow Pipe Approximation

• Applies in arbitrary dimensions
• Approximation error does not accumulate from 

previous time step
• Approximation error can be made arbitrarily small by 

bounds
– δt - size of segment time step 

• independent of the starting time for the segment
– δx0 - size of initial set partition 

• depends on the starting time for the segment

18:74

Outline

• Polyhedral Approximations
• CheckMate
• Low-Order Representations
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mode
select

integrator

m(t)

xdot(t)

flow 
constraints

x(t)

x(t)

jump 
mapping

initial 
condition

e(t)

discrete-state system with 
guarded transitions

x(t)
e(t)

m(t)

cont. 
state

discrete 
state

discrete 
event

F1

F2

F3
1
S

X0

Je

e(t)

Je

jump dynamics

cont. 
state

discrete 
state

discrete 
event

discrete dynamics

Simulink Diagram of 
Hybrid System Dynamics

F1

F2

F3

1
S

continuous dynamics

20:74

Discrete Transiation Guards

x(t)

e(t)

m(t)

m=i

m=j

m=k

x ∈Gij

x ∈Gik

• forced vs. unforced transitions

• implied invariants for discrete states
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Timed Automata

integrator

xdot(t)

x(t)

jump 
mapping

initial 
condition

e(t)

discrete-state system with 
guarded transitions

x(t)
e(t)

m(t)

cont. 
state

discrete 
state

discrete 
event

1
S

X0

Je

e(t)

1• continuous dynamics = 
clocks

• guards are independent 
intervals on clock values

• jump conditions usually 
let clocks run or reset to 
zero

22:74

mode
select

integrator

m(t)

xdot(t)

x(t)

jump 
mapping

initial 
condition

e(t)

discrete-state system with 
guarded transitions

x(t)
e(t)

m(t)

cont. 
state

discrete 
state

discrete 
event

F1

F2

F3

1
S

X0

Je

e(t)

Linear Hybrid Automata

• Fk (flow constraints), Je (jump mappings), and 
Gjk (guards) are convex polyhedra

• Fk are independent of x(t)
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Piecewise-Trivial Hybrid Systems1

mode
select

integrator

m(t)

xdot(t)

flow 
constraints

x(t)

x(t)

jump 
mapping

initial 
condition

e(t)

discrete-state system with 
guarded transitions

x(t)
e(t)

m(t)

cont. 
state

discrete 
state

discrete 
event

F1

F2

F3
1
S

X0

Je

e(t)

1Dang & Maler, HS’98

Reacht(Xo,Fk) can be
represented and 

computed

24:74

Piecewise-Trivial Hybrid Systems (PTHS)

m(t)

x(t)

jump 
mapping

initial 
condition

e(t)

discrete-state system with 
guarded transitions

x(t)

e(t)

m(t)

cont. 
state

discrete 
state

discrete 
event

X0

Je

e(t)

X(t; Xo,m)
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www.ece.cmu.edu/~webk/checkmate/

26:74

CheckMate Block Diagram
x1

x2

x3

th1

th2

q1

q2

th3

Switched
Continuous System 3

Switched
Continuous System 2

Switched
Continuous System 1

C*x <= d

Polyhedral
Threshold 3

C*x <= d

Polyhedral
Threshold 2

C*x <= d

Polyhedral
Threshold 1

Mux

Mux2

MuxMux1

Mux

Mux

OR

Logical
Operator

c1

c2
q

Finite
State Machine 2

c1

c2
q

Finite
State Machine 1
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Simulink 
Model

28:74

Switched Continuous System
• Parameter: Switching function f
• Input: Discrete condition signal u
• Output: Continuous state vector x
• Description: Continuous dynamics 

selected by discrete input signal

)(xfx u=&

u x

Switched
Continuous System
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Switched Continuous 
System Parameters

30:74

Polyhedral Threshold
• Parameters: C,d
• Input: Continuous state vector x
• Output: Boolean signal

1 if Cx ≤ d
0 otherwise

• Description: Outputs Boolean signal 
indicating whether continuous state 
variable x is in polyhedron Cx ≤ d

⎩
⎨
⎧

x
C*x <= d

Polyhedral
Threshold
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Finite State Machine (Stateflow)

• Inputs:
– Data: Boolean condition signals, 

functions of PTHB and FSMB 
outputs

– Event: Transition edges of 
Boolean condition signals, are 
functions of PTHB outputs

• Output: Discrete signal (integer) 
indicating active state of FSM

event input
(vector)

scalar
data inputs

.

.

.

data 1

data N

q

Finite State Machine

32:74

Polyhedral-Invariant 
Hybrid Automaton (PIHA)

Conversion

Simulink/Stateflow Front End
(graphical editing, simulation)

Threshold-event-driven 
Hybrid Systems (TEDHS)

Flow Pipe
Approximations

Quotient 
Transition System

ACTL Verification

Partition
Refinement

Initial Partition

Elements of 
CheckMate
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CheckMate Application:
Automotive Engine Control in Cut-off Mode

A. Balluchi et. al, Hybrid control in automotive applications: the cut-off 
control Automatica Special Issue on Hybrid Systems, vol. 35, no. 3, 
March 99; and CDC 97.

Control law: Decide when to inject air/fuel for 
torque to minimize acceleration peaks during the 
cut-off operation.

Problem: Verify the event-driven implementation 
of a control law designed in continuous time.

34:74

Automotive Powertrain Model

Model from Magneti Marelli Engine Control Division

• Four-stroke, four cylinder engine

• Continuous-time powertrain model 

• Hybrid model for cylinder cycles
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CheckMate Model

x2

x1 v x2

x1

torque

start

simula

simula

C*x <= d

reach_zero

C*x <= d

reach_180

h000

h001

h010

h011

h100

h101

h110

h111

q

predictor

NOT

not2

NOT

not1

C*x <= d

h111

C*x <= d

h110

C*x <= d

h101

C*x <= d

h100

C*x <= d

h011

C*x <= d

h010

C*x <= d

h001

C*x <= d

h000

C*x <= d

finish_line

driveline

XORangle_trigger  

angle (degrees)

q

angle

NOTNOT

u

M4

Mux M3

u

M2

MuxM1
m

Demux

36:74

x2

x1 v x2

x1

torque

start

simula

simula

C*x <= d

reach_zero

C*x <= d

reach_180

h000

h001

h010

h011

h100

h101

h110

h111

q

predictor

NOT

not2

NOT

not1

C*x <= d

h111

C*x <= d

h110

C*x <= d

h101

C*x <= d

h100

C*x <= d

h011

C*x <= d

h010

C*x <= d

h001

C*x <= d

h000

C*x <= d

finish_line

driveline

XORangle_trigger  

angle (degrees)

q

angle

NOTNOT

u

M4

Mux M3

u

M2

MuxM1
m

Demux

CheckMate Model

power train
dynamics
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Continuous Dynamics - Initial Model

x = Ax + Bu u = 0 (no air-fuel) or 10

x1 = engine block angle
x2 = wheel revolution speed (radians)
x3 = axle torsion angle (in radians)
x4 = crankshaft revolution speed (rpm)
x5 = crankshaft angle (degrees)

38:74

Controller Specification

Remain within 
acceleration 

limits while tracking a 
sliding mode.

• Sliding mode control law derived in continuous time
• Hybrid implementation due to discrete torque decisions
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Cylinder Cycle

Phase_change

Phase_change

Phase_changePhase_change

compression

Exhaust Intake

combustion

Control decision to apply torque on the power stroke must be made
before the intake stroke ⇒ three step lookahead.

40:74

x2

x1 v x2

x1

torque

start

simula

simula

C*x <= d

reach_zero

C*x <= d

reach_180

h000

h001

h010

h011

h100

h101

h110

h111

q

predictor

NOT

not2

NOT

not1

C*x <= d

h111

C*x <= d

h110

C*x <= d

h101

C*x <= d

h100

C*x <= d

h011

C*x <= d

h010

C*x <= d

h001

C*x <= d

h000

C*x <= d

finish_line

driveline

XORangle_trigger  

angle (degrees)

q

angle

NOTNOT

u

M4

Mux M3

u

M2

MuxM1
m

Demux

Crankshaft Angle Rate Logic

Cylinder state transitions occur every 
180o. Crankshaft angle switches 
between 0o and 180o, angle rate 
switches between +rate and -rate.
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Predictive Control Logic

x2

x1 v x2

x1

torque

start

simula

simula

C*x <= d

reach_zero

C*x <= d

reach_180

h000

h001

h010

h011

h100

h101

h110

h111

q

predictor

NOT

not2

NOT

not1

C*x <= d

h111

C*x <= d

h110

C*x <= d

h101

C*x <= d

h100

C*x <= d

h011

C*x <= d

h010

C*x <= d

h001

C*x <= d

h000

C*x <= d

finish_line

driveline

XORangle_trigger  

angle (degrees)

q

angle

NOTNOT

u

M4

Mux M3

u

M2

MuxM1
m

Demux

42:74

Predictive Control 
Logic

The discrete state indicates the torque
decisions for the current and next two
power strokes (i.e., for three of the
four cylinders).

Transitions from each state depend
on whether predicted state for the
next power stroke is closer to the
sliding mode with or without torque.

The 9th state (not shown) is the “end 
simulation” state--reachable from any 
of the other 8 states.
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Reachable States in TM/P

Projection - Plane x2 v x3

44:74

Flowpipe for One Discrete Sequence
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Outline

• Polyhedral Approximations
• CheckMate
• Low-Order Representations

46:74

Reachability Analysis for Affine Systems

Objective: Use low-dimensional polytopes to 
compute the reach set for affine dynamic 
systems
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Affine Representations for Polytopes

A d-polytope in Rn is the image of d-polytope in Rd via an 
affine mapping Rd→ Rn : x→ Φ x + γ

Φ x+ γ

1-polytope in 1-D space
1-polytope in 2-D space

x

48:74

Example 1. Line Segment

(1,1)

(3,3)

(1-D polytope)
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Example 2. Oriented Rectangle
(full-dimensional)

50:74

Example 3. 2-polygon in 3-D



26

51:74

Computation Using Affine Representations

52:74

Computation Using Affine Representations
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Computation Using Affine Representations

Intersection in 1-DIntersection in 2-D

54:74

Approximate Affine Representation

• If a set is ‘close’ to low-dimensional…

Consider the case of a segment of  
trajectory

x(t)

x(t+h)
n-D set X

1-D polytope P

Since

,i.e., the Hausdorff distance

then

** We consider infinity norms in this work. Bδ is the hyperbox with radius δ.

Denote the set by

Approximate affine representation
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Approximate Affine Representation
Over-approximate a set by ‘bloating’.

Consider the case of a segment of  
trajectory

X

Since

,i.e., the Hausdorff distance

then

** We consider infinity norms in this work. Bδ is the hyperbox with radius δ.

Denote the set by

Approximate affine representation

δ

δ

56:74

Over-approximations With Approximate Affine 
Representation

Using approximate affine representation, over-approximations can be obtained
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initialize

Reach Set Computation Procedure

the reach set for the next 
step

use linear interpolation 
to approximate the 

reach segment

compute an over-
approximation of the 

reach segment

proceed to the 
next step

58:74

X0 X1

X0,1

Computing CH( Xk-1 U Xk )

1. Form the affine subspace containing Xk-1,Xk.
2. Project the two polytopes onto the affine subspace 

containing the convex hull.
3. Compute the convex hull in the subspace.

d = 1, dim Xk-1,Xk

m = 2, dim CH
The convex hull is 
computed in 2-D.
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Computing CH( Xk-1 U Xk )

1. Form the affine subspace
2. Project the two polytopes onto the affine subspace 

containing the convex hull.
3. Compute the convex hull in the subspace.

d = 1,
m = 2

The convex hull is 
computed in 2-D.

60:74

Computing δk-1,k

Xk-1

Xk

Xk-1,k

•Every trajectory is 
approximated by its linear 
interpolation.

• δk-1,k is computed as an upper-
bound on the infinity-norm of 
the approximation error of the 
linear interpolations over the set 
of trajectories.
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Computing δk-1,k

Xk-1

Xk

Xk-1,k

δk-1,k

δk-1,k

δk-1,k

For Pk-1,k = 〈Φk-1,k,γk-1,k,Pm〉, its δ -neighborhood over-approximates the 
reach segment.

N(Pk-1,k , δk-1,k) = Pk-1,k ⊕ Bδk-1,k =: 〈Φk-1,k,γk-1,k,Pm ,δk-1,k 〉

62:74

Summary of the Procedure

convex hull in 
reduced-order 

subspace

compute matrix 
functions

δ −neighborhood 
of the convex hull
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Handling Large-Scale Systems

Matrix-vector 
product

• The affine representations for Xk are 
computed using
– Φk = ϕ0(A,t)Φ0
– γk = ϕ0(A,t) γ0 + tϕ1(A,t) b

• Computing ϕ0(A,t)Φ0 and tϕ1(A,t) b is difficult 
for large-scale sparse systems.
– Note Φ0 =[φ01, φ02, … φ0d ]∈ ℜ n×d where d<<n, 

ϕ0(A,t)Φ0 = [ϕ0(A,t)φ01 , ϕ0(A,t)φ02 … ϕ0(A,t) φ0d ]

64:74

The Krylov Subspace Approximations

• If we are interested in computing 
ϕ0(A,t)v instead of ϕ0(A,t), 
the Krylov subspace approximation is 
an efficient way to compute it.

1. Y Saad, Analysis of some Krylov subspace approximations to the matrix exponential 
operator. SIAM Journal of Numerical Analysis, 20(1) 209-228, 1992.

2. C Moler and C Van Loan, Nineteen dubious ways to compute the exponential of a matrix, 
twenty-five years later. SIAM Review, 45(1) 3-49, 2003.

r-dim Krylov subspace = span{v, Av, A2v,..., Ar-1v}



33

65:74

Using Krylov Approximations for the 
Computations

〈Φ0, γ, Pd 〉

〈 ϕ0(A,t) Φ0, γ, Pd 〉

Approximate Linear Transformation

〈Φ0, γ, Pd 〉

Approximate Displacement

〈 [ϕ0(A,t) Φ0]K, γ, Pd 〉

〈 [ϕ0(A,t) Φ0]K, γ, Pd 〉

〈 [ϕ0(A,t) Φ0]K,[ϕ0(A,t)γ0 
+ tϕ1(A,t) b] K, Pd 〉

66:74

over-approximation 
obtained as the δ-
neighborhood, taking the 
error caused by Krylov 
subspace approximation 
into account

The Error Introduced by Krylov Method

〈Φ0, γ, Pd 〉

〈 [ϕ0(A,t) Φ0]K,[ϕ0(A,t)γ0 + tϕ1(A,t) b] K, Pd 〉

convex hull 
computed using 
the Krylov 
subspace 
approximations

δ = δk-1,k
K + δAE

to over-approximate 
reach segment

(Accumulated error) to over-approximate 
actual reach sets using Krylov method
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The Computation Procedure

68:74

The Computation Procedure

threshold for 
using Krylov

adaptive step size 
control via Krylov

bounds on Krylov 
approximation
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Example. 2-D Heat Transfer Problem

Environment: 0 C

Initial Temp: 0 C

Heated Edge: [0.9,1.1] C

2500th-order finite-difference 
model

Reach set computed using 30th-
order Krylov subspace reduced 
models.

70:74

Example. 2-D Heat Transfer Problem

Steady-state temperature distribution for

nominal in put 1 C.

Reach set vs. Time at one 
point
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Time/Memory vs. Order
2-D heat transfer problem (100th to 2500th – order)

72:74

Preliminary Results for Hybrid System 
Verification

• A set of procedures developed to replace the 
subroutines of CHECKMATE.

• Compare the results using affine representations and 
CHECKMATE using hybrid system models of thermostat 
with various orders
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Computation Time for Analyzing a Thermostat

5 10 15 20
0

10

20

30

40

50

Order of the model

C
om

pu
ta

tio
n 

tim
e

Affine representation procedures
CheckMate procedures

The initial set is a 1-D 
polytope.

CHECKMATE always 
bloats the 1-D 
polytope to full-D. 

Procedures using 
affine representations 
keep the 1-D 
polytopes.

numerical 
problems

Although the initial set is 
bloated to full-D, the reach set 
quickly becomes nearly low-D

as the system evolves.

(s
ec

on
ds

)

3

74:74

Next Lecture
• Using linear hybrid automata to approximate general 

hybrid systems

Principal References
A. Chutinan and B. H. Krogh, Computational techniques for hybrid 

system verification, IEEE Trans. on Automatic Control, vol. 48, 
no. 1, 2003, pp. 64-75.

Z. Han and B. H. Krogh, Reachability analysis of large-scale affine 
systems using low-dimensional polytopes, Hybrid Systems: 
Computation and Control, 8th International Workshop, March 
2006.
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Lecture 3: Linear Hybrid Automata

Bruce H. Krogh
Carnegie Mellon University

krogh@ece.cmu.edu

2:84

Overview

• LHA Reachability
• Approximating Richer Dynamics
• PHAVer
• Iterative Relaxation Abstractions
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mode
select

integrator

m(t)

xdot(t)

x(t)

jump 
mapping

initial 
condition

e(t)

discrete-state system with 
guarded transitions

x(t)
e(t)

m(t)

cont. 
state

discrete 
state

discrete 
event

F1

F2

F3

1
S

X0

Je

e(t)

Linear Hybrid Automata

• Fk (flow constraints), Je (jump mappings), and 
Gjk (guards) are convex polyhedra

• Fk are independent of x(t)

4:84

Reachability with LHA [Halbwachs, Henzinger, 93-97]

invariant

initial states

9

derivatives in 
invariant

successors

projection 
cone

1. find bounds 
on derivative

1. find bounds 
on derivative

2. time elapse by 
projection

2. time elapse by 
projection 3. compute 

successors of 
transitions

3. compute 
successors of 
transitions
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Overview

• LHA Reachability
• Approximating Richer Dynamics
• PHAVer
• Iterative Relaxation Abstractions

6:84

Approximating Hybrid Systems with 
Linear Hybrid Automata

mode
select

integrator

m(t)

xdot(t)

flow 
constraints

x(t)

x(t)

jump 
mapping

initial 
condition

e(t)

discrete-state system with 
guarded transitions

x(t)
e(t)

m(t)

cont. 
state

discrete 
state

discrete 
event

F1

F2

F3

1
S

X0

Je

e(t)

Objective:  Replace Fk(x) 
with constant convex 
polyhedra Pk.
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Linear Phase-Portrait Approximation

x

xdot

Fk(x)

range of x for m(t) = k

valid trajectory for H

xo

approximating 
“polydedron” Pk

valid trajectory for A

minP

maxP

minX maxX

8:84

Linear Phase-Portrait Approximation:
Time-Domain Implications

slope minP

slope maxP

te in A

x(t)

xo

minX

maxX

x(t1)

t1

range of slopes
allowed by Fk(x(t1))

te in H
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Improving Linear Phase-Portrait 
Approximations: Mode Splitting

x

xdot

Fk(x)

valid trajectory for H

xo

minX1
maxX2X’

maxP2

minP2

Pk2

mk2mk1

Pk1

minP1

maxP1

10:84

Linear Phase-Portrait Approximation:
Improved Time-Domain Approximation

t

x(t)

xo

minX

maxX

te in H

te in A

X’
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Linear Phase-Portrait Approximation:
Higher Dimensions

xdot1

xdot2
Fk(Xk)

Pk

n1

n2

n3

n4

In general find Pk by 
solving the following 
optimization problem 
in a set of face-
normal directions: 

Problem:  How to choose the ni.

max ni
T xdot

x, xdot

s.t.           xdot ∈ Fk(x)
x ∈ Xk

12:84

Linear Phase-Portrait Approximations

• guaranteed conservative approximations
• refinement introduces more discrete states 
• for bounded hybrid automata, arbitrarily close 

approximation can be attained using mode splitting
• sufficient to use rectangular phase-portrait 

approximations (ni
T = [0…1…0])
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Overview

• LHA Reachability
• Approximating Richer Dynamics
• PHAVer
• Iterative Relaxation Abstractions

14:84

PHAVer: Reachability Analysis for 
Linear Hybrid Systems and Beyond 

Goran Frehse

Verimag – UJF/CNRS/INPG, Grenoble

The following slides are 
excerpts from the following 

presentation:

PHAVer available at http://www.cs.ru.nl/~goranf/
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Yet Another Verification Tool?

• Existing not powerful enough
– in practice only 3 - 4 dimensions

• Non-conservative floating-point 
tools give wrong results
– exception: HSOLVER

• Why not use HyTech?
– numerical problems, no easy fix 

(exact arithm. & 32 bit ⇒ overflow)
– complexity explosion
– limited class of automata (LHA)

thanks to Zhi Han, CMU

not reachable 
according to HDV

Floating-Point:
CheckMate (CMU ‘98)
HYSDEL (ETH Zurich ‘99) 
d/dt (Verimag ‘00)
Predicate Abstraction (UPenn ‘02)
HDV (UPenn ‘04)
HSOLVER (MPI ’05)

Exact Arithmetic:
HyTech (Berkeley ‘95)

9

16:84

Polyhedral Hybrid Automaton Verifyer
• Reachability Analysis 

– exact arithmetic
– guaranteed overapproximation
– complexity management

• limiting bits & constraints

• State-of-the-Art Libraries:
– Parma Polyhedra Library
– Gnu MultiPrecision (GMP)

• Compositional Reasoning
– computing simulation relations

Hybrid Automata

M, A, b as intervals

Linear Hybrid Automata

Reachable States
as Polyhedra

On-the-fly over-
approximation

Overapprox. with 
limited complexity

Model

Analysis
Engine

Output

bAxxM +=&

8
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Over-Approximation of Affine Dynamics

• From

to LHA:

LHA dynamics

affine dynamics

invariant

14

18:84

Over-Approximation of Affine Dynamics

• From

to LHA:

• Solutions:

a) project invariant ∩ flow to

b) each constraint separately
(rectangular, octagonal, etc.)

β = projection
-based

constraint-based



10

19:84

Reachability of Affine Dynamics

Principle: 
1. Hybridization

– Partition State Space
(on the fly)

– Switching between
⇒ Hybrid System

2. Overapproximation
– const. bounds on 

dynamics
= “Linear” Hybrid Automata

⇒ Polyhedral enclosure      
of actual trajectories

IL [mA]

VC [V]

vector field

9

Partition depending
on dynamics

20:84

Limiting the Number of Bits

1

1

y

x0

109 x 121 y 100

6 x 6 y ?6 x 6 y ?

1

1

y

x0

600
109

6 x 6 y 600
109

6 x 6 y

1

1

y

x0

6 x 6 y 66 x 6 y 6

1. truncate bits of 
coefficients

2. push plane to
outside (solve LP)

3. snap to next 
integer

•Good:
–large problems infeasible without
–with limit of constraints → termination

•Bad:
–unbounded error 

0 25 50 75 100 125
100

1000

10000

Iteration

M
ax

. B
its

Max. # of Bits

unlimited

limited

7 bit7 bit

3 bit3 bit

12
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Limiting the Number of Constraints

• Reduce from m to z constraints
• Significance Measure f(m,d)

– Volume: exp
– Slack: LP
– max. angle: m2d

⇒ - mini≠j ai
Taj

• Heuristics to choose constraints
– deconstruction:

drop (m-z) least significant
– reconstruction:

add z most significant
• Experiments: angle & reconstr.

– 1000 → 50 in 4 dim: < 2 sec.
(1000x faster than slack)

45° 15°

30°

45°

90°

135°A

B

C

D

E
F

45°

30°

45°

150°2

1

3

4

5 D

F

B

A

C

From 6 to 5 constraints

13

22:84

Navigation Benchmark

• Fehnker, Ivancic.  
Benchmarks for Hybrid 
Systems Verification. 
HSCC'04

• “Balloon driven by wind”
– Moving object in plane
– 4-dimensional piecewise affine dynamics 

(position, velocity)
– equilibrium velocity depends on position

• Instances NAV01-NAV29 with increasing difficulty
• Verification Task: Reachability of forbidden states

www.cse.unsw.edu.au/~ansgar/benchmark/

initial
states

target states

forbidden
states

direction of 
equilibrium
velocity

initial velocities

reachable
states

2

NAV02
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Navigation Benchmark

“

“
-?-

152s 180MB
153s  68MB

34s

Pred. Abstr.
UPenn‘02

4x250MHz Sun

∞

∞

8s 48MB
6s 27MB
6s 27MB
5s 27MB

PHAVer
‘05/’06

2.8GHz P4

∞

∞

1191s 16MB
78s 5MB
73s 5MB
5s 2MB

TimePass
Stanf. ’06

PIII(!)

46000s 529MB∞“NAV05
81s 52MBSept. ‘0575s“NAV04

48000s 575MB

33s 60MB
34s 60MB
32s 59MB

PHAVer
F/B-Ref.’05
2.8GHz P4

∞

10s
10s
5s

PHAVer 
F/B-Ref.’05
3GHz Xeon

Raskin
Henzinger,

Doyen,

“

?
~150s
~30s

d/dt
Verimag

‘00

NAV03

NAV06

NAV02
NAV01

Tool

Instance

forbidden
states

initial
states

initial
velocities

NAV02 NAV04 NAV05

24:84

PHAVer References
• Reachability Analysis

– PHAVer: Algorithmic Verification of Hybrid Systems past HyTech
Frehse. HSCC'05

– Time Domain Verification of Oscillator Circuit Properties
Frehse, Krogh, Rutenbar, Maler. FAC’05

– Verifying Analog Oscillator Circuits Using Forward/Backward Abstraction 
Refinement
Frehse, Krogh, Rutenbar. DATE’06

• Compositional Reasoning
– On Timed Simulation and Compositionality

Frehse, FORMATS’06
– Assume-Guarantee Reasoning for Hybrid I/O-Automata by Over-

Approximation of Continuous Interaction
Frehse, Han, Krogh. CDC’04

http://www.cs.ru.nl/~goranf/

25
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Overview

• LHA Reachability
• Approximating Richer Dynamics
• PHAVer
• Iterative Relaxation Abstraction

26:84

CEGAR
(CounterExample Guided Abstraction Refinement)

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction
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CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

complete detailed
model

28:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

reduced, 
conservative 

model
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CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

specification

model check
the abstraction

(faster than for the 
concrete system)

30:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

no counterexample ⇒
specification satisfied 

for the concrete system
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CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

counterexample for the 
abstraction corresponds to a 

state-transition path
in the concrete system

32:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

Can the constraints along the 
counterexample path be satisfied 

in the concrete system?
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CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

feasible constraints ⇒ there exists a 
feasible counterexample for the 

concrete system

34:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

create a new abstraction (refinement) that 
eliminates the spurious counterexample
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CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

Success: CEGAR iterations often 
terminate much more quickly than 
model checking the concrete system.

36:84

CEGAR for Discrete Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

state transition system
with Boolean variables
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CEGAR for Discrete Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

eliminate some variables

38:84

CEGAR for Discrete Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

decision procedures/SAT solvers
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CEGAR for Discrete Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

add variables in the 
unsatisfiable core

40:84

CEGAR for Discrete Systems

• Leverages
– Power of model checking on simpler models
– Power of decision procedures / SAT solvers  to validate 

counterexamples
• Empirically a very powerful approach
• Many success stories

– SLAM : Verifying Device Drivers at Microsoft
• Actually ships as a commercial product Static Driver Verifier 

(SDV)
– Many software model checkers developed

• MAGIC, BLAST, CBMC
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CEGAR for Hybrid Systems
(our previous work)

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

hybrid automaton

42:84

CEGAR for Hybrid Systems 

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

start with location 
transition graph
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CEGAR for Hybrid Systems 

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstractionforbidden

locations

reachability 
specifications

44:84

CEGAR for Hybrid Systems 

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

HS reachability: apply 
increasingly precise 

approximations

forbidden
locations
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CEGAR for Hybrid Systems 

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

compute reachable sets along the 
counterexample path

46:84

CEGAR for Hybrid Systems 

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

identify point where the reachable 
set becomes empty
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CEGAR for Hybrid Systems 

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

introduce new locations (“splitting”) 
to eliminate the infeasible path

48:84

CEGAR for Hybrid Systems 

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

Limitations:
• slow convergence: refinement 

eliminates one path at a time
• HS reachability limited to low 

dimensional systems
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Iterative Relaxation Abstraction (IRA)  for Linear 
Hybrid Automata (LHA)

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

50:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

LHA
(with several continuous variables)
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IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

relaxation abstraction:
fewer continuous variables

52:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

start with the location graph 
(zero continuous variables)
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IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

LHA 
reachability

forbidden
locations

54:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

check feasibility of linear 
constraints using LP
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IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

use variables from an 
irreducible infeasible subset

(IIS) of constraints

56:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

new relaxation abstraction 
each time: 

NOT a refinement
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IRA for LHA – Leverages: 

• Power of LHA reachability on low-order LHA models

• Power of LP to validate counterexamples involving 
huge number of continuous variables.

• Ability of a LP solver to identify an irreducible 
infeasible subset for an infeasible LP

• Inspired by CEGAR for discrete systems, but 
variables are not added to refine abstractions

58:84

Relaxation Abstractions

• LHA
– discrete transition structure (locations/transitions)
– linear constraints for invariants, guards, jumps

• Given a subset of continuous variables V

• Replace linear constraints with relaxed constraints
involving only variables in V
– x<100 /\ x>20 /\ y<30 /\ x<y can be relaxed to x<100 /\ x>20 

• Not unique – various relaxations
– Drop constraints involving variables not in V (localization)
– Quantifier Elimination (Fourier-Motzkin)



30

59:84

Relaxation Abstractions

LHA

Relaxation Abstraction
(localization on x1)

60:84

Counterexamples (CEs)

• Paths in the discrete structure (sequence of locations 
and transitions)

• Key observations [Xuandong Li, Sumit Jha, Lei Bu BMC06] :
– Feasible runs along a path are defined by linear 

constraints
– CE exists in the concrete LHA if and only if the 

corresponding linear constraints are feasible
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Irreducible Infeasible Subset (IIS)

• Given a set of infeasible linear constraints 
(corresponding to a spurious CE).

• IIS: a subset of constraints such that
– the constraints are infeasible
– removing one constraint makes them feasible

•• Use variables in the IISUse variables in the IIS for the next next relaxation 
abstraction

62:84

The Language of Counterexamples
• LHA reachability gives a discrete CE automaton A for 

the current relaxed LHA
– A string s = {s0,s1 ……,sn} is in the language of the discrete 

CE automaton A only ifonly if the reachability analysis engine 
says that sn may be reachable from s0 using the path s0

s1 … … sn.

• Intersect with the previous CE automaton
– to remove CE s refuted earlierremove CE s refuted earlier by other abstractions
– also, remove previous CE in case reachability was too 

conservative

• Key Idea:  Generate relaxation abstractions with only only 
the most recent set of IIS variables.the most recent set of IIS variables.
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IRA for LHA
selecting counterexamples

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

64:84

IRA for LHA
selecting counterexamples

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

specification
not satisfied

abstraction
CE automaton

cumulative
CE automaton

update
CE automaton

select
counterexample

infeasible
constraints
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IRA for LHA
selecting counterexamples

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

specification
not satisfied

abstraction
CE automaton

cumulative
CE automaton

update
CE automaton

select
counterexample

infeasible
constraints

guarantees:
• only previously 

discovered CEs are 
explored

• no CE is used twice

66:84

IRA for LHA
constructing new relaxation abstractions

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction
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IRA for LHA
constructing new relaxation abstractions

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

identify variables
in an IIS 

continuous
variables

68:84

IRA for LHA
constructing new relaxation abstractions

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

identify variables
in an IIS 

continuous
variables

guarantees relaxation abstraction has a minimal 
set of variables to eliminate the previous CE
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IRA for LHA
implementation

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

LHA reachability:
PHAVer

70:84

IRA for LHA
implementation

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

CE Automata :
AT&T FSM Library
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IRA for LHA
implementation

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

LP & IIS Analysis :
CPLEX

LP & IIS Analysis :
CPLEX

72:84

IRA vs. PHAVer for an Adaptive Cruise 
Control Example (time in sec)

did not 
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA 
Fourier-Motzkin

IRA –
Localization

No. of 
Variables
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IRA vs. PHAVer for an Adaptive Cruise 
Control Example (time in sec)

did not 
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA 
Fourier-Motzkin

IRA –
Localization

No. of 
VariablesIRA becomes faster for 

≥ 12 variables
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IRA vs. PHAVer for an Adaptive Cruise 
Control Example (time in sec)

did not 
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA 
Fourier-Motzkin

IRA –
Localization

No. of 
Variables

IRA-FM becomes faster 
for ≥ 14  variables
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IRA vs. PHAVer for an Adaptive Cruise 
Control Example (time in sec)

did not 
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA 
Fourier-Motzkin

IRA –
Localization

No. of 
Variables

15 Vars: 19.5 hr. (PHAVer) vs. 3 min. (IRA-LOC)
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IRA vs. PHAVer for an Adaptive Cruise 
Control Example (time in sec)

did not 
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA 
Fourier-Motzkin

IRA –
Localization

No. of 
Variables

PHAVer fails to converge 
for 16 variables
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IRA-Loc vs. IRA-FM

IRA-FM

IRA-Loc

78:84

Switched Buffer Network1

2

7

3

4

5 6

11

8

9 10

1

Buffer Size: 
100

Valve 
Operation
Closed Mode: 0
Open Mode: 10

Controller

Hybrid automaton 
controlling the valves 
in the channels

• Buffers connected by pipes with valves. 
• Valves have several modes
• Controller observes buffers and to switch valve modes 
• Specification: No buffer overflow

1Frehse & Maler, HSCC ‘07
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Switched Buffer Network

• Implemented a simple controller with three locations 
and 11 continuous variables

• Design: sequence of actual counterexamples from 
IRA used to “tune” the control parameters

• One case led to a 101 location CE in 3 iterations of 
the abstraction refinement loop

Final design (verified):
• PHAVer took over 12 minutes
• IRA took 23.7 seconds

80:84

Nuclear Power Plant Control2

• Temperature control
– rods immersed to cool the reactor, withdrawn to allow reaction
– rods controlled temperature measurements and local  timers. 
– each rod can stay inside only for a certain max time limit

• Temperature should not rise beyond a critical threshold.
• Model

– 3 control rods
– 11 continuous variables

2 Variation of the problem studied by Kapur and Shyamasundar (HART’97),  R 
Alur et al (TCS’95), P. H. Ho 95 PhD thesis and others.
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Nuclear Power Plant Control

Iterative Design Procedure
– First attempt: 

• simple counterexample of 3 locations
• abstraction 3 continuous variables
• all of variables related to  control rod 1
• clear that the rod was being inserted too late
• changed the cutoff temperature

– Similar CEs for control rods 2 and 3
Final Design

– PHAVer verification: 16 hours
– IRA verification: 6 iterations, 30.04 seconds
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Current Work

• Further empirical studies
• Use of IRA for interactive design (actually using the 

counterexamples!)
• Distributed computation (we have found most of the 

time is spent in FM quantifier elimination)
• Extensions to more general hybrid systems (outer 

refinement loops)
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Hybrid System Reachability:
Additional Topics

• systems with inputs
– control inputs
– disturbances

• uncertain systems
– unknown parameters
– stochastic systems

• other abstractions/representations
– predict abstraction
– ellipsoids
– qualitative reasoning
– level sets

• theorem proving


