Reachability Analysis and Verification

CarnegieMellon

1:48

Bruce H. Krogh Department of Electrical and Computer Engineering Carnegie Mellon University Pittsburgh, Pennsylvania – USA krogh@ece.cmu.edu

Lecture 1: Transition Systems & Verification

Bruce H. Krogh Carnegie Mellon University krogh@ece.cmu.edu

Outline

- Verification of Transition Systems
- Simulation and Bisimulation
- Application to Hybrid Systems

4:48

3:48

CarnegieMellon

CarnegieMellon

Transition System (TS)

- $T = (Q, \to, Q_0, \mathcal{L}, L)$
 - \bullet states Q
 - transitions $\rightarrow \subseteq Q \times Q$
 - initial states $Q_0 \subseteq Q$
 - labels (atomic propositions) $\mathcal L$
 - labeling function $L:Q\to 2^{\mathcal{L}}$

5:48

CarnegieMellon

 $\begin{bmatrix} q_3 \\ B \end{bmatrix}$

q₄ B

 q_1 B

> q_2 B

Paths & Runs

path: $\pi = q_0 q_1 \ldots \in Q^{\omega}$, $q_i \rightarrow q_{i+1} \forall i \ge 0$ run: a path for which $q_0 \in Q_0$

e.g., $\pi = q_0 q_1 (q_3 q_2)^{\omega}$ is a run.

Predecessors (Pre) and Successors (Post)

7:48

CarnegieMellon

CarnegieMellon

Formal Verification - Model Checking

CornegieMell

10:48

Where does verification fit in the control system design flow?

The Computation Tree

- Path Quantifiers (from a state)
 - A : For <u>all computation paths (universal quantification)</u>
 - **E** : There <u>e</u>xists a computation path (existential quantification)
- CTL (computation tree logic)
 a temporal operator *must* be preceded by a path quantifier

12:48

11:48

CarnegieMe

CTL Model Checking

Problem: Given a TS *T* and a CTL formula f, determine if *f* is true for all initial states Q_0 .

Solution: Compute *predicate* $P_f = \{ q \in Q \mid q \models f \}$ and see if $Q_0 \subseteq P$.

- Symbolic Model Checking
 - identify basic CTL operators with greatest fixpoint (gfp) or least fixpoint (lfp) of predicate transformers
 - $-\,$ apply gpf, lfp, and set operations as needed inductively over subformulas of f to obtain $\rm P_{f}$

¹ Fixpoint is a shortened form of the more precise term, *fixed point*.

15:48

CarnegieMello

Greatest and Least Fixpoints

- greatest fixpoint of τ:
 - $-\operatorname{gfp} Z [\tau(Z)] \triangleq$
 - $P \subseteq Q \ni P = \tau(P) \text{ and if } P' = \tau(P'), P' \subseteq P.$
- least fixpoint of τ:
 - Ifp Z [τ (Z)] \triangleq P \subseteq Q \ni P = τ (P) and if P' = τ (P'), P \subseteq P'.
- τ monotonic \Rightarrow gfp Z [τ (Z)] and lfp Z [τ (Z)] exist.

CarnegieMellon

For τ monotonic:

Fixpoint Characterizations for CTL Operators

- $AG(p) = gfp Z [p \land AX Z]$
- EG(p) = gfp Z [p \land EX Z]
- $AF(p) = Ifp Z [p \lor AX Z]$
- $EF(p) = Ifp Z [p \lor EX Z]$
- $A(p_1 U p_2) = Ifp Z [p_2 \lor (p_1 \land AX Z)]$
- $E(p_1 U p_2) = Ifp Z [p_2 \lor (p_1 \land \textbf{EX} Z)]$

Intuitively:

gfp corresponds to properties that should always hold, lfp corresponds to eventualities.

ACTL: Universal Properties

- When approximations are used to prove properties of a system (*abstractions* or *simulations*), only universal properties can be shown (properties true for all paths in the computation tree).
- ACTL $\triangleq CTL$ with
 - only universal path quantification (A: for all paths)
 - negations applied only to atomic propositions to avoid implicit existential path quantification (i.e., ¬ A is not permitted)

Specification: No "bad states" are reached.

Solution: Atomic proposition $b \triangleq bad state, f = AG(\neg b)$. • $Q_0 \subseteq AG(\neg b) = gfp Z [\neg b \land AX Z]$

20:48

19:48

CarnegieMeller

Alternative Solution: Forward Reachability

$$\begin{split} \mathsf{P} &:= \mathsf{Q}_0 \\ \text{while true do} \\ & \text{if } \mathsf{P} \cap \neg b \text{ return "unsafe"} \\ & \text{if } \mathsf{Post}(\mathsf{P}) \subseteq \mathsf{P} \text{ return "safe"} \\ & \mathsf{P} &:= \mathsf{P} \cup \mathsf{Post}(\mathsf{P}) \\ & \text{end while} \end{split}$$

This is the approach used by *explicit state* model checkers.

Outline

- Verification of Transition Systems
- Simulation and Bisimulation
- Application to Hybrid Systems

22:48

21:48

CarnegieMellon

Simulation Relations

Def. T_2 simulates T_1 ($T_2 \succeq T_1$) if there is a simulation relation between T_1 and T_2 .

 $T_i = (Q_i, \rightarrow_i, Q_{i0}, \mathcal{L}, L_i), i = 1, 2. \quad \psi \subseteq Q_1 \times Q_2$ is a simulation relation between T_1 and T_2 if:

i. $\forall q_{10} \in Q_{10}, \exists q_{20} \in Q_{20} \ni (q_{10}, q_{20}) \in \psi$ (each initial state in T_1 has a corresponding initial state in T_2)

ii. if $(q_1, q_2) \in \psi$

a. $L_1(q_1) = L_2(q_2)$ (corresponding states have the same labels) b. $q_1 \rightarrow_1 q'_1 \Rightarrow \exists q'_2 \in Q_2 \Rightarrow q_2 \rightarrow_2 q'_2 \land (q'_1, q'_2) \in \psi$ (each transition in T_1 has a corresponding tradition in T_2)

23:48

Simulation & Path Correspondence

Proposition. If $T_2 \succeq T_1$, then for any path π_1 in T_1 there exists a corresponding path π_2 in T_2 , where π_2 depends on the particular simulation relation ψ between T_1 and T_2 .

Note: Corresponding paths have the same label sequence.

Application of Simulation

If $T_2 \succeq T_1$:

• ACTL properties (*universal properties*) true for the set of *all* paths in for *T*₂ are true for all label sequences for *T*₁.

Why do we care?

 it may be easier to check an ACTL property for T₂ than for T₁ (especially if T₂ has a *finite* number of states and T₁ has an *infinite* number of states!)

Basic approach to verification: Given a TS T_1 and an ACTL property p, construct a TS $T_2 \succeq T_1$ for which p can be checked efficiently.

Note: An ACTL property *not* true for T_2 may still be true for T_1 (since T_1 has a smaller set of paths). Counterexamples for an ACTL property in T_2 (paths violating the property) that satisfy the property for T_1 are called *spurious counterexamples* for T_1

25:48

Verification Using Simulation: Example

- ACTL property true for T' ⇒ true for T
 e.g., AG(AX(A∨B)), A or B is always true in the next state
- universal property not true for T' may be true for T
 e.g., AF(B), B is always eventually true

Bisimulation

 T_1 and T_2 are bisimulation equivalent (denoted $T_1 \equiv T_2$) if $T_1 \succeq T_2$ and $T_2 \succeq T_1$.

27:48

Bisimulation

Bisimulation equivalance is established by the existence of a bisimulation relation $B \subseteq Q_1 \times Q_2$, where B is a simulation relation between T_1 and T_2 and B^{-1} is a simulation relation between T_2 and T_1 .

Application of Bisimulation

CarnegieMellon

If $T' \equiv T$:

• CTL properties (*universal* & *existential*) are true for *T* ′ ⇔ they are true for *T*.

Again ...

 it may be easier to check a CTL property for T' than for T (especially if T' has a *finite* number of states and T has an *infinite* number of states!)

So having a bisimulation is better than simulation, BUT ...

the *basic approach* (finding a *bisimulation* for which verification is efficient) may not be possible.

More to come on this issue.

30:48

31:48

Constructing a Bisimulation: Quotient Transition Systems

The basic idea:

- partition ("quotient") the set of states, grouping states with the same labels (a *consistent* partition)
- construct a transition relation between the partitions reflecting the underlying transition relation
- if necessary, refine the partition until a bisimulation is reached

Note: The quotient transition system (QTS) created on each iteration simulates the original labeled transition system.

Given a labeled transition system $T = (Q, \rightarrow, Q_0, \mathcal{L}, L)$ and a consistent partition¹ \mathcal{P} of Q, the quotient transition system of T is defined as $T/\mathcal{P} = (\mathcal{P}, \rightarrow_{\mathcal{P}}, Q_0/\mathcal{P}, \mathcal{L}, L_{\mathcal{P}})$, where

- i. $P \rightarrow_{\mathcal{P}} P' \iff \exists q \in P, q' \in P' \ni q \rightarrow q'$ ii. $Q_0/\mathcal{P} = \{P \in \mathcal{P} \mid P \subseteq Q_0\}$ iii. $\forall P \in \mathcal{P}, L_{\mathcal{P}}(P) = L(q) \text{ for } q \in P.$
- ¹ \mathcal{P} is consistent if and only if $\forall P \in \mathcal{P}$ and $\forall q,q' \in P$, L(q) = L(q') and $q \in Q_0 \iff q' \in Q_0$.

33:48

CarnegieMelle

QTS and Simulation

Lemma. Given a consistent partition \mathcal{P} , $T/\mathcal{P} \succeq T$. pf. Let $\psi = \{(q, P) \in Q \times \mathcal{P} \mid q \in P\}$. Suppose $(q, P) \in \psi$ and $q \to q'$. \mathcal{P} is a partition of Q, so $\exists P' \in \mathcal{P} \ni q' \in P'$. $P \to_{T/\mathcal{P}} P'$, since $q \to q'$. Therefore, ψ is a simulation relation between T and T/\mathcal{P} .

 $\psi = \{(q_o, P_1), (q_1, P_2), (q_2, P_2), (q_3, P_2), (q_4, P_2)\}$

QTS and Bisimulation

E.g., $P_1 \cap Pre(P_2) = P_1$ and $P_1 \cap Pre(P_3) = \emptyset$.

35:48

Proof of Bisimulation Condition

Proposition. $\psi = \{(q, P) \in Q \times \mathcal{P} \mid q \in P\}$ is a *bisimulation* relation between T and T/\mathcal{P} $\iff \forall P, P' \in \mathcal{P}, P \cap Pre(P') \in \{\emptyset, P\}.$

pf. \Rightarrow Suppose ψ above is a bisimulation between T and T/\mathcal{P} . For any $P, P' \in \mathcal{P} \ni P \cap Pre(P') \neq \emptyset$, $P \to_{T/\mathcal{P}} P'$. Therefore, if $q \in P$ (i.e., $(q, P) \in \psi$), there must be a $q' \ni (q', P') \in \psi$ (i.e., $q' \in P'$) and $q \to q'$. Therefore, $Pre(P') \supseteq P$.

 $\begin{array}{l} \Leftarrow \text{ We already showed } \psi \text{ is a simulation relation between } T \text{ and } T/P. \\ \text{Suppose } P \in \mathcal{P}, \ q \in P, \ \text{and } P \rightarrow_{T/P} P'. \text{ By the definition of } \rightarrow_{T/P}, \\ P \cap Pre(P') \neq \emptyset. \text{ Hence, } P \cap Pre(P') = \emptyset, \text{ which implies } \exists q' \in P' \ \ni \ q \rightarrow q'. \text{ Therefore, } \psi \text{ is a bisimulation between } T \text{ and } T/\mathcal{P}. \end{array}$

Computing Bisimulations

CarnegieMellor

Bisimulation Procedure (BP) % given an inital consistent partition \mathcal{P}_0 $\mathcal{P}:=\mathcal{P}_0$ % build the transition relation $\forall P \in \mathcal{P}, Post(P) := \{P' \in \mathcal{P} | Post(P) \cap P' \neq \emptyset\}$ % termination condition while $\exists P, P' \in \mathcal{P} \ni P \cap Pre(P') \notin \{\emptyset, P\}$ % refine partition (split P) { $P_1 := P \cap Pre(P')$; $P_2 := P - Pre(P')$ $\mathcal{P} := (\mathcal{P} - \{P\}) \cup \{P_1, P_2\}$ % update the transition relation Note: Context implies wheter $Post(P_1) := Post(P \cap Pre(P'))$ Pre/Post operators $Post(P_2) := Post(P - Pre(P'))$ apply to T or T/\mathcal{P} . } 37:48

39:48

A Sufficient Condition for Bisimulation

Proposition. If $\forall P, P' \in \mathcal{P}, Post(P) \cap P' = \{\emptyset, Post(P)\},\$ then $T \equiv T/\mathcal{P}$.

If there is a transition from *P* to any state in *P*', the all transitions from *P* go to *P*'.

pf. $Post(P) \cap P' = \emptyset \Rightarrow P \cap Pre(P') = \emptyset;$ $Post(P) \cap P' = Post(P) \Rightarrow P \cap Pre(P') = P.$ The result follows from the previous proposition.

CarnegieMellon

Verification Using Simulation

Outline

- Verification of Transition Systems
- Simulation and Bisimulation
- Application to Hybrid Systems

HS Verification Using Simulation

CarnegieMellon

HS Discrete Transition Semantics

HS Verification Using Simulation

CarnegieMellon

Primary Issues

- · representation of sets of continuous states
- computation of the QTS transition relation
- termination

Next lecture: HS Reachability

- E. M. Clarke, O. Grumberg, D. A. Peled, *Model Checking*, MIT Press, 2000.
- R. Alur, T. A. Henzinger, G. Lafferriere, G. J. Pappas, Discrete abstractions of hybrid systems, *Proceedings of the IEEE*, vol. 88, No. 7, July 2000, pp. 971-984.

48:48

47:48

CarnegieMellon

Lecture 2: Hybrid System Reachability

CarnegieMellon

1:74

CarnegieMellon

Bruce H. Krogh Carnegie Mellon University krogh@ece.cmu.edu

HS Verification Using Simulation

Outline

- Polyhedral Approximations
- CheckMate
- Low-Order Representations

3:74

CarnegieMellon

Approximating Transitions in T_H/P

Reachability for Continuous Dynamics

• Given a continuous dynamic system,

$$\dot{x} = f(x),$$

and a set of initial states, X_{0} ,

• conservatively approximate the set of reachable states $R_{0,T}(X_0)$ from time t = 0 to t = T.

Polyhedral Flow Pipe Approximations

7:74

Wrapping a Flow Pipe Segment

• Given normal vectors c_i , "shrink wrap" $R_{[t_k,t_{k+1}]}(X_0)$ in a polytope by solving for each *i*

$$d_i = \max_{x_0,t} c_i^T x(t, x_0)$$

s.t. $x_0 \in X_0$
 $t \in [t_k, t_{k+1}]$

• Embed simulation into objective function computation routine

Flow Pipe Segment Approximation

11:74

Example 1: Van der Pol Equation

Improvements for Linear Systems

•
$$\dot{x} = Ax + b \Rightarrow$$
 analytical solution

$$x(t, x_0) = e^{At} x_0 + e^{At} \int_0^t e^{-A\tau} b d\tau$$

- Flow pipe segment computation depends only on time step ∆t
- A segment can be obtained by applying affine transformation to another segment with the same ∆t

$$\hat{R}_{[t,t+\Delta t]}(X_0) = e^{At} \hat{R}_{[0,\Delta t]}(X_0) + e^{At} \int_0^t e^{-A\tau} b d\tau$$

· No longer need to embed numerical integration into optimization

13:74

Transforming a Polytope

Example 2: Linear System

• Then transform it with $e^{A \Delta t}$ 49 times

15:74

Approximation Error

Flow Pipe Approximation

- Applies in arbitrary dimensions
- Approximation error does not accumulate from previous time step
- Approximation error can be made arbitrarily small by bounds
 - $-\delta_t$ size of segment time step
 - independent of the starting time for the segment
 - $-\delta_{x0}$ size of initial set partition
 - depends on the starting time for the segment

1	7	:	7	4

CarnegieMellon

CarnegieMellon

Outline

- Polyhedral Approximations
- CheckMate
- Low-Order Representations

Simulink Diagram of Hybrid System Dynamics

continuous dynamics flow constraints discrete dynamics F_1 integrator xdot(t) m(t) state e(t) <u>1</u> S x(t) e(t) F_3 x(t) scre ever m(t) initial discrete-state system with mode condition guarded transitions x(t) select jump dynamics e(t) jump mapping

19:74

CornegieMel

CarnegieMellon

Discrete Transiation Guards

- forced vs. unforced transitions
- implied invariants for discrete states

Timed Automata

- continuous dynamics = clocks
- guards are independent intervals on clock values
- jump conditions usually let clocks run or reset to zero

21:74

CarnegieMellon

Linear Hybrid Automata

- F_k (flow constraints), J_e (jump mappings), and G_{jk} (guards) are convex polyhedra
- F_k are independent of x(t)

Piecewise-Trivial Hybrid Systems¹

¹Dang & Maler, HS'98

23:74

CarnegieMellon

CarnegieMellon

Piecewise-Trivial Hybrid Systems (PTHS)

www.ece.cmu.edu/~webk/checkmate/

25:74

CarnegieMells

CarnegieMellon

CheckMate Block Diagram

Switched Continuous System

- **Parameter:** Switching function *f*
- Input: Discrete condition signal u
- **Output:** Continuous state vector *x*
- **Description:** Continuous dynamics selected by discrete input signal

$$\dot{x} = f_u(x)$$

28:74

CarnegieMellon

	Block Parameters: scs 🛛 🗙
	 SwitchedContinuousSystem (mask) (link)
Cultabad Continuous	This block represents a switched continuous dynamic system. The number
Switched Continuous	of continous states and discrete inputs should be entered as integer scalars. The initial continous states should be entered as a vector of the
	dimension specified by the number of continous states. The switching
System Parameters	function is m-file function f(x,u) that outputs the continuous derivative xdot given continuous variable x and discrete input u. Initial continuous set and
oystern r drameters	analysis region parameters are used for PIHA conversion purpose only.
	I hey do not affect the simulation result. Initial continuous set is specified by
	CE'x = dE
V MATLAR Editor/Dobuggor Jouritab Am	Analysis region is specified by inequality
MATLAB Editor/Debugger - SwitchA.m LIX	C*x <= d.
A File Fait Alex Febra Tools Milligan Helb - 19, X	Parameters
	Number of Continuous Variables
	3
	Number of Discrete Inputs:
function [A,type] = switchA(x,u)	1
	Initial Continuous States:
type = 'linear';	(5 5 5)
case 1.	Switching Eurotion m-File:
$A = [-1 \ 1 \ 1$	switchA
	/ Lighted Constitutions Calls CE
-1 I U];	/ 10 0 11
$A = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}$	
0.5 -1 0	5 Initial Continuous Set: dt.
-1 1 Uj;	J ^o
A = zeros(3,3);	Initial Continuous Set: Cl
end	[100;100;010;010]
return //	Initial Continuous Set: dl
	[6:4:6:4]
a switcha m	Analysis Region: C
	[-100;0-10;00-1;001;010;100]
Ready Line 9 4 //	Analysis Region: d
	[20,20,20,20,20,20]
	Apply Revert Help Close

Polyhedral Threshold

- Parameters: C,d
- Input: Continuous state vector x
- Output: Boolean signal

1 if *Cx* ≤ *d*

0 otherwise Description: Outputs Boolean signal indicating whether continuous state variable x is in polyhedron Cx ≤ d

30:74

CarnegieMellon

Finite State Machine (Stateflow)

CheckMate Application: Automotive Engine Control in Cut-off Mode

<u>Control law</u>: Decide when to inject air/fuel for torque to minimize acceleration peaks during the cut-off operation.

<u>Problem</u>: Verify the event-driven implementation of a control law designed in continuous time.

A. Balluchi et. al, Hybrid control in automotive applications: the cut-off control *Automatica* Special Issue on Hybrid Systems, vol. 35, no. 3, March 99; and CDC 97.

33:74

Automotive Powertrain Model

Model from Magneti Marelli Engine Control Division

- Four-stroke, four cylinder engine
- Continuous-time powertrain model
- Hybrid model for cylinder cycles

CheckMate Model

35:74

CarnegieMellon

CheckMate Model

Continuous Dynamics - Initial Model

CarnegieMellon

 $\mathbf{\dot{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ $\mathbf{u} = 0$ (no air-fuel) or 10

 x_1 = engine block angle x_2 = wheel revolution speed (radians) x_3 = axle torsion angle (in radians) x_4 = crankshaft revolution speed (rpm) x_5 = crankshaft angle (degrees)

Controller Specification

- Sliding mode control law derived in continuous time
- Hybrid implementation due to discrete torque decisions

38:74

Cylinder Cycle

39:74

CarnegieMellon

Crankshaft Angle Rate Logic

41:74

CarnegieMellon

Reachable States in T^M/P

43:74

Flowpipe for One Discrete Sequence

Outline

CarnegieMellon

- Polyhedral Approximations
- CheckMate
- Low-Order Representations

Reachability Analysis for Affine Systems

Objective: Use low-dimensional polytopes to compute the reach set for affine dynamic systems

 $\dot{x} = Ax + b$, $x(0) \in \mathcal{X}_0$ and $dim(\mathcal{X}_0) \ll n$

46:74

Affine Representations for Polytopes

A *d*-polytope in \mathbf{R}^n is the image of *d*-polytope in \mathbf{R}^d via an affine mapping $\mathbf{R}^{d} \rightarrow \mathbf{R}^{n} : x \rightarrow \Phi x + \gamma$

$$\mathcal{P}_n = \langle \Phi, \gamma, \mathcal{P}_d \rangle \subseteq \mathbb{R}^n$$

:= $\{x | x = \Phi w + \gamma, w \in \mathcal{P}_d\},$
 $\mathcal{P}_d \text{ is full-dimensional,}$
 $\mathbf{0} \in \mathcal{P}_d \text{ and } \forall w \in \mathcal{P}_d : ||w|| \le 1$

$$\begin{array}{c|c} \mathcal{P}_1 \subseteq \mathbb{R}^1 & x \longrightarrow \mathcal{P}_x + \gamma \\ \hline \mathcal{P}_2 \subseteq \mathbb{R}^2 \\ \hline \end{array}$$

1-polytope in 1-D space

```
.
1-polytope in 2-D space
```

47:74

CarnegieMel

Example 1. Line Segment

49:74

Computation Using Affine Representations

• Affine transformation:

$$A < \Phi, \gamma, \mathcal{P}_w > +b = .$$

• Minkowski sum: •

$$<\Phi_1, \gamma_1, \mathcal{P}_{w1}> \oplus <\Phi_2, \gamma_2, \mathcal{P}_{w2}>= \ < ig[\Phi_1 \quad \Phi_2ig], \gamma_1+\gamma_2, \mathcal{P}_{w1}\otimes \mathcal{P}_{w2}>.$$

5′	:	7	4

CarnegieMellon

Computation Using Affine Representations

• Cartesian product:

<

$$\Phi_{1}, \gamma_{1}, \mathcal{P}_{w1} > \otimes < \Phi_{2}, \gamma_{2}, \mathcal{P}_{w2} > = \\ < \begin{bmatrix} \Phi_{1} & 0 \\ 0 & \Phi_{2} \end{bmatrix}, \begin{bmatrix} \gamma_{1} \\ \gamma_{2} \end{bmatrix}, \mathcal{P}_{w1} \otimes \mathcal{P}_{w2} > .$$

• Intersection with halfspace*:

$$<\Phi,\gamma,P(\Pi_w,d_w)>\cap H(\pi^T,d)=<\Phi,\gamma,P(\begin{bmatrix}\Pi_w\\\pi^T\Phi\end{bmatrix},\begin{bmatrix}d_w\\d-\pi^T\gamma\end{bmatrix})>$$

 ${}^{*}H(\pi^{T},d) = \{x | \pi^{T}x \leq d, x \in \mathbb{R}^{n}\}, \pi \in \mathbb{R}^{n} \text{ and } d \in \mathbb{R}$ ${}^{*}P(\Pi,d) = \{x | \Pi x \leq d\} \subseteq \mathbb{R}^{n} \text{ is the } \mathcal{H}\text{-representation of the polytope.}$

Computation Using Affine Representations

• Intersection with halfspace

53:74

CarnegieMellon

Approximate Affine Representation

• If a set is 'close' to low-dimensional...

Consider the case of a segment of trajectory

Since $\mathcal{X} \approx \mathcal{P}$,i.e., the Hausdorff distance $d(\mathcal{X}, \mathcal{P}) \leq \delta$ then $\mathcal{X} \subseteq \mathcal{P} \oplus \mathcal{B}_{\delta}$ Denote the set by

 $<\Phi,\gamma,\mathcal{P}_w,\delta>\equiv<\Phi,\gamma,\mathcal{P}_w>\oplus\mathcal{B}_\delta$

Approximate affine representation

** We consider infinity norms in this work. B_{δ} is the hyperbox with radius δ .

Approximate Affine Representation

Over-approximate a set by 'bloating'.

 $\begin{array}{lll} \mbox{Since} & \mathcal{X}\approx\mathcal{P}\\ \mbox{,i.e., the Hausdorff distance } d(\mathcal{X},\mathcal{P})\leq\delta\\ & \mbox{then} & \mathcal{X}\subseteq\mathcal{P}\oplus\mathcal{B}_\delta \end{array}$

 $\begin{array}{l} \text{Denote the set by} \\ <\Phi,\gamma,\mathcal{P}_w,\delta> \equiv <\Phi,\gamma,\mathcal{P}_w> \oplus \mathcal{B}_\delta \\ & \swarrow \end{array}$

Approximate affine representation

** We consider infinity norms in this work. B_{δ} is the hyperbox with radius δ .

55:74

Over-approximations With Approximate Affine Representation

Using approximate affine representation, over-approximations can be obtained

- Affine transformation: $A < \Phi, \gamma, \mathcal{P}_w, \delta > +b \subseteq < A\Phi, A\gamma + b, \mathcal{P}_w, ||A||\delta >$.
- Minkowski sum: $\langle \Phi_1, \gamma_1, \mathcal{P}_{w1}, \delta_1 \rangle \oplus \langle \Phi_2, \gamma_2, \mathcal{P}_{w2}, \delta_2 \rangle = \langle \begin{bmatrix} \Phi_1 & \Phi_2 \end{bmatrix}, \gamma_1 + \gamma_2, \mathcal{P}_{w1} \otimes \mathcal{P}_{w2}, \delta_1 + \delta_2 \rangle.$
- Cartesian product: $\langle \Phi_1, \gamma_1, \mathcal{P}_{w1}, \delta_1 \rangle \otimes \langle \Phi_2, \gamma_2, \mathcal{P}_{w2}, \delta_2 \rangle \subseteq \langle \begin{bmatrix} \Phi_1 \\ \Phi_2 \end{bmatrix}, \begin{bmatrix} \gamma_1 \\ \gamma_2 \end{bmatrix}, \mathcal{P}_{w1} \otimes \mathcal{P}_{w2}, \max\{\delta_1, \delta_2\} \rangle.$
- Intersection with halfspace :

$$<\Phi,\gamma,P(\Pi_w,d_w),\delta>\cap H(\pi^T,d)\subseteq<\Phi,\gamma,P(\begin{bmatrix}\Pi_w\\\pi^T\Phi\end{bmatrix},\begin{bmatrix}d_w\\d-\pi^T\gamma+\|\Pi\|\delta\end{bmatrix}),\delta>.$$

CarnegieMellor

Reach Set Computation Procedure

Computing CH($X_{k-1} \cup X_k$)

- 1. Form the affine subspace containing X_{k-1}, X_k .
- 2. Project the two polytopes onto the affine subspace containing the convex hull.
- 3. Compute the convex hull in the subspace.

Computing CH($X_{k-1} \cup X_k$)

CarnegieMellon

- 1. Form the affine subspace
- 2. Project the two polytopes onto the affine subspace containing the convex hull.
- 3. Compute the convex hull in the subspace.

Computing $\delta_{k-1,k}$

•Every trajectory is *approximated* by its linear interpolation.

• $\delta_{k-1,k}$ is computed as an *upper-bound* on the *infinity-norm* of the approximation error of the linear interpolations over the set of trajectories.

For $\mathcal{P}_{k-l,k} = \langle \Phi_{k-l,k}, \gamma_{k-l,k}, \mathcal{P}_m \rangle$, its δ -neighborhood *over-approximates* the reach segment.

 $N(\mathcal{P}_{k-I,k}, \delta_{k-I,k}) = \mathcal{P}_{k-I,k} \oplus \mathcal{B}_{\partial k-I,k} =: \langle \mathcal{P}_{k-I,k}, \gamma_{k-I,k}, \mathcal{P}_{m}, \delta_{k-I,k} \rangle$

61:74

CarnegieMeller

Summary of the Procedure

The Krylov Subspace Approximations

 If we are interested in computing φ₀(A,t)v instead of φ₀(A,t), the Krylov subspace approximation is an efficient way to compute it.

r-dim Krylov subspace = span{ $v, Av, A^2v, ..., A^{r-1}v$ }

1. Y Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator. *SIAM Journal of Numerical Analysis*, 20(1) 209-228, 1992.

 C Moler and C Van Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45(1) 3-49, 2003.

Using Krylov Approximations for the Computations

Approximate Linear Transformation

65:74

CarnegieMellon

The Computation Procedure

67:74

CarnegieMellen

The Computation Procedure

Example. 2-D Heat Transfer Problem

⁽a) A heated metal plate.

Environment: 0 C

Initial Temp: 0 C

Heated Edge: [0.9,1.1] C

2500th-order finite-difference model

Reach set computed using 30thorder Krylov subspace reduced models.

69:74

CarnegieMellon

Example. 2-D Heat Transfer Problem

Reach set vs. Time at one point

Time/Memory vs. Order

2-D heat transfer problem (100th to 2500th – order)

(a) Computation time as a function (b) Memory usage as a function of of model order.

71:74

Preliminary Results for Hybrid System Verification

- A set of procedures developed to replace the subroutines of CHECKMATE.
- Compare the results using affine representations and CHECKMATE using hybrid system models of thermostat with various orders

Computation Time for Analyzing a Thermostat

Principal References

- A. Chutinan and B. H. Krogh, Computational techniques for hybrid system verification, *IEEE Trans. on Automatic Control*, vol. 48, no. 1, 2003, pp. 64-75.
- Z. Han and B. H. Krogh, Reachability analysis of large-scale affine systems using low-dimensional polytopes, *Hybrid Systems: Computation and Control*, 8th International Workshop, March 2006.

Next Lecture

 Using linear hybrid automata to approximate general hybrid systems

Lecture 3: Linear Hybrid Automata

Bruce H. Krogh Carnegie Mellon University krogh@ece.cmu.edu

Overview

- LHA Reachability
- Approximating Richer Dynamics
- PHAVer
- Iterative Relaxation Abstractions

2:84

1:84

CarnegieMellon

CarnegieMellon

Linear Hybrid Automata

- F_k (flow constraints), J_e (jump mappings), and G_{ik} (guards) are convex polyhedra
- F_k are independent of x(t)

3:84

Carnegie Mellen

Reachability with LHA [Halbwachs, Henzinger, 93-97]

Overview

- LHA Reachability
- Approximating Richer Dynamics
- PHAVer
- Iterative Relaxation Abstractions

CarnegieMellon

Approximating Hybrid Systems with Linear Hybrid Automata

Linear Phase-Portrait Approximation

Linear Phase-Portrait Approximation:

Time-Domain Implications

Improving Linear Phase-Portrait Approximations: Mode Splitting

Linear Phase-Portrait Approximation: Improved Time-Domain Approximation

Linear Phase-Portrait Approximation: Higher Dimensions

Linear Phase-Portrait Approximations

- guaranteed conservative approximations
- refinement introduces more discrete states
- for bounded hybrid automata, arbitrarily close approximation can be attained using mode splitting
- sufficient to use rectangular phase-portrait approximations (n^T_i = [0...1...0])

Overview

- LHA Reachability
- Approximating Richer Dynamics
- PHAVer
- Iterative Relaxation Abstractions

The following slides are excerpts from the following presentation:

PHAVer: Reachability Analysis for Linear Hybrid Systems and Beyond

Goran Frehse Verimag – UJF/CNRS/INPG, Grenoble

PHAVer available at http://www.cs.ru.nl/~goranf/

14:84

13:84

CarnegieMellon

Yet Another Verification Tool?

- Existing not powerful enough – in practice only 3 - 4 dimensions
- Non-conservative floating-point tools give wrong results

 exception: HSOLVER
- Why not use HyTech?
 - numerical problems, no easy fix (exact arithm. & 32 bit \Rightarrow overflow)
 - complexity explosion
 - limited class of automata (LHA)

Floating-Point:

CheckMate (CMU '98) HYSDEL (ETH Zurich '99) d/dt (Verimag '00) Predicate Abstraction (UPenn '02) HDV (UPenn '04) HSOLVER (MPI '05)

Exact Arithmetic:

HyTech (Berkeley '95)

15:84

Polyhedral Hybrid Automaton Verifyer

Over-Approximation of Affine Dynamics

17:84

Over-Approximation of Affine Dynamics

• From
$$\sum_{i} \alpha_{i}\dot{x}_{i} + \sum_{k} a_{k}x_{k} + b \leq 0$$

to LHA: $\sum_{i} \alpha_{i}\dot{x}_{i} + \beta \leq 0$
• Solutions:
a) project invariant \cap flow to \dot{x}
b) each constraint separately
(rectangular, octagonal, etc.)

$$\beta = \max_{x \in Inv(loc)} \sum_{k} a_k x_k + b$$

Reachability of Affine Dynamics

Principle:

- 1. Hybridization
 - Partition State Space (on the fly)

CarnegieMellon

- Switching between
- \Rightarrow Hybrid System
- 2. Overapproximation
 - const. bounds on dynamics
- = "Linear" Hybrid Automata
 ⇒ Polyhedral enclosure
- of actual trajectories

19:84

Limiting the Number of Bits

Limiting the Number of Constraints

From 6 to 5 constraints

- Reduce from *m* to *z* constraints
 - Significance Measure f(m,d)
 - Volume: exp
 - Slack: LP
 - max. angle: m²d
 - \Rightarrow min_{i \neq j} $a_i^T a_j$
 - Heuristics to choose constraints – deconstruction:
 - drop (m-z) least significant
 - reconstruction: add z most significant
 - Experiments: angle & reconstr.
 - $1000 \rightarrow 50$ in 4 dim: < 2 sec. (1000x faster than slack)

21:84

www.cse.unsw.edu.au/~ansgar/benchmark/

23:84

CarnegieMello

PHAVer References

- **Reachability Analysis**
 - PHAVer: Algorithmic Verification of Hybrid Systems past HyTech Frehse. HSCC'05
 - Time Domain Verification of Oscillator Circuit Properties Frehse, Krogh, Rutenbar, Maler. FAC'05
 - Verifying Analog Oscillator Circuits Using Forward/Backward Abstraction _ Refinement
 - Frehse, Krogh, Rutenbar. DATE'06
- **Compositional Reasoning** •
 - On Timed Simulation and Compositionality Frehse, FORMATS'06

 - Assume-Guarantee Reasoning for Hybrid I/O-Automata by Over-Approximation of Continuous Interaction Frehse, Han, Krogh. CDC'04

http://www.cs.ru.nl/~goranf/

25:84

Overview

- LHA Reachability
- Approximating Richer Dynamics
- PHAVer
- Iterative Relaxation Abstraction

CEGAR

27:84

28:84

Cornegie Mellon

CEGAR

29:84

CarnegieMellon

CEGAR

CEGAR

31:84

CarnegieMellon

CEGAR

CEGAR

33:84

CornegieMellon

CEGAR

CEGAR

35:84

36:84

CarnegieMellon

CEGAR for Discrete Systems

CEGAR for Discrete Systems

37:84

CornegieMellon

CEGAR for Discrete Systems

CEGAR for Discrete Systems

CEGAR for Discrete Systems

- Leverages
 - Power of model checking on simpler models
 - Power of decision procedures / SAT solvers to validate counterexamples
- Empirically a very powerful approach
- Many success stories
 - SLAM : Verifying Device Drivers at Microsoft
 - Actually ships as a commercial product Static Driver Verifier (SDV)
 - Many software model checkers developed
 - MAGIC, BLAST, CBMC

42:84

CarnegieMellon

CEGAR for Hybrid Systems

CEGAR for Hybrid Systems

43:84

44:84

Carnegie Mellon

CEGAR for Hybrid Systems

CEGAR for Hybrid Systems

45:84

Carnegie Mellon

CEGAR for Hybrid Systems

CEGAR for Hybrid Systems

47:84

CernegieMellen

CEGAR for Hybrid Systems

Iterative Relaxation Abstraction (IRA) for Linear Hybrid Automata (LHA)

49:84

CarnegieMellen

IRA for LHA

IRA for LHA

52:84

CarnegieMellon

IRA for LHA

IRA for LHA

53:84

CarnegieMellon

IRA for LHA

IRA for LHA

55:84

CarnegieMellon

IRA for LHA

IRA for LHA – Leverages:

- Power of LHA reachability on low-order LHA models
- Power of LP to validate counterexamples involving huge number of continuous variables.
- Ability of a LP solver to identify an irreducible infeasible subset for an infeasible LP
- Inspired by CEGAR for discrete systems, but variables are not added to refine abstractions

Relaxation Abstractions

- LHA
 - discrete transition structure (locations/transitions)
 - linear constraints for invariants, guards, jumps
- Given a subset of continuous variables V
- Replace linear constraints with relaxed constraints involving only variables in V
 - x<100 Λ x>20 Λ y<30 Λ x<y can be relaxed to x<100 Λ x>20
- Not unique various relaxations
 - Drop constraints involving variables not in V (localization)
 - Quantifier Elimination (Fourier-Motzkin)

58:84

57:84

CarnegieMelle

Relaxation Abstractions

Counterexamples (CEs)

- Paths in the discrete structure (sequence of locations and transitions)
- Key observations [Xuandong Li, Sumit Jha, Lei Bu BMC06] :
 - Feasible runs along a path are defined by linear constraints
 - CE exists in the concrete LHA if and only if the corresponding linear constraints are feasible

Irreducible Infeasible Subset (IIS)

- Given a set of infeasible linear constraints (corresponding to a spurious CE).
- IIS: a subset of constraints such that
 - the constraints are infeasible
 - removing one constraint makes them feasible
- Use variables in the IIS for the next relaxation abstraction

The Language of Counterexamples

- LHA reachability gives a discrete CE automaton A for the current relaxed LHA
 - A string $s = \{s_0, s_1, \dots, s_n\}$ is in the language of the discrete CE automaton A **only if** the reachability analysis engine says that s_n **may be reachable** from s_0 using the path $s_0 \rightarrow s_1 \dots \rightarrow s_n$.
- Intersect with the previous CE automaton
 - to remove CE s refuted earlier by other abstractions
 - also, remove previous CE in case reachability was too conservative
- Key Idea: Generate relaxation abstractions with only the most recent set of IIS variables.

IRA for LHA selecting counterexamples

IRA for LHA constructing new relaxation abstractions

66:84

CarnegieMellon

IRA for LHA constructing new relaxation abstractions

IRA for LHA constructing new relaxation abstractions

IRA for LHA implementation

70:84

CarnegieMellon

IRA vs. PHAVer for an Adaptive Cruise Control Example (time in sec)

No. of Variables	PHAVer	IRA – Localization	IRA Fourier-Motzkin
6	0.26	1.34	61.05
8	0.96	5.11	170.11
10	8.21	17.76	402.15
12	147.11	50.04	933.47
14	7007.51	123.73	1521.95
15	70090.06	181.74	2503.59
16	did not complete	267.46	3519.51

IRA vs. PHAVer for an Adaptive Cruise Control Example (time in sec)

No. of Vari IRA b	PHAVer ecomes faster for	IRA – Localization	IRA Fourier-Motzkin
	≥ 12 variables	1.34	61.05
8	0.	5.11	170.11
10	8.21	17.76	402.15
12	147.11	50.04	933.47
14	7007.51	123.73	1521.95
15	70090.06	181.74	2503.59
16	did not complete	267.46	3519.51

73:84

IRA vs. PHAVer for an Adaptive Cruise Control Example (time in sec)

No. of Variables	PHAVer	IRA – Localization	IRA Fourier-Motzkin
6	IRA-FM becomes faster for ≥ 14 variables		61.05
8			170.11
10	8.21		402.15
12	147.11	50.04	933.47
14	7007.51	123.73	1521.95
15	70090.06	181.74	2503.59
16	did not complete	267.46	3519.51

IRA vs. PHAVer for an Adaptive Cruise Control Example (time in sec)

No. of Variables	PHAVer	IRA – Localization	IRA Fourier-Motzkin
6	0.26	1.34	61.05
8	0.96	5.11	170.11
10	8.21	17.76	402.15
15 Vars: 19.5 hr. (PHAVer) vs. 3 min. (IRA-LOC)			
14	7007.5	123.73	1521.95
15	70090.06	181.74	2503.59
16	did not complete	267.46	3519.51

75:84

IRA vs. PHAVer for an Adaptive Cruise Control Example (time in sec)

No. of Variables	PHAVer	IRA – Localization	IRA Fourier-Motzkin
6	0.26	1.34	61.05
8	0.96	5.11	170.11
10	PHAVe	PHAVer fails to converge	
12	147.	00.04	933.47
14	7007.	123.73	1521.95
15	70090 6	181.74	2503.59
16	did not complete	267.46	3519.51

IRA-Loc vs. IRA-FM

77:84

CarnegieMells

Switched Buffer Network¹

- Buffers connected by pipes with valves.
- Valves have several modes
- Controller observes buffers and to switch valve modes
- Specification: No buffer overflow

Switched Buffer Network

CarnegieMellon

- Implemented a simple controller with three locations and 11 continuous variables
- Design: sequence of actual counterexamples from IRA used to "tune" the control parameters
- One case led to a 101 location CE in 3 iterations of the abstraction refinement loop

Final design (verified):

- PHAVer took over 12 minutes
- IRA took 23.7 seconds

Nuclear Power Plant Control²

- Temperature control
 - rods immersed to cool the reactor, withdrawn to allow reaction
 - rods controlled temperature measurements and local timers.
 - each rod can stay inside only for a certain max time limit
- Temperature should not rise beyond a critical threshold.
- Model
 - 3 control rods
 - 11 continuous variables

 2 Variation of the problem studied by Kapur and Shyamasundar (HART'97), R Alur et al (TCS'95), P. H. Ho 95 PhD thesis and others.

80:84

79:84

CarnegieMello

Nuclear Power Plant Control

Iterative Design Procedure

- First attempt:
 - simple counterexample of 3 locations
 - abstraction 3 continuous variables
 - all of variables related to control rod 1
 - clear that the rod was being inserted too late
 - changed the cutoff temperature
- Similar CEs for control rods 2 and 3

Final Design

- PHAVer verification: 16 hours
- IRA verification: 6 iterations, 30.04 seconds

Current Work

- Further empirical studies
- Use of IRA for interactive design (actually using the counterexamples!)
- Distributed computation (we have found most of the time is spent in FM quantifier elimination)
- Extensions to more general hybrid systems (outer refinement loops)

82:84

81:84

CarnegieMellon

Principal References

- T. A. Henzinger, P.-H. Ho and H. Wong-Toi, Algorithmic analysis of nonlinear hybrid systems, *IEEE Trans. on Automatic Control*, April 1998.
- S. K. Jha, B. H. Krogh, J. E. Weimer, E. M. Clarke, Reachability for linear hybrid automata using iterative relaxation abstraction, *Hybrid Systems: Computation and Control*, April 2007.

83:84

CarnegieMellen

Hybrid System Reachability: Additional Topics

- systems with inputs
 - control inputs
 - disturbances
- uncertain systems
 - unknown parameters
 - stochastic systems
- other abstractions/representations
 - predict abstraction
 - ellipsoids
 - qualitative reasoning
 - level sets
- theorem proving