
1

1:48

Reachability Analysis and Verification

Bruce H. Krogh
Department of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, Pennsylvania – USA

krogh@ece.cmu.edu

2:48

Reachability Analysis and Verification
Lecture 1: Transition Systems & Verification
• Verification of Transition Systems
• Simulation and Bisimulation
• Application to Hybrid Systems
Lecture 2: Hybrid System Reachability
• Polyhedral Approximations
• CheckMate (a tool)
• Low-Order Representations
Lecture 3: Linear Hybrid Automata
• LHA Reachability
• Approximating Richer Dynamics
• PHAVer (a tool)
• Iterative Relaxation Abstractions

2

3:48

Lecture 1: Transition Systems
& Verification

Bruce H. Krogh
Carnegie Mellon University

krogh@ece.cmu.edu

4:48

Outline

• Verification of Transition Systems
• Simulation and Bisimulation
• Application to Hybrid Systems

3

5:48

Transition System (TS)

T = (Q,→, Q0,L, L)

• states Q

• transitions →⊆ Q×Q

• initial states Q0 ⊆ Q

• labels (atomic propositions) L

• labeling function L : Q→ 2L

qo

A

q1

B

q2

B

q4

B
q3

B

Note: We assume the transition relation is total, i.e., ∀ q ∈ Q,∃ q0 ∈
Q 3 q → q0.

6:48

Paths & Runs

path: π = q0q1 . . . ∈ Q
ω, qi → qi+1 ∀ i ≥ 0

run: a path for which q0 ∈ Q0

qo

A

q1

B

q2

B

q4

B
q3

B

e.g., π = q0q1(q3q2)ω is a run.

4

7:48

Predecessors (Pre) and Successors (Post)

For P ⊆ Q

predecessors: Pre(P) = {q ∈ Q | ∃ p ∈ P, q → p}

successors: Post(P) = {q ∈ Q | ∃ p ∈ P, p→ q}

qo

A

q1

B

q2

B

q4

B
q3

B

8:48

Q finite transition
system or
temporal logic
specification

MODEL
CHECKING
PROGRAM

PROPERTY IS TRUE OR
A COUNTER EXAMPLE

propagates
sets of states,
not individual
trajectories

Formal Verification - Model Checking

INPUTS

COMPUTATION

RESULTS

TRANSITION
SYSTEM

PROPERTY
TO VERIFY

Model checking is algorithmic (guaranteed to terminate).

5

9:48

Where does verification fit in the
control system design flow?

test

feature specification

code

production

executable spec.

code generation

simulation

rapid prototype

executable spec.

CACSD

model checking

Objective:
Verify design
behaviors for the
entire range of
operating conditions.

Potential role of
formal verification

Pre-CACSD1

1CACSD = computer aided control system design

10:48

a

ba
cb

a

ba

cb

cb

Computation TreeTS

“unwind” paths

s0

s1
s2

s2

s1

s0

s1

s2

The Computation Tree

ba

s1

s1

ba

s1

ba

s1

(conceptual)

ba

ba

6

11:48

Path Formulas

• Temporal Operators (along a path)
– G : for all states (globally)
– F : at some future state
– X : next state
– U : until (f U g, f is true until g is true)

• Example: G(a → X(b))

a

ba
cb

s0

s1
s2

a

ba

cb

cb

s2

s1

s0

s1

s2

ba

s1

s1

ba

s1

ba

s1

ba

ba

12:48

Branching Time Logic - CTL

• Path Quantifiers (from a state)
– A : For all computation paths (universal quantification)
– E : There exists a computation path (existential quantification)

• CTL (computation tree logic)
– a temporal operator must be preceded by a path quantifier

AG(a ∨ b) AF(b) EF(cb) EX(EG(cb))

a

ba

ba

cb

cb

s2s1

s0

s1 s2

a

ba

ba

cb

cb

s2s1

s0

s1

a

ba

ba

cb

cb

s2s1

s0

s1

a

ba

ba

cb

cb

s2s1

s0

s1
s2 s2 s2

7

13:48

LTL and CTL*

• LTL (linear temporal logic)
– includes only path formulas
– applies to all paths starting from initial states (implicit A

before the path formulas)
• CTL*

– negations, conjunctions and disjunctions of CTL and LTL
formulas (sufficient set: ¬, Ç, X, U, E)

• Expressive power

CTL*LTL CTL

A(FGp) AG(EFp)

A(FGp) Ç AG(EFp)

14:48

CTL Model Checking

Problem: Given a TS T and a CTL formula f, determine
if f is true for all initial states Q0.

Solution: Compute predicate Pf = { q ∈ Q | q ² f } and
see if Q0 ⊆ P.

• Symbolic Model Checking
– identify basic CTL operators with greatest fixpoint (gfp) or

least fixpoint (lfp) of predicate transformers
– apply gpf, lfp, and set operations as needed inductively over

subformulas of f to obtain Pf

8

15:48

Predicate Transformers and Fixpoints1

• predicate: equate CTL expressions with predicates
over Q
– e.g. P = ab′c′ ∨ bc = {s0,s2} (where ′ ≡ ¬)

• predicate transformer: τ : 2Q → 2Q

– e.g. : τ(P) = P ∧ c′
– for P = ab′c′ ∨ bc, τ(P) = (ab′c′ ∨ bc) ∧ c′ = ab′c′ = {s0}

• fixpoint : P = τ(P)
– e.g. P=ab′c′ is a fixpoint of τ(P) = P ∧ c′

a

ba
cb

s0

s1
s2

1 Fixpoint is a shortened form of the more precise term, fixed point.

16:48

Greatest and Least Fixpoints

• greatest fixpoint of τ:
– gfp Z [τ(Z)] ,

P ⊆ Q 3 P = τ(P) and if P′ = τ(P′), P′ ⊆ P.
• least fixpoint of τ:

– lfp Z [τ(Z)] ,
P ⊆ Q 3 P = τ(P) and if P′ = τ(P′), P ⊆ P′.

• τ monotonic ⇒ gfp Z [τ(Z)] and lfp Z [τ(Z)] exist.

9

17:48

lfp and gfp algorithms

function gfp(τ)
P := true (i.e., Q)
P′ = τ(P)
while (P ≠ P′) do

P := P′
P′ := τ(P)

endwhile
return(P)

end

For τ monotonic:

function lfp(τ)
P := false (i.e., ∅)
P′ = τ(P)
while (P ≠ P′) do

P := P′
P′ := τ(P)

endwhile
return(P)

end

P ↑ lfp Z [τ(Z)] P ↓ gfp Z [τ(Z)]

For Q finite, maximum number of steps = |Q|

18:48

Fixpoint Characterizations for CTL Operators

• AG(p) = gfp Z [p ∧ AX Z]
• EG(p) = gfp Z [p ∧ EX Z]
• AF(p) = lfp Z [p ∨ AX Z]
• EF(p) = lfp Z [p ∨ EX Z]
• A(p1 U p2) = lfp Z [p2 ∨ (p1 ∧ AX Z)]
• E(p1 U p2) = lfp Z [p2 ∨ (p1 ∧ EX Z)]

Intuitively:
gfp corresponds to properties that should always
hold, lfp corresponds to eventualities.

10

19:48

ACTL: Universal Properties

• When approximations are used to prove properties of
a system (abstractions or simulations), only universal
properties can be shown (properties true for all paths
in the computation tree).

• ACTL , CTL with
– only universal path quantification (A: for all paths)
– negations applied only to atomic propositions to avoid

implicit existential path quantification (i.e., ¬ A is not
permitted)

20:48

Reachability

Specification: No “bad states” are reached.

Solution: Atomic proposition b , bad state, f = AG(¬b).
• Q0 ⊆ AG(¬b) = gfp Z [¬b ∧ AX Z]

function gfp(τ)
P := Q
P′ = ¬b ∧ AX P
while (P ≠ P′) do

P := P′
P′ := ¬b ∧ AX P

endwhile
return(P)

end

{q ∈ Q | ¬b ∧ Post(q) Å P = P }

“backward” reachability:
eliminates all paths to bad states
one transition at time.

?

11

21:48

Alternative Solution: Forward Reachability

P := Q0
while true do

if P Å ¬b return “unsafe”
if Post(P) ⊆ P return “safe”
P := P ∪ Post(P)

end while

This is the approach used by explicit state model
checkers.

22:48

Outline

• Verification of Transition Systems
• Simulation and Bisimulation
• Application to Hybrid Systems

12

23:48

Simulation Relations

Def. T2 simulates T1 (T2ºT1) if there is a simulation rela-
tion between T1 and T2.

Ti = (Qi,→i, Qi0,L, Li), i = 1, 2. ψ ⊆ Q1 × Q2 is a
simulation relation between T1 and T2 if:

i. ∀ q10 ∈ Q10, ∃ q20 ∈ Q20 3 (q10, q20) ∈ ψ
(each initial state in T1 has a corresponding initial state in T2)

ii. if (q1, q2) ∈ ψ

a. L1(q1) = L2(q2) (corresponding states have the same labels)

b. q1 →1 q
0
1 ⇒ ∃ q02 ∈ Q2 3 q2 →2 q

0
2 ∧ (q

0
1, q

0
2) ∈ ψ

(each transition in T1 has a corresponding trasition in T2)

24:48

Simulation & Path Correspondence

π1 = q0q1q2 . . . corresponds to π2 = q
0
0q
0
1q
0
2 . . . ⇐⇒

∀ i = 0, 1, 2, . . . (q0i, q
0
i) ∈ ψ.

qo

A

q1

B

q2

B

q4

B
q3

B

T1 T2

Note: Corresponding paths have the same label sequence.

s1
A

s2
B

s3
A

ψ = {(qo, s1), (qo, s3), (q1, s2), (q2, s2), (q3, s2), (q4, s2)}

Proposition. If T2 º T1, then for any path π1 in T1 there
exists a corresponding path π2 in T2, where π2 depends on
the particular simulation relation ψ between T1 and T2.

13

25:48

Application of Simulation

Note: An ACTL property not true for T2 may still be true for T1 (since
T1 has a smaller set of paths). Counterexamples for an ACTL
property in T2 (paths violating the property) that satisfy the
property for T1 are called spurious counterexamples for T1

Basic approach to verification: Given a TS T1 and an ACTL property p,
construct a TS T2 º T1 for which p can be checked efficiently.

If T2 º T1:
• ACTL properties (universal properties) true for the set of all

paths in for T2 are true for all label sequences for T1.
Why do we care?
• it may be easier to check an ACTL property for T2 than for T1

(especially if T2 has a finite number of states and T1 has an
infinite number of states!)

26:48

Verification Using Simulation: Example

• ACTL property true for T′ ⇒ true for T
– e.g., AG(AX(AÇB)), A or B is always true in the next state

• universal property not true for T′ may be true for T
– e.g., AF(B), B is always eventually true

qo

A

q1

B

q2

B

q4

B
q3

B

T T 0

s1
A

s2
B

s3
A

14

27:48

Bisimulation

T1 and T2 are bisimulation equivalent (denoted T1≡T2) if
T1 º T2 and T2 º T1.

qo

A

q1

B

q2

B

q4

B
q3

B

T1

T1 ≡ T2 but T1 /≡ T3 (Why?)

s1
A

s2
B

r1
A

r2
B

r3
B

T2

T3

28:48

Bisimulation

qo

A

q1

B

q2

B

q4

B
q3

B

T1

Bisimulation equivalance is established by the existence of a
bisimulation relation B ⊆ Q1×Q2, where B is a simulation
relation between T1 and T2 and B

−1 is a simulation relation
between T2 and T1.

E.g. B = {(qo, r1), (q1, r2), (q2, r2), (q3, r3), (q4, s3)}.

r1
A

r2
B

r3
B

T2

15

29:48

Application of Bisimulation

If T ′≡ T:
• CTL properties (universal & existential) are true for T ′ ⇔ they

are true for T.

Again ...
• it may be easier to check a CTL property for T ′ than for T

(especially if T ′ has a finite number of states and T has an
infinite number of states!)

So having a bisimulation is better than simulation, BUT ...
the basic approach (finding a bisimulation for which verification
is efficient) may not be possible.

More to come on this issue.

30:48

Verification Using Bisimulation: Example

qo

A

q1

B

q2

B

q4

B
q3

B

r1
A

r2
B

r3
B

T T 0

• existential property true for T′ ⇔ true for T
– e.g., EF(AX(¬A)), there exists a state such that A is not true

for all next states
• universal property true for T′ ⇔ true for T

– e.g., AF(B), B is eventually true

16

31:48

Constructing a Bisimulation:
Quotient Transition Systems

The basic idea:
• partition (“quotient”) the set of states, grouping states

with the same labels (a consistent partition)
• construct a transition relation between the partitions

reflecting the underlying transition relation
• if necessary, refine the partition until a bisimulation is

reached

Note: The quotient transition system (QTS) created on
each iteration simulates the original labeled transition
system.

32:48

Constructing a Bisimulation:
Example

qo

A

q1

B

q2

B

q4

B
q3

B

P2

B
P1

A

qo

q1

q2

q4q3

R3

B
R2

B

R1

A

qo

q1

q2

q4q3

s1
A

s2
B

r1
A

r2
B

r3
B

simulation

bisimulation

partition

refine

17

33:48

Quotient Transition System (QTS)

Given a labeled transition system T = (Q,→, Q0,L, L)
and a consistent partition1 P of Q, the quotient transition
system of T is defined as T/P = (P ,→P , Q0/P ,L, LP),
where

i. P →P P
0 ⇐⇒ ∃ q ∈ P, q0 ∈ P 0 3 q → q0

ii. Q0/P = {P ∈ P | P ⊆ Q0}

iii. ∀ P ∈ P , LP(P) = L(q) for q ∈ P .

1 P is consistent if and only if ∀ P ∈ P and ∀ q, q0 ∈ P , L(q) = L(q0) and
q ∈ Q0 ⇐⇒ q0 ∈ Q0.

34:48

QTS and Simulation
Lemma. Given a consistent partition P, T/P º T .
pf. Let ψ = {(q, P) ∈ Q×P | q ∈ P}. Suppose (q, P) ∈ ψ

and q → q0. P is a partition of Q, so ∃P 0 ∈ P 3 q0 ∈ P 0.
P →T/P P

0, since q → q0. Therefore, ψ is a simulation
relation between T and T/P .

qo

A

q1

B

q2

B

q4

B
q3

B

P2

B
P1

A

qo

q1

q2

q4q3

T T/P

ψ = {(qo, P1), (q1, P2), (q2, P2), (q3, P2), (q4, P2)}

18

35:48

QTS and Bisimulation

Proposition. ψ = {(q, P) ∈ Q× P | q ∈ P} is
a bisimulation relation between T and T/P
⇐⇒ ∀ P, P 0 ∈ P, P ∩ Pre(P 0) ∈ {∅, P}.

qo

A

q1

B

q2

B

q4

B
q3

B
R3

B
R2

B

R1

A

qo

q1

q2

q4q3

T T/P
P1

P2
P3

E.g., P1 ∩ Pre(P2) = P1 and P1 ∩ Pre(P3) = ∅.

If there is a transition from any state in P to P′,
there is a transition from every state in P to P′.

36:48

Proof of Bisimulation Condition

pf. ⇒ Suppose ψ above is a bisimulation between T and T/P . For
any P, P 0 ∈ P 3 P ∩ Pre(P 0) 6= ∅, P →T/P P

0. Therefore, if q ∈ P
(i.e., (q, P) ∈ ψ), there must be a q0 3 (q0, P 0) ∈ ψ (i.e., q0 ∈ P 0)
and q → q0. Therefore, Pre(P 0) ⊇ P .
⇐ We already showed ψ is a simulation relation between T and T/P .
Suppose P ∈ P, q ∈ P , and P →T/P P

0. By the definition of →T/P ,
P ∩ Pre(P 0) 6= ∅. Hence, P ∩ Pre(P 0) = ∅, which implies ∃q0 ∈
P 0 3 q → q0. Therefore, ψ is a bisimulation between T and T/P .

Proposition. ψ = {(q, P) ∈ Q× P | q ∈ P} is
a bisimulation relation between T and T/P
⇐⇒ ∀ P, P 0 ∈ P, P ∩ Pre(P 0) ∈ {∅, P}.

19

37:48

Computing Bisimulations
Bisimulation Procedure (BP)
% given an inital consistent partition P0
P :=P0
% build the transition relation
∀ P ∈ P, P ost(P) := {P 0 ∈ P|Post(P) ∩ P 0 6= ∅}
% termination condition
while ∃ P, P 0 ∈ P 3 P ∩ Pre(P 0) /∈ {∅, P}
{ % refine partition (split P)

P1 := P ∩ Pre(P 0) ; P2 := P − Pre(P 0)
P := (P − {P}) ∪ {P1, P2}
% update the transition relation
Post(P1) := Post(P ∩ Pre(P

0))
Post(P2) := Post(P − Pre(P 0))

}

Note: Context implies wheter
Pre/Post operators
apply to T or T/P.

38:48

Bisimulation Procedure: Example

qo

A

q1

B

q2

B

q4

B
q3

B

P2

B
P1

A

qo

q1

q2

q4q3

R3

B
R2

B

R1

A

qo

q1

q2

q4q3

initial partition:

refine

P0 = {Q0, Q−Q0})

for P = {q1, q2, q3, q4}
P 0 = {q0}
P ∩ Pre(P 0) = {q1, q2} /∈ {∅, P}

termination condition fails:

P1 := P ∩ Pre(P 0)

P2 := P − Pre(P 0)
termination condition satisfied:

∀ P,P 0 ∈ P, P ∩ Pre(P 0) ∈ {∅, P}

20

39:48

A Sufficient Condition for Bisimulation
Proposition. If ∀ P, P 0 ∈ P , Post(P)∩P 0 = {∅, Post(P)},
then T ≡ T/P .

If there is a transition from P to any state in P ′,
the all transitions from P go to P ′.

pf. Post(P) ∩ P 0 = ∅ ⇒ P ∩ Pre(P 0) = ∅;
Post(P) ∩ P 0 = Post(P)⇒ P ∩ Pre(P 0) = P .
The result follows from the previous proposition.

40:48

Verification Using Bisimulation

construction of the
transition relation &

termination

representation
of sets of states

class of
system

construct
initial partitionHS model

bisimulation
procedure

finite
bisimulation:

model
checker

PROPERTY IS TRUE OR
A COUNTEREXAMPLE

CTL
specification

TS: T

T/PThese issues
are particularly
critical when T

is a hybrid
system.

21

41:48

Verification Using Simulation

construct
initial partitionHS model

construct
QTS

finite
simulation:

model
checker

PROPERTY IS TRUE

ACTL
specification

TS: T

T/P

FALSE FOR T/P

false for
T?

PROPERTY IS FALSE

YES
NO

refine
partition

always terminates
provided the transition

relation can be constructed

bisimulation test
or check

counterexample
T/P

42:48

Outline

• Verification of Transition Systems
• Simulation and Bisimulation
• Application to Hybrid Systems

22

43:48

Applying Model Checking to Hybrid Systems

• interpret a hybrid system as a transition system
(with an infinite state space)

• compute a finite-state quotient transition system
(bisimulation or simulation)

• perform model checking on the finite-state system

Is this approach feasible?

44:48

Termination of BP - Decidability

Hybrid Automata (flows,guards,jumps)

Linear Hybrid Automata (P,P,P)

Rectangular Automata (In,In,In)

Multirate Automata (Zn,In,In)

Timed Automata (1n, In,{reset,continue}n)

Stopwatch Automata

Initialized

Initialized
isomorphic

bisim

O-minimal hybrid systems

Uninitialized

P = polyhedra, I = intervals, Z = integers, 1 = {1}, reset = {0}

23

45:48

associate
predicates
with discrete
states

HS Verification Using Simulation

construct
initial partitionHS model

construct
QTS

finite
simulation:

model
checker

PROPERTY IS TRUE

ACTL
specification

HS: H

T/P

FALSE FOR T/P

false for
T?

PROPERTY IS FALSE

YES
NO

refine
partition

discrete transition semantics

typically cannot
determine this

partition entry sets

compute transition relation
(continuous system reachability)

T/P

46:48

HS Discrete Transition Semantics

)q(I
)(eG

entry states

)'q(I

)(0tx

)(1
−tx

U
)(

),(
eGx

xeR
∈

))(,()(11
−∈ txeRtxnR nR

discrete transition: (q,x) = (q,x(to)) → (q′, x′) = (q′,x(t1))

24

47:48

HS Verification Using Simulation

Primary Issues
• representation of sets of continuous states
• computation of the QTS transition relation
• termination

Next lecture: HS Reachability

48:48

Principal References
E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT

Press, 2000.
R. Alur, T. A. Henzinger, G. Lafferriere, G. J. Pappas, Discrete

abstractions of hybrid systems, Proceedings of the IEEE, vol.
88, No. 7, July 2000, pp. 971-984.

1

1:74

Lecture 2: Hybrid System Reachability

Bruce H. Krogh
Carnegie Mellon University

krogh@ece.cmu.edu

2:74

associate
predicates
with discrete
states

HS Verification Using Simulation

construct
initial partitionHS model

construct
QTS

finite
simulation:

model
checker

PROPERTY IS TRUE

ACTL
specification

HS: H

T/P

FALSE FOR T/P

false for
T?

PROPERTY IS FALSE

YES
NO

refine
partition

discrete transition semantics, TH

typically cannot
determine this

partition entry sets

compute transition relation
(continuous system reachability)

T/P

2

3:74

Outline

• Polyhedral Approximations
• CheckMate
• Low-Order Representations

4:74

HS Discrete Transition Semantics

)q(I
)(eG

entry states

)'q(I

)(0tx

)(1
−tx

U
)(

),(
eGx

xeR
∈

))(,()(11
−∈ txeRtxnR nR

discrete transition: (q,x) = (q,x(to)) → (q′, x′) = (q′,x(t1))

3

5:74

Approximating Transitions in TH/P

π

(π'1,p',q')

π'1
π'2

(π'2,p',q')

(π,p,q)

p p'

q q'

6:74

and a set of initial states, X0,
• conservatively approximate the set of reachable states

R[0,T](X0) from time t = 0 to t = T.

),(xfx =&

Reachability for Continuous Dynamics

• Given a continuous dynamic system,

4

7:74

Polyhedral Flow Pipe Approximations

X0

t1

t2

t3
t4

t5 t6 t7

t8

t9
• divide R[0,T](X0) into [tk,tk+1] segments

• enclose each segment with a convex polytope

• R[0,T](X0) = union of polytopes

8:74

S

c4

c3

c2c1

Wrapping Hyperplanes
Around a Set (1)

Step 1:
• Choose normal

vectors, c1,...,cm

5

9:74

S

c4

c3

c2
c1

Wrapping Hyperplanes
Around a Set (2)

Step 2:
• Adjust each hyperplane

so that it just touches S
• By solving for each i

optimization problem

xcd T
iSxi ∈

= max

10:74

],[
..

),(max

1

00

0,0

+∈
∈

=

kk

T
itxi

ttt
Xxts

xtxcd

• Embed simulation into objective function computation
routine

)(0],[1
XR

kk tt +

Wrapping a Flow Pipe Segment

• Given normal vectors ci, “shrink wrap”
in a polytope by solving for each i

6

11:74

Flow Pipe Segment Approximation

Vertices(X0) at tk

Vertices(X0) at tk+1

Step 1.
a. Simulate trajectories
from each vertex of X0.

Step 2.
Solve
optimization
for di

flow pipe segment
approximated by
{ x | ci

Tx ≤ di, ∀i }

b. Take the convex hull
and identify outward
normal vectors.

12:74

X x x0 1 20 8 1 0= ≤ ≤ ={ . , }

&

& . ()
x x
x x x x

1 2

2 1
2

2 10 2 1
=
= − − −

Van der Pol Equation

Uniform time step
Δtk = 0.5

Initial Set

Example 1: Van der Pol Equation

7

13:74

• ⇒ analytical solutionbAxx +=&

∫ −
ΔΔ+ +=

t AAt
t

At
ttt bdeeXReXR

00],0[0],[)(ˆ)(ˆ ττ

∫ −+=
t AAtAt bdeexextx

000),(ττ

Improvements for Linear Systems

• Flow pipe segment computation depends only on time step Δt
• A segment can be obtained by applying affine transformation to

another segment with the same Δt

• No longer need to embed numerical integration into optimization

14:74

Transforming a Polytope

CT-1y ≤ d+CT-1v

Polytope TP + v

Cx ≤ d

Polytope P

y = Tx+v

PT v

∫ −
ΔΔ+ +=

t AAt
t

At
ttt bdeeXReXR

00],0[0],[)(ˆ)(ˆ ττ

8

15:74

A =
− − −

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 1 0
0 0 1
1 2 2

1
1
1

2
1
1

2
2
1

1
2
1

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

, , , and

Vertices for X0

Uniform time step
Δtk = 0.1

Example 2: Linear System

• Compute first segment
• Then transform it with eAΔt 49 times

16:74

ε

)(],[PR
ttt δ+

),(*
0xtx

n/ε

εδδ ≤++))(),(ˆ(],[],[PRPRdist
tt tttt

()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+−= +

0

)(
*
0 1
)),((

x
tLL tt ee

L
xtxf

n δε δδ

Approximation Error

• Time step
• Size of X0
• Lipschitz constant
• Vector field
• Dimension

• Can be made
arbitrarily small for
each segment

)(ˆ
],[PR

ttt δ+

9

17:74

Flow Pipe Approximation

• Applies in arbitrary dimensions
• Approximation error does not accumulate from

previous time step
• Approximation error can be made arbitrarily small by

bounds
– δt - size of segment time step

• independent of the starting time for the segment
– δx0 - size of initial set partition

• depends on the starting time for the segment

18:74

Outline

• Polyhedral Approximations
• CheckMate
• Low-Order Representations

10

19:74

mode
select

integrator

m(t)

xdot(t)

flow
constraints

x(t)

x(t)

jump
mapping

initial
condition

e(t)

discrete-state system with
guarded transitions

x(t)
e(t)

m(t)

cont.
state

discrete
state

discrete
event

F1

F2

F3
1
S

X0

Je

e(t)

Je

jump dynamics

cont.
state

discrete
state

discrete
event

discrete dynamics

Simulink Diagram of
Hybrid System Dynamics

F1

F2

F3

1
S

continuous dynamics

20:74

Discrete Transiation Guards

x(t)

e(t)

m(t)

m=i

m=j

m=k

x ∈Gij

x ∈Gik

• forced vs. unforced transitions

• implied invariants for discrete states

11

21:74

Timed Automata

integrator

xdot(t)

x(t)

jump
mapping

initial
condition

e(t)

discrete-state system with
guarded transitions

x(t)
e(t)

m(t)

cont.
state

discrete
state

discrete
event

1
S

X0

Je

e(t)

1• continuous dynamics =
clocks

• guards are independent
intervals on clock values

• jump conditions usually
let clocks run or reset to
zero

22:74

mode
select

integrator

m(t)

xdot(t)

x(t)

jump
mapping

initial
condition

e(t)

discrete-state system with
guarded transitions

x(t)
e(t)

m(t)

cont.
state

discrete
state

discrete
event

F1

F2

F3

1
S

X0

Je

e(t)

Linear Hybrid Automata

• Fk (flow constraints), Je (jump mappings), and
Gjk (guards) are convex polyhedra

• Fk are independent of x(t)

12

23:74

Piecewise-Trivial Hybrid Systems1

mode
select

integrator

m(t)

xdot(t)

flow
constraints

x(t)

x(t)

jump
mapping

initial
condition

e(t)

discrete-state system with
guarded transitions

x(t)
e(t)

m(t)

cont.
state

discrete
state

discrete
event

F1

F2

F3
1
S

X0

Je

e(t)

1Dang & Maler, HS’98

Reacht(Xo,Fk) can be
represented and

computed

24:74

Piecewise-Trivial Hybrid Systems (PTHS)

m(t)

x(t)

jump
mapping

initial
condition

e(t)

discrete-state system with
guarded transitions

x(t)

e(t)

m(t)

cont.
state

discrete
state

discrete
event

X0

Je

e(t)

X(t; Xo,m)

13

25:74

www.ece.cmu.edu/~webk/checkmate/

26:74

CheckMate Block Diagram
x1

x2

x3

th1

th2

q1

q2

th3

Switched
Continuous System 3

Switched
Continuous System 2

Switched
Continuous System 1

C*x <= d

Polyhedral
Threshold 3

C*x <= d

Polyhedral
Threshold 2

C*x <= d

Polyhedral
Threshold 1

Mux

Mux2

MuxMux1

Mux

Mux

OR

Logical
Operator

c1

c2
q

Finite
State Machine 2

c1

c2
q

Finite
State Machine 1

14

27:74

Simulink
Model

28:74

Switched Continuous System
• Parameter: Switching function f
• Input: Discrete condition signal u
• Output: Continuous state vector x
• Description: Continuous dynamics

selected by discrete input signal

)(xfx u=&

u x

Switched
Continuous System

15

29:74

Switched Continuous
System Parameters

30:74

Polyhedral Threshold
• Parameters: C,d
• Input: Continuous state vector x
• Output: Boolean signal

1 if Cx ≤ d
0 otherwise

• Description: Outputs Boolean signal
indicating whether continuous state
variable x is in polyhedron Cx ≤ d

⎩
⎨
⎧

x
C*x <= d

Polyhedral
Threshold

16

31:74

Finite State Machine (Stateflow)

• Inputs:
– Data: Boolean condition signals,

functions of PTHB and FSMB
outputs

– Event: Transition edges of
Boolean condition signals, are
functions of PTHB outputs

• Output: Discrete signal (integer)
indicating active state of FSM

event input
(vector)

scalar
data inputs

.

.

.

data 1

data N

q

Finite State Machine

32:74

Polyhedral-Invariant
Hybrid Automaton (PIHA)

Conversion

Simulink/Stateflow Front End
(graphical editing, simulation)

Threshold-event-driven
Hybrid Systems (TEDHS)

Flow Pipe
Approximations

Quotient
Transition System

ACTL Verification

Partition
Refinement

Initial Partition

Elements of
CheckMate

17

33:74

CheckMate Application:
Automotive Engine Control in Cut-off Mode

A. Balluchi et. al, Hybrid control in automotive applications: the cut-off
control Automatica Special Issue on Hybrid Systems, vol. 35, no. 3,
March 99; and CDC 97.

Control law: Decide when to inject air/fuel for
torque to minimize acceleration peaks during the
cut-off operation.

Problem: Verify the event-driven implementation
of a control law designed in continuous time.

34:74

Automotive Powertrain Model

Model from Magneti Marelli Engine Control Division

• Four-stroke, four cylinder engine

• Continuous-time powertrain model

• Hybrid model for cylinder cycles

18

35:74

CheckMate Model

x2

x1 v x2

x1

torque

start

simula

simula

C*x <= d

reach_zero

C*x <= d

reach_180

h000

h001

h010

h011

h100

h101

h110

h111

q

predictor

NOT

not2

NOT

not1

C*x <= d

h111

C*x <= d

h110

C*x <= d

h101

C*x <= d

h100

C*x <= d

h011

C*x <= d

h010

C*x <= d

h001

C*x <= d

h000

C*x <= d

finish_line

driveline

XORangle_trigger

angle (degrees)

q

angle

NOTNOT

u

M4

Mux M3

u

M2

MuxM1
m

Demux

36:74

x2

x1 v x2

x1

torque

start

simula

simula

C*x <= d

reach_zero

C*x <= d

reach_180

h000

h001

h010

h011

h100

h101

h110

h111

q

predictor

NOT

not2

NOT

not1

C*x <= d

h111

C*x <= d

h110

C*x <= d

h101

C*x <= d

h100

C*x <= d

h011

C*x <= d

h010

C*x <= d

h001

C*x <= d

h000

C*x <= d

finish_line

driveline

XORangle_trigger

angle (degrees)

q

angle

NOTNOT

u

M4

Mux M3

u

M2

MuxM1
m

Demux

CheckMate Model

power train
dynamics

19

37:74

Continuous Dynamics - Initial Model

x = Ax + Bu u = 0 (no air-fuel) or 10

x1 = engine block angle
x2 = wheel revolution speed (radians)
x3 = axle torsion angle (in radians)
x4 = crankshaft revolution speed (rpm)
x5 = crankshaft angle (degrees)

38:74

Controller Specification

Remain within
acceleration

limits while tracking a
sliding mode.

• Sliding mode control law derived in continuous time
• Hybrid implementation due to discrete torque decisions

20

39:74

Cylinder Cycle

Phase_change

Phase_change

Phase_changePhase_change

compression

Exhaust Intake

combustion

Control decision to apply torque on the power stroke must be made
before the intake stroke ⇒ three step lookahead.

40:74

x2

x1 v x2

x1

torque

start

simula

simula

C*x <= d

reach_zero

C*x <= d

reach_180

h000

h001

h010

h011

h100

h101

h110

h111

q

predictor

NOT

not2

NOT

not1

C*x <= d

h111

C*x <= d

h110

C*x <= d

h101

C*x <= d

h100

C*x <= d

h011

C*x <= d

h010

C*x <= d

h001

C*x <= d

h000

C*x <= d

finish_line

driveline

XORangle_trigger

angle (degrees)

q

angle

NOTNOT

u

M4

Mux M3

u

M2

MuxM1
m

Demux

Crankshaft Angle Rate Logic

Cylinder state transitions occur every
180o. Crankshaft angle switches
between 0o and 180o, angle rate
switches between +rate and -rate.

21

41:74

Predictive Control Logic

x2

x1 v x2

x1

torque

start

simula

simula

C*x <= d

reach_zero

C*x <= d

reach_180

h000

h001

h010

h011

h100

h101

h110

h111

q

predictor

NOT

not2

NOT

not1

C*x <= d

h111

C*x <= d

h110

C*x <= d

h101

C*x <= d

h100

C*x <= d

h011

C*x <= d

h010

C*x <= d

h001

C*x <= d

h000

C*x <= d

finish_line

driveline

XORangle_trigger

angle (degrees)

q

angle

NOTNOT

u

M4

Mux M3

u

M2

MuxM1
m

Demux

42:74

Predictive Control
Logic

The discrete state indicates the torque
decisions for the current and next two
power strokes (i.e., for three of the
four cylinders).

Transitions from each state depend
on whether predicted state for the
next power stroke is closer to the
sliding mode with or without torque.

The 9th state (not shown) is the “end
simulation” state--reachable from any
of the other 8 states.

22

43:74

Reachable States in TM/P

Projection - Plane x2 v x3

44:74

Flowpipe for One Discrete Sequence

23

45:74

Outline

• Polyhedral Approximations
• CheckMate
• Low-Order Representations

46:74

Reachability Analysis for Affine Systems

Objective: Use low-dimensional polytopes to
compute the reach set for affine dynamic
systems

24

47:74

Affine Representations for Polytopes

A d-polytope in Rn is the image of d-polytope in Rd via an
affine mapping Rd→ Rn : x→ Φ x + γ

Φ x+ γ

1-polytope in 1-D space
1-polytope in 2-D space

x

48:74

Example 1. Line Segment

(1,1)

(3,3)

(1-D polytope)

25

49:74

Example 2. Oriented Rectangle
(full-dimensional)

50:74

Example 3. 2-polygon in 3-D

26

51:74

Computation Using Affine Representations

52:74

Computation Using Affine Representations

27

53:74

Computation Using Affine Representations

Intersection in 1-DIntersection in 2-D

54:74

Approximate Affine Representation

• If a set is ‘close’ to low-dimensional…

Consider the case of a segment of
trajectory

x(t)

x(t+h)
n-D set X

1-D polytope P

Since

,i.e., the Hausdorff distance

then

** We consider infinity norms in this work. Bδ is the hyperbox with radius δ.

Denote the set by

Approximate affine representation

28

55:74

Approximate Affine Representation
Over-approximate a set by ‘bloating’.

Consider the case of a segment of
trajectory

X

Since

,i.e., the Hausdorff distance

then

** We consider infinity norms in this work. Bδ is the hyperbox with radius δ.

Denote the set by

Approximate affine representation

δ

δ

56:74

Over-approximations With Approximate Affine
Representation

Using approximate affine representation, over-approximations can be obtained

29

57:74

initialize

Reach Set Computation Procedure

the reach set for the next
step

use linear interpolation
to approximate the

reach segment

compute an over-
approximation of the

reach segment

proceed to the
next step

58:74

X0 X1

X0,1

Computing CH(Xk-1 U Xk)

1. Form the affine subspace containing Xk-1,Xk.
2. Project the two polytopes onto the affine subspace

containing the convex hull.
3. Compute the convex hull in the subspace.

d = 1, dim Xk-1,Xk

m = 2, dim CH
The convex hull is
computed in 2-D.

30

59:74

Computing CH(Xk-1 U Xk)

1. Form the affine subspace
2. Project the two polytopes onto the affine subspace

containing the convex hull.
3. Compute the convex hull in the subspace.

d = 1,
m = 2

The convex hull is
computed in 2-D.

60:74

Computing δk-1,k

Xk-1

Xk

Xk-1,k

•Every trajectory is
approximated by its linear
interpolation.

• δk-1,k is computed as an upper-
bound on the infinity-norm of
the approximation error of the
linear interpolations over the set
of trajectories.

31

61:74

Computing δk-1,k

Xk-1

Xk

Xk-1,k

δk-1,k

δk-1,k

δk-1,k

For Pk-1,k = 〈Φk-1,k,γk-1,k,Pm〉, its δ -neighborhood over-approximates the
reach segment.

N(Pk-1,k , δk-1,k) = Pk-1,k ⊕ Bδk-1,k =: 〈Φk-1,k,γk-1,k,Pm ,δk-1,k 〉

62:74

Summary of the Procedure

convex hull in
reduced-order

subspace

compute matrix
functions

δ −neighborhood
of the convex hull

32

63:74

Handling Large-Scale Systems

Matrix-vector
product

• The affine representations for Xk are
computed using
– Φk = ϕ0(A,t)Φ0
– γk = ϕ0(A,t) γ0 + tϕ1(A,t) b

• Computing ϕ0(A,t)Φ0 and tϕ1(A,t) b is difficult
for large-scale sparse systems.
– Note Φ0 =[φ01, φ02, … φ0d]∈ ℜ n×d where d<<n,

ϕ0(A,t)Φ0 = [ϕ0(A,t)φ01 , ϕ0(A,t)φ02 … ϕ0(A,t) φ0d]

64:74

The Krylov Subspace Approximations

• If we are interested in computing
ϕ0(A,t)v instead of ϕ0(A,t),
the Krylov subspace approximation is
an efficient way to compute it.

1. Y Saad, Analysis of some Krylov subspace approximations to the matrix exponential
operator. SIAM Journal of Numerical Analysis, 20(1) 209-228, 1992.

2. C Moler and C Van Loan, Nineteen dubious ways to compute the exponential of a matrix,
twenty-five years later. SIAM Review, 45(1) 3-49, 2003.

r-dim Krylov subspace = span{v, Av, A2v,..., Ar-1v}

33

65:74

Using Krylov Approximations for the
Computations

〈Φ0, γ, Pd 〉

〈 ϕ0(A,t) Φ0, γ, Pd 〉

Approximate Linear Transformation

〈Φ0, γ, Pd 〉

Approximate Displacement

〈 [ϕ0(A,t) Φ0]K, γ, Pd 〉

〈 [ϕ0(A,t) Φ0]K, γ, Pd 〉

〈 [ϕ0(A,t) Φ0]K,[ϕ0(A,t)γ0
+ tϕ1(A,t) b] K, Pd 〉

66:74

over-approximation
obtained as the δ-
neighborhood, taking the
error caused by Krylov
subspace approximation
into account

The Error Introduced by Krylov Method

〈Φ0, γ, Pd 〉

〈 [ϕ0(A,t) Φ0]K,[ϕ0(A,t)γ0 + tϕ1(A,t) b] K, Pd 〉

convex hull
computed using
the Krylov
subspace
approximations

δ = δk-1,k
K + δAE

to over-approximate
reach segment

(Accumulated error) to over-approximate
actual reach sets using Krylov method

34

67:74

The Computation Procedure

68:74

The Computation Procedure

threshold for
using Krylov

adaptive step size
control via Krylov

bounds on Krylov
approximation

35

69:74

Example. 2-D Heat Transfer Problem

Environment: 0 C

Initial Temp: 0 C

Heated Edge: [0.9,1.1] C

2500th-order finite-difference
model

Reach set computed using 30th-
order Krylov subspace reduced
models.

70:74

Example. 2-D Heat Transfer Problem

Steady-state temperature distribution for

nominal in put 1 C.

Reach set vs. Time at one
point

36

71:74

Time/Memory vs. Order
2-D heat transfer problem (100th to 2500th – order)

72:74

Preliminary Results for Hybrid System
Verification

• A set of procedures developed to replace the
subroutines of CHECKMATE.

• Compare the results using affine representations and
CHECKMATE using hybrid system models of thermostat
with various orders

37

73:74

Computation Time for Analyzing a Thermostat

5 10 15 20
0

10

20

30

40

50

Order of the model

C
om

pu
ta

tio
n

tim
e

Affine representation procedures
CheckMate procedures

The initial set is a 1-D
polytope.

CHECKMATE always
bloats the 1-D
polytope to full-D.

Procedures using
affine representations
keep the 1-D
polytopes.

numerical
problems

Although the initial set is
bloated to full-D, the reach set
quickly becomes nearly low-D

as the system evolves.

(s
ec

on
ds

)

3

74:74

Next Lecture
• Using linear hybrid automata to approximate general

hybrid systems

Principal References
A. Chutinan and B. H. Krogh, Computational techniques for hybrid

system verification, IEEE Trans. on Automatic Control, vol. 48,
no. 1, 2003, pp. 64-75.

Z. Han and B. H. Krogh, Reachability analysis of large-scale affine
systems using low-dimensional polytopes, Hybrid Systems:
Computation and Control, 8th International Workshop, March
2006.

1

1:84

Lecture 3: Linear Hybrid Automata

Bruce H. Krogh
Carnegie Mellon University

krogh@ece.cmu.edu

2:84

Overview

• LHA Reachability
• Approximating Richer Dynamics
• PHAVer
• Iterative Relaxation Abstractions

2

3:84

mode
select

integrator

m(t)

xdot(t)

x(t)

jump
mapping

initial
condition

e(t)

discrete-state system with
guarded transitions

x(t)
e(t)

m(t)

cont.
state

discrete
state

discrete
event

F1

F2

F3

1
S

X0

Je

e(t)

Linear Hybrid Automata

• Fk (flow constraints), Je (jump mappings), and
Gjk (guards) are convex polyhedra

• Fk are independent of x(t)

4:84

Reachability with LHA [Halbwachs, Henzinger, 93-97]

invariant

initial states

9

derivatives in
invariant

successors

projection
cone

1. find bounds
on derivative

1. find bounds
on derivative

2. time elapse by
projection

2. time elapse by
projection 3. compute

successors of
transitions

3. compute
successors of
transitions

3

5:84

Overview

• LHA Reachability
• Approximating Richer Dynamics
• PHAVer
• Iterative Relaxation Abstractions

6:84

Approximating Hybrid Systems with
Linear Hybrid Automata

mode
select

integrator

m(t)

xdot(t)

flow
constraints

x(t)

x(t)

jump
mapping

initial
condition

e(t)

discrete-state system with
guarded transitions

x(t)
e(t)

m(t)

cont.
state

discrete
state

discrete
event

F1

F2

F3

1
S

X0

Je

e(t)

Objective: Replace Fk(x)
with constant convex
polyhedra Pk.

4

7:84

Linear Phase-Portrait Approximation

x

xdot

Fk(x)

range of x for m(t) = k

valid trajectory for H

xo

approximating
“polydedron” Pk

valid trajectory for A

minP

maxP

minX maxX

8:84

Linear Phase-Portrait Approximation:
Time-Domain Implications

slope minP

slope maxP

te in A

x(t)

xo

minX

maxX

x(t1)

t1

range of slopes
allowed by Fk(x(t1))

te in H

5

9:84

Improving Linear Phase-Portrait
Approximations: Mode Splitting

x

xdot

Fk(x)

valid trajectory for H

xo

minX1
maxX2X’

maxP2

minP2

Pk2

mk2mk1

Pk1

minP1

maxP1

10:84

Linear Phase-Portrait Approximation:
Improved Time-Domain Approximation

t

x(t)

xo

minX

maxX

te in H

te in A

X’

6

11:84

Linear Phase-Portrait Approximation:
Higher Dimensions

xdot1

xdot2
Fk(Xk)

Pk

n1

n2

n3

n4

In general find Pk by
solving the following
optimization problem
in a set of face-
normal directions:

Problem: How to choose the ni.

max ni
T xdot

x, xdot

s.t. xdot ∈ Fk(x)
x ∈ Xk

12:84

Linear Phase-Portrait Approximations

• guaranteed conservative approximations
• refinement introduces more discrete states
• for bounded hybrid automata, arbitrarily close

approximation can be attained using mode splitting
• sufficient to use rectangular phase-portrait

approximations (ni
T = [0…1…0])

7

13:84

Overview

• LHA Reachability
• Approximating Richer Dynamics
• PHAVer
• Iterative Relaxation Abstractions

14:84

PHAVer: Reachability Analysis for
Linear Hybrid Systems and Beyond

Goran Frehse

Verimag – UJF/CNRS/INPG, Grenoble

The following slides are
excerpts from the following

presentation:

PHAVer available at http://www.cs.ru.nl/~goranf/

8

15:84

Yet Another Verification Tool?

• Existing not powerful enough
– in practice only 3 - 4 dimensions

• Non-conservative floating-point
tools give wrong results
– exception: HSOLVER

• Why not use HyTech?
– numerical problems, no easy fix

(exact arithm. & 32 bit ⇒ overflow)
– complexity explosion
– limited class of automata (LHA)

thanks to Zhi Han, CMU

not reachable
according to HDV

Floating-Point:
CheckMate (CMU ‘98)
HYSDEL (ETH Zurich ‘99)
d/dt (Verimag ‘00)
Predicate Abstraction (UPenn ‘02)
HDV (UPenn ‘04)
HSOLVER (MPI ’05)

Exact Arithmetic:
HyTech (Berkeley ‘95)

9

16:84

Polyhedral Hybrid Automaton Verifyer
• Reachability Analysis

– exact arithmetic
– guaranteed overapproximation
– complexity management

• limiting bits & constraints

• State-of-the-Art Libraries:
– Parma Polyhedra Library
– Gnu MultiPrecision (GMP)

• Compositional Reasoning
– computing simulation relations

Hybrid Automata

M, A, b as intervals

Linear Hybrid Automata

Reachable States
as Polyhedra

On-the-fly over-
approximation

Overapprox. with
limited complexity

Model

Analysis
Engine

Output

bAxxM +=&

8

9

17:84

Over-Approximation of Affine Dynamics

• From

to LHA:

LHA dynamics

affine dynamics

invariant

14

18:84

Over-Approximation of Affine Dynamics

• From

to LHA:

• Solutions:

a) project invariant ∩ flow to

b) each constraint separately
(rectangular, octagonal, etc.)

β = projection
-based

constraint-based

10

19:84

Reachability of Affine Dynamics

Principle:
1. Hybridization

– Partition State Space
(on the fly)

– Switching between
⇒ Hybrid System

2. Overapproximation
– const. bounds on

dynamics
= “Linear” Hybrid Automata

⇒ Polyhedral enclosure
of actual trajectories

IL [mA]

VC [V]

vector field

9

Partition depending
on dynamics

20:84

Limiting the Number of Bits

1

1

y

x0

109 x 121 y 100

6 x 6 y ?6 x 6 y ?

1

1

y

x0

600
109

6 x 6 y 600
109

6 x 6 y

1

1

y

x0

6 x 6 y 66 x 6 y 6

1. truncate bits of
coefficients

2. push plane to
outside (solve LP)

3. snap to next
integer

•Good:
–large problems infeasible without
–with limit of constraints → termination

•Bad:
–unbounded error

0 25 50 75 100 125
100

1000

10000

Iteration

M
ax

. B
its

Max. # of Bits

unlimited

limited

7 bit7 bit

3 bit3 bit

12

11

21:84

Limiting the Number of Constraints

• Reduce from m to z constraints
• Significance Measure f(m,d)

– Volume: exp
– Slack: LP
– max. angle: m2d

⇒ - mini≠j ai
Taj

• Heuristics to choose constraints
– deconstruction:

drop (m-z) least significant
– reconstruction:

add z most significant
• Experiments: angle & reconstr.

– 1000 → 50 in 4 dim: < 2 sec.
(1000x faster than slack)

45° 15°

30°

45°

90°

135°A

B

C

D

E
F

45°

30°

45°

150°2

1

3

4

5 D

F

B

A

C

From 6 to 5 constraints

13

22:84

Navigation Benchmark

• Fehnker, Ivancic.
Benchmarks for Hybrid
Systems Verification.
HSCC'04

• “Balloon driven by wind”
– Moving object in plane
– 4-dimensional piecewise affine dynamics

(position, velocity)
– equilibrium velocity depends on position

• Instances NAV01-NAV29 with increasing difficulty
• Verification Task: Reachability of forbidden states

www.cse.unsw.edu.au/~ansgar/benchmark/

initial
states

target states

forbidden
states

direction of
equilibrium
velocity

initial velocities

reachable
states

2

NAV02

12

23:84

Navigation Benchmark

“

“
-?-

152s 180MB
153s 68MB

34s

Pred. Abstr.
UPenn‘02

4x250MHz Sun

∞

∞

8s 48MB
6s 27MB
6s 27MB
5s 27MB

PHAVer
‘05/’06

2.8GHz P4

∞

∞

1191s 16MB
78s 5MB
73s 5MB
5s 2MB

TimePass
Stanf. ’06

PIII(!)

46000s 529MB∞“NAV05
81s 52MBSept. ‘0575s“NAV04

48000s 575MB

33s 60MB
34s 60MB
32s 59MB

PHAVer
F/B-Ref.’05
2.8GHz P4

∞

10s
10s
5s

PHAVer
F/B-Ref.’05
3GHz Xeon

Raskin
Henzinger,

Doyen,

“

?
~150s
~30s

d/dt
Verimag

‘00

NAV03

NAV06

NAV02
NAV01

Tool

Instance

forbidden
states

initial
states

initial
velocities

NAV02 NAV04 NAV05

24:84

PHAVer References
• Reachability Analysis

– PHAVer: Algorithmic Verification of Hybrid Systems past HyTech
Frehse. HSCC'05

– Time Domain Verification of Oscillator Circuit Properties
Frehse, Krogh, Rutenbar, Maler. FAC’05

– Verifying Analog Oscillator Circuits Using Forward/Backward Abstraction
Refinement
Frehse, Krogh, Rutenbar. DATE’06

• Compositional Reasoning
– On Timed Simulation and Compositionality

Frehse, FORMATS’06
– Assume-Guarantee Reasoning for Hybrid I/O-Automata by Over-

Approximation of Continuous Interaction
Frehse, Han, Krogh. CDC’04

http://www.cs.ru.nl/~goranf/

25

13

25:84

Overview

• LHA Reachability
• Approximating Richer Dynamics
• PHAVer
• Iterative Relaxation Abstraction

26:84

CEGAR
(CounterExample Guided Abstraction Refinement)

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

14

27:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

complete detailed
model

28:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

reduced,
conservative

model

15

29:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

specification

model check
the abstraction

(faster than for the
concrete system)

30:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

no counterexample ⇒
specification satisfied

for the concrete system

16

31:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

counterexample for the
abstraction corresponds to a

state-transition path
in the concrete system

32:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

Can the constraints along the
counterexample path be satisfied

in the concrete system?

17

33:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

feasible constraints ⇒ there exists a
feasible counterexample for the

concrete system

34:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

create a new abstraction (refinement) that
eliminates the spurious counterexample

18

35:84

CEGAR

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

Success: CEGAR iterations often
terminate much more quickly than
model checking the concrete system.

36:84

CEGAR for Discrete Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

state transition system
with Boolean variables

19

37:84

CEGAR for Discrete Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

eliminate some variables

38:84

CEGAR for Discrete Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

decision procedures/SAT solvers

20

39:84

CEGAR for Discrete Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

add variables in the
unsatisfiable core

40:84

CEGAR for Discrete Systems

• Leverages
– Power of model checking on simpler models
– Power of decision procedures / SAT solvers to validate

counterexamples
• Empirically a very powerful approach
• Many success stories

– SLAM : Verifying Device Drivers at Microsoft
• Actually ships as a commercial product Static Driver Verifier

(SDV)
– Many software model checkers developed

• MAGIC, BLAST, CBMC

21

41:84

CEGAR for Hybrid Systems
(our previous work)

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

hybrid automaton

42:84

CEGAR for Hybrid Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

start with location
transition graph

22

43:84

CEGAR for Hybrid Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstractionforbidden

locations

reachability
specifications

44:84

CEGAR for Hybrid Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

HS reachability: apply
increasingly precise

approximations

forbidden
locations

23

45:84

CEGAR for Hybrid Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

compute reachable sets along the
counterexample path

46:84

CEGAR for Hybrid Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

identify point where the reachable
set becomes empty

24

47:84

CEGAR for Hybrid Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

introduce new locations (“splitting”)
to eliminate the infeasible path

48:84

CEGAR for Hybrid Systems

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

Limitations:
• slow convergence: refinement

eliminates one path at a time
• HS reachability limited to low

dimensional systems

25

49:84

Iterative Relaxation Abstraction (IRA) for Linear
Hybrid Automata (LHA)

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

50:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

LHA
(with several continuous variables)

26

51:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

relaxation abstraction:
fewer continuous variables

52:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

start with the location graph
(zero continuous variables)

27

53:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

LHA
reachability

forbidden
locations

54:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

check feasibility of linear
constraints using LP

28

55:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

use variables from an
irreducible infeasible subset

(IIS) of constraints

56:84

IRA for LHA

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

new relaxation abstraction
each time:

NOT a refinement

29

57:84

IRA for LHA – Leverages:

• Power of LHA reachability on low-order LHA models

• Power of LP to validate counterexamples involving
huge number of continuous variables.

• Ability of a LP solver to identify an irreducible
infeasible subset for an infeasible LP

• Inspired by CEGAR for discrete systems, but
variables are not added to refine abstractions

58:84

Relaxation Abstractions

• LHA
– discrete transition structure (locations/transitions)
– linear constraints for invariants, guards, jumps

• Given a subset of continuous variables V

• Replace linear constraints with relaxed constraints
involving only variables in V
– x<100 /\ x>20 /\ y<30 /\ x<y can be relaxed to x<100 /\ x>20

• Not unique – various relaxations
– Drop constraints involving variables not in V (localization)
– Quantifier Elimination (Fourier-Motzkin)

30

59:84

Relaxation Abstractions

LHA

Relaxation Abstraction
(localization on x1)

60:84

Counterexamples (CEs)

• Paths in the discrete structure (sequence of locations
and transitions)

• Key observations [Xuandong Li, Sumit Jha, Lei Bu BMC06] :
– Feasible runs along a path are defined by linear

constraints
– CE exists in the concrete LHA if and only if the

corresponding linear constraints are feasible

31

61:84

Irreducible Infeasible Subset (IIS)

• Given a set of infeasible linear constraints
(corresponding to a spurious CE).

• IIS: a subset of constraints such that
– the constraints are infeasible
– removing one constraint makes them feasible

•• Use variables in the IISUse variables in the IIS for the next next relaxation
abstraction

62:84

The Language of Counterexamples
• LHA reachability gives a discrete CE automaton A for

the current relaxed LHA
– A string s = {s0,s1 ……,sn} is in the language of the discrete

CE automaton A only ifonly if the reachability analysis engine
says that sn may be reachable from s0 using the path s0

s1 … … sn.

• Intersect with the previous CE automaton
– to remove CE s refuted earlierremove CE s refuted earlier by other abstractions
– also, remove previous CE in case reachability was too

conservative

• Key Idea: Generate relaxation abstractions with only only
the most recent set of IIS variables.the most recent set of IIS variables.

32

63:84

IRA for LHA
selecting counterexamples

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

64:84

IRA for LHA
selecting counterexamples

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

specification
not satisfied

abstraction
CE automaton

cumulative
CE automaton

update
CE automaton

select
counterexample

infeasible
constraints

33

65:84

IRA for LHA
selecting counterexamples

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

specification
not satisfied

abstraction
CE automaton

cumulative
CE automaton

update
CE automaton

select
counterexample

infeasible
constraints

guarantees:
• only previously

discovered CEs are
explored

• no CE is used twice

66:84

IRA for LHA
constructing new relaxation abstractions

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

34

67:84

IRA for LHA
constructing new relaxation abstractions

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

identify variables
in an IIS

continuous
variables

68:84

IRA for LHA
constructing new relaxation abstractions

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

identify variables
in an IIS

continuous
variables

guarantees relaxation abstraction has a minimal
set of variables to eliminate the previous CE

35

69:84

IRA for LHA
implementation

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

LHA reachability:
PHAVer

70:84

IRA for LHA
implementation

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

CE Automata :
AT&T FSM Library

36

71:84

IRA for LHA
implementation

concrete
system

construct
initial abstraction

abstraction

model checking counterexample

specification
satisfied

validate
counterexample

infeasible
constraints

specification
not satisfied

construct new
abstraction

LP & IIS Analysis :
CPLEX

LP & IIS Analysis :
CPLEX

72:84

IRA vs. PHAVer for an Adaptive Cruise
Control Example (time in sec)

did not
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA
Fourier-Motzkin

IRA –
Localization

No. of
Variables

37

73:84

IRA vs. PHAVer for an Adaptive Cruise
Control Example (time in sec)

did not
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA
Fourier-Motzkin

IRA –
Localization

No. of
VariablesIRA becomes faster for

≥ 12 variables

74:84

IRA vs. PHAVer for an Adaptive Cruise
Control Example (time in sec)

did not
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA
Fourier-Motzkin

IRA –
Localization

No. of
Variables

IRA-FM becomes faster
for ≥ 14 variables

38

75:84

IRA vs. PHAVer for an Adaptive Cruise
Control Example (time in sec)

did not
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA
Fourier-Motzkin

IRA –
Localization

No. of
Variables

15 Vars: 19.5 hr. (PHAVer) vs. 3 min. (IRA-LOC)

76:84

IRA vs. PHAVer for an Adaptive Cruise
Control Example (time in sec)

did not
complete

70090.06

7007.51

147.11

8.21

0.96

0.26

PHAVer

3519.51267.4616

2503.59181.7415

1521.95123.7314

933.4750.0412

402.1517.7610

170.115.118

61.051.346

IRA
Fourier-Motzkin

IRA –
Localization

No. of
Variables

PHAVer fails to converge
for 16 variables

39

77:84

IRA-Loc vs. IRA-FM

IRA-FM

IRA-Loc

78:84

Switched Buffer Network1

2

7

3

4

5 6

11

8

9 10

1

Buffer Size:
100

Valve
Operation
Closed Mode: 0
Open Mode: 10

Controller

Hybrid automaton
controlling the valves
in the channels

• Buffers connected by pipes with valves.
• Valves have several modes
• Controller observes buffers and to switch valve modes
• Specification: No buffer overflow

1Frehse & Maler, HSCC ‘07

40

79:84

Switched Buffer Network

• Implemented a simple controller with three locations
and 11 continuous variables

• Design: sequence of actual counterexamples from
IRA used to “tune” the control parameters

• One case led to a 101 location CE in 3 iterations of
the abstraction refinement loop

Final design (verified):
• PHAVer took over 12 minutes
• IRA took 23.7 seconds

80:84

Nuclear Power Plant Control2

• Temperature control
– rods immersed to cool the reactor, withdrawn to allow reaction
– rods controlled temperature measurements and local timers.
– each rod can stay inside only for a certain max time limit

• Temperature should not rise beyond a critical threshold.
• Model

– 3 control rods
– 11 continuous variables

2 Variation of the problem studied by Kapur and Shyamasundar (HART’97), R
Alur et al (TCS’95), P. H. Ho 95 PhD thesis and others.

41

81:84

Nuclear Power Plant Control

Iterative Design Procedure
– First attempt:

• simple counterexample of 3 locations
• abstraction 3 continuous variables
• all of variables related to control rod 1
• clear that the rod was being inserted too late
• changed the cutoff temperature

– Similar CEs for control rods 2 and 3
Final Design

– PHAVer verification: 16 hours
– IRA verification: 6 iterations, 30.04 seconds

82:84

Current Work

• Further empirical studies
• Use of IRA for interactive design (actually using the

counterexamples!)
• Distributed computation (we have found most of the

time is spent in FM quantifier elimination)
• Extensions to more general hybrid systems (outer

refinement loops)

42

83:84

Principal References
T. A. Henzinger, P.-H. Ho and H. Wong-Toi, Algorithmic analysis of

nonlinear hybrid systems, IEEE Trans. on Automatic Control,
April 1998.

S. K. Jha, B. H. Krogh, J. E. Weimer, E. M. Clarke, Reachability
for linear hybrid automata using iterative relaxation abstraction,
Hybrid Systems: Computation and Control, April 2007.

84:84

Hybrid System Reachability:
Additional Topics

• systems with inputs
– control inputs
– disturbances

• uncertain systems
– unknown parameters
– stochastic systems

• other abstractions/representations
– predict abstraction
– ellipsoids
– qualitative reasoning
– level sets

• theorem proving

