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Dynamics and control world view

• Predominantly continuous-time system
• Modeled by means of DAEs (differential algebraic equations),

or by means of a set of trajectories
• Hybrid phenomena modeled by means of discontinuous

functions and/or switched equations, possibly using extended
solution concepts (Filippov, Utkin) leading to sliding modes

• Evolution of a hybrid system: for each variable possibly
discontinuous function of time

• Examples: piecewise affine (PWA) systems, mixed logic
dynamical (MLD) systems or linear complementarity (LC)
systems

(i = 0 ∧ v ≤ 0) ∨ (v = 0 ∧ i ≥ 0)

DAE model of a diode

Bert van Beek TU/e Simulation of Hybrid Systems 3/39



DC⇔CS Sim⇔Ver Chi Phenomena DC CS DC models CS models DC + CS

Computer science world view

• Predominantly discrete-event system

• Modeled by means of (timed/hybrid) automaton, process
algebra, Petri net, data flow languages, etc.

• Evolution of a hybrid system: sequence of time transitions and
action transitions

• Time transitions: for each variable continuous function of time

• Discontinuities are represented by actions

i = 0
v ≤ 0

v = 0
i ≥ 0

Automaton model of a diode
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DAE model of diode-switch network

Switching between

• voltage source of −1
(diode blocks)

• current source of +1
(diode conducts)

s

−

+

−1 ↑ 1

→ iv

Generalized differential algebraic equation models use predicates as
“equations”:

(¬s =⇒ v = −1) ∧ (s =⇒ i = 1)

(i = 0 ∧ v ≤ 0) ∨ (v = 0 ∧ i ≥ 0)

s =

{
true for 0 ≤ t < 2

false for t ≥ 2

Bert van Beek TU/e Simulation of Hybrid Systems 5/39



DC⇔CS Sim⇔Ver Chi Phenomena DC CS DC models CS models DC + CS

Algebraic variables

Reduced DAE model of diode-switch network:{
s ∧ v = 0 ∧ i = 1 for 0 ≤ t < 2

¬s ∧ v = −1 ∧ i = 0 for t ≥ 2

Values of v and i change discontinuously at time point 2.
Therefore they are algebraic variables.

Algebraic variables:

• Any function of time, possibly discontinuous

• No memory

• No derivative
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Continuous variables

Continuous variables:

• Continuous function of time

• Memory

• Derivative may be used

Examples

• Mass m, force F , velocity v :
F = mv̇ , continuous variable v

• Tank with volume V , inflow Qi , outflow Qo :
V̇ = Qi − Qo , continuous variable V

• Capacitor C , voltage v , current i :
i = Cv̇ , continuous variable v
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DAE model of diode-switch-capacitor network

(¬s =⇒ v = −1) ∧ (s =⇒ i = 1− Cv̇)

(i = 0 ∧ v ≤ 0) ∨ (v = 0 ∧ i ≥ 0)

s =

{
false for 0 ≤ t < 2

true for t ≥ 2

Equivalent specification:{
s ∧ ((i = 0 ∧ v̇ = 1/C ∧ v ≤ 0) ∨ (v = 0 ∧ i = 1)) for 0 ≤ t < 2

¬s ∧ v = −1 ∧ i = 0 for t ≥ 2

Problem: Now v must be a continuous variable, with derivative,
and continuous behavior =⇒ value of v cannot change
discontinuously to −1 when switch opens!

s

−

+

−1 ↑ 1

→ i

C

v
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Automaton model of diode-switch network (1)

• All variables are continuous

• Mode switching: assume that value of
a variable can change arbitrarily to
satisfy invariant of next mode =⇒
automaton way of realizing behavior
analogous to algebraic variable

−

+

−1 ↑ 1

→ iv

i = 1 isdown

v = −1 isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

block

conduct
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Interleaving parallel composition

v = −1
i ≥ 0
v = 0

isup

conducting

v = −1
i = 0
v ≤ 0

isup

blocked

i = 1
i ≥ 0
v = 0

isdown

conducting

i = 1
i = 0
v ≤ 0

isdown

blocked

block

down

conduct

down

block

up

conduct

up

meaning

i = 1 isdown

v = −1 isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

block

conduct
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Simplified automaton

v = −1
i = 0
v ≤ 0

isup

blocked

i = 1
i ≥ 0
v = 0

isdown

conducting

meaning

i = 1 isdown

v = −1 isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

block

conduct
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Synchronizing on common labels

Change diode model labels such that they synchronize with switch
model labels

v = −1
i = 0
v ≤ 0

isup

blocked

i = 1
i ≥ 0
v = 0

isdown

conducting

down

up
meaning

i = 1 isdown

v = −1 isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

up

down
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Automaton model of diode-switch network (2)

Voltage source E is positive or negative

−

+

E ↑ 1

→ iv
R

i = 1 isdown

v =
E − iR

isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

up

up

down

down
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Synchronizing on common labels (2)

i =
E/R
i ≥ 0
v = 0

isup

conducting
E positive

v = E
i = 0
v ≤ 0

isup

blocked
E negative

i = 1
i ≥ 0
v = 0

isdown

conducting

i = 1
i = 0
v ≤ 0

isdown

blocked

down

down

up
up

meaning

i = 1 isdown

v =
E − iR

isup

up down

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

up

up

down

down
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Conclusions automaton model of diode-switch network

• Automaton model of diode not a compositional way of
modeling:
Model of diode needs to know action names of automata
models of switches.

• Automata mode switching only in case of actions.

• Incorrect behavior in case of time-dependent varying voltage
of current source: no switching of mode of automaton!

−

+

E ↑ 1

→ iv
R

i ≥ 0
v = 0

conducting

i = 0
v ≤ 0

blocked

up

up

down

down
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Combining the DC and CS world views (1)

Combine the differential algebraic equations from the dynamics
and control world view with automata

• Algebraic variables

• Continuous variables

• Hybrid phenomena may be modeled by means of discontinuous
functions and/or switched equations, possibly using extended
solution concepts (Filippov, Utkin) leading to sliding modes

• By means of actions, automata can change from one mode to
another

• In each mode, variables can behave according to
discontinuous functions of time
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DC + CS model of diode-switch-capacitor network

s

−

+

−1 ↑ 1

→ i

C

v

i =
1− Cv̇

isdown

v = −1 isup

t ≥ 2 → v := −1

(i = 0 ∧ v ≤ 0) ∨ (v = 0 ∧ i ≥ 0)

More general model: instead of assignment v := −1 on automaton
edge, specify that the value of v may change arbitrarily.

E.g. t ≥ 2 → {v} : true (see last sheets on instantaneous
equations).
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Algebraic and continuous variables in simulation languages

• Distinction between algebraic and continuous variables only
implicit.

• No derivative =⇒ algebraic

• Derivative =⇒ continuous

Consider:

x < 0 =⇒ ẋ = 1

x ≥ 0 =⇒ x = 0

Is x continuous, or switching between continuous and algebraic? In
many languages such models are not allowed. Use discontinuous
right hand sides instead:

ẋ =

{
1 if x < 0

0 if x ≥ 0
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Simulation languages

• Ease of modeling =⇒ complex languages

• Verification not an issue, no formal semantics: (no
verification)

• Languages specialize either in the discrete-event (DE) domain
or in the continuous-time (CT) domain

• Hybrid languages usually DE+ (E.g. Siman, Simple++) or
CT+ (E.g. Simulink, Modelica, EcosimPro)
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Verification formalisms

• Ease of formal analysis =⇒ small languages with formal
semantics

• Ease of modeling not an issue: cumbersome for modeling and
simulation

• Examples for hybrid systems: PHAVer, HyTech; for timed
systems: PROMELA, UPPAAL.
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Overview of the Chi language (1)

• Suited to:
• simulation
• verification
• code generation

• Integrates:
• discrete-event modeling (CS world view: automata, process

algebra)
• continuous-time modeling, (DC world view: switched

differential algebraic equations)
• discrete-time modeling (DC world view: sampled systems)

• Formal compositional semantics

• Consistent equation semantics of Chi ensures that equations
are always consistent, comparable to invariants of hybrid
automata
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Overview of the Chi language (2)

• Is a process algebra defined by means of:
• atomic statements, e.g. assignment (x := 2), DAE

(ẋ = −x + 1)
• an orthogonal set of operators, e.g. sequential comp. (;) and

parallel comp. (‖)
that can be freely combined.

• Core language small. Ease of use due to many syntactical
extensions (all formally defined).

• Modular and hierarchical and scalable by means of process
definition and process instantiation (reuse).

• Stochastic: definition of distributions and sampling.
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The Chi language definition (1)

A Chi model is of the following form:

model M(parameter declarations) =
|[ channel and variable declarations
:: p
]|

where p represents a process term (statement)
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The Chi language definition (2)

Process term Meaning
p ::= skip internal action

| x := e assignment
| a ! e sending
| a ? x receiving
| delay e delay statement
| inv u invariant (equations)
| X name of mode
| b -> p guard operator
| p ; p sequential composition
| p || p parallel composition
| p | p alternative composition
| *p infinite repetition
| |[ D :: p ]| scope operator: declaration D of local variables

/ channels / mode definitions
| lp(xk , hm , en) process instantiation
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The Chi language definition (3)

Invariant inv u:

• Differential equation: rde1 = rde2

rde1 and rde2 are real-valued expressions on variables and
dotted variables
E.g. ẋ = −x + y

• Other predicates
E.g. x ≥ 0, y = 2x + 2, true, false
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Controlled tank system (1)

V

Qin

Qo

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6

Time

Simulation tank on-off controller

V
Qi

Qo
n

model ControlledTank()=

|[ var n: nat = 0, cont V: real = 10, alg Qi,Qo: real

:: inv dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| *( V <= 2 -> n:= 1; V >= 10 -> n:= 0 )

]|
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Controlled tank system (2)

Equivalent specification using modes, as in automata

model ControlledTank()=

|[ var n: nat = 0, cont V: real = 10

, alg Qi,Qo: real

:: inv dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| |[ mode noinflow =

V <= 2 -> n:= 1; inflow

, mode inflow =

V >= 10 -> n:= 0; noinflow

:: noinflow

]|

]|

noinflow inflow

V<=2 -> n:=1

V>=10 -> n:=0
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Simulation tools for Chi

• Stand-alone symbolic simulator for hybrid and timed Chi
(Python)

• S-function block hybrid Chi simulator for co-simulation in
Matlab/Simulink

• Stand-alone simulator for timed Chi (C)

• See se.wtb.tue.nl/sewiki/

Note: slight changes of syntax in this presentation with syntax in
current tools.
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Simulation phenomena: the bouncing ball

-20
-15
-10
-5
 0
 5

 10
 15
 20

 0  1  2  3  4  5  6  7
time

bouncing_ball.chi

h
v

model BounceBall() =

|[ cont h: real = 20.0

, v: real = 0.0

:: inv dot h = v

, dot v = -10

|| |[ mode fall = ( h = 0 -> v:= -0.5 * v; rise )

, mode rise = ( v = 0 -> skip; fall )

:: fall

]|

]|
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Accumulation point and zeno behavior

-5
-4
-3
-2
-1
 0
 1
 2
 3

 5  5.2  5.4  5.6  5.8  6
time

bouncing_ball.chi

h
v

• Simulation will not proceed beyond time point 6, which is an
accumulation point

• In theory there will be an infinite number of events before
time point 6 is reached (zeno behavior)

• Unless special measures are taken, numerical simulation of
zeno behavior may lead to erroneous results
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Proper bouncing ball model

• The symbolic Chi simulator can proceed until the numerical
machine accuracy is reached

• A proper model terminates when bouncing is no longer realistic
(height becomes too low)

model BounceBall() =

|[ cont h: real = 20.0

, v: real = 0.0

:: |[ mode fall = ( inv dot h = v, dot v = -10

| h = 0 -> v:= -0.5 * v; rise

)

, mode rise = ( inv dot h = v, dot v = -10

| v = 0 -> skip

; ( h >= 0.01 -> skip; fall

| h < 0.01 -> skip // terminate

)

)

:: fall

]|

]|
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State event detection (1)

• Numerical solvers solve differential algebraic equations at
discrete time points

• Interval between discrete time points is the step size

• Step size can be fixed or variable

State event detection by means of zero crossing detection / root
finding:

• Convert the state condition to a root function that calculates
the value of the variable minus the threshold

• When the root function crosses zero, the state event has been
located
E.g. V <= 2 -> n:= 1 leads to root function returning V - 2
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State event detection (2)

Efficient state event detection
/ zero crossing detection / root
finding:

h

0

20

time0 2

efficient iterative
detection of inter-
section with hori-
zontal axis

• Solve the system of equations until beyond the threshold
crossing, keeping the dynamics unchanged

• Iteratively approach the exact point of threshold crossing
(root function returns zero)

• When the exact time point of the zero crossing (h = 0) has
been located, change the dynamics (e.g. at time point 2,
execute the assignment v:= -0.5 * v)
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Zero crossing detection problems (1)

V

Qin

Qo First empty the
tank, then fill it:

model ControlledTank()=

|[ var n: nat = 0, cont V: real = 10, alg Qi,Qo: real

:: inv dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| V <= 0 -> n:= 1; V >= 10 -> n:= 0

]|

State event detection for V <= 0 leads to taking the root of a
negative number because of equation Qo = sqrt(V)!
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Zero crossing detection problems (2)

Solution, conditional expression / discontinuous right hand side:

model ControlledTank()=

|[ var n: nat = 0, cont V: real = 10, alg Qi,Qo: real

:: inv dot V = Qi - Qo

, Qi = n * 5

, Qo = ( V >= 0 -> sqrt(V) | V < 0 -> 0 )

|| V <= 0 -> n:= 1; V >= 10 -> n:= 0

]|

Alternative syntax in other languages:
Qo = if V >= 0 then sqrt(V) else 0
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Simulation without zero crossing detection

If zero crossing detection in solver can be switched off (e.g.
Matlab/Simulink, Modelica), or if zero crossing detection is not
implemented:

• Variable step size numerical solver will decrease step size when
approaching the discontinuity
=⇒ large number of smaller and smaller steps when
approaching the discontinuity

• Fixed step size solver will overstep the discontinuity
=⇒ big numerical error near discontinuity
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Time events

Time events are easy for hybrid simulators:

• explicitly specified (absolute timing)

• or calculated by addition of time and intervals (relative timing)

model ControlledTank()=

|[ var n: nat = 0

, cont V: real = 10, alg Qi,Qo: real

:: inv dot V = Qi - Qo

, Qi = n * 5

, Qo = sqrt(V)

|| time >= 2 -> n:= 1; delay 5; n:= 0

]|

• Absolute timing: at time point 2, the valve is opened
time >=2 -> n:= 1

• Relative timing: 5 units of time after that, the valve is closed
delay 5; n:= 0
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Instantaneous equations (1)

Discontinuities using actions (computer science approach):

• assignments

• instantaneous equations / action predicates / jump predicates

Instantaneous equations W : r

• more general than assignments

• predicate r relates values of variables before and after action

• W : set of variables that may change
(often not explicitly specified, but derived from r)

Examples instantaneous equations

• {x} : x = 1 means x := 1

• {x} : x = x− + 1 means x := x + 1
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Instantaneous equations (2)

Values of x before and after an action in different languages:

• x− and x , or x− and x+

• old x and x, or pre(x) and post(x)

Example colliding bodies:

model collision(m0,m1,c: real) =

|[ cont x0: real := 0.0, x1: real := 1.0

, v0: real := 0.0, v1: real := 0.0

:: inv dot x0 = v0, dot v0 = 1

, dot x1 = v1, dot v1 = 0

|| x0 >= x1 ->

{v0,v1}: v0 - v1 = -c * (old v1 - old v0),

m0 * v0 + m1 * v1 = m0 * old v0 + m1 * old v1

]|

Newton’s collision rule and conservation of momentum at collision
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