## Solution Concepts and Well-posedness of Hybrid Systems

Maurice Heemels
Department of Mechanical Engineering
Technische Universiteit Eindhoven
m.heemels@tue.nl

HYCON Summer School on Hybrid Systems

TU/e
Key issues:

- Solution concepts
- Well-posedness: existence \& uniqueness of solutions given an initial condition


## Outline lecture

- Smooth systems: differential equations
- Switched systems: Discontinuous differential equations: "classics"
- Hybrid automata
- Zenoness: importance of choice of solution concept
- Some piecewise linear, linear relay and complementarity systems
- Summary


## TU/e

technische universiteit eindhoven

Solution concept

$$
\begin{gathered}
\text { Description format / syntax / model } \\
\downarrow \\
\text { solutions / trajectories / executions/ semantics/ behavior }
\end{gathered}
$$



Well-posedness: given initial condition does there exists a solution and is it unique?
Description format / syntax / model


## TU/e

Smooth differential equations

Example $\dot{x}=f(t, x) \quad x\left(t_{0}\right)=x_{0}$.

A solution trajectory is a function $x:\left[t_{0}, t_{1}\right] \mapsto \mathbb{R}^{n}$ that is continuous, differentiable and satisfies $x\left(t_{0}\right)=x_{0}$ and

$$
\dot{x}(t)=f(t, x(t)) \text { for all } t \in\left(t_{0}, t_{1}\right)
$$

Well-posedness: given initial condition does there exists a solution and is it unique?

## TU／e

technische universiteit eindhoven

## Well－posedness

Example $\dot{x}=2 \sqrt{x}, x(0)=0$ ．Solutions：$x(t)=0$ and $x(t)=t^{2}$
Local existence and uniqueness of solutions given an initial condition：
Theorem I Let $f(t, x)$ be piecewise continuous in $t$ and satisfy the following Lipschitz condition：there exist an $L>0$ and $r>0$ such that

$$
\|f(t, x)-f(t, y)\| \leq L\|x-y\|
$$

and all $x$ and $y$ in a neighborhood $B:=\left\{x \in \mathbb{R}^{n} \mid\left\|x-x_{0}\right\|<r\right\}$ of $x_{0}$ and for all $t \in\left[t_{0}, t_{1}\right]$ ．

$$
\Downarrow
$$

There is a $\delta>0$ s．t．a unique solution exists on $\left[t_{0}, t_{0}+\delta\right]$ starting in $x_{0}$ at $t_{0}$ ．

Global well－posedness
Example $\dot{x}=x^{2}+1, x(0)=0$ ．Solution：$x(t)=\tan t$ ．Local on $[0, \pi / 2)$ ．
－Note that we have $\lim _{t \uparrow \pi / 2} x(t)=\infty$ ．Finite escape time！
Theorem 2 （Global Lipschitz condition）Suppose $f(t, x)$ is piecewise con－ tinuous in $t$ and satisfies

$$
\|f(t, x)-f(t, y)\| \leq L\|x-y\|
$$

for all $x, y$ in $\mathbb{R}^{n}$ and for all $t \in\left[t_{0}, t_{1}\right]$ ．Then，a unique solution exists on $\left[t_{0}, t_{1}\right]$ for any initial state $x_{0}$ at $t_{0}$ ．
－Not necessary：$\dot{x}=-x^{3}$ not glob．Lipsch．，but unique global solutions．
－Also in hybrid systems，but even more awkward stuff（Zeno）
$\leftrightarrow 4 \Delta \downarrow$／department of mechanical engineering 5／66

## TU／e

## echnische universiteit eindhoven

Discontinuous differential equations：a class of switched systems


$$
\dot{x}= \begin{cases}f_{+}(x) & , \text { if } x \in C_{+}:=\left\{x \in \mathbb{R}^{n} \mid \phi(x)>0\right\} \\ f_{-}(x) & \text {, if } x \in C_{-}:=\left\{x \in \mathbb{R}^{n} \mid \phi(x)<0\right\}\end{cases}
$$

－$x$ in interior of $C_{-}$or $C_{+}$：just follow！
－$f_{-}(x)$ and $f_{+}(x)$ point in same direction：just follow！

$$
n(x)=\frac{\nabla \phi(x)}{\|\nabla \phi(x)\|} \text { then }\left(n(x)^{T} f_{-}(x)\right) \cdot\left(n(x)^{T} f_{+}(x)\right)>0
$$

－$n(x)^{T} f_{+}(x)>0\left(f_{+}(x)\right.$ points towards $\left.C_{+}\right)$and $n(x)^{T} f_{-}(x)<0\left(f_{-}(x)\right.$ points towards $\left.C_{-}\right)$： At least two trajectories

## TU／e

Sliding modes

$n(x)^{T} f_{+}(x)<0\left(f_{+}(x)\right.$ points towards $\left.C_{-}\right)$and $n(x)^{T} f_{-}(x)>0\left(f_{-}(x)\right.$ points towards $\left.C_{+}\right)$．

## No classical solution

－Relaxation：spatial（hysteresis）$\Delta$ ，time delay $\tau$ ，smoothing $\varepsilon$
－Chattering／infinitely fast switching（limit case $\Delta \downarrow 0, \varepsilon \downarrow 0$ ，and $\tau \downarrow 0$ ）
Filippov＇s convex definition：convex combination of both dynamics

$$
\dot{x}=\lambda f_{+}(x)+(1-\lambda) f_{-}(x) \text { with } 0 \leq \lambda \leq 1
$$

such that $x$ moves（＂slides＂）along $\phi(x)=0$ ．＂Third mode ．．．

## TU/e

Differential inclusions

$$
\dot{x}= \begin{cases}f_{+}(x), & \text { if } \phi(x)>0 \\ \lambda f_{+}(x)+(1-\lambda) f_{-}(x), & \text { if } \phi(x)=0,0 \leq \lambda \leq 1 \\ f_{-}(x), & \text { if } \phi(x)<0,\end{cases}
$$

Differential inclusion $\dot{x} \in F(x)$ with set-valued

$$
F(x)= \begin{cases}\left\{f_{+}(x)\right\}, & \phi(x)>0 \\ \left\{\lambda f_{+}(x)+(1-\lambda) f_{-}(x) \mid \lambda \in[0,1]\right\}, & \phi(x)=0 \\ \left\{f_{-}(x)\right\}, & \phi(x)<0\end{cases}
$$

Definition 3 A function $x:[a, b] \mapsto \mathbb{R}^{n}$ is a solution of $\dot{x} \in F(x)$, if $x$ is absolutely continuous and satisfies $\dot{x}(t) \in F(x(t))$ for almost all $t \in[a, b]$.

## TU/e

A well-posedness result
$\mathrm{C}_{+}$


- $f_{-}$and $f_{+}$are continuously differentiable $\left(C^{1}\right)$
- $\phi$ is $C^{2}$
- the discontinuity vector $h(x):=f_{+}(x)-f_{-}(x)$ is $C^{1}$

If for each point $x$ with $\phi(x)=0$ at least one of the two inequalities $n(x)^{T} f_{+}(x)<0$ or $n(x)^{T} f_{-}(x)>0$ (for different points a different inequality may hold), then the Filippov solutions exist and are unique.

## TU/e

## technische universiteit eindhoven

Alternative: Utkin's equivalent control definition

## TU/e

$$
\dot{x}=f(x, u) \text { with } u= \begin{cases}g_{+}(x), & \xi(x)>0 \\ g_{-}(x), & \xi(x)<0\end{cases}
$$

- Sliding mode: $f_{+}(x):=f\left(x, g_{+}(x)\right)$ and $f_{-}(x):=f\left(x, g_{-}(x)\right)$ point outside $C_{+}$and $C_{-}$, resp.

$$
u_{\text {equiv }} \in U(x):= \begin{cases}\left\{g_{+}(x)\right\}, & \text { if } \xi(x)>0 \\ \left\{\lambda g_{+}(x)+(1-\lambda) g_{-}(x) \mid \lambda \in[0,1]\right\}, & \text { if } \xi(x)=0 \\ \left\{g_{-}(x)\right\}, & \text { if } \xi(x)<0\end{cases}
$$

Differential inclusion

$$
\dot{x} \in F(x):=f(x, U(x))=\{f(x, u) \mid u \in U(x)\}
$$

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+x_{2}-u \\
\dot{x}_{2} & =2 x_{2}\left(u^{2}-u-1\right) \\
u & = \begin{cases}1, & \text { if } x_{1}>0 \\
-1, & \text { if } x_{1}<0 .\end{cases}
\end{aligned}
$$

Two "original" dynamics:

- $C_{+}$the region $x_{1}>0: \quad \dot{x}=f_{+}(x)$

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+x_{2}-1 \\
& \dot{x}_{2}=-2 x_{2}
\end{aligned}
$$

- $C_{-}$the region $x_{1}<0 \quad \dot{x}=f_{-}(x)$

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+x_{2}+1 \\
& \dot{x}_{2}=2 x_{2}
\end{aligned}
$$

"Idealization" determines Filippov/ Utkin / different solution concept!

TU/e
Vector fields


## TU/e

Sliding modes?
Two "original" dynamics:

- $C_{+}$the region $x_{1}>0: \quad \dot{x}=f_{+}(x) \mid \bullet C_{-}$the region $x_{1}<0: \quad \dot{x}=f_{-}(x)$
$\dot{x}_{1}=-x_{1}+x_{2}-1$

$$
\dot{x}_{1}=-x_{1}+x_{2}+1
$$

$\dot{x}_{2}=-2 x_{2}$
$\dot{x}_{2}=2 x_{2}$

- $n(x)^{T} f_{+}(x)=x_{2}-1<0 \quad \longrightarrow \quad x_{2}<1$
- $n(x)^{T} f_{-}(x)=x_{2}+1>0 \quad \longrightarrow \quad x_{2}>-1$
- Sliding possible in $x_{1}=0$ and $x_{2} \in[-1,1]$.


## TU/e

Vector fields: zoom


## TU/e

Filippov's solution concept
Two "original" dynamics:

- $C_{+}$the region $x_{1}>0: \quad \dot{x}=f_{+}(x) \mid \bullet C_{-}$the region $x_{1}<0: \quad \dot{x}=f_{-}(x)$

$$
\begin{array}{l|l}
\dot{x}_{1}=-x_{1}+x_{2}-1 & \begin{array}{l}
\dot{x}_{1}=-x_{1}+x_{2}+1 \\
\dot{x}_{2}=-2 x_{2}
\end{array} \\
\dot{x}_{2}=2 x_{2}
\end{array}
$$

- Filippov: Take convex combination of dynamics such that state slides on $x_{1}=0$ : Hence, $x_{1}=\dot{x}_{1}=0$.
- $\lambda\left(x_{2}-1\right)+(1-\lambda)\left(x_{2}+1\right)=0$ implies $\lambda=\frac{1}{2}\left(x_{2}+1\right)$
- Hence, $\dot{x_{2}}=\lambda\left(-2 x_{2}\right)+(1-\lambda)\left(2 x_{2}\right)=-2 x_{2}^{2}$
- 0 is unstable equilibrium.


## TU／e

Vector fields：Filippov＇s case


TU／e
technische universiteit eindhoven

Vector fields：Utkin＇s case


## TU／e

Utkin＇s solution concept

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+x_{2}-u \\
\dot{x}_{2} & =2 x_{2}\left(u^{2}-u-1\right) \\
u & = \begin{cases}1, & \text { if } x_{1}>0 \\
-1, & \text { if } x_{1}<0\end{cases}
\end{aligned}
$$

－The equivalent control $u_{\text {equiv }}$ is such that state slides along $x_{1}=0$ ．Hence，
$x_{1}=\dot{x}_{1}=0$ and thus $u_{\text {equiv }}=x_{2}$ and

$$
\dot{x}_{2}=2 x_{2}\left(x_{2}^{2}-x_{2}-1\right)
$$

－Equilibria：－0．6I8（unstable）and o（stable）

## TU／e

Solution trajectories



Two relaxations

- Smoothing $u=\tanh \left(x_{1} / \varepsilon\right)$
- hysteresis type of switching parameter $\Delta$



## TU/e

Solution trajectories: Filippov's case + hysteresis


TU/e
Two relaxations

- Smoothing $u=\tanh \left(x_{1} / \varepsilon\right)$
- hysteresis type of switching parameter $\Delta$


TU/e
Solution trajectories: Utkin's case + smoothing

## TU／e

Conclusions on discontinuous dynamical systems
－Two mathematical solutions concepts：Filippov＋Utkin
－Both limit cases（＂idealizations＂）of very fast switching
－Which one you use depends on non－ideal cases（regularizations）
－Sliding mode might be seen as third mode in hybrid automaton．Some subtleties in HA solution concept！

## P technische universiteit eindhoven

Hybrid Systems
－Smooth phases（governed by differential equations）
－Discrete events and actions

Smooth phases separated by event times ．．．

## TU／e

Event times

$\dot{x}_{2}(t)-x_{3}(t)$
$\dot{x}_{3}(t)=-2 x_{1}(t)+x_{2}(t)+z(t)$
$\dot{x}_{4}(t)=x_{1}(t)-x_{2}(t)$
$w(t)=x_{1}(t)$
$w(t) \geq 0, z(t) \geq 0,\{w(t)=0$ or $z(t)=0\}$

| unconstrained | constrained |
| ---: | :--- |
| $\dot{x}_{1}(t)=x_{3}(t)$ | $\dot{x}_{1}(t)=x_{3}(t)$ |
| $\dot{x}_{2}(t)=x_{4}(t)$ | $\dot{x}_{2}(t)=x_{4}(t)$ |
| $\dot{x}_{3}(t)=-2 x_{1}(t)+x_{2}(t)$ | $\dot{x}_{3}(t)=-2 x_{1}(t)+x_{2}(t)+z(t)$ |
| $\dot{x}_{4}(t)=x_{1}(t)+x_{2}(t)$ | $\dot{x}_{4}(t)=x_{1}(t)+x_{2}(t)$ |
| $z(t)=0$ | $w(t)=x_{1}(t)=0$. |

unconstrained constrained
$w(t) \geq 0 \quad z(t) \geq 0$

TU/e



- Event times set $\mathcal{E}$ is $\left\{0,1,1+\frac{\pi}{2}\right\}$

Example: Bouncing ball



- Reset $x_{2}(\tau+):=-c x_{2}(\tau-)$ when $x_{1}(\tau-)=0$ and $x_{2}(\tau-) \leq 0$
- The event times: $\tau_{i+1}=\tau_{i}+\frac{2 c^{i} x_{2}(0)}{g}$ when $x_{1}(0)=0$ and $x_{2}(0)>0$.
- $\lim _{i \rightarrow \infty} \tau_{i}=\tau^{*}=\frac{2 x_{2}(0)}{g-g c}<\infty$


## TU/e

technische universiteit eindhoven
Zeno of Elea and one of his paradoxes


| Distance Travelled $(\mathrm{m})$ by Achilles | Event times of A reaching previous T position |
| :--- | :--- |
| I | I |
| 0.5 | I. 5 |
| 0.25 | 1.75 |
| 0.125 | I.875 |
| 0.0625 | I.9375 |
| 0.03125 | 1.96875 |
| 0.015625 | I. 984375 |
| 0.0078125 | I.9928875 |
| 0.00390625 | 1.99609375 |
| 0.001953125 | I. 998046875 |

## TU/e

Two-tank system and Zeno behavior


## A simulation

$h_{1}=h_{2}=1, q_{1}=2, q_{2}=3, q_{\text {in }}=4, x_{1}(0)=x_{2}(0)=2, q(0)=v_{1}$


## TU/e

## technische universiteit eindhoven

Two-tank system and Zeno behavior

- Assume total outflow $q_{1}+q_{2}>q_{\text {in }}$
- Control objective cannot be met and tanks will be empty in finite time
- Infinitely many switchings in finite time (right accumulation point) $\rightarrow$ right Zeno behavior

Using a non-Zeno solution concept: analysis will show that tanks do not get empty! Analysis depends crucially on solution concept!

## TU/e

Hybrid automaton
Hybrid automaton $H$ is collection $H=(Q, X, f$, Init, Inv, $E, G, R)$ with

- $Q=\left\{q_{1}, \ldots, q_{N}\right\}$ is finite set of discrete states or modes
- $X=\mathbb{R}^{n}$ is set of continuous states
- $f: Q \times X \rightarrow X$ is vector field
- Init $\subseteq Q \times X$ is set of initial states
- Inv : $Q \rightarrow P(X)$ describes the invariants
- $E \subseteq Q \times Q$ is set of edges or transitions
- $G: E \rightarrow P(X)$ is guard condition
- $R: E \rightarrow P(X \times X)$ is reset map


## TU/e

What is what?
Hybrid automaton $H=(Q, X, f$, Init, Inv, $E, G, R)$

- Hybrid state: $(q, x)$
- Evolution of continuous state in mode $q: \dot{x}=f(q, x)$
- Invariant Inv: describes conditions that continuous state has to satisfy at given mode
- Guard $G$ : specifies subset of state space where certain transition is enabled
- Reset map $R$ : specifies how new continuous states are related to previous continuous states


## TU/e

Evolution of hybrid automaton

- Initial hybrid state $\left(q_{0}, x_{0}\right) \in$ Init
- Continuous state $x$ evolves according to

$$
\dot{x}=f\left(q_{0}, x\right) \quad \text { with } x(0)=x_{0}
$$

discrete state $q$ remains constant: $q(t)=q_{0}$

- Continuous evolution can go on as long as $x \in \operatorname{Inv}\left(q_{0}\right)$
- If at some point state $x$ reaches guard $G\left(q_{0}, q_{1}\right)$, then
- transition $q_{0} \rightarrow q_{1}$ is enabled
- discrete state may change to $q_{1}$, continuous state then jumps from current value $x^{-}$to new value $x^{+}$with $\left(x^{-}, x^{+}\right) \in R\left(q_{0}, q_{1}\right)$
- Next, continuous evolution resumes and whole process is repeated



## TU/e

Hybrid time trajectory
Definition 6 A hybrid time trajectory $\tau=\left\{I_{i}\right\}_{i=0}^{N}$ is a finite ( $N<\infty$ ) or infinite $(N=\infty)$ sequence of intervals of the real line, such that

- $I_{i}=\left[\tau_{i}, \tau_{i}^{\prime}\right]$ with $\tau_{i} \leq \tau_{i}^{\prime}=\tau_{i+1}$ for $0 \leq i<N$;
- if $N<\infty$, either $I_{N}=\left[\tau_{N}, \tau_{N}^{\prime}\right]$ or $I_{N}=\left[\tau_{N}, \tau_{N}^{\prime}\right)$ with $\tau_{N} \leq \tau_{N}^{\prime} \leq \infty$.
- For instance,

$$
\begin{gathered}
\tau=\{[0,2],[2,3],\{3\},\{3\},[3,4.5],\{4.5\},[4.5,6]\} \\
\tau=\{[0,2],[2,3],[3,4.5],\{4.5\},[4.5,6],[6, \infty)\} \\
I_{i}=\left[1-\left(\frac{1}{2}\right)^{i}, 1-\left(\frac{1}{2}\right)^{i+1}\right]
\end{gathered}
$$

- $\mathcal{E}=\left\{\tau_{0}, \tau_{1}, \tau_{2}, \ldots\right\}$
- No left-accumulations of event times ...


## TU/e

## Execution of hybrid automaton

Definition 7 An execution $\chi$ of a HA consists of $\chi=(\tau, q, x)$

- $\tau$ a hybrid time trajectory;
- $q=\left\{q_{i}\right\}_{i=0}^{N}$ with $q_{i}: I_{i} \rightarrow Q$; and
- $x=\left\{x_{i}\right\}_{i=0}^{N}$ with $x_{i}: I_{i} \rightarrow X$

Initial condition $\left(q\left(\tau_{0}\right), x\left(\tau_{0}\right)\right) \in$ Init;
Continuous evolution for all $i$

- $q_{i}$ is constant, i.e. $q_{i}(t)=q_{i}\left(\tau_{i}\right)$ for all $t \in I_{i}$;
- $x_{i}$ is solution to $\dot{x}(t)=f\left(q_{i}(t), x(t)\right)$ on $I_{i}$ with initial condition $x_{i}\left(\tau_{i}\right)$ at $\tau_{i}$;
- for all $t \in\left[\tau_{i}, \tau_{i}^{\prime}\right)$ it holds that $x_{i}(t) \in \operatorname{Inv}\left(q_{i}(t)\right)$.

Discrete evolution for all $i$,

- $e=\left(q_{i}\left(\tau_{i}^{\prime}\right), q_{i+1}\left(\tau_{i+1}\right)\right) \in E$,
- $x\left(\tau_{i}^{\prime}\right) \in G(e)$;
- $\left(x_{i}\left(\tau_{i}^{\prime}\right), x_{i+1}\left(\tau_{i+1}\right)\right) \in R(e)$.


## Well-posedness for hybrid automata

- $\mathcal{H}_{\left(q_{0}, x_{0}\right)}^{\infty}$ : infinite executions: $\tau$ is an infinite sequence or if $\sum_{i}\left(\tau_{i}^{\prime}-\tau_{i}\right)=$ $\infty$
- $\mathcal{H}_{\left(q_{0}, x_{0}\right)}^{M}$ : maximal executions: $\tau$ is not a strict prefix of another one!
- A hybrid automaton is called non-blocking, if $\mathcal{H}_{\left(q_{0}, x_{0}\right)}^{\infty}$ is non-empty for all $\left(q_{0}, x_{0}\right) \in$ Init.
- It is called deterministic, if $\mathcal{H}_{\left(q_{0}, x_{0}\right)}^{M}$ contains at most one element for all $\left(q_{0}, x_{0}\right) \in$ Init.


## - technische universiteit eindhoven

Well-posedness for hybrid automata - continued
Assumption

- The vector field $f(q, \cdot)$ is globally Lipschitz continuous for all $q \in Q$.
- The edge $e=\left(q, q^{\prime}\right)$ is contained in $E$ if and only if $G(e) \neq \emptyset$ and $x \in G(e)$ if and only if there is an $x^{\prime} \in X$ such that $\left(x, x^{\prime}\right) \in R(e)$.

A state $(\hat{q}, \hat{x}) \in$ Reach, if there exists a finite execution $(\tau, q, x)$ with $\tau=$ $\left\{\left[\tau_{i}, \tau_{i}^{\prime}\right]\right\}_{i=0}^{N}$ and $\left(q\left(\tau_{N}^{\prime}\right), x\left(\tau_{N}^{\prime}\right)\right)=(\hat{q}, \hat{x})$.

The set of states from which continuous evolution is impossible :

$$
\text { Out }=\left\{\left(q_{0}, x_{0}\right) \in Q \times X \mid \forall \varepsilon>0 \exists t \in[0, \varepsilon) x_{q_{0}, x_{0}}(t) \notin \operatorname{Inv}\left(q_{0}\right)\right\}
$$

in which $x_{q_{0}, x_{0}}(\cdot)$ denotes the unique solution to $\dot{x}=f\left(q_{0}, x\right)$ with $x(0)=$ $x_{0}$.

## TU/e

technische universiteit eindhoven

Well-posedness theorems
Theorem A hybrid automaton is non-blocking, if for all $(q, x) \in$ Reach $\cap$ Out, there exists $e=\left(q, q^{\prime}\right) \in E$ with $x \in G(e)$. In case the automaton is deterministic, this condition is also necessary.

Theorem A hybrid automaton is deterministic, if and only if for all $(q, x) \in$ Reach

- if $x \in G\left(\left(q, q^{\prime}\right)\right)$ for some $\left(q, q^{\prime}\right) \in E$, then $(q, x) \in$ Out;
- if $\left(q, q^{\prime}\right) \in E$ and $\left(q, q^{\prime \prime}\right) \in E$ with $q^{\prime} \neq q^{\prime \prime}$, then $x \notin G\left(\left(q, q^{\prime}\right)\right) \cap$ $G\left(\left(q, q^{\prime \prime}\right)\right)$; and
- if $\left(q, q^{\prime}\right) \in E$ and $x \in G\left(\left(q, q^{\prime}\right)\right)$, then there is at most one $x^{\prime} \in X$ with $\left(x, x^{\prime}\right) \in R\left(\left(q, q^{\prime}\right)\right)$.
$\longrightarrow$ no explicit / algebraic conditions and not easily verifiable $\rightarrow$ can we do more (like for DDE)?


## TU/e

## Well-posedness issues

- Initial well-posedness: non-blocking + deterministic, i.e. absence of
- dead-lock: no smooth continuation and no jump
- splitting of trajectories
- However, no statements by previous HA theory on existence beyond
- live-lock: an infinite number of jumps at one time instant, no solution on $[0, \varepsilon)$ for some $\varepsilon>0$.
- right-accumulations of event times to prevent global existence.
or absence of
- left-accumulations of event times preventing uniqueness:


TU/e

## Obstruction local existence

$\rightarrow$ Live-lock: Infinitely many jumps at one time instant

$v_{2}: 0 \quad \frac{1}{2} \quad \frac{1}{4} \quad \frac{3}{8} \quad \frac{5}{16} \quad \frac{11}{32} \ldots \frac{1}{3}$
$v_{3}: 0 \quad 0 \quad \frac{1}{4} \quad \frac{1}{4} \quad \frac{5}{16} \quad \frac{5}{16} \ldots \frac{1}{3}$

- smooth continuation possible with constant velocity after an infinite number of events
$\longrightarrow$ Exclude live-lock or show convergence of state $x$ for local existence
- Discrete mode is a function of continuous state! not for general HA!!!


## TU/e

## technische universiteit eindhoven

Obstruction global existence: Zenoness
$\rightarrow$ A right-accumulation of event times

$$
\begin{aligned}
& \dot{x}_{1}=-\operatorname{sgn}\left(x_{1}\right)+2 \operatorname{sgn}\left(x_{2}\right) \\
& \dot{x}_{2}=-2 \operatorname{sgn}\left(x_{1}\right)-\operatorname{sgn}\left(x_{2}\right)
\end{aligned}
$$




- Exclude right-accumulations or show the existence of the left-limit $\lim _{t \uparrow \tau^{*}} x(t)$ for global existence.
- Discrete mode is a function of continuous state! not for general HA!!!

TU/e

## Well-posedness

- Initially solvable from each initial state there exists a state jump or a continuous hybrid solution on $[0, \varepsilon)$ (non-blocking)
- Initially unique from each initial state the jump/hybrid solution is unique (deterministic)
- Local well-posedness from each initial state there exists an $\varepsilon>0$ and a hybrid solution on $[0, \varepsilon)$.
- Global well-posedness $\ldots$ on $[0, \infty)$.


## TU/e

Piecewise linear systems
$\operatorname{SAT}(A, B, C, D)$

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \quad e_{2}^{i}-e_{1}^{i}>0 \text { and } f_{1}^{i} \geq f_{2}^{i} \\
& y(t)=C x(t)+D u(t) \\
& (u(t), y(t)) \in \text { saturation }_{i}
\end{aligned}
$$



Note that if $f_{2}^{i}=f_{1}^{i}$, then relay-type of nonlinearity.

山 4 - -
/ department of mechanical engineering

## TU/e

## technische universiteit eindhoven

## Example of linear relay system: non-uniqueness

$x=x-u$
$y=x$
$u \in-\operatorname{sgn}(y)$

$x(0)=0:$

- $x(t)=e^{t}-1,(y(t)=x(t) \geq 0)$
- $x(t)=-e^{t}+1,(y(t)=x(t) \leq 0)$
- $x(t)=0,(y(t)=x(t)=0)$


## TU/e

## Example of linear relay system: uniqueness

$\dot{x}=x+u$
$y=x$
$u \in-\operatorname{sgn}(y)$

$x(0)=0$ :

- $x(t)=0,(y(t)=x(t)=0)$


## TU/e

technische universiteit eindhoven

Piecewise linear systems

## TU/e

Linear relay systems and Filippov's solutions: left accumulations


Consider $\operatorname{SAT}(A, B, C, D)$.

- Let $R$ and $S$ be the diagonal matrices with $e_{2}^{i}-e_{1}^{i}$ and $f_{2}^{i}-f_{1}^{i}$, resp.
- $G(s)=C(s I-A)^{-1} B+D$

Suppose that $G(\sigma) R-S$ is a $P$-matrix for all sufficiently large $\sigma$. Then, there exists a unique (left Zeno free) hybrid execution of $\operatorname{SAT}(A, B, C, D)$ for all initial states.

- $M \in \mathbb{R}^{m \times m}$ is a $P$-matrix, if $\operatorname{det} M_{I I}>0$ for all $I \subseteq\{1, \ldots, m\}$.


## TU/e

## technische universiteit eindhoven

Other solution concept ...?
Filippov's solutions include left-accumulations and satisfy $\dot{x} \in F(x)$ almost everywhere, with

- $F(x)=\{A x+B\}$ for $C x<0$
- $F(x)=\{A x-B\}$ for $C x>0$
- $F(x)=\{A x+B \bar{u} \mid \bar{u} \in[-1,1]\}$ when $C x=0$

In case of relative degree $\mathrm{I}(C B>0)$ and relative degree $2(C A B>0)$ sufficient for Filippov uniqueness.

However, triple integrator $\frac{d^{3} x}{d t^{3}}=u$ counterexample due to:


So, (other) example of HA uniqueness (deterministic), but non-uniqueness in "Filippov"

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B z(t) \\
& w(t)=C x(t)+D z(t) \\
& 0 \leq w(t) \perp z(t) \geq 0
\end{aligned}
$$

$$
\left\{z_{i}(t)=0 \text { and } w_{i}(t) \geq 0\right\} \text { or }\left\{w_{i}(t)=0 \text { and } z_{i}(t) \geq 0\right\}
$$

- Modes parameterized by $I \subseteq\{1, \ldots, k\}$ such that


## TU/e

## Example 1

```
x = x+z
w = x - z
0<w\perpz>0
```



- $z=0: \dot{x}=x, w=x \geq 0$
- $w=0: \dot{x}=2 x, z=x \geq 0$

Hence, $x(0)=1$ two solutions and $x(0)=-1$ no solution trajectory!

TU/e

## Example 2

$\dot{x}=x+z$
$w=x+z$
$0 \leq w \perp z \geq 0$


- $z=0: \dot{x}=x, w=x \geq 0$
- $w=0: \dot{x}=0, z=-x \geq 0$

Existence and uniqueness!


## Well-posedness including jumps

- Initially solvable from each initial state there exists a state jump or a continuous hybrid solution on $[0, \varepsilon)$ (non-blocking)
- Initially unique from each initial state the jump/hybrid solution is unique (deterministic)
- Local well-posedness from each initial state there exists an $\varepsilon>0$ and a hybrid solution on $[0, \varepsilon)$.
- Global well-posedness ... on $[0, \infty)$.


## TU/e

Local well-posedness (including jumps)

$$
\dot{x}(t)=A x(t)+B z(t), \quad w(t)=C x(t)+D z(t), \quad 0 \leq z(t) \perp w(t) \geq 0
$$

Markov parameters: $H^{0}=D$ and $H^{i}=C A^{i-1} B, i=1,2, \ldots$

$$
\eta_{j}=\inf \left\{i \mid H_{\bullet j}^{i} \neq 0\right\}, \rho_{j}=\inf \left\{i \mid H_{j \bullet}^{i} \neq 0\right\}
$$

The leading row and column coefficient matrices $\mathcal{M}$ and $\mathcal{N}$

$$
\mathcal{M}:=\left(\begin{array}{c}
H_{1 \bullet}^{\rho_{1}} \\
\vdots \\
H_{k \bullet}^{\rho_{k}}
\end{array}\right) \text { and } \mathcal{N}:=\left(H_{\bullet 1}^{\eta_{1}} \ldots H_{\bullet k}^{\eta_{k}}\right)
$$

- $M \in \mathbb{R}^{m \times m}$ is a $P$-matrix, if $\operatorname{det} M_{I I}>0$ for all $I \subseteq\{1, \ldots, m\}$.


## TU/e

Local well-posedness (including jumps)
$\dot{x}(t)=A x(t)+B z(t), \quad w(t)=C x(t)+D z(t), \quad 0 \leq z(t) \perp w(t) \geq 0$
Markov parameters: $H^{0}=D$ and $H^{i}=C A^{i-1} B, i=1,2, \ldots$

$$
\eta_{j}=\inf \left\{i \mid H_{\bullet j}^{i} \neq 0\right\}, \rho_{j}=\inf \left\{i \mid H_{j \bullet}^{i} \neq 0\right\}
$$

The leading row and column coefficient matrices $\mathcal{M}$ and $\mathcal{N}$

$$
\mathcal{M}:=\left(\begin{array}{c}
H_{1}^{\rho_{1}} \\
\vdots \\
H_{k \bullet}^{\rho_{\bullet}}
\end{array}\right) \text { and } \mathcal{N}:=\left(H_{\bullet 1}^{\eta_{1}} \ldots H_{\bullet k}^{\eta_{k}}\right)
$$

If $\mathcal{N}$ and $\mathcal{M}$ are P-matrices, then $\operatorname{LCS}(A, B, C, D)$ has for all $x_{0}$ a unique left Zeno free execution on an interval of the form $[0, \varepsilon)$ for some $\varepsilon>0$.

- Moreover, live-lock does not occur: at most one jump
- Necessary and sufficient for global well-posedness for bimodal LCS

山 4 - •
/ department of mechanical engineering
6ı/66

## TU/e

Summary

- Smooth differential equations
- Solution concept straightforward
- Lipschitz continuity sufficient for well-posedness
- absence Lipschitz: possibly non-uniqueness
- absence global Lipschitz: possibly finite escape times and no global existence
- Switched systems (discontinuous differential equations)
- Sliding modes (Filippov's convex or Utkin's equivalent control definition)
- Solution concept from differential inclusions
- (Local) existence of solutions guaranteed.
- Well-posedness: directions of vector field at switching plane
"No events"


## TU/e <br> technische universiteit eindhoven

## Summary - continued

- Hybrid systems:
- Complications due to Zeno
- Relation between solution concept and well-posedness and analysis
* Tanks stay full along non-Zeno solutions!!!
* Filippov's example has unique non-Zeno solutions, but nonunique Zeno solutions
- Well-posedness
* Initial well-posedness (non-blocking and deterministic)
* Local well-posedness: $[0, \varepsilon)$ (live-lock)
* Global well-posedness: [0, $\infty$ ) (right-accumulations)
- Conditions for hybrid automata: implicit!
- Algebraic conditions for certain classes with more structure!


## TU/e

## Selected Literature

## Some classical references

- A.F. Filippov, Differential Equations with Discontinuous Righthand Sides, 1988, Kluwer, Dordrecht, The Netherlands, Mathematics and Its Applications
- V.I. Utkin. Variable structure systems with sliding modes. IEEE Transactions on Automatic Control, 22(I):31-45, 1977.
- V.I. Utkin. Sliding Regimes in Optimization and Control Problems. Nauka, Moscow, 198 I.

Some references on solution concepts for hybrid automata and hybrid dynamical systems

- A.J. van der Schaft and J.M. Schumacher, An Introduction to Hybrid Dynamical Systems, Springer-Verlag, London, 2000.
- K.J. Johansson, J. Lygeros, S.N. Simić, J. Zhang and S. Sastry, Dynamical properties of hybrid automata, 2003, IEEE Transactions on Automatic Control.
- M.S. Branicky, V.S. Borkar, and S.K. Mitter. A unifeed framework for hybrid control: model and optimal control theory. IEEE Transac
tions on Automatic Control, 43(I):31-45, 1998.
- R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The
algorithmic analysis of hybrid systems. Theoretical Computer Science. 138 . 3 . 34 . algorithmic analysis of hybrid systems. Theoretical Computer Science, $138: 3-34$, r995
- Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sastry. Zeno hybrid systems. Intern. J. Robust Nonlinear Control, 1I:435-45, 2001.
- W.P.M.H. Heemels, M.K. Çamlibel, A.J. van der Schaft and J.M. Schumacher, On the Existence and Uniqueness of Solution Trajec tories to Hybrid Dynamical Systems, 2002, Chapter 18 in "Nonlinear and Hybrid Control in Automotive Applications," Springer
London (Editor: R. Johannson and A. Rantzer).
- K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry, On the regularization of Zeno hybrid automata, Systems and Control Letters, vol. 38, pp. I41-I5o, 1999
- N. Lynch, R. Segala, F. Vaandrager, and H.B. Weinberger. Hybrid I/O automata. In Hybrid Systems III (Proc.Workshop on
Verification and Control of Hybriid Systems, New Brunswick, 19995). Springer, Berlin, 1996. Lect. Notes Comp. Sci., vol ro66.
$4 \Delta \Perp$ /department of mechanical engineering 64/66


## TU/e

## Selected Literature

Some references related to study of solution concepts and well-posedness for piecewise linear, complementarity and relay systems.

- W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. The rational complementarity problem. Linear Algebra and its Applications, - W.P.M.H.Heemels
- W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity ssstems. SIAM J. Appl. Math., 60:1234-1269,
- M.K. Camlibel, J.M. Schumacher, Existence and uniqueness of solutions for a class of piecewise linear dynamical systems, Linear Algebra and its Applications, 35I, 147-184, (2002)
- W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Projected dynamical systems in a complementarity formalism. Operations Research Letters, 27(2):83-9I, 2000
- J.-I. Imura and A.J. van der Schaft. Characterization of well-posedness of piecewise linear systems. IEEE Transactions on Automatic Control, 45(9):1600-1619, 2000.
- A. J. van der Schaft and J. M. Schumacher. Complementarity modeling of hybrid systems. IEEE Trans. Automat. Contr, $43: 483$ 490, 1998
- A.Y. Pogromsky, W.P.M.H. Heemels, H. Nijmeijer, On solution concepts and well-posedness of linear relay systems, Automatica, 39(12), 2139-2147, (2003)
- W.P.M.H. Heemels, B. Brogliato, The complementarity class of hybrid dynamical systems, European J. of Control, $9(2-3), 322-360$, (2003)
- m.K. Camlibel, J.S. Pang, J. Shen, Conewise Linear Systems: Non-Zenoness and Observability, SIAM J Control Optimization, 45(5), r769-1800, (2006)
- W.P.M.H. Heemels, M.K. Camlibel, J.M. Schumacher, On the dynamic analysis of piecewise linear networks, IEEE Trans. on Circuits and Systems I, 49(3), 315-327, (2002)
- A.J. van der Schaft and J.M. Schumacher. The complementary-slackness class of hybrid systems. Mathematics of Control, Signals and Systems, $9: 266-30 \mathrm{I}$, I 996

Thanks for attention!

## Questions?

