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Outline

 Modelling Nonsmooth Systems:
 PWS ODEs
 Hybrid Systems
 Complementarity Systems

 Solution concepts and well-posedness
 Structural Stability and bifurcations
 Numerical analysis:

 Simulation (time-stepping, event-driven)
 Continuation
 The SICONOS platform

 Applications to Power Electronics, Mechanics and Control
 If you want to find out more...
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Nonsmooth Systems

 We are interested in studying a class of systems whose vector field is
nonsmooth

 There are several frameworks to describe such systems:

 Nonsmooth sets of ODEs
 Complementarity Systems
 Differential Inclusions
 Measure differential inclusions
 Hybrid Dynamical Systems

 Let’s look at three of these formalisms…

1. Piecewise-Smooth ODEs

S1

S2

S3

S4

The system is discontinous across the boundaries between
different regions (switching manifolds)

Discontinuities in the states can be accounted for by adding
appropriate equations
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 Consider a sufficiently small region D such that:

 H defines the boundary where smoothness is lost

 D is partitioned in two regions G1  and G2
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Different types of NS systems

 Nonsmooth systems can be classified by their degree of discontinuity across
the boundary

 Systems with discontinuos state jumps
(e.g. impact oscillator)

 Systems with discontinuos vector field or Filippov
(e.g. relay systems)

 Piecewise Smooth Continuous systems
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An overhead
camshaft automotive
valve train

Friction
Oscillators

2. Complementarity Systems

 An alternative framework can be used to describe nonsmooth
systems, in particular nonsmooth mechanical systems
[Brogliato, 2002]

 Complementarity systems have been studied in mechanics for
a long time

 They consist of equations of the form:
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Linear Complementarity Systems

00 !"#

+=

+=

zw

DzCxw

BzAxx&

ODEs LCS

 Complementarity systems are particularly suited to describe
systems with unilateral constraints (diodes, impact oscisllators,
friction, saturations, relays, VSS)

 Routines from optimization can be used to solve the LCP

 The formalism is compact while retaining its physical
meaning…
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Example
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 Note that at the impact w = 0, hence x1 = 0 = x3  and z > 0 
represents the reaction force !

 More compact than sets of ODEs

3. Hybrid Dynamical Systems
 Another very general framework has been introduced in control

theory
 It helps describing systems whose dynamics are hybrid: both

continuous-time and discrete-time (e.g. digital control etc)
 Here the system consists of a sextuple

H = (Q, E, D, F, G, R)

Q : set of discrete states
E: collection of the edges
D: domains of H
F: collection of vector fields
G: collection of guards
R: collection of resets ),(3 uxFx =&

),(2 uxFx =&

),(1 uxFx =&

G1

G2/R2

G3 G4
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 Hybrid Systems are a very general framework, encompassing a
wide range of cases

 They can be seen as PWS systems of the form:
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 They can be useful but usually too general leading to a very
cumbersome formalisation

To recap

 We have seen sofar three alternative frameworks that can be
used to model nonsmooth dynamical systems

 Each has its pros and cons
 We will refer mostly to PWS sets of ODEs and

complementarity
 In all of these cases the first problem that needs to be address

is the well-posedness of the system solutions
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Solution concepts
 Several attempts have been made to define the concept of solution for

nonsmooth systems
 There are many theoretical problems connected with the well posedness,

reversibility etc.
 To name just a few:

 Chattering or Zeno phenomena
 Sliding (or Filippov) solutions
 Uniqueness

 We will give a brief outline of the main concepts

Well posedness: a simple example

 Take the system:

 Then:

 If x(0) = 1 we have 2 solns, while if x(0) = -1 no solution !
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Well posedness: another example

 Now, take the system:

 Then:

 Now we have existence and uniqueness !!!
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Other problems

 Chattering or Zeno phenomena

Accumulation of infinite impacts in finite time causing deadlock in
numerical simulations (sometimes loss of uniqueness)

 In Filippov systems presence of sliding solutions, i.e.
solutions lying on the discontinuity set
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Sliding mode in Filippov Systems
 If <∇ H, F1> < ∇ H, F2> < 0  we can have

 sliding modes, i.e. solutions constrained on Σ

 There can be regions               where sliding is possible (sliding regions)

 What happens then if, by varying the parameters, the system trajectory hits the
sliding region ?

!"!̂

Sliding region

F1

F2

 Sliding can be studied by using Filippov convex method. 
Basically we find a vector field which lies in the convex hull of 
F1 and F2 and is tangential to the switching manifold
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 Since we want the sliding vector field to be tangential 
to the switching manifold, we have:

 Hence we can write:

 And the swtiching manifold can be given as:

Relay Control System

 A classical example of system with sliding are relay control systems

r=0 u
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 Using Filippov method we can characterise these systems
(see board…)
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 Note that in general sliding segment can become part of
periodic solutions of the system under investigation
(important for bifurcation analysis)

x0

x1

x0

x1

 stick-slip oscillations

 chattering orbits

 complex relay dynamics
[Kowalczyk, di Bernardo 01]

 friction oscillators, power
converters, vibro-impacting devices

To recap

 Well posedness of solutions of nonsmooth systems is still an
open challenge

 Some tools are available to characterise, for example, sliding
solutions in Filippov systems

 A complete theory is not available. Maybe a general theory
would be too complicated to be useful !

 An even more striking problem is stability !
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Stability

 Switching between two or more vector fields can make stable
systems unstable or viceversa !

 Namely examples can be found where a switched system is
unstable even if all individual systems are stable

 The viceversa is also true !
 So the problem of studying stability becomes:

i. Find conditions that guarantee stability of a switched system for arbitrary
switching signals

ii. Find constraints on switching signals that guarantee stability

Possible trajectories
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Example
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 So, the stability properties depend not only on the dynamics
of the system in each region but also on the switching policy
between subsystems !

 There are many attempts to find sufficient conditions for
stability (Hot research topic !!!)

 Very few available !
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Common Lyapunov functions

 One of the most quoted results is that a switched system is
A.S. if one can find a so-called common Lyapunov function

 Namely if all systems share a radially unbounded common Lyapunov
fucntion than the switched system is globally asymptotically stable

 Note that the reverse is not true
 CLF difficult, at times impossible, to find
 Result might be too general so we need some more practical

solutions

Poincare’ maps

 Generally to study the stability of some solutions (e.g. periodic
solution) we can use Poincare’ maps

 Two types of maps can be defined for nonsmooth systems in
general:
 Stroboscopic maps (uniform sampling)
 Impact or Switching maps (non-uniform sampling)

 Despite carrying the same amount of information, these two
maps can offer different perspectives



18

 Typically these maps can be obtained numerically but at times
they can be also obtained analytically

 In general we get maps in an implicit form
(see board)

 They can be used to study existence and stability of solutions

Relay Control System

 A classical example of system with sliding are relay control systems
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 The switching map allow the computation of the existence and
stability of periodic solutions
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 We can also take into account the presence of sliding
segments by appropriately composing the map

 And the overall map
becomes:
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 The sliding map can be derived from the sliding flow
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Stability Analysis

 Switching maps can also be used for stability analysis…
(see board)

 So to recap…
 Poincare’ maps can be used to derive some conditions for

existence and stability
 They are useful for both numerical and analytical purposes
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 Another important aspect is the structural stability of hybrid
systems which can be better understood using complementarity
of PWS models

 The problem is to study and classify mechanisms through which
the system phase space looses its structural stability, e.g.
bifurcations

 Note that currently there is no formal agreement on the concept
of topological equivalence for nonsmooth systems

 For example, does the topology allows for a change in the
number or relative positions of the discontinuity boundaries
under parameter variations ? Or the degree of discontinuity
across such boundaries ?

Structural Stability

Discontinuity-induced Bifurcations
 Obviously, nonsmooth systems can exhibit standard

bifurcations (e.g. Jacobian of Poincare’ map can become
singular)

 Here we take a pragmatic approach. We are interested in
studying situations which are unique to nonsmooth systems
(or DIBs)

 Specifically when the system dynamics does something
degenerate w.r.t. a discontinuity boundary

 For example, an invariant set gaining a first contact with a
certain Σ or the appearance of sliding along the orbits of that
invariant set
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  We concentrate on DIBs
which involve the simplest
types of invariant sets:
equilibria or periodic orbits

 Nonstandard bifurcations
due to the interaction between
trajectories (Ω-limit set) and
discontinuity sets

 Different scenarios
according to the properties
of the vector field at the
boundary

Bifurcations in PWS systems:
overview

 Standard: SN, PD etc.
 Discontinuity-induced  (C-bifurcations [Feigin 70]):

 PWS maps:  Border Collisions of fixed points
[Nusse, Yorke 92], [Feigin 70s]

 PWS flows: Discontinuous bifurcations of equilibria
[Leine 03], [di Bernardo et al 04]

Grazing Bifurcations of periodic orbits
[Whiston 87][Nordmark 91]

Sliding Bifurcations
[Feigin 94][diBernardo et al 98]



23

Classification

 In applications, it is important to possess strategies to:

 Detect the occurrence of C-bifurcations

 Predict the dynamical scenario following their occurrence

 i.e. assessing the structural stability of the system under
investigation (i.e. persistence of some desired behaviour etc.)

Classification Strategies

 In smooth systems, this can be done by using appropriate
analytical conditions to distinguish between saddle-nodes,
period-doublings, Hopf bifurcations etc.

 What about nonsmooth systems ?

 Currently there exist no general classification strategy for
DIBs

 Many results are available for PWS discrete systems (maps)
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Border Collisions in PWS maps
 Consider a map of the

form:

We say that a fixed point is
undergoing a border-collision
bifurcation at p=0 if:

1. µ ∈ (-ε,0) ⇒ x* ∈ S1

2. µ ∈ (0,ε) ⇒ x* ∈ S2

3. µ = 0 ⇒ x* ∈ Σ

4. DF1 ≠ DF2 on Σ
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Classifying Border Collisions

 When a border-collision occurs several scenarios are possible

 This can be illustrated by means of a very simple 1D map…
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Persistence
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 Thus, we can classify border-collisions by studying the
properties of the map about the bifurcation point

 Linearising the map x* we
 then get:

where A2 = A1 + EC for
some vector E (PWLC)
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Feigin’s classification strategy
 We can now classify the bifurcation scenarios observed at a border

collision by studying the eigenvalues of A1 and A2

 Namely say:

σ1
+ : no. of eigenvalues of A1 greater than 1

σ2
+ : no. of eigenvalues of A2 greater than 1

σ1
- : no. of eigenvalues of A1 less than –1

σ2
- : no. of eigenvalues of A2 less than 1
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 It is possible to show that after the border-collision the orbit
involved in the bifurcation will behave as follows:

1.    smoothly changes into one containing an additional section in the
other region of the phase space, if

σ1
++σ2

+ is even (Persistence)

2.   suddenly disappears after touching the boundary if

σ1
++σ2

+ is odd (Nonsmooth SN)

3.  undergoes a period-doubling, if

σ1
-+σ2

- is odd (Nonsmooth PD)

An hint of the proof

 This result can be proven by relatively simple algebra…
(see [diBernardo et al, 1999])

 The simple conditions that were derived can be used to derive
bifurcation scenarios of increasing complexity

 Namely, using conditions for the existence of higher periodic
solutions, one can construct the following classification tree
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Remarks

 Note that some scenarios predict the transition from a stable
solution to an unstable solution or even no solution e.g. A →
b, ab or A,b → 0

 In these cases we should look for other possible attractors
 In n-dimensions this is too difficult (i.e. proving existence of

chaos for example)
 A complete classification is only possible in 1D and 2D
 Let’s look at some examples
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Example: One-dimensional map

 This allows the analytical classification of nonsmooth transitions
of fixed points in maps

 Take for example  a simple 1D map of the form

 Then it can be shown that its fixed points will undergo the
following set of bifurcations

We can prove the occurrence of chaos using Sharkovski

A complete classification is only possible in 1D and 2D
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Example: 2D map
11

1

12

21

1

22

1 0
, 0

0 1

1 0
, 0

0 1

a
x x

a

x

a
x x

a

µ

µ

!" # " #
+ <$% & % &
' ($' (

) *
" # " #$ + >% & % &$ ' (' (+

A -> B A -> b,ab,…
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+ is even σ1
-+σ2

 - is odd

DC-DC buck converter

Friction oscillators

 More complex transitions are possible
 To account for some of them we must take into account

the next class of DIBS, that of limit cycles
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DIBs of limit cycles (Grazing)

 At the grazing point the
trajectory hits tangentially
the switching manifold

Typically, it is assumed that Σ is never simultaneously
attracting from G1 and G2

Otherwise, sliding is possible and we might have sliding
bifurcations
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x

x i x ix i xx i i

H x H x
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= !

= + >

Analysis and Classification

 To study this bifurcation
scenario, we can associate a
map to a grazing orbit

 Namely if we say G the
locus on Π associated to
grazing orbits…

 … we can associate a PWS
map to the grazing orbit

Π
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 The key is to have the map analytically in order
to be able to classify the bifurcation scenarios close
to a grazing

 Important:

 How do we construct such mapping ?
Is this map always PWL as some time suggested in 

the literature ??? 

 Note that if the map is PWLC then we can classify grazing
scenarios using the theory of BC bifurcations of fixed points

Discontinuity Maps

 The aim is to derive a map which gives the correction to be made
to the system trajectories in order to account for the presence of the
switching manifold in phase space

To answer these questions we
use the concept of discontinuity
mapping
[Nordmark et al. 99]
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 The DM can be composed with the affine transformation
describing the periodic part of the bifurcating orbit to obtain
the global poincarè map to be used for bifurcation analysis
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 The discontinuity map can be used to classify analytically the
scenarios following a grazing bifurcations.

 Many other bifurcation scenarios are possible:
 Boundary-equilibrium bifurcations
 Corner-collisions and corner-impacts
 Zeno-bifurcations

 To find out more see list of references at the end of the talk

Numerical Simulation of Switching
Systems

 Time-driven vs. event-driven
 Existing software not always reliable: Stateflow
 Typical problems: sliding and zeno

 Important: accuracy can be a problem (see board)

 Two examples:

- Matlab/Stateflow
- Complementarity systems
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Numerical Continuation

 Numerical Simulation is just a part of the story. The other
important issue is Continuation

 No equivalent of AUTO or MATCONT available for
nonsmooth systems

 SICONOS platform implements some brute-force and some
continuation routines for:
 Continuation of equilibria and limit cycles
 Bifurcation detection (smooth and DIBs)
 Regions of Stability

 Still lots of work to be done

SICONOS/Analysis
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SICONOS/Analysis

Examples – Cam
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Examples – Cam

Platform Matlab

Examples – Impact oscillator

F
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Examples – Attractor

Impact Oscillator

F

Examples – Domain of Attraction

F

Matlab Platform
Impact Oscillator
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Grazing and Chattering

Simulation of systems with chattering 
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If you want to know more…

[1] B. Brogliato, Nonsmooth Mechanics, Springer-Verlag, 2000
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[3] M. di Bernardo, C. Budd, A.R. Champneys, P. Kowalczyk, A.B. Nordmark, G. Olivar, P.T. Piiroinen,
 "Bifurcations in Nonsmooth Dynamical Systems",  SIAM Review , 2007 (to appear)

[4] M. di Bernardo, C. Budd, A.R. Champneys, P. Kowalczyk, “Piecewise-smooth dynamical systems: Theory
and Applications”, Springer-Verlag, 2007

… just to start with …


