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Outline

» Modelling Nonsmooth Systems:
= PWS ODEs
= Hybrid Systems
= Complementarity Systems
> Solution concepts and well-posedness
» Structural Stability and bifurcations
» Numerical analysis:
= Simulation (time-stepping, event-driven)
= Continuation

® The SICONOS platform

> Applications to Power Electronics, Mechanics and Control

» If you want to find out more...




Nonsmooth Systems

» We are interested in studying a class of systems whose vector field is
nonsmooth

» There are several frameworks to describe such systems:

= Nonsmooth sets of ODEs

= Complementarity Systems

= Differential Inclusions

= Measure differential inclusions

® Hybrid Dynamical Systems

> Let’s look at three of these formalisms...

1. Piecewise-Smooth ODEs

(Fi(z,p), x€Sq,
F2(xnu)7 S 527
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» The system is discontinous across the boundaries between
different regions (switching manifolds)

» Discontinuities in the states can be accounted for by adding
appropriate equations




" » Consider a sufficiently small region D such that:

{Fl(x,u), H(x,u)>0

Fy(x,u), H(x,u)<0
» H defines the boundary where smoothness is lost
S={ERH(x)=0}

» D is partitioned in two regions G, and G,
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Different types of NS systems

» Nonsmooth systems can be classified by their degree of discontinuity across
the boundary

® Systems with discontinuos state jumps
(e.g. impact oscillator)

Systems with discontinuos vector field or Filippov
(e.g. relay systems)

Fi(x) = Fy (%)

Piecewise Smooth Continuous systems
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2. Complementarity Systems \

» An alternative framework can be used to describe nonsmooth
systems, in particular nonsmooth mechanical systems
[Brogliato, 2002]

» Complementarity systems have been studied in mechanics for
a long time

» 'They consist of equations of the form:

x = f(x(2),2(1))
w(t) = h(x(2),2(2))
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Linear Complementarity Systems

x=Ax+ Bz
w=Cx+ Dz
O=swlz=0

ODEs

LCS

i Ayx + b, Txr >0
T ) Asx by, Tz <0

F — Agx + b +dA
u':—(’TI+/\

O0<w LA=0
Ay —Ag =dcT

» Complementarity systems ate particularly suited to describe

systems with unilateral constraints (diodes, impact oscisllators,
friction, saturations, relays, VSS)

» Routines from optimization can be used to solve the LCP

» 'The formalism is compact while retaining its physical
meaning. ..




X4 X5 Xy ==2X+X,+z
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> Note that at the impact w = 0, hence x, = 0 = x; and 7> 0
represents the reaction force !

» Mote compact than sets of ODEs

3. Hybrid Dynamical Systems

> Another very general framework has been introduced in control
theory

» It helps describing systems whose dynamics are hybrid: both
continuous-time and discrete-time (e.g. digital control etc)

» Here the system consists of a sextuple
H=(@© E D, FG,RK)

G 1
QO : set of discrete states
E: collection of the edges
D: domains of H
F: collection of vector fields

G: collection of guards
R: collection of resets
Yy




» Hybrid Systems are a very general framework, encompassing a
wide range of cases
» They can be seen as PWS systems of the form:
x = q(h) (xs u)

q(h+1) = M(q(h))

» They can be useful but usually too general leading to a very
cumbersome formalisation

To recap

» We have seen sofar three alternative frameworks that can be
used to model nonsmooth dynamical systems

» Each has its pros and cons

» We will refer mostly to PWS sets of ODEs and
complementarity

» In all of these cases the first problem that needs to be address
is the well-posedness of the system solutions




Solution concepts

» Several attempts have been made to define the concept of solution for
nonsmooth systems

» There are many theoretical problems connected with the well posedness,
reversibility etc.

» 'To name just a few:
= Chattering or Zeno phenomena
= Sliding (or Filippov) solutions

= Unigueness

» We will give a brief outline of the main concepts

Well posedness: a simple example

» Take the system:

X=Xx+z
W=Xx—2
O=swlz=0

> Then:

z=0=x=x, w=x=0
w=0=x=2x, z=x=0
» If x(0) = 1 we have 2 solns, while if x(0) = -1 no solution !




Well posedness: another example

» Now, take the system:

X=Xx+z
w=x{z
O=swlz=0

> Then:

z=0=>x=x, w=x=0
w=0=x=0, z=-x=0

» Now we have existence and uniqueness !!!

Other problems

» Chattering or Zeno phenomena

Accummnlation of infinite impacts in finite time cansing deadlock in
numerical simulations (sometimes loss of uniqueness)

> In Filippov systems presence of sliding solutions, i.c.

solutions lying on the discontinuity set
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Sliding mode in Filippov Systems

» If <VH, F1>< VH, F2> < () we can have
sliding modes, i.e. solutions constrained on X

» There can be regions I sliding is possible (sliding regions
g 3 &”f gis p (sliding regions)

» What happens then if, by varying the parameters, the system trajectory hits the
sliding region ?

T
e

Sliding region
\ PN AR T

» Sliding can be studied by using Filippov convex method.
Basically we find a vector field which lies in the convex hull of
F, and I, and is tangential to the switching manifold

_F1+F'2

Fy — Fy
2 2

2

F, + H,
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» Since we want the sliding vector field to be tangential
to the switching manifold, we have:

(VH,F,) = 0.
» Hence we can write:

(VH, Fy) + (VH, F»)
(VH,F) — (VH, F,)’

Hy(z) =

» And the swtiching manifold can be given as:

Y= {z € |Hy(z)| < 1},

Relay Control System

» A classical example of system with sliding are relay control systems

+ +1
S R R e B

Xx=Ax+bu, y=clx, u=-sign(y)

» Using Filippov method we can characterise these systems
(see board...)
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» Note that in general sliding segment can become part of
periodic solutions of the system under investigation
(important for bifurcation analysis)

v’ stick-slip oscillations
v’ chattering orbits

v’ complex relay dynamics
[Kowalczyk, di Bernardo 01]

v friction oscillators, power
converters, vibro-impacting devices

To recap

» Well posedness of solutions of nonsmooth systems is still an
open challenge

» Some tools are available to charactetise, for example, sliding
solutions in Filippov systems

» A complete theoty is not available. Maybe a general theory
would be too complicated to be useful !

» An even more striking problem is stability !
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Stability

Switching between two or more vector fields can make stable
systems unstable or viceversa !

Namely examples can be found where a switched system is
unstable even if all individual systems are stable

The viceversa is also true !

So the problem of studying stability becomes:

i Find conditions that guarantee stability of a switched system for arbitrary
switching signals

7. Find constraints on switching signals that gnarantee stability

Possible trajectories

i L

i P L

KJ 1 —
A

Nl
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EXAMPLE
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A =
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> So, the stability properties depend not only on the dynamics
of the system in each region but also on the switching policy

between subsystems !

» 'There are many attempts to find sufficient conditions for
stability (Hot research topic !!!)

» Very few available !

-

/
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Common Lyapunov functions

» One of the most quoted results is that a switched system is
A.S. if one can find a so-called common Lyapunov function

» Namely #f all systems share a radially unbounded common 1yapunov
Juention than the switched system is globally asymptotically stable

» Note that the reverse is not true
» CLF difficult, at times impossible, to find

» Result might be too general so we need some more practical
solutions

Poincare’ maps

» Generally to study the stability of some solutions (e.g. periodic
solution) we can use Poincare’ maps
» Two types of maps can be defined for nonsmooth systems in
general:
= Stroboscopic maps (uniform sampling)
= Impact or Switching maps (non-uniform sampling)
» Despite carrying the same amount of information, these two
maps can offer different perspectives

17



> Typically these maps can be obtained numerically but at times
they can be also obtained analytically

> In general we get maps in an implicit form

(see board)

» They can be used to study existence and stability of solutions

Relay Control System

» A classical example of system with sliding are relay control systems

+ +1
S R R e B

X=Ax+bu, y-= ch, u = —sign(y)

» The switching map allow the computation of the existence and
stability of periodic solutions

18
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xp =17 (x0,801) = N(8g1)xg — M (8¢),

Xy =I17(x1,012) = N(O12)x) + M(612),

N@)=e, M©)= A" [N®)- I,

> switching map
xy =17 (17 (x9,0¢1),012)), M =T1" oI

A

> switching conditions: Ty =0, Txy=

0

» Simple necessary conditions for the existence can
be obtained:

/\ u=-1 Xy =Xq

A

J » y=0 091 =012 =9
x‘=x2\\ /

<
\ / X1 =—Xg

\

X1

u=+1 b

> Solving

cT[I+NGT'M@©B)=0
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» We can also take into account the presence of sliding
segments by appropriately composing the map

2:)2'0 = X
I——A————-P ''''''''''''''' i —————— H+le|—>)21
A S X1 3 )’(‘/./
6S _‘ )’&0 \ X9 ~ 2."
L \ /‘ XX
/ \\\\’/,’/ I~ tXg )%0

» And the overall map O=0 0" =(20H‘)o(20H+)

becomes:

» The sliding map can be derived from the sliding flow

y=0= cT(Ax+bueq) =0=u,, = —(ch)_lcTAx

S =1 =b(cTh) " eT 1 dx = Ax = S(x) = 1% x

Stability Analysis

» Switching maps can also be used for stability analysis. ..
(see board)

> So to recap...

» Poincare’ maps can be used to detive some conditions for
existence and stability

> 'They are useful for both numerical and analytical purposes
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Structural Stability

» Another important aspect is the structural stability of hybrid
systems which can be better understood using complementarity
of PWS models

» 'The problem is to study and classify mechanisms through which
the system phase space looses its structural stability, e.g.
bifurcations

» Note that currently there is no formal agreement on the concept
of topological equivalence for nonsmooth systems

» For example, does the topology allows for a change in the
number or relative positions of the discontinuity boundaries
under parameter variations ? Or the degree of discontinuity
across such boundaries ?

Discontinuity-induced Bifurcations

» Obviously, nonsmooth systems can exhibit standard
bifurcations (e.g. Jacobian of Poincare’ map can become

singular)

» Here we take a pragmatic approach. We are interested in

studying situations which are unique to nonsmooth systems
(or DIBy)

» Specifically when the system dynamics does something
degenerate w.1.t. a discontinuity boundary

» For example, an invariant set gaining a first contact with a
certain 2 or the appearance of sliding along the orbits of that
invariant set

21



» We concentrate on DIBs
which involve the simplest
types of invariant sets:
equilibria ot periodic orbits
» Nonstandard bifurcations
due to the interaction between
trajectories (Q2-limit set) and
discontinuity sets
» Different scenarios
according to the properties
of the vector field at the

boundary

£

» Standard: SN, PD et.

» Discontinuity-induced (C-bifurcations [Feigin 70]):

> PWS maps: Border Collisions of fixed points
[Nusse, Yorke 92], [Feigin 70s]

Bifurcations in PWS systems:
overview

> PWS flows: Discontinuous bifurcations of equilibria
[Leine 03], [di Bernardo et al 04]

Grazing Bifurcations of periodic orbits
[Whiston 87][Nordmark 91]

Sliding Bifurcations
[Feigin 94][diBernardo et al 98]

22



Classification

» In applications, it is important to possess strategies to:
® Detect the occurrence of C-bifurcations
® Predict the dynamical scenario following their occurrence

> i.c. assessing the structural stability of the system under
investigation (i.e. persistence of some desired behaviour etc.)

Classification Strategies

» In smooth systems, this can be done by using approptiate
analytical conditions to distinguish between saddle-nodes,
period-doublings, Hopf bifurcations etc.

» What about nonsmooth systems ?

> Currently there exist no general classification strategy for
DIBs

» Many results are available for PWS discrete systems (maps)

23



Border Collisions in PWS maps

» Consider a map of the
form: _ F(x.,p), H(x,)<0
“F G p), H(x)>0

We say that a fixed point is
undergoing a border-collision | / s:
bifurcation at p=0 if: | |

u € (-¢0) =x* €S, - B
T —

u€ (0 =x" €85,

u=0=x"€x _ /'|

DF, = DF, on ¥

AN

Classifying Border Collisions

» When a border-collision occurs several scenarios are possible

> 'This can be illustrated by means of a very simple 1D map...

24



Persistence

—_—

|

ax+cu,

PBx+cu,

x<0

x>0

|

ax+cu,

PBx+cu,

x<0

x>0
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» 'Thus, we can classify border-collisions by studying the
properties of the map about the bifurcation point

> Linearising the map x* we s
then get: ! '
' |

Ax+Bu, Cx<0
.
Ax+Bu, Cx>0 [ A

where 4, =A, + EC for |
some vector E (PWL.C) , /

>

Feigin’s classification strategy
We can now classify the bifutcation scenatios observed at a border
collision by studying the eigenvalues of A4, and A,
» Namely say:

0," : no. of eigenvalues of A, greater than 1
0," 1 no. of eigenvalues of A, greater than 1

~: no. of eigenvalues of A, less than —1

" : no. of eigenvalues of A, less than 1

26



» Itis possible to show that after the border-collision the orbit
involved in the bifurcation will behave as follows:

1. smoothly changes into one containing an additional section in the
other region of the phase space, if

0,"+0," is even (Persistence)

2. suddenly disappears after touching the boundary if
0,7 +0," is odd (Nonsmooth SN)

3. undergoes a period-doubling, if
0,+0, is odd (Nonsmooth PD)

An hint of the proof

» 'This result can be proven by relatively simple algebra. ..
(see [diBernardo et al, 1999])

» The simple conditions that were detived can be used to detive
bifurcation scenarios of increasing complexity

» Namely, using conditions for the existence of higher petriodic
solutions, one can construct the following classification tree

27



[ CLASSIFICATION OF C-BIFURCATIONS ]

o pericd doubling perioddoubling

[ c;,+ ck is even ]

G;,+ Gi, is odd

smooth-transition N‘ns and disappearance
R . . ‘smooth transition ‘merging and disappearance
Oyt O iseven Ogt Op is odd
cg A— B cg Ab—=0

2 pericdic arbit 2periadic arbit imvolved

merges and disappears i a smooth transition

2 pericdic arbitinvolved
in asmooth transition

2.pericdic arbit
merges and disappea

.+ + + + + + +
Ogpt O cq IS Even Ogp+ O 15 odd Sap + Gy 15 even Cp + O 1 odd

ce A —~ bAB ce Aab—~b cg Ab— AB cg  Abab— 0

Remarks

» Note that some scenarios predict the transition from a stable

solution to an unstable solution or even no solution e.g. .4 —
b, ab or Ab— 0

> In these cases we should look for other possible attractors

» In n-dimensions this is too difficult (i.e. proving existence of
chaos for example)

» A complete classification is only possible in 1D and 2D

» Let’s look at some examples

28



Example: One-dimensional map

» This allows the analytical classification of nonsmooth transitions
of fixed points in maps

> Take for example a simple 1D map of the form

I|n+l) — ar(n) — r(r.) ~ 0

r(r.+l) — ',31,(,-:} — ™ <0

» Then it can be shown that its fixed points will undergo the
following set of bifurcations

A—babababAB

A— b.ab KB
-10

A—b.abab
A—bababAB

@—ab.ab

) @—ab,abab
-15

A—bababdb

@—abababab

NI .
oA\ 1771 !

LSS P T P Y «
»We can prove the occurrence of chaos using Sharkovski
»A complete classification is only possible in 1D and 2D

5]
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o, + 0," is even

A->B

Example: 2D map

1 0
0)x+(1),u, x, <0
1 0
0)x+(1)u, x>0

o,+0, is odd

A -> b,ab,...

» To account for some of them we must take into account

» More complex transitions are possible

the next class of DIBS, that of limit cycles

1.70774 1.70778

Friction oscillators

DC-DC buck converter

1.70782
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> At the grazing point the
trajectory hits tangentially
the switching manifold

H(%)=0, H/(%)=0
(H,,F)=0, (H_,F.F)+(H

ixT i xxt i

> Typically, it is assumed that 2 is never simultaneously
attracting from G, and G,

» Otherwise, sliding is possible and we might have s/iding

\ bifurcations

/

» To study this bifurcation
scenario, we can associate a
map to a grazing orbit

» Namely if we say G the
locus on [ associated to
grazing orbits. ..

» ... we can associate a PWS
map to the grazing orbit

-

~N
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» 'The key is to have the map analytically in order
to be able to classify the bifurcation scenarios close
to a grazing

» Important:
v How do we construct such mapping ?
v'Is this map always PWL as some time suggested in

the literature ???

» Note that if the map is PWLC then we can classify grazing
scenarios using the theory of BC bifurcations of fixed points

Discontinuity Maps

/\i/4 4 w
> To answer these questions we Y. Y LA
use the concept of discontinnity § . /] e
mapping s N L= P
mordmark ct al. 99] S Discontinuity
flow 1 Map
flow 2

» 'The aim is to derive a map which gives the correction to be made
to the system trajectories in order to account for the presence of the
switching manifold in phase space
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» The DM can be composed with the affine transformation
describing the periodic part of the bifurcating orbit to obtain
the global poincare map to be used for bifurcation analysis

S Discontinuity
flow 1 Map
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» 'The discontinuity map can be used to classify analytically the
scenarios following a grazing bifurcations.
» Many other bifurcation scenarios are possible:
® Boundaty-equilibrium bifurcations
= Corner-collisions and corner-impacts

= Zeno-bifurcations

» To find out more see list of references at the end of the talk

Numerical Simulation of Switching
Systems

» Time-dtiven vs. event-driven
> Existing software not always teliable: Szazeflow
> 'Typical problems: sliding and zeno

» Important: accuracy can be a problem (see board)

» Two examples:

- Matlab/Stateflow
- Complementarity systems

34



Numerical Continuation

» Numerical Simulation is just a part of the story. The other
important issue is Continuation
» No equivalent of AUTO or MATCONT available for
nonsmooth systems
» SICONOS platform implements some brute-force and some
continuation routines for:
= Continuation of equilibria and limit cycles
= Bifurcation detection (smooth and DIBs)
= Regions of Stability
» Still lots of work to be done

SICONOS/Analysis

SICONOS/Analysis
Ts)5257.58 Tya Ts3-56,59,5.10
Bifurcation Continuation routine Bifurcation
continuation routine for limit cycles Qﬁ continuation routine
for equilibria for limit cycles.

I

Location routine
for limit—cycles

Equlibrium
continuation routine

Equlibrium location Simulation routine _|> Translation routine

routine
Ty Taz

Domain of attraction
finding tool

Bifurcation diagram
routine

35



SICONOS/Analysis

T S Ta 3
SICONOS/Analysis 5.7,5.9 4.34.4
Tisasnss Taa Tsasosio
c ifurcation I Detection routines
e otne b = coninenion e Branch switching at
for equilibria orlimireyeles for limit cyeles. . n for nonsmooth
«d smooth bifurcations . .
. bifurcations
. v
Tquibriom Location routine Is.8,5.10
continuation outine forlmit—cycles
Branch switching Taz4.4
T %7 Bae T2 at nonsmooth <
bifurcations . .
rouine — Continuation routine 4> Detection routines
for smooth bifurcations

R

Bituraion dagram
utine * finding tool

Tyyan

T5.1-5.6

Location routine for

Blfu_rcauc.m . equilibria and
continuation routine .
limit—cycles

Examples — Cam

rocker arms

Cam
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Grazing and Chattering

16
[EJ.) . 10 .
2 sl /
- ;\‘ \
08 awdt | 2\ \ A \\
o \ V\\)\‘\\\»—///
04 \ f/‘\\ \ \
\ o~ 5| dwdt—
0 / \./ \/_“‘_\,7-,_?__
10 .
0 1 2 3 4 5 ¢ 6 2 4 6 8 t 10

hy (=0

Simulation of systems with chattering

Nonsmooth law at complete chattering

N _ 1 2F(x)r

X =X

. 1 2H (x)F(x)r
1-r (H (x)F(x)) F(x)

1o (H (xH)F(x)) F(x)

+G(x7) | H (x)F(x7)

9745 5.9746 t 5.9747

<
/
/
N
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If you want to know more...

[1] B. Brogliato, Nonsmooth Mechanics, Springer-Vetlag, 2000
[2] SICONOS webpage:

[3] M. di Bernardo, C. Budd, A.R. Champneys, P. Kowalczyk, A.B. Nordmark, G. Olivar, P.T. Piiroinen,
, SLAM Review , 2007 (to appear)

[4] M. di Bernardo, C. Budd, A.R. Champneys, P. Kowalczyk, “Piecewise-smooth dynamical systems: Theory
and Applications”, Springer-Verlag, 2007

... just to start with ...
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