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Outline

 Modelling Nonsmooth Systems:
 PWS ODEs
 Hybrid Systems
 Complementarity Systems

 Solution concepts and well-posedness
 Structural Stability and bifurcations
 Numerical analysis:

 Simulation (time-stepping, event-driven)
 Continuation
 The SICONOS platform

 Applications to Power Electronics, Mechanics and Control
 If you want to find out more...
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Nonsmooth Systems

 We are interested in studying a class of systems whose vector field is
nonsmooth

 There are several frameworks to describe such systems:

 Nonsmooth sets of ODEs
 Complementarity Systems
 Differential Inclusions
 Measure differential inclusions
 Hybrid Dynamical Systems

 Let’s look at three of these formalisms…

1. Piecewise-Smooth ODEs

S1

S2

S3

S4

The system is discontinous across the boundaries between
different regions (switching manifolds)

Discontinuities in the states can be accounted for by adding
appropriate equations
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 Consider a sufficiently small region D such that:

 H defines the boundary where smoothness is lost

 D is partitioned in two regions G1  and G2
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Different types of NS systems

 Nonsmooth systems can be classified by their degree of discontinuity across
the boundary

 Systems with discontinuos state jumps
(e.g. impact oscillator)

 Systems with discontinuos vector field or Filippov
(e.g. relay systems)

 Piecewise Smooth Continuous systems
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An overhead
camshaft automotive
valve train

Friction
Oscillators

2. Complementarity Systems

 An alternative framework can be used to describe nonsmooth
systems, in particular nonsmooth mechanical systems
[Brogliato, 2002]

 Complementarity systems have been studied in mechanics for
a long time

 They consist of equations of the form:
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Linear Complementarity Systems
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ODEs LCS

 Complementarity systems are particularly suited to describe
systems with unilateral constraints (diodes, impact oscisllators,
friction, saturations, relays, VSS)

 Routines from optimization can be used to solve the LCP

 The formalism is compact while retaining its physical
meaning…
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Example
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 Note that at the impact w = 0, hence x1 = 0 = x3  and z > 0 
represents the reaction force !

 More compact than sets of ODEs

3. Hybrid Dynamical Systems
 Another very general framework has been introduced in control

theory
 It helps describing systems whose dynamics are hybrid: both

continuous-time and discrete-time (e.g. digital control etc)
 Here the system consists of a sextuple

H = (Q, E, D, F, G, R)

Q : set of discrete states
E: collection of the edges
D: domains of H
F: collection of vector fields
G: collection of guards
R: collection of resets ),(3 uxFx =&

),(2 uxFx =&

),(1 uxFx =&

G1

G2/R2

G3 G4
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 Hybrid Systems are a very general framework, encompassing a
wide range of cases

 They can be seen as PWS systems of the form:
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 They can be useful but usually too general leading to a very
cumbersome formalisation

To recap

 We have seen sofar three alternative frameworks that can be
used to model nonsmooth dynamical systems

 Each has its pros and cons
 We will refer mostly to PWS sets of ODEs and

complementarity
 In all of these cases the first problem that needs to be address

is the well-posedness of the system solutions
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Solution concepts
 Several attempts have been made to define the concept of solution for

nonsmooth systems
 There are many theoretical problems connected with the well posedness,

reversibility etc.
 To name just a few:

 Chattering or Zeno phenomena
 Sliding (or Filippov) solutions
 Uniqueness

 We will give a brief outline of the main concepts

Well posedness: a simple example

 Take the system:

 Then:

 If x(0) = 1 we have 2 solns, while if x(0) = -1 no solution !
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Well posedness: another example

 Now, take the system:

 Then:

 Now we have existence and uniqueness !!!
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Other problems

 Chattering or Zeno phenomena

Accumulation of infinite impacts in finite time causing deadlock in
numerical simulations (sometimes loss of uniqueness)

 In Filippov systems presence of sliding solutions, i.e.
solutions lying on the discontinuity set
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Sliding mode in Filippov Systems
 If <∇ H, F1> < ∇ H, F2> < 0  we can have

 sliding modes, i.e. solutions constrained on Σ

 There can be regions               where sliding is possible (sliding regions)

 What happens then if, by varying the parameters, the system trajectory hits the
sliding region ?

!"!̂

Sliding region

F1

F2

 Sliding can be studied by using Filippov convex method. 
Basically we find a vector field which lies in the convex hull of 
F1 and F2 and is tangential to the switching manifold
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 Since we want the sliding vector field to be tangential 
to the switching manifold, we have:

 Hence we can write:

 And the swtiching manifold can be given as:

Relay Control System

 A classical example of system with sliding are relay control systems

r=0 u

-
+ G(s) y-1
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 Using Filippov method we can characterise these systems
(see board…)
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 Note that in general sliding segment can become part of
periodic solutions of the system under investigation
(important for bifurcation analysis)

x0

x1

x0

x1

 stick-slip oscillations

 chattering orbits

 complex relay dynamics
[Kowalczyk, di Bernardo 01]

 friction oscillators, power
converters, vibro-impacting devices

To recap

 Well posedness of solutions of nonsmooth systems is still an
open challenge

 Some tools are available to characterise, for example, sliding
solutions in Filippov systems

 A complete theory is not available. Maybe a general theory
would be too complicated to be useful !

 An even more striking problem is stability !
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Stability

 Switching between two or more vector fields can make stable
systems unstable or viceversa !

 Namely examples can be found where a switched system is
unstable even if all individual systems are stable

 The viceversa is also true !
 So the problem of studying stability becomes:

i. Find conditions that guarantee stability of a switched system for arbitrary
switching signals

ii. Find constraints on switching signals that guarantee stability

Possible trajectories
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Example
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 So, the stability properties depend not only on the dynamics
of the system in each region but also on the switching policy
between subsystems !

 There are many attempts to find sufficient conditions for
stability (Hot research topic !!!)

 Very few available !



17

Common Lyapunov functions

 One of the most quoted results is that a switched system is
A.S. if one can find a so-called common Lyapunov function

 Namely if all systems share a radially unbounded common Lyapunov
fucntion than the switched system is globally asymptotically stable

 Note that the reverse is not true
 CLF difficult, at times impossible, to find
 Result might be too general so we need some more practical

solutions

Poincare’ maps

 Generally to study the stability of some solutions (e.g. periodic
solution) we can use Poincare’ maps

 Two types of maps can be defined for nonsmooth systems in
general:
 Stroboscopic maps (uniform sampling)
 Impact or Switching maps (non-uniform sampling)

 Despite carrying the same amount of information, these two
maps can offer different perspectives
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 Typically these maps can be obtained numerically but at times
they can be also obtained analytically

 In general we get maps in an implicit form
(see board)

 They can be used to study existence and stability of solutions

Relay Control System

 A classical example of system with sliding are relay control systems
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 The switching map allow the computation of the existence and
stability of periodic solutions
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 We can also take into account the presence of sliding
segments by appropriately composing the map

 And the overall map
becomes:
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 The sliding map can be derived from the sliding flow
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Stability Analysis

 Switching maps can also be used for stability analysis…
(see board)

 So to recap…
 Poincare’ maps can be used to derive some conditions for

existence and stability
 They are useful for both numerical and analytical purposes
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 Another important aspect is the structural stability of hybrid
systems which can be better understood using complementarity
of PWS models

 The problem is to study and classify mechanisms through which
the system phase space looses its structural stability, e.g.
bifurcations

 Note that currently there is no formal agreement on the concept
of topological equivalence for nonsmooth systems

 For example, does the topology allows for a change in the
number or relative positions of the discontinuity boundaries
under parameter variations ? Or the degree of discontinuity
across such boundaries ?

Structural Stability

Discontinuity-induced Bifurcations
 Obviously, nonsmooth systems can exhibit standard

bifurcations (e.g. Jacobian of Poincare’ map can become
singular)

 Here we take a pragmatic approach. We are interested in
studying situations which are unique to nonsmooth systems
(or DIBs)

 Specifically when the system dynamics does something
degenerate w.r.t. a discontinuity boundary

 For example, an invariant set gaining a first contact with a
certain Σ or the appearance of sliding along the orbits of that
invariant set
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  We concentrate on DIBs
which involve the simplest
types of invariant sets:
equilibria or periodic orbits

 Nonstandard bifurcations
due to the interaction between
trajectories (Ω-limit set) and
discontinuity sets

 Different scenarios
according to the properties
of the vector field at the
boundary

Bifurcations in PWS systems:
overview

 Standard: SN, PD etc.
 Discontinuity-induced  (C-bifurcations [Feigin 70]):

 PWS maps:  Border Collisions of fixed points
[Nusse, Yorke 92], [Feigin 70s]

 PWS flows: Discontinuous bifurcations of equilibria
[Leine 03], [di Bernardo et al 04]

Grazing Bifurcations of periodic orbits
[Whiston 87][Nordmark 91]

Sliding Bifurcations
[Feigin 94][diBernardo et al 98]
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Classification

 In applications, it is important to possess strategies to:

 Detect the occurrence of C-bifurcations

 Predict the dynamical scenario following their occurrence

 i.e. assessing the structural stability of the system under
investigation (i.e. persistence of some desired behaviour etc.)

Classification Strategies

 In smooth systems, this can be done by using appropriate
analytical conditions to distinguish between saddle-nodes,
period-doublings, Hopf bifurcations etc.

 What about nonsmooth systems ?

 Currently there exist no general classification strategy for
DIBs

 Many results are available for PWS discrete systems (maps)
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Border Collisions in PWS maps
 Consider a map of the

form:

We say that a fixed point is
undergoing a border-collision
bifurcation at p=0 if:

1. µ ∈ (-ε,0) ⇒ x* ∈ S1

2. µ ∈ (0,ε) ⇒ x* ∈ S2

3. µ = 0 ⇒ x* ∈ Σ

4. DF1 ≠ DF2 on Σ
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Classifying Border Collisions

 When a border-collision occurs several scenarios are possible

 This can be illustrated by means of a very simple 1D map…
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Persistence
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 Thus, we can classify border-collisions by studying the
properties of the map about the bifurcation point

 Linearising the map x* we
 then get:

where A2 = A1 + EC for
some vector E (PWLC)
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Feigin’s classification strategy
 We can now classify the bifurcation scenarios observed at a border

collision by studying the eigenvalues of A1 and A2

 Namely say:

σ1
+ : no. of eigenvalues of A1 greater than 1

σ2
+ : no. of eigenvalues of A2 greater than 1

σ1
- : no. of eigenvalues of A1 less than –1

σ2
- : no. of eigenvalues of A2 less than 1
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 It is possible to show that after the border-collision the orbit
involved in the bifurcation will behave as follows:

1.    smoothly changes into one containing an additional section in the
other region of the phase space, if

σ1
++σ2

+ is even (Persistence)

2.   suddenly disappears after touching the boundary if

σ1
++σ2

+ is odd (Nonsmooth SN)

3.  undergoes a period-doubling, if

σ1
-+σ2

- is odd (Nonsmooth PD)

An hint of the proof

 This result can be proven by relatively simple algebra…
(see [diBernardo et al, 1999])

 The simple conditions that were derived can be used to derive
bifurcation scenarios of increasing complexity

 Namely, using conditions for the existence of higher periodic
solutions, one can construct the following classification tree
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Remarks

 Note that some scenarios predict the transition from a stable
solution to an unstable solution or even no solution e.g. A →
b, ab or A,b → 0

 In these cases we should look for other possible attractors
 In n-dimensions this is too difficult (i.e. proving existence of

chaos for example)
 A complete classification is only possible in 1D and 2D
 Let’s look at some examples
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Example: One-dimensional map

 This allows the analytical classification of nonsmooth transitions
of fixed points in maps

 Take for example  a simple 1D map of the form

 Then it can be shown that its fixed points will undergo the
following set of bifurcations

We can prove the occurrence of chaos using Sharkovski

A complete classification is only possible in 1D and 2D
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Example: 2D map
11

1

12

21

1

22

1 0
, 0

0 1

1 0
, 0

0 1

a
x x

a

x

a
x x

a

µ

µ

!" # " #
+ <$% & % &
' ($' (

) *
" # " #$ + >% & % &$ ' (' (+

A -> B A -> b,ab,…
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+ + σ2

+ is even σ1
-+σ2

 - is odd

DC-DC buck converter

Friction oscillators

 More complex transitions are possible
 To account for some of them we must take into account

the next class of DIBS, that of limit cycles
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DIBs of limit cycles (Grazing)

 At the grazing point the
trajectory hits tangentially
the switching manifold

Typically, it is assumed that Σ is never simultaneously
attracting from G1 and G2

Otherwise, sliding is possible and we might have sliding
bifurcations
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Analysis and Classification

 To study this bifurcation
scenario, we can associate a
map to a grazing orbit

 Namely if we say G the
locus on Π associated to
grazing orbits…

 … we can associate a PWS
map to the grazing orbit

Π
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 The key is to have the map analytically in order
to be able to classify the bifurcation scenarios close
to a grazing

 Important:

 How do we construct such mapping ?
Is this map always PWL as some time suggested in 

the literature ??? 

 Note that if the map is PWLC then we can classify grazing
scenarios using the theory of BC bifurcations of fixed points

Discontinuity Maps

 The aim is to derive a map which gives the correction to be made
to the system trajectories in order to account for the presence of the
switching manifold in phase space

To answer these questions we
use the concept of discontinuity
mapping
[Nordmark et al. 99]
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 The DM can be composed with the affine transformation
describing the periodic part of the bifurcating orbit to obtain
the global poincarè map to be used for bifurcation analysis
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 The discontinuity map can be used to classify analytically the
scenarios following a grazing bifurcations.

 Many other bifurcation scenarios are possible:
 Boundary-equilibrium bifurcations
 Corner-collisions and corner-impacts
 Zeno-bifurcations

 To find out more see list of references at the end of the talk

Numerical Simulation of Switching
Systems

 Time-driven vs. event-driven
 Existing software not always reliable: Stateflow
 Typical problems: sliding and zeno

 Important: accuracy can be a problem (see board)

 Two examples:

- Matlab/Stateflow
- Complementarity systems
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Numerical Continuation

 Numerical Simulation is just a part of the story. The other
important issue is Continuation

 No equivalent of AUTO or MATCONT available for
nonsmooth systems

 SICONOS platform implements some brute-force and some
continuation routines for:
 Continuation of equilibria and limit cycles
 Bifurcation detection (smooth and DIBs)
 Regions of Stability

 Still lots of work to be done

SICONOS/Analysis
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SICONOS/Analysis

Examples – Cam
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Examples – Cam

Platform Matlab

Examples – Impact oscillator

F



38

Examples – Attractor

Impact Oscillator

F

Examples – Domain of Attraction

F

Matlab Platform
Impact Oscillator
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Grazing and Chattering

Simulation of systems with chattering 
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If you want to know more…
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 "Bifurcations in Nonsmooth Dynamical Systems",  SIAM Review , 2007 (to appear)

[4] M. di Bernardo, C. Budd, A.R. Champneys, P. Kowalczyk, “Piecewise-smooth dynamical systems: Theory
and Applications”, Springer-Verlag, 2007

… just to start with …


