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Continuous + Discrete = Hybrid (1)

Mixture of ... continuous & discrete inputs, outputs, states, dynamics
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Continuous + Discrete = Hybrid (2)

Mixture of ... differential equations and discrete events / switching

Continuous + Discrete = Hybrid (3)

Mixture of ... continuous physical process with finite-state logic

Move down

Force-guided robotic assembly [Branicky-Chhatpar, HSCC, 2002]
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Continuous + Discrete = Hybrid (4)

Mixture of ... control theory and computer science

Autonomous vehicle DEXTER [urbanchallenge.case.edu]

Outline

The First Hybrid Dynamicist

More Hybrid Systems Examples

Mathematical Models of HS




Laplace’s Problem

Predict the motion of a comet about to pass near Jupiter (1845)
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Laplace’s Solution (1)

Two descriptions of motion plus
a logical choice of how to switch between them
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Laplace’s Solution (2)

Double-think: SOl is both infinitely large and infinitesimally small

Fig. 7.9 Discontinuity in Velocity due to Fyby

Fig. 7.7 Flyby Trajectory

e: 145, J: 677 (size in radii)  e: 0.006, J: 0.06 (fraction of area)

Laplace’s Solution (3)

A different, logical(?) choice of when to switch
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Hybrid Systems All Around Us

They drive on our streets, work in our factories, fly in our skies, ...
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Networked Control Systems (1)

Sensors, actuators, and controllers connected over a network . ..
with feedback loops controlling physical systems closed among them

e continuous plants

e asynchronous or event-driven data transmission
sampling, varying transmission delay, packet loss

e discrete implementation of network/protocols

data packets, queuing, routing, scheduling, etc.

Physical Plant

‘ Actuator 1 ‘on‘ Actuatorm‘ ‘ Sensor 1 ‘n-‘ Sensor n ‘
T T

i
| I
other el 1 o Other
Processes e T F i Processes

Lo Control Network
Controller
(Computer)
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Networked Control Systems (2)

Packet queueing

and forwarding | Network dynamics | Visualization
i *' — m—ﬁ-ék‘i
~ “tf _ Plant agent
i Controller / " : (aCtuator,
Controller ~ilh. IS éf | | sensor, ..)
agent e —— g
(SBC, PLC, -.)f | = \ Router
oN -
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= - monitoring
Plant output
dynamics S Simulation
languages

Co-simulation and co-design [Branicky-Liberatore-Phillips, ACC, 2003]
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Other Examples

e systems with relays, switches, and hysteresis

e computer disk drives

e constrained robotic systems (locomotion, assembly, etc.)
e vehicle powertrains, transmissions, stepper motors

e mode-switched flight control, vehicle management systems

e automated highway systems (AHS)

e multi-vehicle formations and coordination

e power electronics

e analog/digital circuit co-design and verification

e biological applications

14




Systems with Switches and Relays

HVAC control with a thermostat:
T = f(x,H(x — x0),u)
e 1, room temperature
® 1, desired temperature
e f, dynamics of temperature
e 1, control signal (e.g., the fuel burn rate)
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Hysteresis Function, H Associated Finite Automaton
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Hard Disk Drive
I[ReadDone]
ReadWait Spindle-Ready
/Seek(Adr)
On-Cylinder SeekWait
I[HeadSettled]

HS for main hard disk drive functionality [Gollu-Varaiya, CDC, 1989]
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Raibert’s Hopping Robot

)

Decompression

Dynamic Phases
[Back et al., HS I, 1993]
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[=0Ni<0

[z=0Nn&>0] [2=0]/T:=0

odD®

[ T = Tinrust ]

Finite State Controller

Vehicle Powertrains / Cruise Control

| Continuous | Discrete |
Throttle Gear Position
Engine RPM Cylinder Phases
Fuel/Air Mixture | Cylinder Firings
Belts, Cams Microprocessors
Elevation Road Condition
Outputs Inputs
o€ O Hybrid 1€1
Control
yeY-——  System uelU

1, O are discrete (i.e., countable) sets of symbols

U, Y are continuums

18




Flight Vehicle Mgmt. Systems

collision
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ground
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[George Meyer, Plenary Lecture, CDC, 1994]
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———  discrete

continuous

View From Here

The remainder of this talk focuses on mathematical models

e From Continuous Toward Hybrid
—> Hybrid Dynamical Systems

e From Discrete Toward Hybrid
—> Hybrid Automata
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From Continuous Toward Hybrid

Differential Equations’
+
Discrete Phenomena
_—

Hybrid Dynamical Systems

"It is easy to substitute “Difference Equations”
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Base Continuous Model: ODEs

Ordinary differential equation (ODE):
(t) = f(x(t))

x(t) € X C R"is a vector of continuous states
f: X — R"is a vector fieldon R"

Autonomous/time-invariant. vector field doesn’t depend explicitly on ¢

Non-autonomous or time-varying:

(t) = f(x(t),t)
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ODE with Inputs and Outputs

zt)e X CR", u(t) eUCR" yeY CR?
fTR"xR"™ —R", h:R"xXR" — R?

The functions u(-) and y(-) are the inputs and outputs, respectively

Whenever inputs are present, we say f(-) is a controlled vector field
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Differential Inclusions

(1) € Fa(t))

e Derivative belongs to a set of vectors in R"
e Models nondeterminism (controls, disturbances, uncertainty, ...)

Example 1 (Innacurate Clock)

A clock with time-varying rate
between 0.9 and 1.1 can be
modeled by & € (0.9, 1.1], which is
a rectangular inclusion

X
0 1 2 34 s 6 1 8 9

[van der Schaft-Schumacher, 1995]
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Adding Discrete Phenomena

Continuous state dynamics given by
a(t) =¢£(t), t=0
Vector field £(¢) depends on z (and u) plus discrete phenomena:
e autonomous switching: vector field changes discontinuously
e autonomous jumps: continuous state changes discontinuously

e controlled switching: control switches vector field discontinuously

e controlled jumps: control changes cont. state discontinuously
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Autonomous Switching

Vector field £(-) changes discontinuously when
the continuous state x(-) hits certain “boundaries”

#(t) = filz(t))
Example 2 (HVAC) Dynamics are H
given by
t(t) = fi(x(t)), furnace is On
(t) = fo(x(t)), furnaceisOff 4

1

F=-———_— - - -
[ SR
2

x(t) is temperature E

26




Piece-Wise Constant Vector Fields

v 2

r 1

Programmabile vector fields for sorting parts (large, up; small, down)
Vector fields are merely sequenced in time (sensorless or open loop)

Figure from [Bohringer et al., Computational Methods for Design and Control of MEMS Micromanipulator
Arrays, IEEE Computer Science and Engineering, pp. 17-29, January—March 1997]
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Switched Systems

A general switched system:?
@(t) = fy(z(t))
where q(t) € Q@ ~ {1,...,N}

E.g., @ = {0, 1} for furnace Off, On

Important subclass: switched linear systems
&(t) = Agx(t), ge{l,...,N}

where each A, € R"*"

2Note: Switching boundaries/manifolds have been suppressed; really, ¢* () = v(x(t), ¢(t)) and hybrid state is (z, q)
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Switched Linear Systems (1)

Example 3 (Unstable from Stable [Branicky, IEEE T-AC, 1998])

. —0.1 1 ~0.1 10
a(t) = Agr(t),  Ao= [_10 —0.1]’ A= [ ~1 —0.11

1

a

o
2

24
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'
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aaaaaaaaa

Trajectories: (left) Ay, (center) Ay, (right) A;, i = quadrant mod 2
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Switched Linear Systems (2)

Example 4 (Stable from Stable)

Two stable linear systems Two stable linear systems
Both “clockwise” One anti-clockwise
Switching on a line Switching with a hybrid rule
3 4
2] L
5 L
1
0 F 0 -
14 -
24 L
2 L
3 T T T T T '4 T T T
3 2 1 0 1 2 3 -4 2 0 2 4

Argues for “Multiple Lyapunov Functions” to prove stability [Branicky, /IEEE T-AC, 1998]
Simulated using Omola/Omsim [Andersson, PhD, 1994; Branicky-Mattsson, HS IV, 1997]
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Autonomous Jumps / Impulses

Continuous state z(+) jumps discontinuously on
hitting prescribed regions of the state space

E.g., collisions (running animals, hopping robots, etc.)

Example 5 (Bouncing Ball)
y(t) = o(t) e

t) = —mg

t) = —po(t), =xt)eM

v
M ={(0,v) |v <0} Lo
0 < p < 1, coefficient of restitution 7,

Ify=0andv <0,v:= —pv” V Jamgh v
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Networked Control System

Example 6 (NCS) A linear, full-state feedback control system

x(t) = Ax(t) + Bu(t)
u(t) = —Kux(t)

Place a network between state measurement (at sensor node)
and control computation/actuation (at another node)

x is measured at time t;, received after delay d;
i(t) = Az(t) — BK#(t)
() = x(ty), whent = t; + d;

Note: augmented state measurement & is piecewise constant
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Autonomous Jumps / Impulses (2)

General system subject to autonomous impulses:
p(t) = flz@),  x(t)¢A
ot (t) = G(x(t)), r(t) € A

Autonomous jump set, A
Reset map, GG

Linear system with equally spaced impulses [Branicky, CDC, 1997]
x(t) = Px(t), t&1
zt(t) = Px(t), tel={0,h,2h,...}

Pih

Stable if eigenvalues of Pe’ ! have magnitude < 1
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Controlled Switching

Vector field £(-) changes abruptly in response to a
control command, usually with an associated cost

One is allowed to pick among a discrete
number of vector fields:

&= fym(x)

qt) e Q@ ~{1,2,...,N} (or@Q ~ Z)
q(t) chosen by the controller

Note: If ¢(t) were an explicit function of state, result would be a closed-
loop system with autonomous switches
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Controlled Switching Examples (1)

Example 7 (Satellite Control)

0 = Teyv

0,0, angular position and velocity o >0

v e {—1,0,1}, reaction jets %
are full reverse, off, or full on

Example 8 (Manual Transmission [Brockett, 1993])
Cil'l = X9
Ty = [—a(ze/v) + ul/(1+v)

x1, ground speed

9, engine RPM

u € [0, 1], throttle position

v € {1,2,3,4}, gear shift position

a is positive for positive argument

35

Switching Control Laws (1)

Example 9 (Pait’s S.H.O. Stabilizer [Artstein, HS lIl, 1996])

ANz20]/T=0
i
i
x

T=6
y
(T=6Aa<0]/T: U(IIIIH'III')
T = 1 (always

[T=3n/4]/T=0

SHO Stabilizer SHO Stabilizer Modes
1
2 1 L
057 T 15 -
0 - r 14 L
-0.5 - 0.5 - L
1 T T T 0 T T T
1 0.5 0 0.5 1 0 5 10 15 20
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Switching Control Laws (2)

Example 10 (Max Controller [Branicky, ACC, 1994])
Control objective:

Good tracking of the pilot's input, n..,
without violating angle-of-attack constraint

max

r=desired n. €1 K o

1

—TLT

o~ e [k /

2

(Y\"/

Longitudinal Aircraft View Max Controller
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Switching Control Laws (3)

Outputs of tracking (top) and max controller (bottom)

2000 T 1

1000} /
of

-1000 -

-2000 -
0 0 5 10
t

0.5+ q
-0.5- q
-2000 . -1 -
0 0 5 1
t

5 10
t

2000

1000} /

=)

-1000 -

0

Left: normal acceleration n, (solid), desired value r (dashed)
Right: angle of attack a (solid), a’s limit (dashed)
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Controlled Jumps / Impulses

Continuous state x(-) changes discontinuously in response to
a control command, usually with an associated cost

Example 11 (Inventory Management)

G(t) = —plt) + Z 5(t — 0))a;

X, stock ‘ '&

1, degradation/utilization
0, < 0, < ..., “discrete” restocking times | | .
ayp, Qo, . . ., order amounts 6, 0,

Note: If stocking times/amounts explicit function of x,
then controlled jumps become autonomous jumps
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Example 12 (Planetary Flybys) Exploration spacecraft typically use
close encounters with moons/planets to gain energy, change course

At the level of the entire solar system, these maneuvers are planned
by considering the flight path to be a sequence of parabolic curves,
with resets of heading/velocity occurring at the “point” of encounter

Fig. 7.9 Discontinuity in Velocity due to Flyby

Fig. 7.7 Flyby Trajectory
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Significant Hybrid Phenomena

Continuous dynamics and controls +

Type:
Discontinuity
Example
Source Vector Field Continuous State
(Switching) (Jump/Impulse)
Autonomous Autonomous
System Switching: Jumps/Impulses:
(Autonomous) .
Hysteresis Collisions
Controlled Controlled
Controller Switching: Jumps/Impulses:
(Controlled)
Gearbox Resets

+ interactions with finite automata

+ other models (Tavernini, Brockett, Nerode-Kohn, BGM, ASL, ...)
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Tavernini’s Model

Differential automaton [Tavernini, 1987]:
Atriple (S, f, v) where
e S=R" x Q, (hybrid) state space
Q ~{1,..., N}, discrete state space
R", continuous state space

e f(-,q) = R* — R, foreach ¢ € Q,
continuous dynamics

e v : S — (@, discrete transition function

In our notation:

42
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Tavernini’s Results

Assumptions:
e switching manifolds are given by the zeros of a smooth function
e separation of switching sets, separation from concatenated jumps

Results:
e Unique solution with finitely many switching points

so(to) = (w0, Qo) s1(t1) = (w1, q1), sa(ta) = (72, 2),
e Continuity in initial conditions®
|z (t) — 2'(t)] €, t<T

lso — sp] < = qoq1 -+ qm G0 G
|ti—t;| < €9, 1< M

e Numerical integration approaches true solution*
|s'(t;h) — s(t)] =0 as h— 0

A

30n an open, dense set S°
*With initial error (from s{, # so); uniformly, in S°
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Hybrid Dynamical Systems (HDS)

An indexed collection of DSs plus a map for “jumping” among them

H=(Q,%,A,G) RN

e (), countable discrete states
o X = {¥,}4e0, setof DSs

fo: Xqg — R, X, C R,
. ! X
continuous state spaces ' X, i

. VA2
e A,, autonomous jump sets '

oG, : A, — S, autonomous
jump transition maps

X

;

Hybrid state space:
S = UqGQ Xq X {q}

D

)
w
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Hybrid Dynamical Systems: Notes
e ODEs and Automata

ODEs: |Q|=1,A=10
(Later) Finite Automata: |Q| = NN, each f, =0

e Outputs: add continuous/discrete output maps for each ¢
e Changing State Space
inelastic collisions, component failures, aircraft modes, ...
e State Space Overlaps, e.g., hysteresis
e Transition Delays

Add autonomous jump delay map, A, : A x V — R,

Associates (possibly zero) delay to each jump
Aggregate transients, activation delay, etc.
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Adding Control: Controlled HDS

H.= (QaszvacaF) A

e 3., controlled ODEs
fo + X, xU, — Rh
U, < R™, continuous
control spaces RN S Sy
e G, Ay x V, — S, modulated \
by discrete decisions V, ‘

\
\
\
N\
\
\
\
\
\
\
\\
\
\
\
\
\
Ay \\
N Ay
\ \
1 A\
1
V (@}
Kol

N
N
N

S
S
Q

e C,, controlled jump sets

X

>

7
i

o F,: C, — 2°, controlled jump
destination maps (set-valued)

D
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(C)HDS: Automaton View

I[condition]: must be taken
?[condition]: may be taken
“.€”, reassignment to value in set

NaeeCy]/ x:€ Fyx)
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Hybrid Automata: Examples (1)

Example 13 (Bouncing Ball Revisited)

' Ny=0)A(>0)]/v:=—pv

Example 14 (HVAC Revisited) Goal of A.C.: temp. at23 +2°C

[x>25]

foz<21]
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Hybrid Automata: Examples (2)

Example 15 (HVAC++) Add that A.C.
(i) is never ON more than 55 minutes straight
(ii) must remain Off for at least 5 minutes

[ (z>25)A(T>5)]/ T:=0

[ (z<21) V(T >55) ] / T:=0

Example 16 (Audi A4 Tiptronic Transmission)

1[ 2 > 3500, ?2[ 25 > 1800 ]

1y < 1200 ], 2[ 2 < 2000 |

49

From Discrete to Hybrid

Automata®
+
Continuous Phenomena
—

Hybrid Automata

SIt is easy to substitute “Automata” with “Petri Nets”
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Base Discrete Model: FA / FSM

Inputless finite automaton (FA) or finite state machine (FSM):
q(k +1) = v(q(k))

q(k) € Q, afinite set
i.e., dynamical system with discrete state space

Example 17 (Finite Counter)
State space () = {qo, q1,- .-, qnv-1} @and v(¢;) = Qi1 mod N

OWmOmnCmn OO

Starting from initial state, qo, trajectory orrun js:

qo, 41, 42, 43, 94, 40, 41, 92, 43, 44, qo," " "
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Deterministic FA Example

Example 18 (Parity of Binary String Input)
DFA keeps track of input’s parity by counting 1s, modulo 2

Start Q = {C]o, Q1}
! q(k+1) = v(q(k),i(k))
JSONIBOSEE
1 qo |90 |41
4141|490

On input 1101, runis qo, q1, 90, 9o, q1

“Unrolled” View: q ! q1 - qo ° qo - q1

Exercise 1 Draw a DFA whose states track number of 0s mod. 3

Exercise 2* Draw one whose states track binary number seen mod. 3
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Automaton Preliminaries

symbol: abstract entity of automata theory, e.g., letter or digit

alphabet: finite set of symbols
E ={a,b,c,...,z} — English alphabet
D ={0,1,2,...,9} — Decimal digits
B = {0, 1} — Binary alphabet
Latin 1 — IS0 8859-1 (Unicode characters)
string / word (over alphabet [): finite sequence of symbols from [
cat and jazz and zebra; w and qgq — strings over £
0and 1 and 1101 — strings over B
emptly string, c: string consisting of zero symbols

concatenation operator: strings can be juxtaposed

cat - jazz = catjazz
00-11=0011 # 1100 = 11-00
q°=qqq, q'=c¢
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Deterministic Finite Automata (DFA)

A DFA s a four-tuple A = (Q, I, v, qy), where
e () is a finite set of states

e [ is an alphabet, called the input alphabet
e v is the transition function mapping () x I into ()
e ¢y € ( is the initial state

Dynamics:
e Machine starts in state ¢,
e One move: DFA in ¢ receives symbol a and enters state v(q, a)
e On input word w = aqas - - - a,,: DFA in 1y successively processes
symbols and sequences through states ry, 79, ..., 1,, such that
Thy1 = V(Tk, Q)
This sequence is a run of DFA over w

ag as az An—1 an
To ™ ) e Tn—1 > Tn
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Languages

language (over alphabet [ ): a set of strings over |

English language, Lz, is a language over £/
cat € Lp,qqq & Lg

Languages over B:
Biengh2 = {00,01,10, 11}
Beventength = {€} U Biength2 U Blength4 U - - -
Boddparity = {1,01,10,001,010,100, 111, ...}

Kleene closure, [*: set of all strings over alphabet [

B* = {£,0,1,00,01,10,11,000,001,...}
B* ={0,1,00,01,10,11,000,001, ...} = B* — {¢}

empty language, (): language without any strings (note () # {c})
concatenation of languages: ST = {st|s € S,t € T'}

Exercise 3 S = {0} =0", T ={1}" =17, whatis ST?
55

Marked States

DFA plus a set of marked or accepting or final states, F’

language of FA: set of strings having a run that ends in a state of F’
a.k.a. set of accepted strings

If ' = {q}, 111 is accepted, ¢ is not; accepted language is Boqd parity
If I = {qo, q1}: accepted language is B*

If ' = {q1}: it would be B* — Bigd pariy

IfF=0:itis

Exercise 4 Draw DFA accepting: (i) Beyen lengths (i) Biength 2
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Nondeterministic FA (NFA)

AnNFAN = (Q,1,7,Q, F) allows
e a set of start states, )y C ()
e set-valued transition function, 7 : Q x I — 29
e at any stage automaton may be in a set of states

Dynamics:
e One move: NFA in g receives symbol a and nondeterministically
enters any one of the states in the set (g, a)
e On input w = ajas---ay,: NFA in state ry nondeterministically
sequences through 71, 79, . . ., 7, such that

The1 € U(Tk, ay)

. a a a;
Sequence is run of NFA over w: 1) —= 7] —= + =+ Th_1 —= Ty,
e In general, NFA has many runs over each string; DFA, only one
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NFA Examples

Example 19 (Pattern Search [Hopcroft, Motwani, Ullman])

Accepts strings ending in web or ebay

Example 20 (c-NFA, Floating-Point Number Specification)
Npp:

optional sign, digit before or after decimal, optional exponent (+sign)
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Subset Construction

Convert any NFA into a DFA
N = (QNvlaﬁvaF‘N) - D = (QD717VD7q07FD)

Idea: Keep track of set of states NFA can be in
Qp =2V, q=Qu;  vp(R,i)= U v(r;i);  Fp={Re€2|RNFy # 0}

reR
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w~Automata

Machines that process infinite sequence of symbols
Appropriate for modeling reactive processes (e.g., OS, server)

d

w-string / w-word (over alphabet [): infinite-length sequence of symbols from [
a¥ =aaaa--- d“=dddd--- (ad)” = adad - - -
w-languages: sets of w-words.
w-automata: act as finite automata (can be deterministic or not)
For server, the run over (ad)“ is qo, q1, Qo, 41, 90, q1, - - -

Difference is acceptance conditions; flavors: Blchi, Muller, Rabin, etc.
They involve states visited infinitely often, e.g., gy above
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Adding Continuous Phenomena

Finite automata plus continuous phenomenon
e Global Time: add a universal clock (with unity rate)
e Timed Automata: add a set of such clocks and ability to reset them

e Skewed-Clock Automata: each clock variable has a different
rational rate (uniform over all locations)®

o Multi-Rate Automata: each variable can take on different, rational
rates in each location

e Multi-Rectangular Automata: same, but rectangular inclusions

— “Linear” Hybrid Automata

5“Discrete states” = modes, phases, or locations
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Global Time

FA usually: “abstract time,” only ordering of symbols/“events” matters

Add time: associate time ¢;, at which kth transition occurs

q(ter1) = v(q(te),i(te))
o(tr) = nlq(tr),i(tx))

Make continuous-time: variables are piecewise continuous functions

q'(t) = viqlt),i(t)
ot) = nlq(t),i(t))

q(t) changes only when input symbol i(¢) changes
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Timed Automata (1)

timed word: sequence of symbols + their increasing times of occurrence
w = (ilv t1)7 (i27t2)7 R (iN7tN)
7;]; (S I, tk € R+, tk+1 > tk;
For server: w = (a,0), (d,2), (a,3), (d,4), (a,5), (d,8), (a,9), (d,16)
symbol sequence: o = a,d, a d a
time sequence: T =20, 2, 3,45, 89,16
w = (0,7T); Untime(w) = o
timed w-word: infinite sequence plus time progresses without bound
Not valid: 1/2,3/4,7/8,15/16,31/32, ...

Condition avoids so-called Zeno behavior

timed language: set of timed words

Liounded response time = {(0> T) | 02i-1 = 8,09 = d, Ty < i1 + 2}
Untime(Lbounded response time) = {(ad)w}
63

Timed Automata (2)

timed automaton: same structure as FA adding
(i) finite number of real-valued clocks (all unity rate)
(i) ability to reset clocks, test clock constraints when traversing edges

Notes

- sis aclock.

- !(s=2) means you must traverse the
edge when s is equal to 2.

- 8:=0 denotes setting the clock to 0.

- You could add output to the edges.

mode(t)
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Timed Automata (3)

Example 21 (Bounded Response Time [Alur-Dill, TCS, 1994])
Every “arrival” needs to “depart” within two seconds
a/z:=0

d, 2(z < 2)
Accepted word: (a,0), (d,1.5), (a,2), (d,3.5), (a,4), (d,5.5),
Not accepted: (a,0), (4,1.5), (a,2), (d,4.5), ---

Not accepted: (a,0), (a,1.5), ---

Example 22 (Switch with Delay [Maler-Yovine, 1996])
U, D switch “On”, “Off”; models: transistors, relays, pneumatic valves

U/ z:=0 l(z=1)
O== )
D
D
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Timed Automata Theory”

clock constraint has form X =(@<c)|(c<z)|=x0] X1 A X2

x, clock variable; c, rational constant; ;, valid clock constraints

Can build up more complicated tests:
(r=c) <= (r<c)A(c<x)
(x<c) <= (x<c)AN-(x=¢)
x1Vxe <= =(mx1Axe)
True <= (z<¢)V(c< )

Rich and beautiful theory:
e Closure properties, decidability results

e E.g., a timed automaton can be mimicked by an w-automata
(called a region automata because it operates on clock regions),
leading to an effective decision problem for language emptiness

’Seminal reference: R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183—235, 1994
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Skewed-Clock Automata

timed automaton: x; = 1 for all clocks and all locations
skewed-clock automaton: x; = k; where each k; is a rational number

fy=1]/y:=0 [y>10/11]/y =0

e>1]/a:=0 [2>10/9]/x:=0

Skewed-Clock Automaton Equivalent Timed Automaton

Remark 1 Skewed-clock automata are equivalent to timed automata

Proof 1 Timed automaton is a special skewed-clock automaton wherein each k; = 1
For converse:

1. ki =0: a"L(t) remains constant and any conditions involving it are uniformly true or false (and thus may
be reduced or removed using the rules of logic)

2. ki 7é 0: Note thatxj(t) = I,(O) + k;t, so Il(t)/k, = IZ(O)/]{JL +t
Thus, divide every constant that z; is compared to by ki,
and then use associated clock T; = x; /t, withT; = 1
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Multi-Rate Automata

multi-rate automaton: x; = k; , at location q (each k; , is rational)

Edge 1

Coin5/s:=5

Coin5 / s:=min(s+5, 60)

Coin25/s:=25 Coin25 / s:=min(s+25, 60)

Expired
s'=0

e Some vars. have the same rates in all states, e.g., w

I(s=0)

e Some vars. are stopwatches (derivative either 0 or 1), e.9., ©
e Not all dynamics change at every transition

e Parking meter has “non-linear” (non-TA) dynamics

e Skewed-clock automaton is special case with k; , = k; for all ¢
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Zeno Behavior

4
\\ ()
. - =y
3.5 \\
3k N
25 >
15
1 \
0.5 \\\ N
00 015 1‘ 1 ‘,5 \; 2‘,5 3 3%5 4
t
Startin ¢y at (x,y) = (0, 4)
Events pileup att =4
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Multi-Rectangular Automata

x=0
y=0

A D
—_—
8% e 1,3y 2 e,
ac (x 2 0] (id) ae
9y ¢ (-3,-21] WS 21yi=020) | 8Y gy 9
dt dt
(x < S](x:~(4,4))
‘ ty 5 -21(4d]
ly £ -3114d
Y ! (x 2 -3) (xim(-1,-2]]
B C
BX g (-4,-2) 8% g (-4,-2)
- ly € -S)ysm(-4,-01) &
d y £ - yi=(-4,~
—"L:I-J.-Zl 9 € q,2)
t dt

Rectangle in R": [ry, s1] X [ro, So] X « -+ X [ry, S,

Eg,inR%:  [0,1]x[1,3; [-o0,00] x [0,1];  [-2,—2] x [3,5]
Initial continuous states: init(qo) is a rectangle

Continuous dynamics: the inclusions, flow(q), are rectangles
Guard conditions, guard(e): rectangles

Reset relations, reset(e): rectangle or identity (“id”) for each variable
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Initialized Multi-R— Automata

initialized multi-r— automaton: variable must be reset when traversing
an edge if its dynamics changes while crossing that edge

Example: multi-rectangular automation on previous page
Counterexample: multi-rate automation w/Zeno behavior

Remark 2 (Henzinger-Kopke-Puri-Varaiya, 1998)
An initialized multi-rate automaton can be converted into a timed automaton

Proof 2 Idea: Use same trick as in Remark 1, as many times for each variable as it has different rates (the
fact that the automaton is “initialized” is crucial)

Remark 3 (Henzinger-Kopke-Puri-Varaiya, 1998)
An initialized multi-rectangular automaton can be converted to an initialized multi-rate
automaton (and hence a timed automaton)

Proof 3 Idea: replace each continuous variable, say x, with two variables, say x; and x,,, that track lower and
upper bounds on its value, resp.; then, invoke Remark 2

71

Linear Hybrid Automata (LHA)

Solutions are linear (not vector field!)

e discrete transition system on finite set, (), of modes/locations (FA)

e finite number of real-valued vars., with “nice” rate/jump constraints®

Example 23 (Fischer’'s MEX Protocol [Henzinger et al.])

z>bAk#1

8S0 the reachable set at each step is a union of polyhedra [Alur et al., Theoretical Computer Science, 138:3-34, 1995]
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LHA: Technical Definition (1)

Expressions over a set of variables Z

Linear Expression: linear combination of the vars. with rational coeffs.

1/2x + 24/5y, Z2+0t—6+y

Linear Inequality: inequality between linear expressions

x>0, 442t <2/3x

Convex Predicate: a finite conjunction (“and”) of linear inequalities
(x >3)&& 3y > 2+ 5/3)

Predicate: a finite disjunction (“or”) of convex predicates

(2 = 3)&k&e(3y = 2 +5/3)) || ((z = 0)&&(y < 1))
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LHA: Technical Definition (2)

X = {z1,29,..., 2y «— continuous variables
X = {&1,29,..., %} +«—— continuous updates
X' = {a},2,, ..., 2/}  «— discrete updates (i.e., resets)

init(q) is a predicate on X
inv(q) is a convex predicate on X (the invariant for each q)
flow(q) is a convex predicate on X

t € [10, 20] is equivalent to (z > 10)&&(z < 20)
reset(e) is a convex predicate on X U X'

l<=2, 2<2, t'>=2+3, =0

If inv, flow, reset are predicates (vs. convex predicates),
we have “or” transitions involved
To handle this, split the states/edges to model the disjunctions
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HyTech Train-Gate Example

Train Gate

‘-—¢—‘mu<
open
g 9=

= r —=|
Controller
Number of | Number of .
o/ . CPU time
a<49/5 locations | transitions
hen the train is within 10 meters to the gate,
When the train is within g ” ” 02 sec.
the gate is always fully closed.

[Source: Henzinger, Ho, Wong-Toi. HyTech Demo. embedded.eecs.berkeley.edu/research/hytech]
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Non-Linear Hybrid Automata

Non-Linear: anything not linear by HyTech’s definition
Two ways to deal with this
1. Easy way out!
(a) Reduce or transform your HA into a LHA: clock translation
(b) Approximate it by a LHA: linear phase portrait approximation
. Harder: develop richer theory, comp. tools for a larger class of HA

5= 62(:~3 R m e >4) ) = >3]
i8] F€[810
¢ =1n(5/3)/2 U

Clock Translation LPP Approx., Successive Refinement
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Phase Portrait Approximation

Predator-Prey Equations: nonlinear (top) and linear (bottom)

y . M

A/B

A/B

/

@ N
AV

[

y=0
Az > A/A
Az < D/C
A=

AELO

A/x  D/C =z

Phase Portraits

Hybrid Automata

[Henzinger et al., Algorithmic Analysis of Nonlinear Hybrid Systems, IEEE Trans. Auto. Cont., 43(4):540-554, 1998]
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Summary
e Broad Hybrid Systems Modeling Definition / Motivation
e The First Hybrid Dynamicist: Laplace
e Many Hybrid Systems Examples

e Mathematical Models of HS

- From Continuous Side:
ODEs + Discrete Phenomena
= Hybrid Dynamical Systems

- From Discrete Side:
FA + Continuous Phenomena
—> Hybrid Automata
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Going Further

Early HS models: Witsenhausen, Tavernini, Brockett, Nerode-Kohn, Antsaklis-Stiver-
Lemmon, Back et al. < all reviewed/compared in [Branicky, ScD Thesis, 1995]

Early related work:
e variable-structure systems (Utkin), systems with impulse effect, jump-linear
systems, cell-to-cell mapping (Hsu), iterated function systems

e DES (Ramadge-Wonham), statecharts (Harel), reactive systems (Manna-Pnueli)

More recent HS frameworks:
e hybrid I/0 automata: Lynch, Segala, Vaandrager, et al.
e linear complementarity: Heemels, van der Schaft, Schumacher, et al.
e mixed logical dynamical systems: Bemporad, Morari, et al.
e hybrid Petri nets, stochastic hybrid systems, ...

HS simulation, verification, specification languages/tools:
e Omola/Omsim; SHIFT, Ptolemy; Modelica; . ..
e HyTech, UPAAL, KRONQOS, CheckMate, d/dt, Charon, PHAVer, HYSDEL, ...
[wiki.grasp.upenn.edu/ graspdoc/wiki/hst]
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