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Continuous + Discrete = Hybrid (1)

Mixture of . . . continuous & discrete inputs, outputs, states, dynamics

+ =

Rn Q ! {1, 2, . . . , N} Rn ×Q
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Continuous + Discrete = Hybrid (2)

Mixture of . . . differential equations and discrete events / switching
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Continuous + Discrete = Hybrid (3)
Mixture of . . . continuous physical process with finite-state logic

Force-guided robotic assembly [Branicky-Chhatpar, HSCC, 2002]

4



Continuous + Discrete = Hybrid (4)
Mixture of . . . control theory and computer science

Autonomous vehicle DEXTER [urbanchallenge.case.edu]
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Outline

The First Hybrid Dynamicist

More Hybrid Systems Examples

Mathematical Models of HS
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Laplace’s Problem
Predict the motion of a comet about to pass near Jupiter (1845)
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Laplace’s Solution (1)
Two descriptions of motion plus

a logical choice of how to switch between them
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Laplace’s Solution (2)
Double-think: SOI is both infinitely large and infinitesimally small

e: 145, J: 677 (size in radii) e: 0.006, J: 0.06 (fraction of area)

9

Laplace’s Solution (3)

A different, logical(?) choice of when to switch
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Hybrid Systems All Around Us

They drive on our streets, work in our factories, fly in our skies, ...
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Networked Control Systems (1)
Sensors, actuators, and controllers connected over a network . . .

with feedback loops controlling physical systems closed among them

• continuous plants
• asynchronous or event-driven data transmission

sampling, varying transmission delay, packet loss

• discrete implementation of network/protocols

data packets, queuing, routing, scheduling, etc.

ProcessesProcesses
Other

Control Network

Other

Physical Plant

Actuator 1 Actuator m ...... Sensor 1

Controller
(Computer)

Sensor n
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Networked Control Systems (2)

Simulation 
languages

Bandwidth
monitoring

Visualization
Network dynamics

Plant output 
dynamics

Packet queueing 
and forwarding

Plant agent
(actuator, 
sensor, …)

Router

Controller
agent
(SBC, PLC, …)

Co-simulation and co-design [Branicky-Liberatore-Phillips, ACC, 2003]
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Other Examples
• systems with relays, switches, and hysteresis

• computer disk drives

• constrained robotic systems (locomotion, assembly, etc.)

• vehicle powertrains, transmissions, stepper motors

• mode-switched flight control, vehicle management systems

• automated highway systems (AHS)

• multi-vehicle formations and coordination

• power electronics

• analog/digital circuit co-design and verification

• biological applications
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Systems with Switches and Relays
HVAC control with a thermostat:

ẋ = f (x, H(x− x0), u)

• x, room temperature

• x0, desired temperature

• f , dynamics of temperature

• u, control signal (e.g., the fuel burn rate)

!"
x

-1

1

H

" H = +1 H = −1

![ x ≥ ∆ ]

![ x ≤ −∆ ]

Hysteresis Function, H Associated Finite Automaton
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Hard Disk Drive

Spindle-Ready

SeekWait

ReadWait

On-Cylinder

/Seek(Adr)

![HeadSettled]

![ReadDone]

/Read

HS for main hard disk drive functionality [Gollu-Varaiya, CDC, 1989]
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Raibert’s Hopping Robot

KF KC

KDKT

[ x = 0 ∩ ẋ < 0 ]

[ ẋ = 0 ] / T := 0[ x = 0 ∩ ẋ > 0 ]

[ T = τthrust ]

Dynamic Phases
[Back et al., HS I, 1993] Finite State Controller
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Vehicle Powertrains / Cruise Control
Continuous Discrete
Throttle Gear Position
Engine RPM Cylinder Phases
Fuel/Air Mixture Cylinder Firings
Belts, Cams Microprocessors
Elevation Road Condition

Inputs

i ∈ I

u ∈ U

!

!

Hybrid
Control
System

Outputs

o ∈ O

y ∈ Y

!

!

I , O are discrete (i.e., countable) sets of symbols
U , Y are continuums
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Flight Vehicle Mgmt. Systems

[George Meyer, Plenary Lecture, CDC, 1994]
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View From Here

The remainder of this talk focuses on mathematical models

• From Continuous Toward Hybrid
=⇒ Hybrid Dynamical Systems

• From Discrete Toward Hybrid
=⇒ Hybrid Automata
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From Continuous Toward Hybrid

Differential Equations1

+

Discrete Phenomena

=⇒

Hybrid Dynamical Systems

1It is easy to substitute “Difference Equations”
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Base Continuous Model: ODEs

Ordinary differential equation (ODE ):

ẋ(t) = f (x(t))

x(t) ∈ X ⊂ Rn is a vector of continuous states
f : X −→ Rn is a vector field on Rn

Autonomous/time-invariant: vector field doesn’t depend explicitly on t

Non-autonomous or time-varying:

ẋ(t) = f (x(t), t)
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ODE with Inputs and Outputs

ẋ(t) = f (x(t), u(t))
y(t) = h(x(t), u(t))

x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, y ∈ Y ⊂ Rp

f : Rn ×Rm −→ Rn, h : Rn ×Rm −→ Rp

The functions u(·) and y(·) are the inputs and outputs, respectively

Whenever inputs are present, we say f (·) is a controlled vector field
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Differential Inclusions

ẋ(t) ∈ F (x(t))

• Derivative belongs to a set of vectors in Rn

• Models nondeterminism (controls, disturbances, uncertainty, ...)

Example 1 (Innacurate Clock)
A clock with time-varying rate
between 0.9 and 1.1 can be
modeled by ẋ ∈ [0.9, 1.1], which is
a rectangular inclusion

! " # $ % & ' ( ) *
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[van der Schaft-Schumacher, 1995]
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Adding Discrete Phenomena

Continuous state dynamics given by

ẋ(t) = ξ(t), t ≥ 0

Vector field ξ(t) depends on x (and u) plus discrete phenomena:

• autonomous switching: vector field changes discontinuously

• autonomous jumps: continuous state changes discontinuously

• controlled switching: control switches vector field discontinuously

• controlled jumps: control changes cont. state discontinuously

25

Autonomous Switching

Vector field ξ(·) changes discontinuously when
the continuous state x(·) hits certain “boundaries”

Example 2 (HVAC) Dynamics are
given by

ẋ(t) = f1(x(t)), furnace is On
ẋ(t) = f0(x(t)), furnace is Off

x(t) is temperature

ẋ(t) = f1(x(t))

!"
x

-1

1

H

"

ẋ(t) = f0(x(t))
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Piece-Wise Constant Vector Fields

Programmable vector fields for sorting parts (large, up; small, down)
Vector fields are merely sequenced in time (sensorless or open loop)

Figure from [Böhringer et al., Computational Methods for Design and Control of MEMS Micromanipulator
Arrays, IEEE Computer Science and Engineering, pp. 17–29, January–March 1997]
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Switched Systems

A general switched system:2

ẋ(t) = fq(t)(x(t))

where q(t) ∈ Q ! {1, . . . , N}

E.g., Q = {0, 1} for furnace Off, On

Important subclass: switched linear systems

ẋ(t) = Aqx(t), q ∈ {1, . . . , N}
where each Aq ∈ Rn×n

2Note: Switching boundaries/manifolds have been suppressed; really, q+(t) = ν(x(t), q(t)) and hybrid state is (x, q)

28



Switched Linear Systems (1)

Example 3 (Unstable from Stable [Branicky, IEEE T-AC, 1998])

ẋ(t) = Aqx(t), A0 =

[
−0.1 1
−10 −0.1

]
, A1 =

[
−0.1 10
−1 −0.1

]
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Trajectories: (left) A0, (center) A1, (right) Ai, i = quadrant mod 2
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Switched Linear Systems (2)
Example 4 (Stable from Stable)

Two stable linear systems
Both “clockwise”
Switching on a line

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Two stable linear systems
One anti-clockwise
Switching with a hybrid rule

-4 -2 0 2 4

-4

-2

0

2

4

Argues for “Multiple Lyapunov Functions” to prove stability [Branicky, IEEE T-AC, 1998]
Simulated using Omola/Omsim [Andersson, PhD, 1994; Branicky-Mattsson, HS IV, 1997]
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Autonomous Jumps / Impulses

Continuous state x(·) jumps discontinuously on
hitting prescribed regions of the state space

E.g., collisions (running animals, hopping robots, etc.)

Example 5 (Bouncing Ball)

ẏ(t) = v(t)
v̇(t) = −mg

v+(t) = −ρv(t), x(t) ∈ M

M = {(0, v) | v < 0}
0 ≤ ρ ≤ 1, coefficient of restitution

“If y = 0 and v < 0, v := −ρv”

C

-mg

0

x

y

R

EECS 381/409: Hybrid and Discrete Event Systems.  Class Notes.EECS 381/409: Hybrid and Discrete Event Systems.  Class Notes.

Lecture #3: January 18, 2005Lecture #3: January 18, 2005

Prof. M.S. Branicky; Scribe: Andy AllenProf. M.S. Branicky; Scribe: Andy Allen

Topics:

Continue and finish lecture “From Continuous to Hybrid”

Begin lecture “From Discrete to Hybrid”

Bouncing Ball Model
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   the ‘
+

’ indicates Sontag’s successor notation

2

2

1
)0()0()(

)0()(

mgttvxtx

mgtvtv

!"+=

!=

In general:  A system subject to autonomous jumps looks like:

    AtztzFtz !=
•

)()),(()(

    AtztzGtz !=
+ )()),(()(    this expression denotes when an update of the system occurs

Another Example

Clegg integrator

)()( tetx =
•

 where e(t) is an error term, and 0)( =
+
tx  IF .0)( =te

end of Autonomous Jumps
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Networked Control System

Example 6 (NCS) A linear, full-state feedback control system

ẋ(t) = Ax(t) + Bu(t)
u(t) = −Kx(t)

Place a network between state measurement (at sensor node)
and control computation/actuation (at another node)

x is measured at time ti, received after delay di

ẋ(t) = Ax(t)−BKx̂(t)
x̂+(t) = x(ti), when t = ti + di

Note: augmented state measurement x̂ is piecewise constant
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Autonomous Jumps / Impulses (2)

General system subject to autonomous impulses:

ẋ(t) = f (x(t)), x(t) *∈ A
x+(t) = G(x(t)), x(t) ∈ A

Autonomous jump set, A
Reset map, G

Linear system with equally spaced impulses [Branicky, CDC, 1997]

ẋ(t) = P1x(t), t *∈ I
x+(t) = P2x(t), t ∈ I = {0, h, 2h, . . .}

Stable if eigenvalues of P2eP1h have magnitude < 1
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Controlled Switching
Vector field ξ(·) changes abruptly in response to a
control command, usually with an associated cost

One is allowed to pick among a discrete
number of vector fields:

ẋ = fq(t)(x)

q(t) ∈ Q ! {1, 2, . . . , N} (or Q ! Z)
q(t) chosen by the controller

Note: If q(t) were an explicit function of state, result would be a closed-
loop system with autonomous switches
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Controlled Switching Examples (1)
Example 7 (Satellite Control)

θ̈ = τeff v

θ, θ̇, angular position and velocity

v ∈ {−1, 0, 1}, reaction jets

are full reverse, off, or full on

Controlled Switching
Vector field changes discontinuously in response to a control signal

},...,2,1{),( NQqxFx q =!=
•

Example:  Satellite Control

veff!" =
•• •

!! ,  are angular position, velocity and }1,0{!v

depending on if the satellite reaction jets are full

reverse, off, or full on.

Example:  Transmission (Brockett)

21 xx =
•

)/(])([ 22 vtuvxax ++!=
•

     a  is positive for a positive argument (torque curve)

1
x  ~ ground speed

2
x  ~ engine RPM

]1,0[!u  ~ throttle position

}4,3,2,1{!v  ~ gear shift position

end of Controlled Switching

 v=+1 

v=-1
v=0

v=0

!" =
•

!

Example 8 (Manual Transmission [Brockett, 1993])

ẋ1 = x2

ẋ2 = [−a(x2/v) + u]/(1 + v)

x1, ground speed

x2, engine RPM

u ∈ [0, 1], throttle position

v ∈ {1, 2, 3, 4}, gear shift position

a is positive for positive argument
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Switching Control Laws (1)
Example 9 (Pait’s S.H.O. Stabilizer [Artstein, HS III, 1996])

ẋ = y

ẏ = −x + u

x ≡ state measurement

Ṫ = 1 (always in model)

u = 0 u = −3x![ T = δ ∧ x < 0 ] / T := 0

![ T = δ ∧ x ≥ 0 ] / T := 0

![ T = 3π/4 ] / T := 0

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

SHO Stabilizer

0 5 10 15 20

0

0.5

1

1.5

2

SHO Stabilizer Modes
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Switching Control Laws (2)
Example 10 (Max Controller [Branicky, ACC, 1994])
Control objective:

Good tracking of the pilot’s input, nz,
without violating angle-of-attack constraint

v

α θ

nz

δ

!r=desired nz

!"
#$

"

−nz

!e1

K1

δ1

#
#

#
# !

!αlim

!"
#$

"

−α

!e2

K2

δ2 $
$

$
$

!
max !δ

Longitudinal Aircraft View Max Controller
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Switching Control Laws (3)
Outputs of tracking (top) and max controller (bottom)

-2000

-1000

0

1000

2000

0 5 10

t

-1

-0.5

0

0.5

1

0 5 10

t

-2000

-1000

0

1000

2000

0 5 10

t

-1

-0.5

0

0.5

1

0 5 10

t

Left: normal acceleration nz (solid), desired value r (dashed)
Right: angle of attack α (solid), α’s limit (dashed)
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Controlled Jumps / Impulses

Continuous state x(·) changes discontinuously in response to
a control command, usually with an associated cost

Example 11 (Inventory Management)

ẋ(t) = −µ(t) +
∑

i

δ(t− θi)αi

x, stock
µ, degradation/utilization
θ1 < θ2 < . . ., “discrete” restocking times
α1, α2, . . ., order amounts

Controlled Jumps (impulses)
State changes discontinuously in response to a control signal

Example:  Inventory management

ii
i

tttx !"#µ )()()( $%+$=
•

µ  characterizes the use/degradation dynamics,

i
!  are restocking times,

 and 
i

!  are the restocked amounts.

Aside:  0)( =p!  for >!|| p

!
"

"#
=1)( dpp$

Example2:  Planetary Flybys See Handout: Laplace’s Result: Sphere of Influence

Page 1: shows how planet gravitational fields change the trajectory of objects in

space.  To model the pulls of celestial bodies (very complex in nature), when a body is

within a sphere of influence of a pulling body, the gravitational effect of that body is then

taken into effect.

end of “From Continuous to Hybrid”

From Discrete to Hybrid
Base discrete model:  Automata

Finite State Machine (FSM)

OR Finite Automation (FA)

OR Finite Transition System

Inputless automation

)(1 kk qq !=+ ,    Qqk ! ,    a finite set

Example:  Finite Counter

1)( += qq!    mod N

}1,...1,0{ != NQ

t

1
!

2
!

)(tx

2
!

1\
!

Note: If stocking times/amounts explicit function of x,
then controlled jumps become autonomous jumps
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Example 12 (Planetary Flybys) Exploration spacecraft typically use
close encounters with moons/planets to gain energy, change course

At the level of the entire solar system, these maneuvers are planned
by considering the flight path to be a sequence of parabolic curves,
with resets of heading/velocity occurring at the “point” of encounter
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Significant Hybrid Phenomena
Continuous dynamics and controls +

Type:

Example
Discontinuity

Source Vector Field Continuous State
(Switching) (Jump/Impulse)

System
(Autonomous)

Autonomous
Switching:

Hysteresis

Autonomous
Jumps/Impulses:

Collisions

Controller
(Controlled)

Controlled
Switching:

Gearbox

Controlled
Jumps/Impulses:

Resets

+ interactions with finite automata
+ other models (Tavernini, Brockett, Nerode-Kohn, BGM, ASL, . . . )
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Tavernini’s Model

Differential automaton [Tavernini, 1987]:
A triple (S, f, ν) where

• S = Rn ×Q, (hybrid) state space
Q ! {1, . . . , N}, discrete state space
Rn, continuous state space

• f (·, q) = Rn → Rn, for each q ∈ Q,
continuous dynamics

• ν : S → Q, discrete transition function

In our notation:

ẋ = f (x, q)

q+ = ν(x, q)

i,j
M

q=i

q=j
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Tavernini’s Results
Assumptions:
• switching manifolds are given by the zeros of a smooth function
• separation of switching sets, separation from concatenated jumps

Results:
• Unique solution with finitely many switching points

s0(t0) = (x0, q0), s1(t1) = (x1, q1), s2(t2) = (x2, q2), . . .

• Continuity in initial conditions3

|s0 − s′0| < δ =⇒
|x(t)− x′(t)| < ε1, t < T

q0q1 · · · qM = q′0q
′
1 · · · q′M

|ti − t′i| < ε2, i ≤ M

• Numerical integration approaches true solution4

|s′(t; h)− s(t)|→ 0 as h → 0
3On an open, dense set S0

4With initial error (from s′
0 *= s0); uniformly, in S0
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Hybrid Dynamical Systems (HDS)
An indexed collection of DSs plus a map for “jumping” among them

H = (Q,Σ,A,G)

• Q, countable discrete states

• Σ = {Σq}q∈Q, set of DSs

fq : Xq → Rdq , Xq ⊂ Rdq ,

continuous state spaces

• Aq, autonomous jump sets

• Gq : Aq → S, autonomous
jump transition maps

Hybrid state space:
S =

⋃
q∈Q Xq × {q}

Aj

Aj

DD

D

D

A

A

j

i
i

i

1

1
1

Xj

X i

X1

X
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Hybrid Dynamical Systems: Notes
• ODEs and Automata

ODEs: |Q| = 1, A = ∅
(Later) Finite Automata: |Q| = N , each fq ≡ 0

• Outputs: add continuous/discrete output maps for each q

• Changing State Space

inelastic collisions, component failures, aircraft modes, . . .

• State Space Overlaps, e.g., hysteresis

• Transition Delays

Add autonomous jump delay map, ∆a : A× V −→ R+

Associates (possibly zero) delay to each jump
Aggregate transients, activation delay, etc.
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Adding Control: Controlled HDS

Hc = (Q,Σ,A,G,C,F)

• Σq, controlled ODEs

fq : Xq × Uq → Rdq

Uq ⊂ Rmq , continuous

control spaces

• Gq : Aq × Vq → S, modulated
by discrete decisions Vq

• Cq, controlled jump sets

• Fq : Cq → 2S, controlled jump
destination maps (set-valued)

Aj

Aj

C

DD

D

C

C

CD

A

A

jj

1

i

i

i
i

i

1

1
1

Xj

X i

X1

X
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(C)HDS: Automaton View

p : Σp q : Σq

![ x ∈ Mp,q ] / x := Gp(x)

![ x ∈ Mq,p ] / x := Gq(x)

...

...

...

...

![condition]: must be taken
?[condition]: may be taken
“:∈”, reassignment to value in set

p : Σp q : Σq

![ x ∈ Mp,q ] / x := Gp(x)

![ x ∈ Mq,p ] / x := Gq(x)

...

...

...

...

?[ x ∈ Cp ] / x :∈ Fp(x)

?[ x ∈ Cq ] / x :∈ Fq(x)
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Hybrid Automata: Examples (1)
Example 13 (Bouncing Ball Revisited)

ẏ = v

v̇ = −mg
![ (y = 0) ∧ (v > 0) ] / v := −ρv

Example 14 (HVAC Revisited) Goal of A.C.: temp. at 23 ± 2 ◦C

Off

ẋ = f0(x)

On

ẋ = f1(x)

![ x ≥ 25 ]

![ x ≤ 21 ]
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Hybrid Automata: Examples (2)
Example 15 (HVAC++) Add that A.C.
(i) is never ON more than 55 minutes straight
(ii) must remain Off for at least 5 minutes

Off

ẋ = f0(x)
Ṫ = 1/60

On

ẋ = f1(x)
Ṫ = 1/60

![ (x ≥ 25) ∧ (T ≥ 5) ] / T:=0

![ (x ≤ 21) ∨ (T ≥ 55) ] / T:=0

Example 16 (Audi A4 Tiptronic Transmission)

. . .

Gear 1

ẋ1 = x2

ẋ2 = [−a(x2) + u]/2

Gear 2

ẋ1 = x2

ẋ2 = [−a(x2/2) + u]/3

. . .

![ x2 ≥ 3500 ], ?[ x2 ≥ 1800 ]

![ x2 ≤ 1200 ], ?[ x2 ≤ 2000 ]
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From Discrete to Hybrid
Automata5

+

Continuous Phenomena

=⇒

Hybrid Automata

5It is easy to substitute “Automata” with “Petri Nets”
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Base Discrete Model: FA / FSM
Inputless finite automaton (FA) or finite state machine (FSM):

q(k + 1) = ν(q(k))

q(k) ∈ Q, a finite set
i.e., dynamical system with discrete state space

Example 17 (Finite Counter)
State space Q = {q0, q1, . . . , qN−1} and ν(qi) = qi+1 mod N

q0 q1 q2 q3 q4

Starting from initial state, q0, trajectory or run is:

q0, q1, q2, q3, q4, q0, q1, q2, q3, q4, q0, · · ·
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Deterministic FA Example
Example 18 (Parity of Binary String Input)
DFA keeps track of input’s parity by counting 1s, modulo 2

q0 q1

1

1

00

Start Q = {q0, q1}
q(k+1) = ν(q(k), i(k))

ν 0 1
q0 q0 q1

q1 q1 q0

On input 1101, run is q0, q1, q0, q0, q1

“Unrolled” View: q0
1−→ q1

1−→ q0
0−→ q0

1−→ q1

Exercise 1 Draw a DFA whose states track number of 0s mod. 3

Exercise 2* Draw one whose states track binary number seen mod. 3
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Automaton Preliminaries
symbol: abstract entity of automata theory, e.g., letter or digit

alphabet: finite set of symbols
E = {a, b, c, . . . , z} — English alphabet
D = {0, 1, 2, . . . , 9} — Decimal digits
B = {0, 1} — Binary alphabet
Latin 1 — IS0 8859-1 (Unicode characters)

string / word (over alphabet I): finite sequence of symbols from I

cat and jazz and zebra; w and qqq — strings over E
0 and 1 and 1101 — strings over B

empty string, ε: string consisting of zero symbols

concatenation operator: strings can be juxtaposed
cat · jazz = catjazz
00 · 11 = 0011 *= 1100 = 11 · 00
q3 = qqq, q0 = ε
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Deterministic Finite Automata (DFA)
A DFA is a four-tuple A = (Q, I, ν, q0), where
• Q is a finite set of states
• I is an alphabet, called the input alphabet
• ν is the transition function mapping Q× I into Q
• q0 ∈ Q is the initial state

Dynamics:
• Machine starts in state q0

• One move: DFA in q receives symbol a and enters state ν(q, a)
• On input word w = a1a2 · · · an: DFA in r0 successively processes

symbols and sequences through states r1, r2, . . . , rn, such that
rk+1 = ν(rk, ak)

This sequence is a run of DFA over w

r0
a1−→ r1

a2−→ r2
a3−→ · · · an−1−→ rn−1

an−→ rn
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Languages
language (over alphabet I ): a set of strings over I

English language, LE, is a language over E
cat ∈ LE, qqq *∈ LE

Languages over B:

Blength 2 = {00, 01, 10, 11}
Beven length = {ε} ∪Blength 2 ∪Blength 4 ∪ · · ·
Bodd parity = {1, 01, 10, 001, 010, 100, 111, . . .}

Kleene closure, I∗: set of all strings over alphabet I

B∗ ≡ {ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .}
B+ ≡ {0, 1, 00, 01, 10, 11, 000, 001, . . .} = B∗ − {ε}

empty language, ∅: language without any strings (note ∅ *= {ε})

concatenation of languages: ST = {st | s ∈ S, t ∈ T}

Exercise 3 S = {0}+ = 0+, T = {1}+ = 1+; what is ST?
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Marked States
DFA plus a set of marked or accepting or final states, F

language of FA: set of strings having a run that ends in a state of F
a.k.a. set of accepted strings

q0 q1

1

1

00

Start

If F = {q1}, 111 is accepted, ε is not; accepted language is Bodd parity

If F = {q0, q1}: accepted language is B∗

If F = {q1}: it would be B∗ −Bodd parity

If F = ∅: it is ∅

Exercise 4 Draw DFA accepting: (i) Beven length, (ii) Blength 2

56



Nondeterministic FA (NFA)
An NFA N = (Q, I, ν̂, Q0, F ) allows
• a set of start states, Q0 ⊆ Q

• set-valued transition function, ν̂ : Q× I → 2Q

• at any stage automaton may be in a set of states

Dynamics:
• One move: NFA in q receives symbol a and nondeterministically

enters any one of the states in the set ν̂(q, a)

• On input w = a1a2 · · · an: NFA in state r0 nondeterministically
sequences through r1, r2, . . . , rn such that

rk+1 ∈ ν̂(rk, ak)

Sequence is run of NFA over w: r0
a1−→ r1

a2−→ · · · rn−1
an−→ rn

• In general, NFA has many runs over each string; DFA, only one
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NFA Examples
Example 19 (Pattern Search [Hopcroft, Motwani, Ullman])

Accepts strings ending in web or ebay

Example 20 (ε-NFA, Floating-Point Number Specification)

optional sign, digit before or after decimal, optional exponent (+sign)
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Subset Construction
Convert any NFA into a DFA

N = (QN, I, ν̂, Q0, FN) =⇒ D = (QD, I, νD, q0, FD)

Idea: Keep track of set of states NFA can be in
QD = 2QN , q0 = Q0; νD(R, i) =

⋃

r∈R

ν̂(r, i); FD = {R ∈ 2Q |R∩FN *= ∅}
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ω-Automata
Machines that process infinite sequence of symbols
Appropriate for modeling reactive processes (e.g., OS, server)

q0 q1

a

d

ω-string / ω-word (over alphabet I): infinite-length sequence of symbols from I

aω ≡ aaaa · · · dω ≡ dddd · · · (ad)ω ≡ adad · · ·

ω-languages: sets of ω-words.

ω-automata: act as finite automata (can be deterministic or not)

For server, the run over (ad)ω is q0, q1, q0, q1, q0, q1, . . .

Difference is acceptance conditions; flavors: Büchi, Muller, Rabin, etc.
They involve states visited infinitely often, e.g., q0 above
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Adding Continuous Phenomena

Finite automata plus continuous phenomenon

• Global Time: add a universal clock (with unity rate)

• Timed Automata: add a set of such clocks and ability to reset them

• Skewed-Clock Automata: each clock variable has a different
rational rate (uniform over all locations)6

• Multi-Rate Automata: each variable can take on different, rational
rates in each location

• Multi-Rectangular Automata: same, but rectangular inclusions

=⇒ “Linear” Hybrid Automata

6“Discrete states”≡ modes, phases, or locations
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Global Time

FA usually: “abstract time,” only ordering of symbols/“events” matters

Add time: associate time tk at which kth transition occurs

q(tk+1) = ν(q(tk), i(tk))
o(tk) = η(q(tk), i(tk))

Make continuous-time: variables are piecewise continuous functions

q+(t) = ν(q(t), i(t))
o(t) = η(q(t), i(t))

q(t) changes only when input symbol i(t) changes
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Timed Automata (1)
timed word: sequence of symbols + their increasing times of occurrence

w = (i1, t1), (i2, t2), . . . , (iN, tN)
ik ∈ I ; tk ∈ R+, tk+1 > tk

For server: w = (a, 0), (d, 2), (a, 3), (d, 4), (a, 5), (d, 8), (a, 9), (d, 16)

symbol sequence: σ = a, d, a, d, a, d, a, d

time sequence: τ = 0, 2, 3, 4, 5, 8, 9, 16

w = (σ, τ ); Untime(w) = σ

timed ω-word: infinite sequence plus time progresses without bound
Not valid: 1/2, 3/4, 7/8, 15/16, 31/32, . . .
Condition avoids so-called Zeno behavior

timed language: set of timed words
Lbounded response time = {(σ, τ ) | σ2i−1 = a, σ2i = d, τ2i < τ2i−1 + 2}

Untime(Lbounded response time) = {(ad)ω}
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Timed Automata (2)
timed automaton: same structure as FA adding
(i) finite number of real-valued clocks (all unity rate)
(ii) ability to reset clocks, test clock constraints when traversing edges

From Discrete to Hybrid, Part 3 
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Timed Automata (3)
Example 21 (Bounded Response Time [Alur-Dill, TCS, 1994])
Every “arrival” needs to “depart” within two seconds

q0 q1

a / x := 0

d, ?(x < 2)

Accepted word: (a, 0), (d, 1.5), (a, 2), (d, 3.5), (a, 4), (d, 5.5), · · ·
Not accepted: (a, 0), (d, 1.5), (a, 2), (d, 4.5), · · ·
Not accepted: (a, 0), (a, 1.5), · · ·

Example 22 (Switch with Delay [Maler-Yovine, 1996])
U, D switch “On”, “Off”; models: transistors, relays, pneumatic valves

Off Delay On

U / x := 0

D

!(x = 1)

D
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Timed Automata Theory7

clock constraint has form χ := (x ≤ c) | (c ≤ x) | ¬χ0 | χ1 ∧ χ2

x, clock variable; c, rational constant; χi, valid clock constraints

Can build up more complicated tests:

(x = c) ⇐= (x ≤ c) ∧ (c ≤ x)

(x < c) ⇐= (x ≤ c) ∧ ¬(x = c)

χ1 ∨ χ2 ⇐= ¬(¬χ1 ∧ ¬χ2)

True ⇐= (x ≤ c) ∨ (c ≤ x)

Rich and beautiful theory:
• Closure properties, decidability results
• E.g., a timed automaton can be mimicked by an ω-automata

(called a region automata because it operates on clock regions),
leading to an effective decision problem for language emptiness

7Seminal reference: R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994
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Skewed-Clock Automata
timed automaton: ẋi = 1 for all clocks and all locations

skewed-clock automaton: ẋi = ki where each ki is a rational number

x = 0
y = 1/2

S1

ẋ = 9/10
ẏ = 11/10

S2

ẋ = 9/10
ẏ = 11/10

![ y ≥ 1 ] / y := 0

![ x ≥ 1 ] / x := 0

x = 0
y = 5/11

S1

ẋ = 1
ẏ = 1

S2

ẋ = 1
ẏ = 1

![ y ≥ 10/11 ] / y := 0

![ x ≥ 10/9 ] / x := 0

x = 0
y = 1/2

S1

ẋ = 9/10
ẏ = 11/10

S2

ẋ = 9/10
ẏ = 11/10

![ y ≥ 1 ] / y := 0

![ x ≥ 1 ] / x := 0

x = 0
y = 5/11

S1

ẋ = 1
ẏ = 1

S2

ẋ = 1
ẏ = 1

![ y ≥ 10/11 ] / y := 0

![ x ≥ 10/9 ] / x := 0

Skewed-Clock Automaton Equivalent Timed Automaton

Remark 1 Skewed-clock automata are equivalent to timed automata

Proof 1 Timed automaton is a special skewed-clock automaton wherein each ki = 1

For converse:

1. ki = 0: xi(t) remains constant and any conditions involving it are uniformly true or false (and thus may
be reduced or removed using the rules of logic)

2. ki *= 0: Note that xi(t) = xi(0) + kit, so xi(t)/ki = xi(0)/ki + t
Thus, divide every constant that xi is compared to by ki,
and then use associated clock x̃i = xi/t, with ˙̃xi = 1
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Multi-Rate Automata
multi-rate automaton: ẋi = ki,q at location q (each ki,q is rational)

ẇ = 1

ẋ = 1

ẏ = 2

ż = 1

ẇ = 1

ẋ = 0

ẏ = 2

ż = 2

ẇ = 1

ẋ = 0

ẏ = 4

ż = 3

Edge 1

Edge 2Edge 3

Skewed-Clock Automata!

! "#$%&!'()*$')'!+'&!'!,%)!*-!./*.0,1!21!3+%4%!5#"2!'6&!5#!7!8!-*4!'//!./*.0!'6&!'//!
/*.')#*6,9!
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'4%!6*)!F/*G'//D!,D6.+4*6#H%&!I#9%9!$(/)#E/%!E4*.%,,*4,J9!

! Remark!>!:0%3%&;./*.0!'()*$')'!'4%!%K(#<'/%6)!)*!)#$%&!'()*$')'9!!L%!3#//!

E4*<%!)+#,!#6!'!/')%4!/%.)(4%9!

!

Multi-Rate Automata!

! 5=#!7!0#1K!')!/*.')#*6!K" !M9!!0!#,!4')#*6'/!-*4!%'.+!#!'6&!K9!

! Example 1!>!NC;$#6()%!E'40#6F!$%)%4!

!

!

!

!

!

!

!

!

!

o L+%6!'!6#.0%/!#,!-#4,)!#6,%4)%&1!)+%!./*.0!F%),!,%)!)*!O9!!P#0%3#,%1!3+%6!'!
K('4)%4!F%),!#6,%4)%&1!)+%!./*.0!#,!,%)!)*!QO9!

o R6!)+%!:'-%!,)')%1!)+%!./*.0!.*(6),!&*36!GD!*6%!-*4!%'.+!)#$%!(6#)!)+')!
E',,%,9!!R-!'!.*#6!#,!#6,%4)%&!#6!)+#,!,)')%1!)+%!./*.0!#,!,%)!)*!)+%!$#6#$($!*-!

,!E/(,!)+%!.*#6!<'/(%!'6&!NC!,#6.%!)+#,!#,!'!NC;$#6()%!E'40#6F!$%)%4!*6/D9!

o R-!)+%!./*.0!F%),!)*!H%4*!#6!)+%!,'-%!,)')%1!#)!F*%,!G'.0!)*!)+%!%5E#4%&!,)')%9!

! Example 2!>!S(/)#E/%!4')%,!#6!%'.+!,)')% 

!

!

!

!

!

!

!

!

!

!

!

!

!

! 2/*.0!5!#,!.'//%&!'!,)*E3').+T!#)!$%',(4%,!)+%!)#$%!,E%6)!#6!)+%!-#4,)!,)')%9!

! Remark!>!U<%4D!,0%3%&;./*.0!'()*$')*6!#,!'!$(/)#;4')%!'()*$')*69!!!

o V4**-@!:0%3%&;./*.0!#,!'!,E%.#'/!-*4$!*-!S(/)#;W')%@!0#1K!7!0#!-*4!'//!K9!
!

w’=1

x’=1

y’=2

z’=1

w’=1

x’=0

y’=2

z’=2

Edge 1

w’=1

x’=0

y’=4

z’=3

Edge 2Edge 3

Expired

s’=0

Safe

s’=-1

Coin25 / s:=25

Coin5 / s:=5

!(s=0)

Coin5 / s:=min(s+5, 60)

Coin25 / s:=min(s+25, 60)

• Some vars. have the same rates in all states, e.g., w

• Some vars. are stopwatches (derivative either 0 or 1), e.g., x

• Not all dynamics change at every transition
• Parking meter has “non-linear” (non-TA) dynamics
• Skewed-clock automaton is special case with ki,q = ki for all q
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Zeno Behavior

q1:

ẋ = 1

ẏ = −2

q2:

ẋ = −2

ẏ = 1

!(y = 0)!(x = 0)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

t

x
(t

),
 y

(t
)

x(t)

y(t)

Start in q1 at (x, y) = (0, 4)
Events pile up at t = 4
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Multi-Rectangular Automata

Rectangle in Rn: [r1, s1]× [r2, s2]× · · ·× [rn, sn]

E.g., in R2: [0, 1]× [1, 3]; [−∞,∞]× [0, 1]; [−2,−2]× [3, 5]

Initial continuous states: init(q0) is a rectangle
Continuous dynamics: the inclusions, flow(q), are rectangles
Guard conditions, guard(e): rectangles
Reset relations, reset(e): rectangle or identity (“id”) for each variable
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Initialized Multi-R— Automata
initialized multi-r— automaton: variable must be reset when traversing
an edge if its dynamics changes while crossing that edge

Example: multi-rectangular automation on previous page
Counterexample: multi-rate automation w/Zeno behavior

Remark 2 (Henzinger-Kopke-Puri-Varaiya, 1998)
An initialized multi-rate automaton can be converted into a timed automaton

Proof 2 Idea: Use same trick as in Remark 1, as many times for each variable as it has different rates (the
fact that the automaton is “initialized” is crucial)

Remark 3 (Henzinger-Kopke-Puri-Varaiya, 1998)
An initialized multi-rectangular automaton can be converted to an initialized multi-rate
automaton (and hence a timed automaton)

Proof 3 Idea: replace each continuous variable, say x, with two variables, say xl and xu, that track lower and
upper bounds on its value, resp.; then, invoke Remark 2
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Linear Hybrid Automata (LHA)
Solutions are linear (not vector field!)

• discrete transition system on finite set, Q, of modes/locations (FA)
• finite number of real-valued vars., with “nice” rate/jump constraints8

Example 23 (Fischer’s MEX Protocol [Henzinger et al.])

8So the reachable set at each step is a union of polyhedra [Alur et al., Theoretical Computer Science, 138:3–34, 1995]
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LHA: Technical Definition (1)
Expressions over a set of variables Z

Linear Expression: linear combination of the vars. with rational coeffs.

1/2x + 24/5y, z + 5t− 6 + y

Linear Inequality: inequality between linear expressions

x ≥ 0, 4 + 2t ≤ 2/3x

Convex Predicate: a finite conjunction (“and”) of linear inequalities

(x ≥ 3) && (3y ≥ z + 5/3)

Predicate: a finite disjunction (“or”) of convex predicates

((x ≥ 3)&&(3y ≥ z + 5/3)) || ((x ≥ 0)&&(y < 1))
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LHA: Technical Definition (2)
X = {x1, x2, . . . , xn} ←− continuous variables
Ẋ = {ẋ1, ẋ2, . . . , ẋn} ←− continuous updates
X ′ = {x′1, x′2, . . . , x′n} ←− discrete updates (i.e., resets)

init(q) is a predicate on X
inv(q) is a convex predicate on X (the invariant for each q)
flow(q) is a convex predicate on Ẋ

ẋ ∈ [10, 20] is equivalent to (ẋ ≥ 10)&&(ẋ ≤ 20)

reset(e) is a convex predicate on X ∪X ′

1 <= x′, x′ < 2, t′ >= x + 3, y′ = 0

If inv, flow, reset are predicates (vs. convex predicates),
we have “or” transitions involved
To handle this, split the states/edges to model the disjunctions
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HyTech Train-Gate Example

[Source: Henzinger, Ho, Wong-Toi. HyTech Demo. embedded.eecs.berkeley.edu/research/hytech]
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Non-Linear Hybrid Automata
Non-Linear: anything not linear by HyTech’s definition

Two ways to deal with this

1. Easy way out!

(a) Reduce or transform your HA into a LHA: clock translation
(b) Approximate it by a LHA: linear phase portrait approximation

2. Harder: develop richer theory, comp. tools for a larger class of HA

ẋ = 2x
x := 3 ![x ≥ 5]

⇓

ṫx = 1
tx := 0 ![tx ≥ c]

5 = e2c · 3

c = ln(5/3)/2

ẋ = 2x
x := 3 ![x ≥ 5]

⇓

ẋ∈ [6, 10]
x := 3 ![x ≥ 5]

⇓

ẋ∈ [6, 8] ẋ∈ [8, 10]
x := 3 ![x ≥ 4] ![x ≥ 5]

Clock Translation LPP Approx., Successive Refinement
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Phase Portrait Approximation
Predator-Prey Equations: nonlinear (top) and linear (bottom)

Hybrid Automata Phase Portraits

[Henzinger et al., Algorithmic Analysis of Nonlinear Hybrid Systems, IEEE Trans. Auto. Cont., 43(4):540–554, 1998]
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Summary

• Broad Hybrid Systems Modeling Definition / Motivation

• The First Hybrid Dynamicist: Laplace

• Many Hybrid Systems Examples

• Mathematical Models of HS

- From Continuous Side:
ODEs + Discrete Phenomena
=⇒ Hybrid Dynamical Systems

- From Discrete Side:
FA + Continuous Phenomena
=⇒ Hybrid Automata
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Going Further
Early HS models: Witsenhausen, Tavernini, Brockett, Nerode-Kohn, Antsaklis-Stiver-
Lemmon, Back et al. ←− all reviewed/compared in [Branicky, ScD Thesis, 1995]

Early related work:
• variable-structure systems (Utkin), systems with impulse effect, jump-linear

systems, cell-to-cell mapping (Hsu), iterated function systems
• DES (Ramadge-Wonham), statecharts (Harel), reactive systems (Manna-Pnueli)

More recent HS frameworks:
• hybrid I/O automata: Lynch, Segala, Vaandrager, et al.
• linear complementarity: Heemels, van der Schaft, Schumacher, et al.
• mixed logical dynamical systems: Bemporad, Morari, et al.
• hybrid Petri nets, stochastic hybrid systems, . . .

HS simulation, verification, specification languages/tools:
• Omola/Omsim; SHIFT, Ptolemy; Modelica; . . .
• HyTech, UPAAL, KRONOS, CheckMate, d/dt, Charon, PHAVer, HYSDEL, . . .

[wiki.grasp.upenn.edu/˜graspdoc/wiki/hst]
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