Models of Hybrid Systems

Michael S. Branicky

Department of Electrical Engineering and Computer Science Case Western Reserve University

> 2nd HYCON PhD School on Hybrid Systems University of Siena, ITALY July 16, 2007

Continuous + Discrete = Hybrid (1)

Mixture of ... continuous & discrete inputs, outputs, states, dynamics

 $Q \simeq \{1, 2, \dots, N\} \qquad \qquad \mathbf{R}^n \times Q$

 \mathbf{R}^n

Continuous + Discrete = Hybrid (2)

Mixture of ... differential equations and discrete events / switching

3

Continuous + Discrete = Hybrid (3)

Mixture of ... continuous physical process with finite-state logic

Force-guided robotic assembly [Branicky-Chhatpar, HSCC, 2002]

Continuous + Discrete = Hybrid (4)

Mixture of ... control theory and computer science

Autonomous vehicle DEXTER [urbanchallenge.case.edu]

5

Outline

The First Hybrid Dynamicist

More Hybrid Systems Examples

Mathematical Models of HS

Laplace's Problem

Predict the motion of a comet about to pass near Jupiter (1845)

Laplace's Solution (1)

Two descriptions of motion plus a logical choice of how to switch between them

$$\frac{\vec{r}_{sv}}{r_{sv}} + \frac{G(m_{s}+m_{v})}{r_{sv}} \vec{r}_{sv} = -Gmp \left[\frac{\vec{r}_{pv}}{r_{pv}} + \frac{\vec{r}_{sp}}{r_{sp}} \right]$$

$$\Rightarrow \vec{r}_{sv} - A_{s} = P_{p}$$

$$\frac{\vec{r}_{pv}}{r_{pv}} + \frac{G(m_{p}+m_{v})}{r_{pv}} \vec{r}_{pv} = -Gm_{s} \left[\frac{\vec{r}_{sv}}{r_{sv}} - \frac{\vec{r}_{sp}}{r_{sp}} \right]$$

$$\Rightarrow \vec{r}_{pv} - A_{p} = P_{s}$$

WHEN V CLOSE TO P: PS << AP (VECTORS CANCEL) WHEN V FAR FROM P: Pp << As (MS >> MP)

SWITCH FROM SUN-CENTERED COORDS, WHEN $\frac{P_P}{As} > \frac{P_s}{Ap}$ INSIDE * SPHERE OF INFLUENCE " OF PLANET

Laplace's Solution (3)

A different, logical(?) choice of when to switch

VEHICLE WITHIN SOI OF EARTH IF $\frac{G_{me} m_V}{r_{ev}^2} > \frac{G_{m_3} m_V}{r_{sv}^2}$ $\Rightarrow r_{soI_e} \approx 42 \text{ earth radii}$ Distance $r_{em} \approx 60$ earth radii

LAPLACE: roote = 145 earth radii

Hybrid Systems All Around Us

They drive on our streets, work in our factories, fly in our skies, ...

11

Networked Control Systems (1)

Sensors, actuators, and controllers connected over a network ... with feedback loops controlling physical systems closed among them

- continuous plants
- asynchronous or *event-driven* data transmission

sampling, varying transmission delay, packet loss

discrete implementation of network/protocols

data packets, queuing, routing, scheduling, etc.

Networked Control Systems (2) Packet queueing Network dynamics and forwarding Visualization Plant agent (2)(actuator, Controller Plan sensor, ...) (3) agent (SBC, PLC, ... Router Plan (4) Bandwidth monitoring Plant output dynamics Simulation languages Co-simulation and co-design [Branicky-Liberatore-Phillips, ACC, 2003] 13

Other Examples

- systems with relays, switches, and hysteresis
- computer disk drives
- constrained robotic systems (locomotion, assembly, etc.)
- vehicle powertrains, transmissions, stepper motors
- mode-switched flight control, vehicle management systems
- automated highway systems (AHS)
- multi-vehicle formations and coordination
- power electronics
- analog/digital circuit co-design and verification
- biological applications

Systems with Switches and Relays

HVAC control with a thermostat:

$$\dot{x} = f(x, H(x - x_0), u)$$

- x, room temperature
- x_0 , desired temperature
- *f*, dynamics of temperature
- *u*, control signal (e.g., the fuel burn rate)

15

Hard Disk Drive

HS for main hard disk drive functionality [Gollu-Varaiya, CDC, 1989]

Vehicle Powertrains / Cruise Control

Continuous	Discrete	
Throttle	Gear Position	
Engine RPM	Cylinder Phases	
Fuel/Air Mixture	Cylinder Firings	
Belts, Cams	Microprocessors	
Elevation	Road Condition	

I, O are discrete (i.e., countable) sets of symbols U, Y are continuums

From Continuous Toward Hybrid

Differential Equations¹

+

Discrete Phenomena

 \implies

Hybrid Dynamical Systems

¹It is easy to substitute "Difference Equations"

21

Base Continuous Model: ODEs

Ordinary differential equation (ODE):

 $\dot{x}(t) = f(x(t))$

 $\begin{aligned} x(t) \in X \subset \mathbf{R}^n \text{ is a vector of } continuous \ states \\ f: X \longrightarrow \mathbf{R}^n \text{ is a } vector \ field \text{ on } \mathbf{R}^n \end{aligned}$

Autonomous/time-invariant: vector field doesn't depend explicitly on t

Non-autonomous or time-varying:

 $\dot{x}(t) = f(x(t),t)$

ODE with Inputs and Outputs

 $\begin{array}{lll} \dot{x}(t) \ = \ f(x(t), u(t)) \\ y(t) \ = \ h(x(t), u(t)) \end{array}$

$$\begin{aligned} x(t) \in X \subset \mathbf{R}^n, \ u(t) \in U \subset \mathbf{R}^m, \ y \in Y \subset \mathbf{R}^p\\ f: \mathbf{R}^n \times \mathbf{R}^m \longrightarrow \mathbf{R}^n, \ h: \mathbf{R}^n \times \mathbf{R}^m \longrightarrow \mathbf{R}^p \end{aligned}$$

The functions $u(\cdot)$ and $y(\cdot)$ are the *inputs* and *outputs*, respectively

Whenever inputs are present, we say $f(\cdot)$ is a *controlled vector field*

23

Differential Inclusions

 $\dot{x}(t) \in F(x(t))$

- Derivative belongs to a set of vectors in \mathbf{R}^n
- Models nondeterminism (controls, disturbances, uncertainty, ...)

Example 1 (Innacurate Clock)

A clock with time-varying rate between 0.9 and 1.1 can be modeled by $\dot{x} \in [0.9, 1.1]$, which is a rectangular inclusion

[van der Schaft-Schumacher, 1995]

Adding Discrete Phenomena

Continuous state dynamics given by

 $\dot{x}(t) = \xi(t), \qquad t \ge 0$

Vector field $\xi(t)$ depends on x (and u) plus discrete phenomena:

- autonomous switching: vector field changes discontinuously
- autonomous jumps: continuous state changes discontinuously
- controlled switching: control switches vector field discontinuously
- controlled jumps: control changes cont. state discontinuously

25

Autonomous Switching

Vector field $\xi(\cdot)$ changes discontinuously when the continuous state $x(\cdot)$ hits certain "boundaries"

Piece-Wise Constant Vector Fields

Programmable vector fields for sorting parts (large, up; small, down) Vector fields are merely sequenced in time (sensorless or open loop)

Figure from [Böhringer *et al.*, Computational Methods for Design and Control of MEMS Micromanipulator Arrays, *IEEE Computer Science and Engineering*, pp. 17–29, January–March 1997]

27

Switched Systems

A general switched system:²

$$\dot{x}(t) = f_{q(t)}(x(t))$$

where $q(t) \in Q \simeq \{1, \dots, N\}$

E.g., $Q=\{0,1\}$ for furnace Off, On

Important subclass: switched linear systems

 $\dot{x}(t) = A_q x(t), \qquad q \in \{1, \dots, N\}$

where each $A_q \in \mathbf{R}^{n \times n}$

²Note: Switching boundaries/manifolds have been suppressed; really, $q^+(t) = \nu(x(t), q(t))$ and hybrid state is (x, q)

Switched Linear Systems (1)

Example 3 (Unstable from Stable [Branicky, IEEE T-AC, 1998])

 $\dot{x}(t) = A_q x(t), \qquad A_0 = \begin{bmatrix} -0.1 & 1\\ -10 & -0.1 \end{bmatrix}, \qquad A_1 = \begin{bmatrix} -0.1 & 10\\ -1 & -0.1 \end{bmatrix}$

Trajectories: (left) A_0 , *(center)* A_1 , *(right)* A_i , i =quadrant mod 2

29

Autonomous Jumps / Impulses

Continuous state $x(\cdot)$ jumps discontinuously on hitting prescribed regions of the state space

E.g., collisions (running animals, hopping robots, etc.)

Example 5 (Bouncing Ball)

$$\begin{split} \dot{y}(t) &= v(t) \\ \dot{v}(t) &= -mg \\ v^+(t) &= -\rho v(t), \qquad x(t) \in M \\ M &= \{(0,v) \mid v < 0\} \\ 0 &\leq \rho \leq 1, \text{ coefficient of restitution} \end{split}$$

"If y = 0 and v < 0, $v := -\rho v$ "

31

Networked Control System

Example 6 (NCS) A linear, full-state feedback control system

 $\dot{x}(t) = Ax(t) + Bu(t)$ u(t) = -Kx(t)

Place a network between state measurement (at sensor node) and control computation/actuation (at another node)

x is measured at time t_i , received after delay d_i

$$\dot{x}(t) = Ax(t) - BK\hat{x}(t)$$

 $\hat{x}^+(t) = x(t_i),$ when $t = t_i + d_i$

Note: augmented state measurement \hat{x} is piecewise constant

Autonomous Jumps / Impulses (2)

General system subject to autonomous impulses:

 $\begin{array}{ll} \dot{x}(t) \ = \ f(x(t)), & \quad x(t) \not\in A \\ x^+(t) \ = \ G(x(t)), & \quad x(t) \in A \end{array}$

Autonomous jump set, AReset map, G

Linear system with equally spaced impulses [Branicky, CDC, 1997]

 $\dot{x}(t) = P_1 x(t), \qquad t \notin I$ $x^+(t) = P_2 x(t), \qquad t \in I = \{0, h, 2h, \ldots\}$

Stable if eigenvalues of $P_2 e^{P_1 h}$ have magnitude < 1

33

Controlled Switching

Vector field $\xi(\cdot)$ changes abruptly in response to a control command, usually with an associated cost

One is allowed to pick among a discrete number of vector fields:

$$\dot{x} = f_{q(t)}(x)$$

 $q(t) \in Q \simeq \{1,2,\ldots,N\} ~~({\rm or}~Q \simeq {\bf Z})$ q(t) chosen by the controller

Note: If q(t) were an explicit function of state, result would be a closed-loop system with autonomous switches

Controlled Switching Examples (1)

Example 7 (Satellite Control)

$$\ddot{\theta} = \tau_{\rm eff} v$$

heta, $\dot{ heta}$, angular position and velocity $v \in \{-1, 0, 1\}$, reaction jets are full reverse, off, or full on

Example 8 (Manual Transmission [Brockett, 1993])

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = [-a(x_2/v) + u]/(1+v)$

 x_1 , ground speed x_2 , engine RPM $u \in [0, 1]$, throttle position $v \in \{1, 2, 3, 4\}$, gear shift position a is positive for positive argument

35

Switching Control Laws (1)

Switching Control Laws (2)

Example 10 (Max Controller [Branicky, ACC, 1994]) Control objective:

Good tracking of the pilot's input, n_z , without violating angle-of-attack constraint

Longitudinal Aircraft View

Max Controller

37

Switching Control Laws (3)

Outputs of tracking (top) and max controller (bottom)

Left: normal acceleration n_z (solid), desired value r (dashed) Right: angle of attack α (solid), α 's limit (dashed)

Significant Hybrid Phenomena

Continuous dynamics and controls +

Type: Example	Discontinuity	
Source	Vector Field	Continuous State
	(Switching)	(Jump/Impulse)
System (Autonomous)	Autonomous Switching: Hysteresis	Autonomous Jumps/Impulses: Collisions
Controller (Controlled)	Controlled Switching: Gearbox	Controlled Jumps/Impulses: Resets

+ interactions with finite automata

+ other models (Tavernini, Brockett, Nerode-Kohn, BGM, ASL, ...)

41

Tavernini's Model

Differential automaton [Tavernini, 1987]: A triple (S, f, ν) where

- S = $\mathbb{R}^n \times Q$, (hybrid) state space $Q \simeq \{1, \dots, N\}$, discrete state space \mathbb{R}^n , continuous state space
- $f(\cdot,q) = \mathbf{R}^n \to \mathbf{R}^n$, for each $q \in Q$, continuous dynamics
- $\nu: S \rightarrow Q$, discrete transition function

In our notation:

$$\begin{array}{ll} \dot{x} &=& f(x,q) \\ q^+ &=& \nu(x,q) \end{array}$$

Tavernini's Results

Assumptions:

- switching manifolds are given by the zeros of a smooth function
- separation of switching sets, separation from concatenated jumps

Results:

• Unique solution with finitely many switching points

$$s_0(t_0) = (x_0, q_0), \qquad s_1(t_1) = (x_1, q_1), \qquad s_2(t_2) = (x_2, q_2),$$

• Continuity in initial conditions³

$$s_0 - s'_0| < \delta \implies \begin{array}{rcl} |x(t) - x'(t)| &< \epsilon_1, \ t < T \\ q_0 q_1 \cdots q_M &= q'_0 q'_1 \cdots q'_M \\ |t_i - t'_i| &< \epsilon_2, \ i \le M \end{array}$$

Numerical integration approaches true solution⁴

$$|s'(t;h)-s(t)|
ightarrow 0$$
 as $h
ightarrow$

³On an open, dense set S^0 ⁴With initial error (from $s'_0 \neq s_0$); uniformly, in S^0

43

Hybrid Dynamical Systems (HDS)

An indexed collection of DSs plus a map for "jumping" among them

$$H = (Q, \Sigma, \mathbf{A}, \mathbf{G})$$

- Q, countable *discrete states*
- $\boldsymbol{\Sigma} = \{\Sigma_q\}_{q \in Q}$, set of DSs

 $f_q: X_q
ightarrow {f R}^{d_q}, X_q \subset {f R}^{d_q},$ continuous state spaces

- A_q , autonomous jump sets
- G_q : $A_q \rightarrow S$, autonomous jump transition maps

Hybrid state space: $S = \bigcup_{q \in Q} X_q \times \{q\}$

0

Hybrid Dynamical Systems: Notes

ODEs and Automata

ODEs: $|Q| = 1, A = \emptyset$ (Later) Finite Automata: |Q| = N, each $f_q \equiv 0$

- Outputs: add continuous/discrete output maps for each q
- Changing State Space

inelastic collisions, component failures, aircraft modes, ...

- State Space Overlaps, e.g., hysteresis
- Transition Delays

Add *autonomous jump delay map*, $\Delta_a : A \times V \longrightarrow \mathbf{R}_+$ Associates (possibly zero) delay to each jump Aggregate transients, activation delay, etc.

45

Adding Control: Controlled HDS

 $H_c = (Q, \Sigma, \mathbf{A}, \mathbf{G}, \mathbf{C}, \mathbf{F})$

• Σ_{α} , controlled ODEs

- $G_q: A_q \times V_q \rightarrow S$, modulated by discrete decisions V_q
- C_q , controlled jump sets
- $F_q: C_q \rightarrow 2^S$, controlled jump destination maps (set-valued)

Hybrid Automata: Examples (1)

Example 13 (Bouncing Ball Revisited)

Hybrid Automata: Examples (2)

Example 15 (HVAC++) Add that A.C.

(i) is never ON more than 55 minutes straight(ii) must remain Off for at least 5 minutes

Example 16 (Audi A4 Tiptronic Transmission)

49

From Discrete to Hybrid

Automata⁵

+

Continuous Phenomena

 \Longrightarrow

Hybrid Automata

⁵It is easy to substitute "Automata" with "Petri Nets"

Base Discrete Model: FA / FSM

Inputless finite automaton (FA) or finite state machine (FSM):

 $q(k+1) = \nu(q(k))$

 $q(k) \in Q$, a finite set

i.e., dynamical system with discrete state space

Example 17 (Finite Counter)

Starting from initial state, q_0 , trajectory or run is:

 $q_0, q_1, q_2, q_3, q_4, q_0, q_1, q_2, q_3, q_4, q_0, \cdots$

51

Deterministic FA Example

Example 18 (Parity of Binary String Input) DFA keeps track of input's parity by counting 1s, modulo 2

On input 1101, run is q_0, q_1, q_0, q_0, q_1 "Unrolled" View: $q_0 \xrightarrow{1} q_1 \xrightarrow{1} q_0 \xrightarrow{0} q_0 \xrightarrow{1} q_1$

Exercise 1 Draw a DFA whose states track number of 0s mod. 3 Exercise 2* Draw one whose states track binary number seen mod. 3

Automaton Preliminaries

symbol: abstract entity of automata theory, e.g., letter or digit

alphabet: finite set of symbols

 $E = \{a, b, c, \dots, z\} - English alphabet$ $D = \{0, 1, 2, \dots, 9\} - Decimal digits$ $B = \{0, 1\} - Binary alphabet$ Latin 1 - ISO 8859-1 (Unicode characters)

string / word (over alphabet I): finite sequence of symbols from I

cat and jazz and zebra; w and qqq — strings over E 0 and 1 and 1101 — strings over B

empty string, c: string consisting of zero symbols

concatenation operator: strings can be juxtaposed

 $\begin{aligned} & \texttt{cat} \cdot \texttt{jazz} = \texttt{catjazz} \\ & \texttt{00} \cdot \texttt{11} = \texttt{0011} \neq \texttt{1100} = \texttt{11} \cdot \texttt{00} \\ & \texttt{q}^3 = \texttt{qqq}, \qquad \texttt{q}^0 = \varepsilon \end{aligned}$

53

Deterministic Finite Automata (DFA)

A *DFA* is a four-tuple $\mathcal{A} = (Q, I, \nu, q_0)$, where

- Q is a finite set of *states*
- *I* is an alphabet, called the *input alphabet*
- ν is the *transition function* mapping $Q \times I$ into Q
- $q_0 \in Q$ is the *initial state*

Dynamics:

- Machine starts in state q_0
- One move: DFA in q receives symbol a and enters state $\nu(q, a)$
- On input word $w = a_1 a_2 \cdots a_n$: DFA in r_0 successively processes symbols and sequences through states r_1, r_2, \ldots, r_n , such that

$$r_{k+1} = \nu(r_k, a_k)$$

This sequence is a *run* of DFA over w

 $r_0 \xrightarrow{a_1} r_1 \xrightarrow{a_2} r_2 \xrightarrow{a_3} \cdots \xrightarrow{a_{n-1}} r_{n-1} \xrightarrow{a_n} r_n$

Languages

language (over alphabet I): a set of strings over I

English language, L_E , is a language over Ecat $\in L_E$, qqq $\notin L_E$ Languages over B:

Kleene closure, I^* : set of all strings over alphabet I

$$\begin{split} B^* &\equiv \{\varepsilon, \mathbf{0}, \mathbf{1}, \mathbf{00}, \mathbf{01}, \mathbf{10}, \mathbf{11}, \mathbf{000}, \mathbf{001}, \ldots \} \\ B^+ &\equiv \{\mathbf{0}, \mathbf{1}, \mathbf{00}, \mathbf{01}, \mathbf{10}, \mathbf{11}, \mathbf{000}, \mathbf{001}, \ldots \} = B^* - \{\varepsilon\} \end{split}$$

empty language, \emptyset : language without any strings (note $\emptyset \neq \{\varepsilon\}$)

concatenation of languages: $ST = \{st \mid s \in S, t \in T\}$

Exercise 3 $S = \{0\}^+ = 0^+$, $T = \{1\}^+ = 1^+$; what is ST?

55

Marked States

DFA plus a set of marked or accepting or *final states*, F

language of FA: set of strings having a run that ends in a state of F a.k.a. set of *accepted* strings

If $F = \{q_1\}$, 111 is accepted, ε is not; accepted language is $B_{\text{odd parity}}$ If $F = \{q_0, q_1\}$: accepted language is B^* If $F = \{q_1\}$: it would be $B^* - B_{\text{odd parity}}$ If $F = \emptyset$: it is \emptyset

Exercise 4 Draw DFA accepting: (i) Beven length, (ii) Blength 2

Nondeterministic FA (NFA)

An NFA $N = (Q, I, \hat{\nu}, Q_0, F)$ allows

- a *set* of start states, $Q_0 \subseteq Q$
- set-valued transition function, $\hat{\nu}:Q\times I\to 2^Q$
- at any stage automaton may be in a set of states

Dynamics:

- One move: NFA in q receives symbol a and nondeterministically enters any one of the states in the set $\hat{\nu}(q, a)$
- On input $w = a_1 a_2 \cdots a_n$: NFA in state r_0 nondeterministically sequences through r_1, r_2, \ldots, r_n such that

 $r_{k+1} \in \hat{\nu}(r_k, a_k)$

Sequence is *run* of NFA over $w: r_0 \xrightarrow{a_1} r_1 \xrightarrow{a_2} \cdots r_{n-1} \xrightarrow{a_n} r_n$

• In general, NFA has many runs over each string; DFA, only one

57

NFA Examples

Example 19 (Pattern Search [Hopcroft, Motwani, Ullman])

Accepts strings ending in web or ebay

Example 20 (*c*-NFA, Floating-Point Number Specification)

optional sign, digit before or after decimal, optional exponent (+sign)

Subset Construction

Convert any NFA into a DFA

 $N = (Q_N, I, \hat{\nu}, Q_0, F_N) \Longrightarrow D = (Q_D, I, \nu_D, q_0, F_D)$

Idea: Keep track of set of states NFA can be in

59

ω-Automata

Machines that process infinite sequence of symbols Appropriate for modeling reactive processes (e.g., OS, server)

 $\omega\text{-string}\,/\,\omega\text{-word}$ (over alphabet I): infinite-length sequence of symbols from I

 $\mathbf{a}^{\omega} \equiv \mathtt{a}\mathtt{a}\mathtt{a} \cdots \qquad \mathtt{d}^{\omega} \equiv \mathtt{d}\mathtt{d}\mathtt{d} \cdots \qquad (\mathtt{a}\mathtt{d})^{\omega} \equiv \mathtt{a}\mathtt{d}\mathtt{a}\mathtt{d} \cdots$

 ω *-languages*: sets of ω -words.

 ω -automata: act as finite automata (can be deterministic or not)

For server, the run over $(\mathtt{ad})^\omega$ is $q_0, q_1, q_0, q_1, q_0, q_1, \ldots$

Difference is acceptance conditions; flavors: Büchi, Muller, Rabin, etc. They involve states visited infinitely often, e.g., q_0 above

Global Time

FA usually: "abstract time," only ordering of symbols/"events" matters

Add time: associate time t_k at which kth transition occurs

 $\begin{array}{l} q(t_{k+1}) \;=\; \nu(q(t_k), i(t_k)) \\ o(t_k) \;=\; \eta(q(t_k), i(t_k)) \end{array}$

Make continuous-time: variables are piecewise continuous functions

$$\begin{array}{l} q^+(t) \;=\; \nu(q(t),i(t)) \\ o(t) \;=\; \eta(q(t),i(t)) \end{array}$$

q(t) changes only when input symbol i(t) changes

Timed Automata (1)

timed word: sequence of symbols + their increasing times of occurrence

 $w = (i_1, t_1), (i_2, t_2), \dots, (i_N, t_N)$ $i_k \in I; \quad t_k \in \mathbf{R}_+, t_{k+1} > t_k$

timed ω -word: infinite sequence plus time progresses without bound

Not valid: $1/2, 3/4, 7/8, 15/16, 31/32, \ldots$ Condition avoids so-called Zeno behavior

timed language: set of timed words

 $L_{\text{bounded response time}} = \{(\sigma, \tau) \mid \sigma_{2i-1} = \mathbf{a}, \sigma_{2i} = \mathbf{d}, \tau_{2i} < \tau_{2i-1} + 2\}$ Untime $(L_{\text{bounded response time}}) = \{(\mathbf{ad})^{\omega}\}$

63

Timed Automata (2)

timed automaton: same structure as FA adding

(i) finite number of real-valued clocks (all unity rate)

(ii) ability to reset clocks, test clock constraints when traversing edges

Timed Automata (3)

Example 21 (Bounded Response Time [Alur-Dill, TCS, 1994])

Every "arrival" needs to "depart" within two seconds

Accepted word: $(a, 0), (d, 1.5), (a, 2), (d, 3.5), (a, 4), (d, 5.5), \cdots$ Not accepted: $(a, 0), (d, 1.5), (a, 2), (d, 4.5), \cdots$ Not accepted: $(a, 0), (a, 1.5), \cdots$

Example 22 (Switch with Delay [Maler-Yovine, 1996])

U, D switch "On", "Off"; models: transistors, relays, pneumatic valves

Timed Automata Theory⁷

clock constraint has form $\chi := (x \le c) | (c \le x) | \neg \chi_0 | \chi_1 \land \chi_2$

x, clock variable; c, rational constant; χ_i , valid clock constraints

Can build up more complicated tests:

 $\begin{array}{ll} (x=c) & \longleftarrow & (x\leq c) \land (c\leq x) \\ (x<c) & \longleftarrow & (x\leq c) \land \neg (x=c) \\ \chi_1 \lor \chi_2 & \longleftarrow & \neg (\neg \chi_1 \land \neg \chi_2) \\ & {\rm True} & \longleftarrow & (x\leq c) \lor (c\leq x) \end{array}$

Rich and beautiful theory:

- Closure properties, decidability results
- E.g., a timed automaton can be mimicked by an ω-automata (called a *region* automata because it operates on clock regions), leading to an effective decision problem for language emptiness

⁷Seminal reference: R. Alur and D.L. Dill. A theory of timed automata. *Theoretical Computer Science*, 126:183–235, 1994

Skewed-Clock Automata

timed automaton: $\dot{x_i} = 1$ for all clocks and all locations

skewed-clock automaton: $\dot{x}_i = k_i$ where each k_i is a rational number

Remark 1 Skewed-clock automata are equivalent to timed automata

Proof 1 Timed automaton is a special skewed-clock automaton wherein each $k_i = 1$ For converse:

- 1. $k_i = 0$: $x_i(t)$ remains constant and any conditions involving it are uniformly true or false (and thus may be reduced or removed using the rules of logic)
- 2. $k_i \neq 0$: Note that $x_i(t) = x_i(0) + k_i t$, so $x_i(t)/k_i = x_i(0)/k_i + t$ Thus, divide every constant that x_i is compared to by k_i , and then use associated clock $\tilde{x}_i = x_i/t$, with $\dot{\tilde{x}}_i = 1$

Multi-Rate Automata

multi-rate automaton: $\dot{x}_i = k_{i,q}$ at location q (each $k_{i,q}$ is rational)

- Some vars. have the same rates in all states, e.g., w
- Some vars. are *stopwatches* (derivative either 0 or 1), e.g., x
- Not all dynamics change at every transition
- Parking meter has "non-linear" (non-TA) dynamics
- Skewed-clock automaton is special case with $k_{i,q} = k_i$ for all q

Initialized Multi-R— Automata

initialized multi-r— automaton: variable must be reset when traversing an edge if its dynamics changes while crossing that edge

Example: multi-rectangular automation on previous page Counterexample: multi-rate automation w/Zeno behavior

Remark 2 (Henzinger-Kopke-Puri-Varaiya, 1998) An initialized multi-rate automaton can be converted into a timed automaton

Proof 2 Idea: Use same trick as in Remark 1, as many times for each variable as it has different rates (the fact that the automaton is "initialized" is crucial)

Remark 3 (Henzinger-Kopke-Puri-Varaiya, 1998)

An initialized multi-rectangular automaton can be converted to an initialized multi-rate automaton (and hence a timed automaton)

Proof 3 Idea: replace each continuous variable, say x, with two variables, say x_l and x_u , that track lower and upper bounds on its value, resp.; then, invoke Remark 2

71

Linear Hybrid Automata (LHA)

Solutions are linear (not vector field!)

- discrete transition system on finite set, Q, of modes/locations (FA)
- finite number of real-valued vars., with "nice" rate/jump constraints⁸

Example 23 (Fischer's MEX Protocol [Henzinger et al.])

⁸So the reachable set at each step is a union of polyhedra [Alur *et al.*, *Theoretical Computer Science*, 138:3–34, 1995]

LHA: Technical Definition (1)

Expressions over a set of variables Z

Linear Expression: linear combination of the vars. with rational coeffs.

 $1/2x + 24/5y, \qquad z + 5t - 6 + y$

Linear Inequality: inequality between linear expressions

 $x \ge 0, \qquad 4 + 2t \le 2/3x$

Convex Predicate: a finite conjunction ("and") of linear inequalities

 $(x \ge 3)$ && $(3y \ge z + 5/3)$

Predicate: a finite disjunction ("or") of convex predicates

 $((x \ge 3)\&\&(3y \ge z + 5/3)) || ((x \ge 0)\&\&(y < 1))$

73

LHA: Technical Definition (2)

 $\begin{array}{lll} X &= \{x_1, x_2, \dots, x_n\} & \longleftarrow \text{ continuous variables} \\ \dot{X} &= \{\dot{x}_1, \dot{x}_2, \dots, \dot{x}_n\} & \longleftarrow \text{ continuous updates} \\ X' &= \{x'_1, x'_2, \dots, x'_n\} & \longleftarrow \text{ discrete updates (i.e., resets)} \end{array}$

 $\begin{array}{l} init(q) \text{ is a predicate on } X\\ inv(q) \text{ is a convex predicate on } X \text{ (the invariant for each } q)\\ flow(q) \text{ is a convex predicate on } \dot{X}\\ \dot{x} \in [10,\ 20] \text{ is equivalent to } (\dot{x} \geq 10)\&\&(\dot{x} \leq 20)\\ reset(e) \text{ is a convex predicate on } X \cup X'\\ 1 <= x', \qquad x' < 2, \qquad t' >= x + 3, \qquad y' = 0 \end{array}$

If inv, flow, reset are predicates (vs. convex predicates), we have "or" transitions involved To handle this, split the states/edges to model the disjunctions

[Source: Henzinger, Ho, Wong-Toi. HyTech Demo. embedded.eecs.berkeley.edu/research/hytech]

75

Non-Linear Hybrid Automata

Non-Linear: anything not linear by HyTech's definition

Two ways to deal with this

- 1. Easy way out!
 - (a) Reduce or transform your HA into a LHA: clock translation
 - (b) Approximate it by a LHA: linear phase portrait approximation
- 2. Harder: develop richer theory, comp. tools for a larger class of HA

 $[x \ge 5]$

Phase Portrait Approximation

Predator-Prey Equations: nonlinear (top) and linear (bottom)

[Henzinger et al., Algorithmic Analysis of Nonlinear Hybrid Systems, IEEE Trans. Auto. Cont., 43(4):540-554, 1998]

77

Summary

- Broad Hybrid Systems Modeling Definition / Motivation
- The First Hybrid Dynamicist: Laplace
- Many Hybrid Systems Examples
- Mathematical Models of HS
 - From Continuous Side:

ODEs + Discrete Phenomena \implies Hybrid Dynamical Systems

- From Discrete Side:

FA + Continuous Phenomena \implies Hybrid Automata

Going Further

Early HS models: Witsenhausen, Tavernini, Brockett, Nerode-Kohn, Antsaklis-Stiver-Lemmon, Back *et al.* — all reviewed/compared in [Branicky, ScD Thesis, 1995]

Early related work:

- variable-structure systems (Utkin), systems with impulse effect, jump-linear systems, cell-to-cell mapping (Hsu), iterated function systems
- DES (Ramadge-Wonham), statecharts (Harel), reactive systems (Manna-Pnueli)

More recent HS frameworks:

- hybrid I/O automata: Lynch, Segala, Vaandrager, et al.
- linear complementarity: Heemels, van der Schaft, Schumacher, et al.
- mixed logical dynamical systems: Bemporad, Morari, et al.
- hybrid Petri nets, stochastic hybrid systems, ...

HS simulation, verification, specification languages/tools:

- Omola/Omsim; SHIFT, Ptolemy; Modelica; ...
- HyTech, UPAAL, KRONOS, CheckMate, d/dt, Charon, PHAVer, HYSDEL, ... [wiki.grasp.upenn.edu/~graspdoc/wiki/hst]

79

References

- MS Branicky. Introduction to hybrid systems. In D Hristu-Varsakelis and WS Levine (eds), *Handbook of Networked and Embedded Control Systems*, Boston: Birkhauser, 2005
- MS Branicky. EECS 381/409: Discrete event and hybrid systems. Course notes, Case Western Reserve University, 1998–2005
- [3] MS Branicky, VS Borkar, SK Mitter. A unified framework for hybrid control: model and optimal control theory. *IEEE Trans. Automatic Control*, 43(1):31–45, 1998
- [4] MS Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control. ScD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995

These/other references available via dora.case.edu/msb