
Models of Hybrid Systems

Michael S. Branicky
Department of Electrical Engineering and Computer Science

Case Western Reserve University

2nd HYCON PhD School on Hybrid Systems
University of Siena, ITALY

July 16, 2007

Continuous + Discrete = Hybrid (1)

Mixture of . . . continuous & discrete inputs, outputs, states, dynamics

+ =

Rn Q ! {1, 2, . . . , N} Rn ×Q

2

Continuous + Discrete = Hybrid (2)

Mixture of . . . differential equations and discrete events / switching

3

Continuous + Discrete = Hybrid (3)
Mixture of . . . continuous physical process with finite-state logic

Force-guided robotic assembly [Branicky-Chhatpar, HSCC, 2002]

4

Continuous + Discrete = Hybrid (4)
Mixture of . . . control theory and computer science

Autonomous vehicle DEXTER [urbanchallenge.case.edu]

5

Outline

The First Hybrid Dynamicist

More Hybrid Systems Examples

Mathematical Models of HS

6

Laplace’s Problem
Predict the motion of a comet about to pass near Jupiter (1845)

7

Laplace’s Solution (1)
Two descriptions of motion plus

a logical choice of how to switch between them

8

Laplace’s Solution (2)
Double-think: SOI is both infinitely large and infinitesimally small

e: 145, J: 677 (size in radii) e: 0.006, J: 0.06 (fraction of area)

9

Laplace’s Solution (3)

A different, logical(?) choice of when to switch

10

Hybrid Systems All Around Us

They drive on our streets, work in our factories, fly in our skies, ...

11

Networked Control Systems (1)
Sensors, actuators, and controllers connected over a network . . .

with feedback loops controlling physical systems closed among them

• continuous plants
• asynchronous or event-driven data transmission

sampling, varying transmission delay, packet loss

• discrete implementation of network/protocols

data packets, queuing, routing, scheduling, etc.

ProcessesProcesses
Other

Control Network

Other

Physical Plant

Actuator 1 Actuator m Sensor 1

Controller
(Computer)

Sensor n

12

Networked Control Systems (2)

Simulation
languages

Bandwidth
monitoring

Visualization
Network dynamics

Plant output
dynamics

Packet queueing
and forwarding

Plant agent
(actuator,
sensor, …)

Router

Controller
agent
(SBC, PLC, …)

Co-simulation and co-design [Branicky-Liberatore-Phillips, ACC, 2003]

13

Other Examples
• systems with relays, switches, and hysteresis

• computer disk drives

• constrained robotic systems (locomotion, assembly, etc.)

• vehicle powertrains, transmissions, stepper motors

• mode-switched flight control, vehicle management systems

• automated highway systems (AHS)

• multi-vehicle formations and coordination

• power electronics

• analog/digital circuit co-design and verification

• biological applications

14

Systems with Switches and Relays
HVAC control with a thermostat:

ẋ = f (x, H(x− x0), u)

• x, room temperature

• x0, desired temperature

• f , dynamics of temperature

• u, control signal (e.g., the fuel burn rate)

!"
x

-1

1

H

" H = +1 H = −1

![x ≥ ∆]

![x ≤ −∆]

Hysteresis Function, H Associated Finite Automaton

15

Hard Disk Drive

Spindle-Ready

SeekWait

ReadWait

On-Cylinder

/Seek(Adr)

![HeadSettled]

![ReadDone]

/Read

HS for main hard disk drive functionality [Gollu-Varaiya, CDC, 1989]

16

Raibert’s Hopping Robot

KF KC

KDKT

[x = 0 ∩ ẋ < 0]

[ẋ = 0] / T := 0[x = 0 ∩ ẋ > 0]

[T = τthrust]

Dynamic Phases
[Back et al., HS I, 1993] Finite State Controller

17

Vehicle Powertrains / Cruise Control
Continuous Discrete
Throttle Gear Position
Engine RPM Cylinder Phases
Fuel/Air Mixture Cylinder Firings
Belts, Cams Microprocessors
Elevation Road Condition

Inputs

i ∈ I

u ∈ U

!

!

Hybrid
Control
System

Outputs

o ∈ O

y ∈ Y

!

!

I , O are discrete (i.e., countable) sets of symbols
U , Y are continuums

18

Flight Vehicle Mgmt. Systems

[George Meyer, Plenary Lecture, CDC, 1994]

19

View From Here

The remainder of this talk focuses on mathematical models

• From Continuous Toward Hybrid
=⇒ Hybrid Dynamical Systems

• From Discrete Toward Hybrid
=⇒ Hybrid Automata

20

From Continuous Toward Hybrid

Differential Equations1

+

Discrete Phenomena

=⇒

Hybrid Dynamical Systems

1It is easy to substitute “Difference Equations”

21

Base Continuous Model: ODEs

Ordinary differential equation (ODE):

ẋ(t) = f (x(t))

x(t) ∈ X ⊂ Rn is a vector of continuous states
f : X −→ Rn is a vector field on Rn

Autonomous/time-invariant: vector field doesn’t depend explicitly on t

Non-autonomous or time-varying:

ẋ(t) = f (x(t), t)

22

ODE with Inputs and Outputs

ẋ(t) = f (x(t), u(t))
y(t) = h(x(t), u(t))

x(t) ∈ X ⊂ Rn, u(t) ∈ U ⊂ Rm, y ∈ Y ⊂ Rp

f : Rn ×Rm −→ Rn, h : Rn ×Rm −→ Rp

The functions u(·) and y(·) are the inputs and outputs, respectively

Whenever inputs are present, we say f (·) is a controlled vector field

23

Differential Inclusions

ẋ(t) ∈ F (x(t))

• Derivative belongs to a set of vectors in Rn

• Models nondeterminism (controls, disturbances, uncertainty, ...)

Example 1 (Innacurate Clock)
A clock with time-varying rate
between 0.9 and 1.1 can be
modeled by ẋ ∈ [0.9, 1.1], which is
a rectangular inclusion

! " # $ % & ' () *

!

"

#

$

%

&

'

(

)

*

+
"

+
#

[van der Schaft-Schumacher, 1995]

24

Adding Discrete Phenomena

Continuous state dynamics given by

ẋ(t) = ξ(t), t ≥ 0

Vector field ξ(t) depends on x (and u) plus discrete phenomena:

• autonomous switching: vector field changes discontinuously

• autonomous jumps: continuous state changes discontinuously

• controlled switching: control switches vector field discontinuously

• controlled jumps: control changes cont. state discontinuously

25

Autonomous Switching

Vector field ξ(·) changes discontinuously when
the continuous state x(·) hits certain “boundaries”

Example 2 (HVAC) Dynamics are
given by

ẋ(t) = f1(x(t)), furnace is On
ẋ(t) = f0(x(t)), furnace is Off

x(t) is temperature

ẋ(t) = f1(x(t))

!"
x

-1

1

H

"

ẋ(t) = f0(x(t))

26

Piece-Wise Constant Vector Fields

Programmable vector fields for sorting parts (large, up; small, down)
Vector fields are merely sequenced in time (sensorless or open loop)

Figure from [Böhringer et al., Computational Methods for Design and Control of MEMS Micromanipulator
Arrays, IEEE Computer Science and Engineering, pp. 17–29, January–March 1997]

27

Switched Systems

A general switched system:2

ẋ(t) = fq(t)(x(t))

where q(t) ∈ Q ! {1, . . . , N}

E.g., Q = {0, 1} for furnace Off, On

Important subclass: switched linear systems

ẋ(t) = Aqx(t), q ∈ {1, . . . , N}
where each Aq ∈ Rn×n

2Note: Switching boundaries/manifolds have been suppressed; really, q+(t) = ν(x(t), q(t)) and hybrid state is (x, q)

28

Switched Linear Systems (1)

Example 3 (Unstable from Stable [Branicky, IEEE T-AC, 1998])

ẋ(t) = Aqx(t), A0 =

[
−0.1 1
−10 −0.1

]
, A1 =

[
−0.1 10
−1 −0.1

]

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x

y

-2 -1 0 1 2 3 4 5 6 7 8

x 10
5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

5

x

y

Trajectories: (left) A0, (center) A1, (right) Ai, i = quadrant mod 2

29

Switched Linear Systems (2)
Example 4 (Stable from Stable)

Two stable linear systems
Both “clockwise”
Switching on a line

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Two stable linear systems
One anti-clockwise
Switching with a hybrid rule

-4 -2 0 2 4

-4

-2

0

2

4

Argues for “Multiple Lyapunov Functions” to prove stability [Branicky, IEEE T-AC, 1998]
Simulated using Omola/Omsim [Andersson, PhD, 1994; Branicky-Mattsson, HS IV, 1997]

30

Autonomous Jumps / Impulses

Continuous state x(·) jumps discontinuously on
hitting prescribed regions of the state space

E.g., collisions (running animals, hopping robots, etc.)

Example 5 (Bouncing Ball)

ẏ(t) = v(t)
v̇(t) = −mg

v+(t) = −ρv(t), x(t) ∈ M

M = {(0, v) | v < 0}
0 ≤ ρ ≤ 1, coefficient of restitution

“If y = 0 and v < 0, v := −ρv”

C

-mg

0

x

y

R

EECS 381/409: Hybrid and Discrete Event Systems. Class Notes.EECS 381/409: Hybrid and Discrete Event Systems. Class Notes.

Lecture #3: January 18, 2005Lecture #3: January 18, 2005

Prof. M.S. Branicky; Scribe: Andy AllenProf. M.S. Branicky; Scribe: Andy Allen

Topics:

Continue and finish lecture “From Continuous to Hybrid”

Begin lecture “From Discrete to Hybrid”

Bouncing Ball Model

mgtv

vtx

!=

=

•

•

)(

)(

)()(tvtv !"=+ # , holds when (x(t),v(t)) !{(0,v) | v < 0}

 the ‘
+

’ indicates Sontag’s successor notation

2

2

1
)0()0()(

)0()(

mgttvxtx

mgtvtv

!"+=

!=

In general: A system subject to autonomous jumps looks like:

 AtztzFtz !=
•

)()),(()(

 AtztzGtz !=
+)()),(()(this expression denotes when an update of the system occurs

Another Example

Clegg integrator

)()(tetx =
•

 where e(t) is an error term, and 0)(=
+
tx IF .0)(=te

end of Autonomous Jumps

v

x
t

-_v1

v1
mg!

1
2 vmgh

!

="

1
v!"

h Initial state:

(x(0),v(0))=(h,0)

)2(

2

2

1
0 2

mghmgmgtv

mght

mgth

!=!=

=

!=

31

Networked Control System

Example 6 (NCS) A linear, full-state feedback control system

ẋ(t) = Ax(t) + Bu(t)
u(t) = −Kx(t)

Place a network between state measurement (at sensor node)
and control computation/actuation (at another node)

x is measured at time ti, received after delay di

ẋ(t) = Ax(t)−BKx̂(t)
x̂+(t) = x(ti), when t = ti + di

Note: augmented state measurement x̂ is piecewise constant

32

Autonomous Jumps / Impulses (2)

General system subject to autonomous impulses:

ẋ(t) = f (x(t)), x(t) *∈ A
x+(t) = G(x(t)), x(t) ∈ A

Autonomous jump set, A
Reset map, G

Linear system with equally spaced impulses [Branicky, CDC, 1997]

ẋ(t) = P1x(t), t *∈ I
x+(t) = P2x(t), t ∈ I = {0, h, 2h, . . .}

Stable if eigenvalues of P2eP1h have magnitude < 1

33

Controlled Switching
Vector field ξ(·) changes abruptly in response to a
control command, usually with an associated cost

One is allowed to pick among a discrete
number of vector fields:

ẋ = fq(t)(x)

q(t) ∈ Q ! {1, 2, . . . , N} (or Q ! Z)
q(t) chosen by the controller

Note: If q(t) were an explicit function of state, result would be a closed-
loop system with autonomous switches

34

Controlled Switching Examples (1)
Example 7 (Satellite Control)

θ̈ = τeff v

θ, θ̇, angular position and velocity

v ∈ {−1, 0, 1}, reaction jets

are full reverse, off, or full on

Controlled Switching
Vector field changes discontinuously in response to a control signal

},...,2,1{),(NQqxFx q =!=
•

Example: Satellite Control

veff!" =
•• •

!! , are angular position, velocity and }1,0{!v

depending on if the satellite reaction jets are full

reverse, off, or full on.

Example: Transmission (Brockett)

21 xx =
•

)/(])([22 vtuvxax ++!=
•

 a is positive for a positive argument (torque curve)

1
x ~ ground speed

2
x ~ engine RPM

]1,0[!u ~ throttle position

}4,3,2,1{!v ~ gear shift position

end of Controlled Switching

 v=+1

v=-1
v=0

v=0

!" =
•

!

Example 8 (Manual Transmission [Brockett, 1993])

ẋ1 = x2

ẋ2 = [−a(x2/v) + u]/(1 + v)

x1, ground speed

x2, engine RPM

u ∈ [0, 1], throttle position

v ∈ {1, 2, 3, 4}, gear shift position

a is positive for positive argument

35

Switching Control Laws (1)
Example 9 (Pait’s S.H.O. Stabilizer [Artstein, HS III, 1996])

ẋ = y

ẏ = −x + u

x ≡ state measurement

Ṫ = 1 (always in model)

u = 0 u = −3x![T = δ ∧ x < 0] / T := 0

![T = δ ∧ x ≥ 0] / T := 0

![T = 3π/4] / T := 0

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

SHO Stabilizer

0 5 10 15 20

0

0.5

1

1.5

2

SHO Stabilizer Modes

36

Switching Control Laws (2)
Example 10 (Max Controller [Branicky, ACC, 1994])
Control objective:

Good tracking of the pilot’s input, nz,
without violating angle-of-attack constraint

v

α θ

nz

δ

!r=desired nz

!"
#$

"

−nz

!e1

K1

δ1

#
#

#
!

!αlim

!"
#$

"

−α

!e2

K2

δ2 $
$

$
$

!
max !δ

Longitudinal Aircraft View Max Controller

37

Switching Control Laws (3)
Outputs of tracking (top) and max controller (bottom)

-2000

-1000

0

1000

2000

0 5 10

t

-1

-0.5

0

0.5

1

0 5 10

t

-2000

-1000

0

1000

2000

0 5 10

t

-1

-0.5

0

0.5

1

0 5 10

t

Left: normal acceleration nz (solid), desired value r (dashed)
Right: angle of attack α (solid), α’s limit (dashed)

38

Controlled Jumps / Impulses

Continuous state x(·) changes discontinuously in response to
a control command, usually with an associated cost

Example 11 (Inventory Management)

ẋ(t) = −µ(t) +
∑

i

δ(t− θi)αi

x, stock
µ, degradation/utilization
θ1 < θ2 < . . ., “discrete” restocking times
α1, α2, . . ., order amounts

Controlled Jumps (impulses)
State changes discontinuously in response to a control signal

Example: Inventory management

ii
i

tttx !"#µ)()()($%+$=
•

µ characterizes the use/degradation dynamics,

i
! are restocking times,

 and
i

! are the restocked amounts.

Aside: 0)(=p! for >!|| p

!
"

"#
=1)(dpp$

Example2: Planetary Flybys See Handout: Laplace’s Result: Sphere of Influence

Page 1: shows how planet gravitational fields change the trajectory of objects in

space. To model the pulls of celestial bodies (very complex in nature), when a body is

within a sphere of influence of a pulling body, the gravitational effect of that body is then

taken into effect.

end of “From Continuous to Hybrid”

From Discrete to Hybrid
Base discrete model: Automata

Finite State Machine (FSM)

OR Finite Automation (FA)

OR Finite Transition System

Inputless automation

)(1 kk qq !=+ , Qqk ! , a finite set

Example: Finite Counter

1)(+= qq! mod N

}1,...1,0{ != NQ

t

1
!

2
!

)(tx

2
!

1\
!

Note: If stocking times/amounts explicit function of x,
then controlled jumps become autonomous jumps

39

Example 12 (Planetary Flybys) Exploration spacecraft typically use
close encounters with moons/planets to gain energy, change course

At the level of the entire solar system, these maneuvers are planned
by considering the flight path to be a sequence of parabolic curves,
with resets of heading/velocity occurring at the “point” of encounter

40

Significant Hybrid Phenomena
Continuous dynamics and controls +

Type:

Example
Discontinuity

Source Vector Field Continuous State
(Switching) (Jump/Impulse)

System
(Autonomous)

Autonomous
Switching:

Hysteresis

Autonomous
Jumps/Impulses:

Collisions

Controller
(Controlled)

Controlled
Switching:

Gearbox

Controlled
Jumps/Impulses:

Resets

+ interactions with finite automata
+ other models (Tavernini, Brockett, Nerode-Kohn, BGM, ASL, . . .)

41

Tavernini’s Model

Differential automaton [Tavernini, 1987]:
A triple (S, f, ν) where

• S = Rn ×Q, (hybrid) state space
Q ! {1, . . . , N}, discrete state space
Rn, continuous state space

• f (·, q) = Rn → Rn, for each q ∈ Q,
continuous dynamics

• ν : S → Q, discrete transition function

In our notation:

ẋ = f (x, q)

q+ = ν(x, q)

i,j
M

q=i

q=j

42

Tavernini’s Results
Assumptions:
• switching manifolds are given by the zeros of a smooth function
• separation of switching sets, separation from concatenated jumps

Results:
• Unique solution with finitely many switching points

s0(t0) = (x0, q0), s1(t1) = (x1, q1), s2(t2) = (x2, q2), . . .

• Continuity in initial conditions3

|s0 − s′0| < δ =⇒
|x(t)− x′(t)| < ε1, t < T

q0q1 · · · qM = q′0q
′
1 · · · q′M

|ti − t′i| < ε2, i ≤ M

• Numerical integration approaches true solution4

|s′(t; h)− s(t)|→ 0 as h → 0
3On an open, dense set S0

4With initial error (from s′
0 *= s0); uniformly, in S0

43

Hybrid Dynamical Systems (HDS)
An indexed collection of DSs plus a map for “jumping” among them

H = (Q,Σ,A,G)

• Q, countable discrete states

• Σ = {Σq}q∈Q, set of DSs

fq : Xq → Rdq , Xq ⊂ Rdq ,

continuous state spaces

• Aq, autonomous jump sets

• Gq : Aq → S, autonomous
jump transition maps

Hybrid state space:
S =

⋃
q∈Q Xq × {q}

Aj

Aj

DD

D

D

A

A

j

i
i

i

1

1
1

Xj

X i

X1

X

44

Hybrid Dynamical Systems: Notes
• ODEs and Automata

ODEs: |Q| = 1, A = ∅
(Later) Finite Automata: |Q| = N , each fq ≡ 0

• Outputs: add continuous/discrete output maps for each q

• Changing State Space

inelastic collisions, component failures, aircraft modes, . . .

• State Space Overlaps, e.g., hysteresis

• Transition Delays

Add autonomous jump delay map, ∆a : A× V −→ R+

Associates (possibly zero) delay to each jump
Aggregate transients, activation delay, etc.

45

Adding Control: Controlled HDS

Hc = (Q,Σ,A,G,C,F)

• Σq, controlled ODEs

fq : Xq × Uq → Rdq

Uq ⊂ Rmq , continuous

control spaces

• Gq : Aq × Vq → S, modulated
by discrete decisions Vq

• Cq, controlled jump sets

• Fq : Cq → 2S, controlled jump
destination maps (set-valued)

Aj

Aj

C

DD

D

C

C

CD

A

A

jj

1

i

i

i
i

i

1

1
1

Xj

X i

X1

X

46

(C)HDS: Automaton View

p : Σp q : Σq

![x ∈ Mp,q] / x := Gp(x)

![x ∈ Mq,p] / x := Gq(x)

...

...

...

...

![condition]: must be taken
?[condition]: may be taken
“:∈”, reassignment to value in set

p : Σp q : Σq

![x ∈ Mp,q] / x := Gp(x)

![x ∈ Mq,p] / x := Gq(x)

...

...

...

...

?[x ∈ Cp] / x :∈ Fp(x)

?[x ∈ Cq] / x :∈ Fq(x)

47

Hybrid Automata: Examples (1)
Example 13 (Bouncing Ball Revisited)

ẏ = v

v̇ = −mg
![(y = 0) ∧ (v > 0)] / v := −ρv

Example 14 (HVAC Revisited) Goal of A.C.: temp. at 23 ± 2 ◦C

Off

ẋ = f0(x)

On

ẋ = f1(x)

![x ≥ 25]

![x ≤ 21]

48

Hybrid Automata: Examples (2)
Example 15 (HVAC++) Add that A.C.
(i) is never ON more than 55 minutes straight
(ii) must remain Off for at least 5 minutes

Off

ẋ = f0(x)
Ṫ = 1/60

On

ẋ = f1(x)
Ṫ = 1/60

![(x ≥ 25) ∧ (T ≥ 5)] / T:=0

![(x ≤ 21) ∨ (T ≥ 55)] / T:=0

Example 16 (Audi A4 Tiptronic Transmission)

. . .

Gear 1

ẋ1 = x2

ẋ2 = [−a(x2) + u]/2

Gear 2

ẋ1 = x2

ẋ2 = [−a(x2/2) + u]/3

. . .

![x2 ≥ 3500], ?[x2 ≥ 1800]

![x2 ≤ 1200], ?[x2 ≤ 2000]

49

From Discrete to Hybrid
Automata5

+

Continuous Phenomena

=⇒

Hybrid Automata

5It is easy to substitute “Automata” with “Petri Nets”

50

Base Discrete Model: FA / FSM
Inputless finite automaton (FA) or finite state machine (FSM):

q(k + 1) = ν(q(k))

q(k) ∈ Q, a finite set
i.e., dynamical system with discrete state space

Example 17 (Finite Counter)
State space Q = {q0, q1, . . . , qN−1} and ν(qi) = qi+1 mod N

q0 q1 q2 q3 q4

Starting from initial state, q0, trajectory or run is:

q0, q1, q2, q3, q4, q0, q1, q2, q3, q4, q0, · · ·

51

Deterministic FA Example
Example 18 (Parity of Binary String Input)
DFA keeps track of input’s parity by counting 1s, modulo 2

q0 q1

1

1

00

Start Q = {q0, q1}
q(k+1) = ν(q(k), i(k))

ν 0 1
q0 q0 q1

q1 q1 q0

On input 1101, run is q0, q1, q0, q0, q1

“Unrolled” View: q0
1−→ q1

1−→ q0
0−→ q0

1−→ q1

Exercise 1 Draw a DFA whose states track number of 0s mod. 3

Exercise 2* Draw one whose states track binary number seen mod. 3

52

Automaton Preliminaries
symbol: abstract entity of automata theory, e.g., letter or digit

alphabet: finite set of symbols
E = {a, b, c, . . . , z} — English alphabet
D = {0, 1, 2, . . . , 9} — Decimal digits
B = {0, 1} — Binary alphabet
Latin 1 — IS0 8859-1 (Unicode characters)

string / word (over alphabet I): finite sequence of symbols from I

cat and jazz and zebra; w and qqq — strings over E
0 and 1 and 1101 — strings over B

empty string, ε: string consisting of zero symbols

concatenation operator: strings can be juxtaposed
cat · jazz = catjazz
00 · 11 = 0011 *= 1100 = 11 · 00
q3 = qqq, q0 = ε

53

Deterministic Finite Automata (DFA)
A DFA is a four-tuple A = (Q, I, ν, q0), where
• Q is a finite set of states
• I is an alphabet, called the input alphabet
• ν is the transition function mapping Q× I into Q
• q0 ∈ Q is the initial state

Dynamics:
• Machine starts in state q0

• One move: DFA in q receives symbol a and enters state ν(q, a)
• On input word w = a1a2 · · · an: DFA in r0 successively processes

symbols and sequences through states r1, r2, . . . , rn, such that
rk+1 = ν(rk, ak)

This sequence is a run of DFA over w

r0
a1−→ r1

a2−→ r2
a3−→ · · · an−1−→ rn−1

an−→ rn

54

Languages
language (over alphabet I): a set of strings over I

English language, LE, is a language over E
cat ∈ LE, qqq *∈ LE

Languages over B:

Blength 2 = {00, 01, 10, 11}
Beven length = {ε} ∪Blength 2 ∪Blength 4 ∪ · · ·
Bodd parity = {1, 01, 10, 001, 010, 100, 111, . . .}

Kleene closure, I∗: set of all strings over alphabet I

B∗ ≡ {ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .}
B+ ≡ {0, 1, 00, 01, 10, 11, 000, 001, . . .} = B∗ − {ε}

empty language, ∅: language without any strings (note ∅ *= {ε})

concatenation of languages: ST = {st | s ∈ S, t ∈ T}

Exercise 3 S = {0}+ = 0+, T = {1}+ = 1+; what is ST?

55

Marked States
DFA plus a set of marked or accepting or final states, F

language of FA: set of strings having a run that ends in a state of F
a.k.a. set of accepted strings

q0 q1

1

1

00

Start

If F = {q1}, 111 is accepted, ε is not; accepted language is Bodd parity

If F = {q0, q1}: accepted language is B∗

If F = {q1}: it would be B∗ −Bodd parity

If F = ∅: it is ∅

Exercise 4 Draw DFA accepting: (i) Beven length, (ii) Blength 2

56

Nondeterministic FA (NFA)
An NFA N = (Q, I, ν̂, Q0, F) allows
• a set of start states, Q0 ⊆ Q

• set-valued transition function, ν̂ : Q× I → 2Q

• at any stage automaton may be in a set of states

Dynamics:
• One move: NFA in q receives symbol a and nondeterministically

enters any one of the states in the set ν̂(q, a)

• On input w = a1a2 · · · an: NFA in state r0 nondeterministically
sequences through r1, r2, . . . , rn such that

rk+1 ∈ ν̂(rk, ak)

Sequence is run of NFA over w: r0
a1−→ r1

a2−→ · · · rn−1
an−→ rn

• In general, NFA has many runs over each string; DFA, only one

57

NFA Examples
Example 19 (Pattern Search [Hopcroft, Motwani, Ullman])

Accepts strings ending in web or ebay

Example 20 (ε-NFA, Floating-Point Number Specification)

optional sign, digit before or after decimal, optional exponent (+sign)

58

Subset Construction
Convert any NFA into a DFA

N = (QN, I, ν̂, Q0, FN) =⇒ D = (QD, I, νD, q0, FD)

Idea: Keep track of set of states NFA can be in
QD = 2QN , q0 = Q0; νD(R, i) =

⋃

r∈R

ν̂(r, i); FD = {R ∈ 2Q |R∩FN *= ∅}

59

ω-Automata
Machines that process infinite sequence of symbols
Appropriate for modeling reactive processes (e.g., OS, server)

q0 q1

a

d

ω-string / ω-word (over alphabet I): infinite-length sequence of symbols from I

aω ≡ aaaa · · · dω ≡ dddd · · · (ad)ω ≡ adad · · ·

ω-languages: sets of ω-words.

ω-automata: act as finite automata (can be deterministic or not)

For server, the run over (ad)ω is q0, q1, q0, q1, q0, q1, . . .

Difference is acceptance conditions; flavors: Büchi, Muller, Rabin, etc.
They involve states visited infinitely often, e.g., q0 above

60

Adding Continuous Phenomena

Finite automata plus continuous phenomenon

• Global Time: add a universal clock (with unity rate)

• Timed Automata: add a set of such clocks and ability to reset them

• Skewed-Clock Automata: each clock variable has a different
rational rate (uniform over all locations)6

• Multi-Rate Automata: each variable can take on different, rational
rates in each location

• Multi-Rectangular Automata: same, but rectangular inclusions

=⇒ “Linear” Hybrid Automata

6“Discrete states”≡ modes, phases, or locations

61

Global Time

FA usually: “abstract time,” only ordering of symbols/“events” matters

Add time: associate time tk at which kth transition occurs

q(tk+1) = ν(q(tk), i(tk))
o(tk) = η(q(tk), i(tk))

Make continuous-time: variables are piecewise continuous functions

q+(t) = ν(q(t), i(t))
o(t) = η(q(t), i(t))

q(t) changes only when input symbol i(t) changes

62

Timed Automata (1)
timed word: sequence of symbols + their increasing times of occurrence

w = (i1, t1), (i2, t2), . . . , (iN, tN)
ik ∈ I ; tk ∈ R+, tk+1 > tk

For server: w = (a, 0), (d, 2), (a, 3), (d, 4), (a, 5), (d, 8), (a, 9), (d, 16)

symbol sequence: σ = a, d, a, d, a, d, a, d

time sequence: τ = 0, 2, 3, 4, 5, 8, 9, 16

w = (σ, τ); Untime(w) = σ

timed ω-word: infinite sequence plus time progresses without bound
Not valid: 1/2, 3/4, 7/8, 15/16, 31/32, . . .
Condition avoids so-called Zeno behavior

timed language: set of timed words
Lbounded response time = {(σ, τ) | σ2i−1 = a, σ2i = d, τ2i < τ2i−1 + 2}

Untime(Lbounded response time) = {(ad)ω}

63

Timed Automata (2)
timed automaton: same structure as FA adding
(i) finite number of real-valued clocks (all unity rate)
(ii) ability to reset clocks, test clock constraints when traversing edges

From Discrete to Hybrid, Part 3
!!"#$%&'()*+$,$-./01$21#1$3.456789$,$:;7<=.;$>?$,$@45=4.9$A?B$A**?$

#7.6C;D$"E;.9F$@/E5G</5$

$

Timed Automata

! #4H;$4G$0656<;$4=</H4<4B$C=<$<E;.;$6G4G;<$/0$7F/78G$

! IE6G$G;<$/0$7F/78G$6G$0656<;$45J$.;4FKL4F=;J$

! ExampleK#6HMF;$I6H;J$N=</H4<4$

$

$

$

$

$

$

$

$

$

$
! N$<6H;J$O/.J$P/L;.$4FME4C;<QR6G$4$0656<;$G;S=;57;$/0$G9HC/FG$MF=G$<E;6.$<6H;$/0$
/77=..;57;$

o P6'B$<'RB$P6AB$<ARB$TB$P65B$<5R$OE;.;$68" Q45J$<8" RU
o I6H;G$4.;$G<.67<F9$657.;4G65V$P<8U'W<8R$

! N$<6H;J$/H;V4$O/.J$P!KO/.JR$6G$45$650656<;$G;S=;57;$/0$G9HC/FG$MF=G$<E;6.$<6H;$
/0$/77=..;57;$

o P6'B$<'RB$P6AB$<ARB$T$OE;.;$<6H;$progresses$O6<E/=<$C/=5J$
o #/B$745X<$E4L;$'(AB$%()B$Y(&B$'?('ZB$%'(%AB$T$4G$4$G;S=;57;$/0$<6H;G1$$IE4<$
6G$74FF;J$[;5/$C;E4L6/.1$

o Q5$<E;$C/=5765V$C4FF$;\4HMF;B$<E;$G;<$/0$<6H;G$<E4<$<E;$C4FF$C/=57;G$O6FF$
E4L;$[;5/$C;E4L6/.1$

o I/$4L/6J$[;5/$C;E4L6/.B$O;$G49$0/.$4FF$I" RUB<E;.;$;\6G<G$4$8$G=7E$<E4<$
<8WI1$

! N$<6H;J$4=</H4</5$745$C;$J;G7.6C;J$=G65V$4$0/=.K<=MF;$F68;$45$]ND$P^BQB"B$S*RB$
MF=G$6<$E4G4G;<$/0$7F/78G1$

! NFG/B$<E;.;$6G$<E;$4C6F6<9$</$<;G<$7F/78$7/5G<.465<G$45J$</$.;G;<$7F/78G$/5$<E;$
<.4L;.G4F$/0$;JV;G1$

! Remark$_$2/.;$;\M.;GG6L;$H/J;FG$H6VE<$4FF/O$4$7F/78$</$C;$4GG6V5;J$<E;$/=<M=<$

/0$45$4.C6<.4.9$"$M./V.4H1$

H/J;P<R$

<$
'$

A$

'$ %$)

'

A

GP<R

<

' %)$

Notes

K G$6G$4$7F/781$
K `PGaAR$H;45G$9/=$H=G<$<.4L;.G;$<E;$
;JV;$OE;5$G$6G$;S=4F$</$A1$

K GDa*$J;5/<;G$G;<<65V$<E;$7F/78$</$*1$
K b/=$7/=FJ$4JJ$/=<M=<$</$<E;$;JV;G1$
$

1

s’=1

2

s’=1

!(s=1)/s:=0

!(s=2)/s:=0

s:=0

$

64

Timed Automata (3)
Example 21 (Bounded Response Time [Alur-Dill, TCS, 1994])
Every “arrival” needs to “depart” within two seconds

q0 q1

a / x := 0

d, ?(x < 2)

Accepted word: (a, 0), (d, 1.5), (a, 2), (d, 3.5), (a, 4), (d, 5.5), · · ·
Not accepted: (a, 0), (d, 1.5), (a, 2), (d, 4.5), · · ·
Not accepted: (a, 0), (a, 1.5), · · ·

Example 22 (Switch with Delay [Maler-Yovine, 1996])
U, D switch “On”, “Off”; models: transistors, relays, pneumatic valves

Off Delay On

U / x := 0

D

!(x = 1)

D

65

Timed Automata Theory7

clock constraint has form χ := (x ≤ c) | (c ≤ x) | ¬χ0 | χ1 ∧ χ2

x, clock variable; c, rational constant; χi, valid clock constraints

Can build up more complicated tests:

(x = c) ⇐= (x ≤ c) ∧ (c ≤ x)

(x < c) ⇐= (x ≤ c) ∧ ¬(x = c)

χ1 ∨ χ2 ⇐= ¬(¬χ1 ∧ ¬χ2)

True ⇐= (x ≤ c) ∨ (c ≤ x)

Rich and beautiful theory:
• Closure properties, decidability results
• E.g., a timed automaton can be mimicked by an ω-automata

(called a region automata because it operates on clock regions),
leading to an effective decision problem for language emptiness

7Seminal reference: R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235, 1994

66

Skewed-Clock Automata
timed automaton: ẋi = 1 for all clocks and all locations

skewed-clock automaton: ẋi = ki where each ki is a rational number

x = 0
y = 1/2

S1

ẋ = 9/10
ẏ = 11/10

S2

ẋ = 9/10
ẏ = 11/10

![y ≥ 1] / y := 0

![x ≥ 1] / x := 0

x = 0
y = 5/11

S1

ẋ = 1
ẏ = 1

S2

ẋ = 1
ẏ = 1

![y ≥ 10/11] / y := 0

![x ≥ 10/9] / x := 0

x = 0
y = 1/2

S1

ẋ = 9/10
ẏ = 11/10

S2

ẋ = 9/10
ẏ = 11/10

![y ≥ 1] / y := 0

![x ≥ 1] / x := 0

x = 0
y = 5/11

S1

ẋ = 1
ẏ = 1

S2

ẋ = 1
ẏ = 1

![y ≥ 10/11] / y := 0

![x ≥ 10/9] / x := 0

Skewed-Clock Automaton Equivalent Timed Automaton

Remark 1 Skewed-clock automata are equivalent to timed automata

Proof 1 Timed automaton is a special skewed-clock automaton wherein each ki = 1

For converse:

1. ki = 0: xi(t) remains constant and any conditions involving it are uniformly true or false (and thus may
be reduced or removed using the rules of logic)

2. ki *= 0: Note that xi(t) = xi(0) + kit, so xi(t)/ki = xi(0)/ki + t
Thus, divide every constant that xi is compared to by ki,
and then use associated clock x̃i = xi/t, with ˙̃xi = 1

67

Multi-Rate Automata
multi-rate automaton: ẋi = ki,q at location q (each ki,q is rational)

ẇ = 1

ẋ = 1

ẏ = 2

ż = 1

ẇ = 1

ẋ = 0

ẏ = 2

ż = 2

ẇ = 1

ẋ = 0

ẏ = 4

ż = 3

Edge 1

Edge 2Edge 3

Skewed-Clock Automata!

! "#$%&!'()*$')'!+'&!'!,%)!*-!./*.0,1!21!3+%4%!5#"2!'6&!5#!7!8!-*4!'//!./*.0!'6&!'//!
/*.')#*6,9!

! :0%3%&;./*.0!'()*$')'!.'6!+'<%!5=#!7!0#!,(.+!)+')!0#!#,!'!4')#*6'/9!

! Example!>!?6!'()*$')*6!.*(/&!+'<%!)3*!./*.0,@!5=!7!AB8C!'6&!D=!7!88B8C9!

o "+#,!#,!+*3!D*(!3*(/&!$*&%/!,D,)%$,!3+%4%!)+%4%!'4%!$(/)#E/%!./*.0,!)+')!
'4%!6*)!F/*G'//D!,D6.+4*6#H%&!I#9%9!$(/)#E/%!E4*.%,,*4,J9!

! Remark!>!:0%3%&;./*.0!'()*$')'!'4%!%K(#<'/%6)!)*!)#$%&!'()*$')'9!!L%!3#//!

E4*<%!)+#,!#6!'!/')%4!/%.)(4%9!

!

Multi-Rate Automata!

! 5=#!7!0#1K!')!/*.')#*6!K" !M9!!0!#,!4')#*6'/!-*4!%'.+!#!'6&!K9!

! Example 1!>!NC;$#6()%!E'40#6F!$%)%4!

!

!

!

!

!

!

!

!

!

o L+%6!'!6#.0%/!#,!-#4,)!#6,%4)%&1!)+%!./*.0!F%),!,%)!)*!O9!!P#0%3#,%1!3+%6!'!
K('4)%4!F%),!#6,%4)%&1!)+%!./*.0!#,!,%)!)*!QO9!

o R6!)+%!:'-%!,)')%1!)+%!./*.0!.*(6),!&*36!GD!*6%!-*4!%'.+!)#$%!(6#)!)+')!
E',,%,9!!R-!'!.*#6!#,!#6,%4)%&!#6!)+#,!,)')%1!)+%!./*.0!#,!,%)!)*!)+%!$#6#$($!*-!

,!E/(,!)+%!.*#6!<'/(%!'6&!NC!,#6.%!)+#,!#,!'!NC;$#6()%!E'40#6F!$%)%4!*6/D9!

o R-!)+%!./*.0!F%),!)*!H%4*!#6!)+%!,'-%!,)')%1!#)!F*%,!G'.0!)*!)+%!%5E#4%&!,)')%9!

! Example 2!>!S(/)#E/%!4')%,!#6!%'.+!,)')%

!

!

!

!

!

!

!

!

!

!

!

!

!

! 2/*.0!5!#,!.'//%&!'!,)*E3').+T!#)!$%',(4%,!)+%!)#$%!,E%6)!#6!)+%!-#4,)!,)')%9!

! Remark!>!U<%4D!,0%3%&;./*.0!'()*$')*6!#,!'!$(/)#;4')%!'()*$')*69!!!

o V4**-@!:0%3%&;./*.0!#,!'!,E%.#'/!-*4$!*-!S(/)#;W')%@!0#1K!7!0#!-*4!'//!K9!
!

w’=1

x’=1

y’=2

z’=1

w’=1

x’=0

y’=2

z’=2

Edge 1

w’=1

x’=0

y’=4

z’=3

Edge 2Edge 3

Expired

s’=0

Safe

s’=-1

Coin25 / s:=25

Coin5 / s:=5

!(s=0)

Coin5 / s:=min(s+5, 60)

Coin25 / s:=min(s+25, 60)

• Some vars. have the same rates in all states, e.g., w

• Some vars. are stopwatches (derivative either 0 or 1), e.g., x

• Not all dynamics change at every transition
• Parking meter has “non-linear” (non-TA) dynamics
• Skewed-clock automaton is special case with ki,q = ki for all q

68

Zeno Behavior

q1:

ẋ = 1

ẏ = −2

q2:

ẋ = −2

ẏ = 1

!(y = 0)!(x = 0)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

t

x
(t

),
 y

(t
)

x(t)

y(t)

Start in q1 at (x, y) = (0, 4)
Events pile up at t = 4

69

Multi-Rectangular Automata

Rectangle in Rn: [r1, s1]× [r2, s2]× · · ·× [rn, sn]

E.g., in R2: [0, 1]× [1, 3]; [−∞,∞]× [0, 1]; [−2,−2]× [3, 5]

Initial continuous states: init(q0) is a rectangle
Continuous dynamics: the inclusions, flow(q), are rectangles
Guard conditions, guard(e): rectangles
Reset relations, reset(e): rectangle or identity (“id”) for each variable

70

Initialized Multi-R— Automata
initialized multi-r— automaton: variable must be reset when traversing
an edge if its dynamics changes while crossing that edge

Example: multi-rectangular automation on previous page
Counterexample: multi-rate automation w/Zeno behavior

Remark 2 (Henzinger-Kopke-Puri-Varaiya, 1998)
An initialized multi-rate automaton can be converted into a timed automaton

Proof 2 Idea: Use same trick as in Remark 1, as many times for each variable as it has different rates (the
fact that the automaton is “initialized” is crucial)

Remark 3 (Henzinger-Kopke-Puri-Varaiya, 1998)
An initialized multi-rectangular automaton can be converted to an initialized multi-rate
automaton (and hence a timed automaton)

Proof 3 Idea: replace each continuous variable, say x, with two variables, say xl and xu, that track lower and
upper bounds on its value, resp.; then, invoke Remark 2

71

Linear Hybrid Automata (LHA)
Solutions are linear (not vector field!)

• discrete transition system on finite set, Q, of modes/locations (FA)
• finite number of real-valued vars., with “nice” rate/jump constraints8

Example 23 (Fischer’s MEX Protocol [Henzinger et al.])

8So the reachable set at each step is a union of polyhedra [Alur et al., Theoretical Computer Science, 138:3–34, 1995]

72

LHA: Technical Definition (1)
Expressions over a set of variables Z

Linear Expression: linear combination of the vars. with rational coeffs.

1/2x + 24/5y, z + 5t− 6 + y

Linear Inequality: inequality between linear expressions

x ≥ 0, 4 + 2t ≤ 2/3x

Convex Predicate: a finite conjunction (“and”) of linear inequalities

(x ≥ 3) && (3y ≥ z + 5/3)

Predicate: a finite disjunction (“or”) of convex predicates

((x ≥ 3)&&(3y ≥ z + 5/3)) || ((x ≥ 0)&&(y < 1))

73

LHA: Technical Definition (2)
X = {x1, x2, . . . , xn} ←− continuous variables
Ẋ = {ẋ1, ẋ2, . . . , ẋn} ←− continuous updates
X ′ = {x′1, x′2, . . . , x′n} ←− discrete updates (i.e., resets)

init(q) is a predicate on X
inv(q) is a convex predicate on X (the invariant for each q)
flow(q) is a convex predicate on Ẋ

ẋ ∈ [10, 20] is equivalent to (ẋ ≥ 10)&&(ẋ ≤ 20)

reset(e) is a convex predicate on X ∪X ′

1 <= x′, x′ < 2, t′ >= x + 3, y′ = 0

If inv, flow, reset are predicates (vs. convex predicates),
we have “or” transitions involved
To handle this, split the states/edges to model the disjunctions

74

HyTech Train-Gate Example

[Source: Henzinger, Ho, Wong-Toi. HyTech Demo. embedded.eecs.berkeley.edu/research/hytech]

75

Non-Linear Hybrid Automata
Non-Linear: anything not linear by HyTech’s definition

Two ways to deal with this

1. Easy way out!

(a) Reduce or transform your HA into a LHA: clock translation
(b) Approximate it by a LHA: linear phase portrait approximation

2. Harder: develop richer theory, comp. tools for a larger class of HA

ẋ = 2x
x := 3 ![x ≥ 5]

⇓

ṫx = 1
tx := 0 ![tx ≥ c]

5 = e2c · 3

c = ln(5/3)/2

ẋ = 2x
x := 3 ![x ≥ 5]

⇓

ẋ∈ [6, 10]
x := 3 ![x ≥ 5]

⇓

ẋ∈ [6, 8] ẋ∈ [8, 10]
x := 3 ![x ≥ 4] ![x ≥ 5]

Clock Translation LPP Approx., Successive Refinement

76

Phase Portrait Approximation
Predator-Prey Equations: nonlinear (top) and linear (bottom)

Hybrid Automata Phase Portraits

[Henzinger et al., Algorithmic Analysis of Nonlinear Hybrid Systems, IEEE Trans. Auto. Cont., 43(4):540–554, 1998]

77

Summary

• Broad Hybrid Systems Modeling Definition / Motivation

• The First Hybrid Dynamicist: Laplace

• Many Hybrid Systems Examples

• Mathematical Models of HS

- From Continuous Side:
ODEs + Discrete Phenomena
=⇒ Hybrid Dynamical Systems

- From Discrete Side:
FA + Continuous Phenomena
=⇒ Hybrid Automata

78

Going Further
Early HS models: Witsenhausen, Tavernini, Brockett, Nerode-Kohn, Antsaklis-Stiver-
Lemmon, Back et al. ←− all reviewed/compared in [Branicky, ScD Thesis, 1995]

Early related work:
• variable-structure systems (Utkin), systems with impulse effect, jump-linear

systems, cell-to-cell mapping (Hsu), iterated function systems
• DES (Ramadge-Wonham), statecharts (Harel), reactive systems (Manna-Pnueli)

More recent HS frameworks:
• hybrid I/O automata: Lynch, Segala, Vaandrager, et al.
• linear complementarity: Heemels, van der Schaft, Schumacher, et al.
• mixed logical dynamical systems: Bemporad, Morari, et al.
• hybrid Petri nets, stochastic hybrid systems, . . .

HS simulation, verification, specification languages/tools:
• Omola/Omsim; SHIFT, Ptolemy; Modelica; . . .
• HyTech, UPAAL, KRONOS, CheckMate, d/dt, Charon, PHAVer, HYSDEL, . . .

[wiki.grasp.upenn.edu/˜graspdoc/wiki/hst]

79

References
[1] MS Branicky. Introduction to hybrid systems. In D Hristu-Varsakelis and WS

Levine (eds), Handbook of Networked and Embedded Control Systems, Boston:
Birkhauser, 2005

[2] MS Branicky. EECS 381/409: Discrete event and hybrid systems. Course notes,
Case Western Reserve University, 1998–2005

[3] MS Branicky, VS Borkar, SK Mitter. A unified framework for hybrid control: model
and optimal control theory. IEEE Trans. Automatic Control, 43(1):31–45, 1998

[4] MS Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control. ScD

thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995

These/other references available via dora.case.edu/msb

80

