Models of Hybrid Systems

Michael S. Branicky
Department of Electrical Engineering and Computer Science
Case Western Reserve University

2nd HYCON PhD School on Hybrid Systems
University of Siena, ITALY
July 16, 2007

Continuous + Discrete = Hybrid

Mixture of ... continuous \& discrete inputs, outputs, states, dynamics

\mathbf{R}^{n}

$Q \simeq\{1,2, \ldots, N\}$

$\mathbf{R}^{n} \times Q$

Continuous + Discrete = Hybrid

Mixture of ... differential equations and discrete events / switching

3

Continuous + Discrete = Hybrid (3)

Mixture of ... continuous physical process with finite-state logic

Force-guided robotic assembly [Branicky-Chhatpar, HSCC, 2002]

Continuous + Discrete = Hybrid

Mixture of ... control theory and computer science

Autonomous vehicle DEXTER [urbanchallenge.case.edu]

Outline

The First Hybrid Dynamicist
More Hybrid Systems Examples Mathematical Models of HS

Laplace's Problem

Predict the motion of a comet about to pass near Jupiter (1845)

Laplace's Solution (1)

Two descriptions of motion plus a logical choice of how to switch between them

$$
\begin{aligned}
& \ddot{r_{s v}}+\frac{G\left(m_{s}+m_{v}\right)}{r_{s v}} \vec{r}_{s v}=-G m_{p}\left[\frac{\vec{r}_{p v}}{r_{p v}^{3}}+\frac{\overrightarrow{r_{s p}}}{r_{s p}}\right] \\
& \quad \Longrightarrow \quad \ddot{r_{s v}}-A_{s}=P_{p} \\
& \ddot{\overrightarrow{r_{p v}}}+\frac{G\left(m_{p}+m_{v}\right)}{r_{p v}^{3}} \overrightarrow{r_{p v}}=-G m_{s}\left[\frac{\overrightarrow{r_{s v}}}{r_{s p}^{3}}-\frac{\overrightarrow{r_{s p}}}{r_{s p}^{3}}\right] \\
& \quad \Rightarrow \ddot{r}_{p v}-A_{p}=P_{s}
\end{aligned}
$$

INSIDE "SPHERE OF INFUENEE" OF PLANET

Laplace's Solution (2)

Doublethink: SOI is both infinitely large and infinitesimally small

e: 145, J: 677 (size in radii)
e: $0.006, \mathrm{~J}: 0.06$ (fraction of area)

9

Laplace's Solution (3)

A different, logical(?) choice of when to switch

```
VEHICLE WITHHN
SOI OF EARTH IF
```

$$
\frac{G_{m_{e}} m_{v}}{r_{e v}^{2}}>\frac{G m_{s} m_{v}}{r_{s v}^{2}}
$$

$$
\Rightarrow r_{\text {sol }} \approx 42 \text { earth radii }
$$

$$
\text { DISTANCE } r_{\text {em }} \approx 60 \text { earth radii }
$$

$$
\text { LaPLACE: } r_{\text {soIl }} \approx 145 \text { earth radii }
$$

Hybrid Systems All Around Us

They drive on our streets, work in our factories, fly in our skies, ...

Networked Control Systems (1)

Sensors, actuators, and controllers connected over a network ... with feedback loops controlling physical systems closed among them

- continuous plants
- asynchronous or event-driven data transmission
sampling, varying transmission delay, packet loss
- discrete implementation of network/protocols data packets, queuing, routing, scheduling, etc.

Networked Control Systems (2)

Co-simulation and co-design [Branicky-Liberatore-Phillips, ACC, 2003]

Other Examples

- systems with relays, switches, and hysteresis
- computer disk drives
- constrained robotic systems (locomotion, assembly, etc.)
- vehicle powertrains, transmissions, stepper motors
- mode-switched flight control, vehicle management systems
- automated highway systems (AHS)
- multi-vehicle formations and coordination
- power electronics
- analog/digital circuit co-design and verification
- biological applications

Systems with Switches and Relays

HVAC control with a thermostat:

$$
\dot{x}=f\left(x, H\left(x-x_{0}\right), u\right)
$$

- x, room temperature
- x_{0}, desired temperature
- f, dynamics of temperature
- u, control signal (e.g., the fuel burn rate)

Hysteresis Function, H

Associated Finite Automaton

Hard Disk Drive

HS for main hard disk drive functionality [Gollu-Varaiya, $C D C$, 1989]

Raibert's Hopping Robot

Dynamic Phases
[Back et al., HS I, 1993]

Finite State Controller

Vehicle Powertrains / Cruise Control

Continuous	Discrete
Throttle	Gear Position
Engine RPM	Cylinder Phases
Fuel/Air Mixture	Cylinder Firings
Belts, Cams	Microprocessors
Elevation	Road Condition

I, O are discrete (i.e., countable) sets of symbols
U, Y are continuums

Flight Vehicle Mgmt. Systems

[George Meyer, Plenary Lecture, CDC, 1994]

View From Here

The remainder of this talk focuses on mathematical models

- From Continuous Toward Hybrid
\Longrightarrow Hybrid Dynamical Systems
- From Discrete Toward Hybrid
\Longrightarrow Hybrid Automata

From Continuous Toward Hybrid

Differential Equations ${ }^{1}$
$+$

Discrete Phenomena
\Longrightarrow
Hybrid Dynamical Systems

It is easy to substitute "Difference Equations"

Base Continuous Model: ODEs

Ordinary differential equation (ODE):

$$
\dot{x}(t)=f(x(t))
$$

$x(t) \in X \subset \mathbf{R}^{n}$ is a vector of continuous states $f: X \longrightarrow \mathbf{R}^{n}$ is a vector field on \mathbf{R}^{n}

Autonomous/time-invariant: vector field doesn't depend explicitly on t

Non-autonomous or time-varying:

$$
\dot{x}(t)=f(x(t), t)
$$

ODE with Inputs and Outputs

$$
\begin{aligned}
& \dot{x}(t)=f(x(t), u(t)) \\
& y(t)=h(x(t), u(t))
\end{aligned}
$$

$x(t) \in X \subset \mathbf{R}^{n}, \quad u(t) \in U \subset \mathbf{R}^{m}, \quad y \in Y \subset \mathbf{R}^{p}$
$f: \mathbf{R}^{n} \times \mathbf{R}^{m} \longrightarrow \mathbf{R}^{n}, \quad h: \mathbf{R}^{n} \times \mathbf{R}^{m} \longrightarrow \mathbf{R}^{p}$

The functions $u(\cdot)$ and $y(\cdot)$ are the inputs and outputs, respectively

Whenever inputs are present, we say $f(\cdot)$ is a controlled vector field

Differential Inclusions

$$
\dot{x}(t) \in F(x(t))
$$

- Derivative belongs to a set of vectors in \mathbf{R}^{n}
- Models nondeterminism (controls, disturbances, uncertainty, ...)

Example 1 (Innacurate Clock)

A clock with time-varying rate between 0.9 and 1.1 can be modeled by $\dot{x} \in[0.9,1.1]$, which is a rectangular inclusion

[van der Schaft-Schumacher, 1995]

Adding Discrete Phenomena

Continuous state dynamics given by

$$
\dot{x}(t)=\xi(t), \quad t \geq 0
$$

Vector field $\xi(t)$ depends on x (and u) plus discrete phenomena:

- autonomous switching: vector field changes discontinuously
- autonomous jumps: continuous state changes discontinuously
- controlled switching: control switches vector field discontinuously
- controlled jumps: control changes cont. state discontinuously

Autonomous Switching

Vector field $\xi(\cdot)$ changes discontinuously when the continuous state $x(\cdot)$ hits certain "boundaries"

Example 2 (HVAC) Dynamics are given by
$\dot{x}(t)=f_{1}(x(t))$, furnace is On
$\dot{x}(t)=f_{0}(x(t))$, furnace is Off
$x(t)$ is temperature

$$
\dot{x}(t)=f_{1}(x(t))
$$

Piece-Wise Constant Vector Fields

Programmable vector fields for sorting parts (large, up; small, down) Vector fields are merely sequenced in time (sensorless or open loop)

Figure from [Böhringer et al., Computational Methods for Design and Control of MEMS Micromanipulator Arrays, IEEE Computer Science and Engineering, pp. 17-29, January-March 1997]

Switched Systems

A general switched system: ${ }^{2}$

$$
\dot{x}(t)=f_{q(t)}(x(t))
$$

where $q(t) \in Q \simeq\{1, \ldots, N\}$
E.g., $Q=\{0,1\}$ for furnace Off, On

Important subclass: switched linear systems

$$
\dot{x}(t)=A_{q} x(t), \quad q \in\{1, \ldots, N\}
$$

where each $A_{q} \in \mathbf{R}^{n \times n}$

Switched Linear Systems (1)

Example 3 (Unstable from Stable [Branicky, IEEE T-AC, 1998])
$\dot{x}(t)=A_{q} x(t), \quad A_{0}=\left[\begin{array}{cc}-0.1 & 1 \\ -10 & -0.1\end{array}\right], \quad A_{1}=\left[\begin{array}{cc}-0.1 & 10 \\ -1 & -0.1\end{array}\right]$

Trajectories: (left) A_{0}, (center) A_{1}, (right) $A_{i}, i=$ quadrant $\bmod 2$

Switched Linear Systems (2)

Example 4 (Stable from Stable)

Two stable linear systems
Both "clockwise"
Switching on a line

Two stable linear systems
One anti-clockwise
Switching with a hybrid rule

Argues for "Multiple Lyapunov Functions" to prove stability [Branicky, IEEE T-AC, 1998] Simulated using Omola/Omsim [Andersson, PhD, 1994; Branicky-Mattsson, HS IV, 1997]

Autonomous Jumps / Impulses

Continuous state $x(\cdot)$ jumps discontinuously on hitting prescribed regions of the state space
E.g., collisions (running animals, hopping robots, etc.)

Example 5 (Bouncing Ball)

$$
\begin{aligned}
\dot{y}(t) & =v(t) \\
\dot{v}(t) & =-m g \\
v^{+}(t) & =-\rho v(t), \quad x(t) \in M
\end{aligned}
$$

$M=\{(0, v) \mid v<0\}$
$0 \leq \rho \leq 1$, coefficient of restitution
"If $y=0$ and $v<0, v:=-\rho v$ "

31

Networked Control System

Example 6 (NCS) A linear, full-state feedback control system

$$
\begin{aligned}
& \dot{x}(t)=A x(t)+B u(t) \\
& u(t)=-K x(t)
\end{aligned}
$$

Place a network between state measurement (at sensor node) and control computation/actuation (at another node)
x is measured at time t_{i}, received after delay d_{i}

$$
\begin{aligned}
\dot{x}(t) & =A x(t)-B K \hat{x}(t) \\
\hat{x}^{+}(t) & =x\left(t_{i}\right), \quad \text { when } t=t_{i}+d_{i}
\end{aligned}
$$

Note: augmented state measurement \hat{x} is piecewise constant

Autonomous Jumps / Impulses (2)

General system subject to autonomous impulses:

$$
\begin{aligned}
\dot{x}(t) & =f(x(t)), & & x(t) \notin A \\
x^{+}(t) & =G(x(t)), & & x(t) \in A
\end{aligned}
$$

Autonomous jump set, A Reset map, G

Linear system with equally spaced impulses [Branicky, CDC, 1997]

$$
\begin{aligned}
\dot{x}(t) & =P_{1} x(t), & & t \notin I \\
x^{+}(t) & =P_{2} x(t), & & t \in I=\{0, h, 2 h, \ldots\}
\end{aligned}
$$

Stable if eigenvalues of $P_{2} e^{P_{1} h}$ have magnitude <1

Controlled Switching

Vector field $\xi(\cdot)$ changes abruptly in response to a control command, usually with an associated cost

One is allowed to pick among a discrete number of vector fields:

$$
\begin{gathered}
\dot{x}=f_{q(t)}(x) \\
q(t) \in Q \simeq\{1,2, \ldots, N\} \quad(\text { or } Q \simeq \mathbf{Z}) \\
q(t) \text { chosen by the controller }
\end{gathered}
$$

Note: If $q(t)$ were an explicit function of state, result would be a closedloop system with autonomous switches

Controlled Switching Examples (1)

Example 7 (Satellite Control)

$$
\ddot{\theta}=\tau_{\text {eff }} v
$$

$\theta, \dot{\theta}$, angular position and velocity
$v \in\{-1,0,1\}$, reaction jets are full reverse, off, or full on

Example 8 (Manual Transmission [Brockett, 1993])

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=\left[-a\left(x_{2} / v\right)+u\right] /(1+v)
\end{aligned}
$$

x_{1}, ground speed
x_{2}, engine RPM
$u \in[0,1]$, throttle position
$v \in\{1,2,3,4\}$, gear shift position
a is positive for positive argument

Switching Control Laws (1)

Example 9 (Pait's S.H.O. Stabilizer [Artstein, HS III, 1996])

Switching Control Laws (2)

Example 10 (Max Controller [Branicky, ACC, 1994])
Control objective:
Good tracking of the pilot's input, n_{z}, without violating angle-of-attack constraint

Longitudinal Aircraft View

Max Controller

Switching Control Laws (3)

Outputs of tracking (top) and max controller (bottom)

Left: normal acceleration n_{z} (solid), desired value r (dashed) Right: angle of attack α (solid), α 's limit (dashed)

Controlled Jumps / Impulses

Continuous state $x(\cdot)$ changes discontinuously in response to a control command, usually with an associated cost

Example 11 (Inventory Management)

$$
\dot{x}(t)=-\mu(t)+\sum_{i} \delta\left(t-\theta_{i}\right) \alpha_{i}
$$

x, stock
μ, degradation/utilization
$\theta_{1}<\theta_{2}<\ldots$. "discrete" restocking times $\alpha_{1}, \alpha_{2}, \ldots$, order amounts

Note: If stocking times/amounts explicit function of x, then controlled jumps become autonomous jumps

Example 12 (Planetary Flybys) Exploration spacecraft typically use close encounters with moons/planets to gain energy, change course

At the level of the entire solar system, these maneuvers are planned by considering the flight path to be a sequence of parabolic curves, with resets of heading/velocity occurring at the "point" of encounter

Significant Hybrid Phenomena

Continuous dynamics and controls +

Type: Example	Discontinuity	
Source	Vector Field (Switching)	Continuous State (Jump/Impulse)
System (Autonomous)	Autonomous Switching: Hysteresis	Autonomous Jumps/Impulses: Collisions
Controller (Controlled)	Controlled Switching: Gearbox	Controlled Jumps/Impulses: Resets

+ interactions with finite automata
+ other models (Tavernini, Brockett, Nerode-Kohn, BGM, ASL, ...)

Tavernini's Model

Differential automaton [Tavernini, 1987]:
A triple (S, f, ν) where

- $\mathbf{S}=\mathbf{R}^{n} \times Q$, (hybrid) state space $Q \simeq\{1, \ldots, N\}$, discrete state space \mathbf{R}^{n}, continuous state space
- $f(\cdot, q)=\mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$, for each $q \in Q$, continuous dynamics
- $\nu: S \rightarrow Q$, discrete transition function

In our notation:

$$
\begin{aligned}
\dot{x} & =f(x, q) \\
q^{+} & =\nu(x, q)
\end{aligned}
$$

Tavernini's Results

Assumptions:

- switching manifolds are given by the zeros of a smooth function
- separation of switching sets, separation from concatenated jumps

Results:

- Unique solution with finitely many switching points

$$
s_{0}\left(t_{0}\right)=\left(x_{0}, q_{0}\right), \quad s_{1}\left(t_{1}\right)=\left(x_{1}, q_{1}\right), \quad s_{2}\left(t_{2}\right)=\left(x_{2}, q_{2}\right),
$$

- Continuity in initial conditions ${ }^{3}$

$$
\left|s_{0}-s_{0}^{\prime}\right|<\delta \Longrightarrow \quad \begin{aligned}
\left|x(t)-x^{\prime}(t)\right| & <\epsilon_{1}, t<T \\
q_{0} q_{1} \cdots q_{M} & =q_{0}^{\prime} q_{1}^{\prime} \cdots q_{M}^{\prime} \\
\left|t_{i}-t_{i}^{\prime}\right| & <\epsilon_{2}, \quad i \leq M
\end{aligned}
$$

- Numerical integration approaches true solution ${ }^{4}$

$$
\left|s^{\prime}(t ; h)-s(t)\right| \rightarrow 0 \quad \text { as } \quad h \rightarrow 0
$$

${ }^{3}$ On an open, dense set S^{0}
${ }^{4}$ With initial error (from $s_{0}^{\prime} \neq s_{0}$); uniformly, in S^{0}

Hybrid Dynamical Systems (HDS)

An indexed collection of DSs plus a map for "jumping" among them

$$
H=(Q, \boldsymbol{\Sigma}, \mathbf{A}, \mathbf{G})
$$

- Q, countable discrete states
- $\boldsymbol{\Sigma}=\left\{\Sigma_{q}\right\}_{q \in Q}$, set of DSs

$$
f_{q}: X_{q} \rightarrow \mathbf{R}^{d_{q}}, X_{q} \subset \mathbf{R}^{d_{q}},
$$ continuous state spaces

- A_{q}, autonomous jump sets
- $G_{q}: A_{q} \rightarrow S$, autonomous jump transition maps

Hybrid state space:

$$
S=\bigcup_{q \in Q} X_{q} \times\{q\}
$$

Hybrid Dynamical Systems: Notes

- ODEs and Automata

ODEs: $|Q|=1, A=\emptyset$
(Later) Finite Automata: $|Q|=N$, each $f_{q} \equiv 0$

- Outputs: add continuous/discrete output maps for each q
- Changing State Space
inelastic collisions, component failures, aircraft modes, ...
- State Space Overlaps, e.g., hysteresis
- Transition Delays

Add autonomous jump delay map, $\Delta_{a}: A \times V \longrightarrow \mathbf{R}_{+}$
Associates (possibly zero) delay to each jump
Aggregate transients, activation delay, etc.

Adding Control: Controlled HDS

$$
H_{c}=(Q, \boldsymbol{\Sigma}, \mathbf{A}, \mathbf{G}, \mathbf{C}, \mathbf{F})
$$

- $\mathrm{\Sigma}_{\mathbf{q}}$, controlled ODEs
$f_{q}: X_{q} \times U_{q} \rightarrow \mathbf{R}^{d_{q}}$ $U_{q} \subset \mathbf{R}^{m_{q}}$, continuous control spaces
- $G_{q}: A_{q} \times V_{q} \rightarrow S$, modulated by discrete decisions V_{q}
- C_{q}, controlled jump sets
- $F_{q}: C_{q} \rightarrow 2^{S}$, controlled jump destination maps (set-valued)

(C)HDS: Automaton View

![condition]: must be taken
?[condition]: may be taken
" $: \in$ ", reassignment to value in set

Hybrid Automata: Examples (1)

Example 13 (Bouncing Ball Revisited)

Example 14 (HVAC Revisited) Goal of A.C.: temp. at $23 \pm 2{ }^{\circ} \mathrm{C}$

Hybrid Automata: Examples (2)

Example 15 (HVAC++) Add that A.C.
(i) is never On more than 55 minutes straight
(ii) must remain Off for at least 5 minutes

Example 16 (Audi A4 Tiptronic Transmission)

From Discrete to Hybrid

Automata ${ }^{5}$
$+$
Continuous Phenomena

Hybrid Automata

Base Discrete Model: FA / FSM

Inputless finite automaton (FA) or finite state machine (FSM):

$$
q(k+1)=\nu(q(k))
$$

$q(k) \in Q$, a finite set
i.e., dynamical system with discrete state space

Example 17 (Finite Counter)

State space $Q=\left\{q_{0}, q_{1}, \ldots, q_{N-1}\right\}$ and $\nu\left(q_{i}\right)=q_{i+1 \bmod N}$

Starting from initial state, q_{0}, trajectory or run is:

$$
q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{0}, \cdots
$$

Deterministic FA Example

Example 18 (Parity of Binary String Input)

DFA keeps track of input's parity by counting 1s, modulo 2

On input 1101, run is $q_{0}, q_{1}, q_{0}, q_{0}, q_{1}$
"Unrolled" View: $q_{0} \xrightarrow{1} q_{1} \xrightarrow{1} q_{0} \xrightarrow{0} q_{0} \xrightarrow{1} q_{1}$

Exercise 1 Draw a DFA whose states track number of 0s mod. 3
Exercise 2* Draw one whose states track binary number seen mod. 3

Automaton Preliminaries

symbol: abstract entity of automata theory, e.g., letter or digit
alphabet: finite set of symbols
$E=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots, \mathrm{z}\}$ - English alphabet
$D=\{0,1,2, \ldots, 9\}-$ Decimal digits
$B=\{0,1\}$ - Binary alphabet
Latin 1 - ISO 8859-1 (Unicode characters)
string / word (over alphabet I): finite sequence of symbols from I
cat and jazz and zebra; w and qqq - strings over E
0 and 1 and 1101 - strings over B
empty string, ε : string consisting of zero symbols
concatenation operator: strings can be juxtaposed

```
cat\cdotjazz = catjazz
00.11=0011 = 1100= 11.00
q}\mp@subsup{\mathbf{q}}{}{3}=qqq,\quad\mp@subsup{q}{}{0}=
```


Deterministic Finite Automata (DFA)

A DFA is a four-tuple $\mathcal{A}=\left(Q, I, \nu, q_{0}\right)$, where

- Q is a finite set of states
- I is an alphabet, called the input alphabet
- ν is the transition function mapping $Q \times I$ into Q
- $q_{0} \in Q$ is the initial state

Dynamics:

- Machine starts in state q_{0}
- One move: DFA in q receives symbol a and enters state $\nu(q, a)$
- On input word $w=a_{1} a_{2} \cdots a_{n}$: DFA in r_{0} successively processes symbols and sequences through states $r_{1}, r_{2}, \ldots, r_{n}$, such that

$$
r_{k+1}=\nu\left(r_{k}, a_{k}\right)
$$

This sequence is a run of DFA over w

$$
r_{0} \xrightarrow{\mathrm{a}_{1}} r_{1} \xrightarrow{\mathrm{a}_{2}} r_{2} \xrightarrow{\mathrm{a}_{3}} \cdots \xrightarrow{\mathrm{an}_{\mathrm{n}}-1} r_{n-1} \xrightarrow{\mathrm{a}_{\mathrm{n}}} r_{n}
$$

Languages

language (over alphabet I): a set of strings over I
English language, L_{E}, is a language over E
cat $\in L_{E}$, qqq $\notin L_{E}$
Languages over B :

$$
\begin{aligned}
B_{\text {length } 2} & =\{00,01,10,11\} \\
B_{\text {even length }} & =\{\varepsilon\} \cup B_{\text {length } 2 \cup B_{\text {length } 4} \cup \cdots}^{B_{\text {odd parity }}}
\end{aligned}=\{1,01,10,001,010,100,111, \ldots\}
$$

Kleene closure, I^{*} : set of all strings over alphabet I
$B^{*} \equiv\{\varepsilon, 0,1,00,01,10,11,000,001, \ldots\}$ $B^{+} \equiv\{0,1,00,01,10,11,000,001, \ldots\}=B^{*}-\{\varepsilon\}$
empty language, \emptyset : language without any strings (note $\emptyset \neq\{\varepsilon\}$)
concatenation of languages: $S T=\{s t \mid s \in S, t \in T\}$
Exercise $3 S=\{0\}^{+}=0^{+}, T=\{1\}^{+}=1^{+}$; what is $S T$?

Marked States

DFA plus a set of marked or accepting or final states, F
language of $F A$: set of strings having a run that ends in a state of F a.k.a. set of accepted strings

If $F=\left\{q_{1}\right\}$, 111 is accepted, ε is not; accepted language is $B_{\text {odd parity }}$ If $F=\left\{q_{0}, q_{1}\right\}$: accepted language is B^{*}
If $F=\left\{q_{1}\right\}$: it would be $B^{*}-B_{\text {odd parity }}$
If $F=\emptyset$: it is \emptyset
Exercise 4 Draw DFA accepting: (i) $B_{\text {even length, }}$, (ii) $B_{\text {length 2 }}$

Nondeterministic FA (NFA)

An NFA $N=\left(Q, I, \hat{\nu}, Q_{0}, F\right)$ allows

- a set of start states, $Q_{0} \subseteq Q$
- set-valued transition function, $\hat{\nu}: Q \times I \rightarrow 2^{Q}$
- at any stage automaton may be in a set of states

Dynamics:

- One move: NFA in q receives symbol a and nondeterministically enters any one of the states in the set $\hat{\nu}(q, a)$
- On input $w=a_{1} a_{2} \cdots a_{n}$: NFA in state r_{0} nondeterministically sequences through $r_{1}, r_{2}, \ldots, r_{n}$ such that

$$
r_{k+1} \in \hat{\nu}\left(r_{k}, a_{k}\right)
$$

Sequence is run of NFA over $w: r_{0} \xrightarrow{\mathrm{a}_{1}} r_{1} \xrightarrow{\mathrm{a}_{2}} \cdots r_{n-1} \xrightarrow{\mathrm{a}_{\mathrm{n}}} r_{n}$

- In general, NFA has many runs over each string; DFA, only one

NFA Examples

Example 19 (Pattern Search [Hopcroft, Motwani, Ullman])

Accepts strings ending in web or ebay
Example 20 (ε-NFA, Floating-Point Number Specification)

optional sign, digit before or after decimal, optional exponent (+sign)

Subset Construction

Convert any NFA into a DFA

$$
N=\left(Q_{N}, I, \hat{\nu}, Q_{0}, F_{N}\right) \Longrightarrow D=\left(Q_{D}, I, \nu_{D}, q_{0}, F_{D}\right)
$$

Idea: Keep track of set of states NFA can be in

$$
Q_{D}=2^{Q_{N}}, q_{0}=Q_{0} ; \quad \nu_{D}(R, i)=\bigcup_{r \in R} \hat{\nu}(r, i) ; \quad F_{D}=\left\{R \in 2^{Q} \mid R \cap F_{N} \neq \emptyset\right\}
$$

59

ω-Automata

Machines that process infinite sequence of symbols
Appropriate for modeling reactive processes (e.g., OS, server)

ω-string / ω-word (over alphabet I): infinite-length sequence of symbols from I

$$
\mathrm{a}^{\omega} \equiv \operatorname{aaaa} \cdots \quad \mathrm{d}^{\omega} \equiv \operatorname{dddd} \cdots \quad(\mathrm{ad})^{\omega} \equiv \operatorname{adad} \cdots
$$

ω-languages: sets of ω-words.
ω-automata: act as finite automata (can be deterministic or not)
For server, the run over $(\mathrm{ad})^{\omega}$ is $q_{0}, q_{1}, q_{0}, q_{1}, q_{0}, q_{1}, \ldots$
Difference is acceptance conditions; flavors: Büchi, Muller, Rabin, etc.
They involve states visited infinitely often, e.g., q_{0} above

Adding Continuous Phenomena

Finite automata plus continuous phenomenon

- Global Time: add a universal clock (with unity rate)
- Timed Automata: add a set of such clocks and ability to reset them
- Skewed-Clock Automata: each clock variable has a different rational rate (uniform over all locations) ${ }^{6}$
- Multi-Rate Automata: each variable can take on different, rational rates in each location
- Multi-Rectangular Automata: same, but rectangular inclusions
\Longrightarrow "Linear" Hybrid Automata
${ }^{6 \times \text { "Discrete }}$ states" \equiv modes, phases, or locations

Global Time

FA usually: "abstract time," only ordering of symbols/"events" matters

Add time: associate time t_{k} at which k th transition occurs

$$
\begin{aligned}
q\left(t_{k+1}\right) & =\nu\left(q\left(t_{k}\right), i\left(t_{k}\right)\right) \\
o\left(t_{k}\right) & =\eta\left(q\left(t_{k}\right), i\left(t_{k}\right)\right)
\end{aligned}
$$

Make continuous-time: variables are piecewise continuous functions

$$
\begin{aligned}
q^{+}(t) & =\nu(q(t), i(t)) \\
o(t) & =\eta(q(t), i(t))
\end{aligned}
$$

$q(t)$ changes only when input symbol $i(t)$ changes

Timed Automata (1)

timed word: sequence of symbols + their increasing times of occurrence
$w=\left(i_{1}, t_{1}\right),\left(i_{2}, t_{2}\right), \ldots,\left(i_{N}, t_{N}\right)$
$i_{k} \in I ; \quad t_{k} \in \mathbf{R}_{+}, t_{k+1}>t_{k}$
For server: $\quad w=(\mathrm{a}, 0),(\mathrm{d}, 2),(\mathrm{a}, 3),(\mathrm{d}, 4),(\mathrm{a}, 5),(\mathrm{d}, 8),(\mathrm{a}, 9),(\mathrm{d}, 16)$
symbol sequence: $\quad \sigma=\mathrm{a}, \mathrm{d}, \mathrm{a}, \mathrm{d}, \mathrm{a}, \mathrm{d}, \mathrm{a}, \mathrm{d}$ time sequence: $\quad \tau=0,2,3,4,5,8,9,16$

$$
w=(\sigma, \tau) ; \quad \operatorname{Untime}(w)=\sigma
$$

timed ω-word: infinite sequence plus time progresses without bound
Not valid: $1 / 2,3 / 4,7 / 8,15 / 16,31 / 32, \ldots$
Condition avoids so-called Zeno behavior
timed language: set of timed words
$L_{\text {bounded response time }}=\left\{(\sigma, \tau) \mid \sigma_{2 i-1}=\mathrm{a}, \sigma_{2 i}=\mathrm{d}, \tau_{2 i}<\tau_{2 i-1}+2\right\}$
Untime $\left(L_{\mathrm{b} \text { ounded }}\right.$ response time $)=\left\{(\mathrm{ad})^{\omega}\right\}$

Timed Automata (2)

timed automaton: same structure as FA adding
(i) finite number of real-valued clocks (all unity rate)
(ii) ability to reset clocks, test clock constraints when traversing edges

Notes

- s is a clock.
- !($(\mathrm{s}=2)$ means you must traverse the edge when s is equal to 2 .
- $\mathrm{s}:=0$ denotes setting the clock to 0 .
- You could add output to the edges.

Timed Automata (3)

Example 21 (Bounded Response Time [Alur-Dill, TCS, 1994])

Every "arrival" needs to "depart" within two seconds

Accepted word: (a, 0), (d, 1.5), (a, 2), (d, 3.5), (a, 4), (d, 5.5), \cdots
Not accepted: $\quad(\mathrm{a}, 0),(\mathrm{d}, 1.5),(\mathrm{a}, 2),(\mathrm{d}, 4.5), \cdots$
Not accepted: $\quad(\mathrm{a}, 0),(\mathrm{a}, 1.5), \cdots$

Example 22 (Switch with Delay [Maler-Yovine, 1996])

U, D switch "On", "Off"; models: transistors, relays, pneumatic valves

Timed Automata Theory ${ }^{7}$

clock constraint has form $\quad \chi:=(x \leq c)|(c \leq x)| \neg \chi_{0} \mid \chi_{1} \wedge \chi_{2}$
x, clock variable; c, rational constant; χ_{i}, valid clock constraints
Can build up more complicated tests:

$$
\begin{aligned}
(x=c) & \Longleftarrow(x \leq c) \wedge(c \leq x) \\
(x<c) & \Longleftarrow(x \leq c) \wedge \neg(x=c) \\
\chi_{1} \vee \chi_{2} & \Longleftarrow \neg\left(\neg \chi_{1} \wedge \neg \chi_{2}\right) \\
\text { True } & \Longleftarrow(x \leq c) \vee(c \leq x)
\end{aligned}
$$

Rich and beautiful theory:

- Closure properties, decidability results
- E.g., a timed automaton can be mimicked by an ω-automata (called a region automata because it operates on clock regions), leading to an effective decision problem for language emptiness

[^0]
Skewed-Clock Automata

timed automaton: $\dot{x_{i}}=1$ for all clocks and all locations skewed-clock automaton: $\dot{x}_{i}=k_{i}$ where each k_{i} is a rational number

Skewed-Clock Automaton

Equivalent Timed Automaton

Remark 1 Skewed-clock automata are equivalent to timed automata
Proof 1 Timed automaton is a special skewed-clock automaton wherein each $k_{i}=1$
For converse:

1. $k_{i}=0: x_{i}(t)$ remains constant and any conditions involving it are uniformly true or false (and thus may be reduced or removed using the rules of logic)
2. $k_{i} \neq 0$: Note that $x_{i}(t)=x_{i}(0)+k_{i} t$, so $x_{i}(t) / k_{i}=x_{i}(0) / k_{i}+t$ Thus, divide every constant that x_{i} is compared to by k_{i}, and then use associated clock $\tilde{x}_{i}=x_{i} / t$, with $\dot{\tilde{x}}_{i}=1$

Multi-Rate Automata

multi-rate automaton: $\dot{x}_{i}=k_{i, q}$ at location q (each $k_{i, q}$ is rational)

- Some vars. have the same rates in all states, e.g., w
- Some vars. are stopwatches (derivative either 0 or 1), e.g., x
- Not all dynamics change at every transition
- Parking meter has "non-linear" (non-TA) dynamics
- Skewed-clock automaton is special case with $k_{i, q}=k_{i}$ for all q

Zeno Behavior

Start in q_{1} at $(x, y)=(0,4)$
Events pile up at $t=4$

Multi-Rectangular Automata

Rectangle in $\mathbf{R}^{n}:\left[r_{1}, s_{1}\right] \times\left[r_{2}, s_{2}\right] \times \cdots \times\left[r_{n}, s_{n}\right]$
E.g., in $\mathbf{R}^{2}: \quad[0,1] \times[1,3] ; \quad[-\infty, \infty] \times[0,1] ; \quad[-2,-2] \times[3,5]$

Initial continuous states: $\operatorname{init}\left(q_{0}\right)$ is a rectangle
Continuous dynamics: the inclusions, flow (q), are rectangles
Guard conditions, guard (e): rectangles
Reset relations, reset(e): rectangle or identity ("id") for each variable

Initialized Multi-R— Automata

initialized multi-r— automaton: variable must be reset when traversing an edge if its dynamics changes while crossing that edge

Example: multi-rectangular automation on previous page
Counterexample: multi-rate automation w/Zeno behavior

Remark 2 (Henzinger-Kopke-Puri-Varaiya, 1998)

An initialized multi-rate automaton can be converted into a timed automaton
Proof 2 Idea: Use same trick as in Remark 1, as many times for each variable as it has different rates (the fact that the automaton is "initialized" is crucial)

Remark 3 (Henzinger-Kopke-Puri-Varaiya, 1998)
An initialized multi-rectangular automaton can be converted to an initialized multi-rate automaton (and hence a timed automaton)

Proof 3 Idea: replace each continuous variable, say x, with two variables, say x_{l} and x_{u}, that track lower and upper bounds on its value, resp.; then, invoke Remark 2

Linear Hybrid Automata (LHA)

Solutions are linear (not vector field!)

- discrete transition system on finite set, Q, of modes/locations (FA)
- finite number of real-valued vars., with "nice" rate/jump constraints ${ }^{8}$

Example 23 (Fischer's MEX Protocol [Henzinger et al.])

[^1]
LHA: Technical Definition (1)

Expressions over a set of variables Z

Linear Expression: linear combination of the vars. with rational coeffs.

$$
1 / 2 x+24 / 5 y, \quad z+5 t-6+y
$$

Linear Inequality: inequality between linear expressions

$$
x \geq 0, \quad 4+2 t \leq 2 / 3 x
$$

Convex Predicate: a finite conjunction ("and") of linear inequalities

$$
(x \geq 3) \& \&(3 y \geq z+5 / 3)
$$

Predicate: a finite disjunction ("or") of convex predicates

$$
((x \geq 3) \& \&(3 y \geq z+5 / 3)) \|((x \geq 0) \& \&(y<1))
$$

LHA: Technical Definition (2)

$$
\begin{aligned}
& X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \\
& \dot{X}=\left\{\dot{x}_{1}, \dot{x}_{2}, \ldots, \dot{x}_{n}\right\} \\
& X^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\} \\
& \text { continuous variables } \\
& \text { continuous updates }
\end{aligned}
$$

$\operatorname{init}(q)$ is a predicate on X
$\operatorname{inv}(q)$ is a convex predicate on X (the invariant for each q) flow (q) is a convex predicate on \dot{X}

$$
\dot{x} \in[10,20] \text { is equivalent to }(\dot{x} \geq 10) \& \&(\dot{x} \leq 20)
$$

$\operatorname{reset}(e)$ is a convex predicate on $X \cup X^{\prime}$

$$
1<=x^{\prime}, \quad x^{\prime}<2, \quad t^{\prime}>=x+3, \quad y^{\prime}=0
$$

If $i n v$, flow, reset are predicates (vs. convex predicates), we have "or" transitions involved
To handle this, split the states/edges to model the disjunctions

HyTech Train-Gate Example

[Source: Henzinger, Ho, Wong-Toi. HyTech Demo. embedded.eecs.berkeley.edu/research/hytech]

Non-Linear Hybrid Automata

Non-Linear: anything not linear by HyTech's definition
Two ways to deal with this

1. Easy way out!
(a) Reduce or transform your HA into a LHA: clock translation
(b) Approximate it by a LHA: linear phase portrait approximation
2. Harder: develop richer theory, comp. tools for a larger class of HA

$5=e^{2 c} \cdot 3$
$c=\ln (5 / 3) / 2$
Clock Translation

LPP Approx., Successive Refinement

Phase Portrait Approximation

Predator-Prey Equations: nonlinear (top) and linear (bottom)

Hybrid Automata

Phase Portraits
[Henzinger et al., Algorithmic Analysis of Nonlinear Hybrid Systems, IEEE Trans. Auto. Cont., 43(4):540-554, 1998]

Summary

- Broad Hybrid Systems Modeling Definition / Motivation
- The First Hybrid Dynamicist: Laplace
- Many Hybrid Systems Examples
- Mathematical Models of HS
- From Continuous Side:

ODEs + Discrete Phenomena
\Longrightarrow Hybrid Dynamical Systems

- From Discrete Side:

FA + Continuous Phenomena
\Longrightarrow Hybrid Automata

Going Further

Early HS models: Witsenhausen, Tavernini, Brockett, Nerode-Kohn, Antsaklis-StiverLemmon, Back et al. \longleftarrow all reviewed/compared in [Branicky, ScD Thesis, 1995]

Early related work:

- variable-structure systems (Utkin), systems with impulse effect, jump-linear systems, cell-to-cell mapping (Hsu), iterated function systems
- DES (Ramadge-Wonham), statecharts (Harel), reactive systems (Manna-Pnueli)

More recent HS frameworks:

- hybrid I/O automata: Lynch, Segala, Vaandrager, et al.
- linear complementarity: Heemels, van der Schaft, Schumacher, et al.
- mixed logical dynamical systems: Bemporad, Morari, et al.
- hybrid Petri nets, stochastic hybrid systems, ...

HS simulation, verification, specification languages/tools:

- Omola/Omsim; SHIFT, Ptolemy; Modelica; .
- HyTech, UPAAL, KRONOS, CheckMate, d/dt, Charon, PHAVer, HYSDEL, ... [wiki.grasp.upenn.edu/~graspdoc/wiki/hst]

References

[1] MS Branicky. Introduction to hybrid systems. In D Hristu-Varsakelis and WS Levine (eds), Handbook of Networked and Embedded Control Systems, Boston: Birkhauser, 2005
[2] MS Branicky. EECS 381/409: Discrete event and hybrid systems. Course notes, Case Western Reserve University, 1998-2005
[3] MS Branicky, VS Borkar, SK Mitter. A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Automatic Control, 43(1):31-45, 1998
[4] MS Branicky. Studies in Hybrid Systems: Modeling, Analysis, and Control. ScD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1995

These/other references available via dora.case.edu/msb

[^0]: ${ }^{7}$ Seminal reference: R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183-235, 1994

[^1]: ${ }^{8}$ So the reachable set at each step is a union of polyhedra [Alur et al., Theoretical Computer Science, 138:3-34, 1995]

