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Motivation
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Quantised sensors/actuators

,

The problem of dealing with quantised resources may arise in
practical applications in which a given technology limits the
control freedom. The quantiser is imposed.
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Communication constraints

Control of a large number of systems by a centralised controller:

quantisation is instrumental to an efficient communication
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Example Scenario

Example: Rendez-vous of multiple vehicles moving on a plane.
Each vehicle receives through a communication channel an
approximation of its position from a remotely positioned sensor.
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Uniform quantisation

• quantisation is often the result of truncation or parameters
round-off
◦ Digital to Analog conversion at the actuator with a finite resolution

(e.g., much coarser than the precision used in the machine).

• typical round-off conversion: u → q(u) = k for
u ∈ [k − 1

2 , k + 1
2 ] where ε is the quantiser’s resolution

◦ it is also possible to consider a scaled version: u → εqε(
u
ε
)

• this quantiser guarantees |qε(u) − u| < 0.5ε and it spans a
set of uniformly spaced points: u ∈ U = εZ
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Logarithmic quantisation
• Recently other schemes have been proposed to the

purpose of saving communication bandwidth
• One of the most appealing is logarithmic quantiser:

◦ when we are far off from the target we don’t need very much
precision

• A quantiser of this kind is characterised by: |q(u) − u| ≤ δ|z|

• this quantiser spans a set
u ∈ U = {±δnu0, δ > 1, n ∈ N, u0 > 0}
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Practical stabilisation of discrete-time linear system with
inputs/outputs in discrete sets (fixed quantisation)
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Problem formulation
• consider a discrete time system

x+ = Ax + Bu

y = q(x)
(1)

where u ∈ U and y ∈ Y

• assume that the discrete sets U and Y are given (for
instance they could be imposed by technological limitations
of sensors or actuators)

• we want to know:
1. is it possible to stabilise the system “in some sense”?
2. what kind of control law do we need to achieve

stabilisation?
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(X0, Ω)-Stability
• Back in 1990, Delschamps has proved that exact

stabilisation is not attainable
• a better suited notion for quantised control systems (QCS)

is practical stability
◦ The target “equilibrium point” is a set Ω, which is

guaranteed to be controlled invariant
◦ The state is assumed to initially lie in an outer set X0

◦ we want the trajectories never to leave X0 and
eventually fall into Ω

Hycon PhD school – p.10/45



Definitions
Consider a system A, b with inputs in the discrete (and possibly finite) set U

1. the set Ω is controlled invariant if ∀x ∈ Ω there exists u ∈ U s.t. x+ ∈ Ω

2. the system is (X0, Ω)-stable ∀x0 ∈ Ω there exists N and a sequence of
commands u0, u1, . . . , uN−1, s.t., 1) xk ∈ X0 and uk ∈ U for k = 1, ..., N , 2)
xN ∈ Ω

we aim at finding conditions that allow us to enforce the two conditions above.
The quantiser is identified by a triple (m, M, ρ) :
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The controller form
• Picasso and Bicchi (2002) have shown the convenience of:

◦ considering systems in standard controller form
coordinates

◦ considering hypercubic sets Qn(∆) – centred in the
origin and of size ∆ – for reachability and invariance

• using the control canonical coordinates the evolution of the
system is











x1

x2

. . .

xn











→











x2

x3

. . .
∑

αixi + u











(2)

Key observation: Except for the last component, the
evolution of the state is dictated by a shift register. Hence,
xi ∈ [−l,+l] → x+

i−1 ∈ [−l,+l] for i = 2, . . . , n
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Controlled invariance
• Theorem (Picasso and Bicchi-2002) Let A, b be in control

canonical form and αi be the coefficients of the
characteristic polynomial and let a =

∑

|αi|. Assume that
u ∈ U characterised by the triple (m,M, ρ) and

∑

|αi| > 1

Then Qn(∆) is controlled invariant iff:











m ≤ −∆
2 (a − 1)

M ≥ ∆
2 (a − 1)

ρ ≤ ∆
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Proof
• For the consideration above we have to take care only of the n − th coordinate

• Assume that xi(k) ∈ [−∆/2, ∆/2],∀i = 1, . . . , n

• The controlled invariance of the interval can be imposed as follows:

xn(k + 1) ∈ [−∆/2, ∆/2] ∀x(k) ∈ [−∆/2, ∆/2] ↔

∀x(k) ∈ [−∆/2, ∆/2]∃u ∈ Us.t.

−∆/2 ≤ xn(k + 1) =
∑

αixi(k) + u(k) ≤ ∆/2 ↔

−∆/2 −
∑

αixi(k) ≤ u(k) ≤ ∆/2 − αix(k)

• The segment of acceptable u(k) is ∆, so the quantiser grain has to be ε ≤ ∆

• Likewise, the maximum and minimum required values are, in turn,
m ≤ −∆

2
(a − 1), M ∆

2
(a − 1)
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The feedback law
• Recall that u(k) = −

∑

αixi is the deadbeat controller
• consider a fixed quantisation scheme with granularity ρ

• The controlled invariance of the interval can be imposed by
using:

−ρ/2 −
∑

αixi(k) ≤ u(k) ≤ ρ/2 − αix(k)

• we have got only one value ensuring invariance, and this is
the quantised version of the deadbeat controller
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Quantised deadbeat
The quantised dead beat yield a quantisation partition that
results into cutting Q(∆) by hyperplanes orthogonal to
[α0, . . . , αn−1]

T (each associated to a quantisation level).
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Convergence

• Theorem (Picasso and Bicchi-2002) Let A, b be in control
canonical form and αi be the coefficients of the
characteristic polynomial and let a =

∑

|αi|. Assume that
u ∈ U characterised by the triple (m,M, ρ) and

∑

|αi| > 1,
and let ∆0 > ∆1 > 0. Then the system is

(Qn(∆0) − Qn(∆1)-stabilisable if:











m ≤ −∆0

2 (a − 1)

M ≥ ∆0

2 (a − 1)

ρ ≤ ∆1
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Corollaries
• for a uniform quantiser of resolution ε, the system is

(Qn(∆) − Qn(ε))-stabilisable in at most n steps. The control
law attaining stabilisation is the quantised dead-beat:

u(x) =
⌊

P

αixi+ε/2
ε

⌋

ε

• consider for a logarithmic quantiser with symbols:

U = {0}
⋃

{±δnu0, s.t.n ∈ N, δ > 1, u0 > 0}.

If 1 < δ < ||A||∞+1
||A||∞−1 , then ∀∆0 > u0 the q.d.b. controller is

(Qn(∆0), Qn(u0))-stabilising.
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Extension 1: the case of quantised output

• Theorem (Picasso and Bicchi-2003) Consider the system:

8

>

>

<

>

>

:

x+ = Ax + Bu

y(t) = q(x(t))

u ∈ U ⊂ R, y ∈ Y ⊂ R
n

Let A, b be in control canonical form and αi be the coefficients of the characteristic
polynomial and let a =

P

|αi|. Assume that U characterised by the triple
(m, M, ρ) and

P

|αi| > 1, and let ∆0 > ∆1 > 0. Then Qn(∆) is invariant if:
8

>

>

<

>

>

:

m ≤ −∆0
2

(a − 1)

M ≥ ∆0
2

(a − 1)

ρ + H ≤ ∆1

where H is a computable parameter of the map q
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Extension 2: continuous time and bounded noise
• Consider a continuous time system:

˜̇x(t) = ax̃(t) + u(t) + w(t), x̃(0) = x0, w(t) ∈ [−w,w]

• The sampled-data equivalent is given by:

x(k + 1) = Φx(k) + Γu(k) + w(k)

where Φ = eaT , Γ =
∫ T
0 easds,

w(k) =
∫ (k+1)T
kT e(a(k+1)T−sw(s)ds

• Controlled invariant interval I(∆): for each point there must
exist a control value that makes the state confined in I(∆)
throughout the whole sampling period.
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Extension 2: continuous time and bounded noise
• Preliminary question: if an interval is controlled invariant for the discrete-time

equivalent is it so also for the continuous-time evolution (i.e., what does the state
do in the inter-sampling)?

• Lemma (Picasso, Palopoli et al.) 2004: Consider the first order system

˜̇x(t) = ax̃(t) + u(t) + w(t), x̃(0) = x0, w(t) ∈ [−w, w]

and assume that it is controlled by a ZoH with sampling period T . An interval
I(∆) = [−∆/2, ∆/2] is controlled invariant if and only if the discrete time
equivalent is.

• Proposition (Picasso, Palopoli et al.): consider the first order system above and
assume that u ∈ U . Then

1. if a < 0, I(∆) is controlled invariant iff ∆ ≥ min{ Γw
1−Φ

; Γ(ε + w)}

2. if a ≥ 0, I(∆) is controlled invariant iff ∆ ≥ Γ(ε + w)

• Remark: Because the system is affected by noise, the controlled invariance
problem is non-trivial also for the case of open loop stable pole.
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Control with communication constraints
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The problem

• So far we have studied the performance of a system when a fixed quantiser is in
place

• Another situation of fundamental importance is when quantisation is imposed by
communication constraints (e.g., in distributed control systems).

• in general, an encoder/decoder pair and a channel that we will assume noiseless
and loss-free, are used in the feedback

• the problem is: what is the minimum bitrate and an encoder/decoder pair to
achieve “practical” stabilisation?
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An illustrative example (Fagnani and Zampieri 2004)
Assume we want to stabilise a unidimensional vehicle by using a remote sensor. The
sensor transmits the position of the vehicle by means of a wireless channel.

Dynamics: x+ = x + u

How do we do it with a few bits?

We partition the state space in three areas, and we only say which area we are lying in.
Moreover, we enlarge or shrink the resolution of the quantiser.
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An illustrative example (Fagnani and Zampieri 2004)
• Sensor (Encoder):

(y, s+
s ) =

8

>

>

<

>

>

:

(yo, ss − 1) if |x| > δss

(y−, ss + 1) if − δss ≤ x < 0

(y+, ss + 1) if 0 < x ≤ δss

• Controller at the vehicle (Decoder):

(u, s+
v ) =

8

>

>

<

>

>

:

(0, sv − 1) if y = yo

(0.5δsv , sv + 1) if y = y−

(−0.5δsv , sv + 1) if y = y+

• At the initial instant we have to synchronise the zooming factors at the controller
and at the sensor: ss = sv.
◦ this relation will always be maintained because the channel is ideal

• The system is asymptotically stable if δ ≥ 0.5. Indeed, in this case, we can write:

|x| ≤ δs → |x+| ≤ 0.5δs ≤ δs+1 = δs+
. Therefore at very state we will shrink the

state.
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|x| ≤ δs → |x+| ≤ 0.5δs ≤ δs+1 = δs+
. Therefore at very state we will shrink the

state.
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Considerations
• The techniques shown earlier is very effective in reducing

the bitrate (in the example above we attain stabilisation
using two bits).

• Tatikonda and Mitter (Tat. Ph.D. Thesis 2000) proved that:
◦ A necessary condition for the stabilisation of a linear system is to

have a bitrate R ≥
P

λ(A) max {0, log |λ(A)|}

◦ A zooming technique like the one shown earlier attains this bound.

• The same technique is proposed in Liberzon and Brockett
(2000).

• One potential problem is that the encoder/decoder pair have
to maintain a perfectly synchronised state information (even
one simple packet loss could cause instability)

• Moreover the number of states of the encoder/decoder state
is infinite (albeit denumerable)
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Performance/complexity tradeoffs
• Fagnani and Zampieri (2003, 2004) propose to consider, in the general case, the

following problem: how can we relate the closed loop performance to the controller
complexity.

• System:
8

<

:

x+ = Ax + Bu

y = Gx

• Controller:
8

<

:

s+ = f(s, y)

u = k(s, y)

where, s ∈ S with S finite or denumerable, and the maps k(s, .) and f(s, .) are
quantised for each s, i.e., there exist two finite partitions Ks = {K1

s , . . . , KNs
s }

and Fs = {F 1
s , . . . , F Ns

s } of the R
p (p is the dimension of y) such that

◦ S

Kj
s = R

p,
S

F j
s = R

p

◦ k(s, .)m f(s, .) are constant respectively in each partition K j
s and F j

s
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Performance/complexity tradeoffs
• Performance parameters: Considering the problem of (W, V )-stability the we

consider:
◦ the contraction rate C = λ(W )/λ(V ), where λ() is the Lebesgue

measure
◦ the mean time T used for reducing the state from W to V

• Performance parameters:

◦ L number of states of the controller (utilised for the reduction form W
to V )

◦ N maximum number of the partitions Ks over s
◦ M maximum number of the partitions Fs over s
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Memoryless uniform quantisation
Recall that

• the system is (Qn(∆0) − Qn(∆1)-stabilisable if:

8

>

>

<

>

>

:

m ≤ −∆0
2

(a − 1)

M ≥ ∆0
2

(a − 1)

ρ ≤ ∆1

where

a =
P

αi. That means that the minimum number of levels is:

N =

‰

a
∆0

∆1

ı

=
l

aC
1
n

m

• the QDB stabilises the system in at most n steps.

It is possible to prove: E(T(Q∆0
,Q∆1

) = n − C−
1
n

1−C−1

1−C
−

1
n

Therefore, for large C, we get: N ≈ aC
1
n , T ≈ n which shows that for large C the

entrance time does not depend on C.
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Nesting
• Suppose you have three sets: W3 ⊆ W2 ⊆ W1

• We have seen how to reduce: W1 into W2 and W2 into W3

• We can do both! (i.e., use the first quantiser until we reach
W2 and then the second quantiser). The number of levels is
upper bounded by N1 + N2 where N1 is the number of
levels of the first quantiser and N2 is the number of levels of
the second quantiser.

• The computation of the mean entrance time is a little bit
more involved
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Nesting - I
• Fix ∆ > 0 and 1 > δ > 0 and assume that k(x) is the feedback that reduces Q∆

into Qδ∆, then ki(x) = δik(δ−1
i x) reduces Qδi∆ into Qδi+1∆. We can iterate this

construction (Say r times)

• suppose that we start in Q∆ with a uniformly distributed density. Then after the
system evolves under the quantised feedback for a while, it provably reaches a
steady state probability g.

• if T = Eg [T(Q∆,Qδ∆])] is the mean entrance time form Q∆ to Qδ∆, then the

mean entrance time of the r nested quantiser Tr ≈ T

• For the r-nested quantiser we get:

Nr ≈ r
a

δ
= arC

1
rn , Tr ≈ rT

• if we vary as a function of C, fixing δ, we get a logartihmic quantiser for which:

N ≈
a

δn

log C

log δ−1
, Tr ≈

T

n

log C

log δ−1

We saved a lot of levels, but this time the entrance time depends on the
compression rate.
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Saving quantisation levels
• Can we do any better in terms of levels?

• Consider a scalar system x+ = ax + u and assume that we have a controller that
makes an interval ∆ controlled invariant

• How do the trajectory move inside the invariant?

• If we choose the quantised control law appropriately we can inject an ergodic
behaviour for almost all initial points (Zampieri and Fagnani 2003). Thereby, by
simply making the V invariant we can have (V -W )-stability.
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Chaotic controller
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• using a chaotic scheme we can have a number of levels

N = 2 d|a|e

independent of the contraction rate!

• Clearly we must have time to wait:

T ≈ C log C
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An application Design Example
Picasso-Palopoli et al. 2004
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A motivating example
In a distributed control problem we can encounter both sources of quantisation:

• low cost sensors/actuators

• finite communication bandwidth on shared channels

Problems:

1. which quantisation level on each vehicle should we utilise?

2. how should we distribute the shared channel capacity
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Problem formulation

• Consider a set of linear and first order systems ˙̃xi = aixi + ui + wi

• Assumptions:

1. controls are quantised: ui ∈ εZ

2. the channel has a finite capacity R, which is statically allocated amongst the
different systems.

3. the noise is bounded: wi(t) ∈ [−w/2, w/2]

4. we use a fixed sampling period and piecewise constant control (Zoh);
moreover, the feedback law is memoryless

• Control goal: achieve practical ((I(∆i), I(δi))-stability) on each control loop,
where I(x) = [−x/2, x/2]

• Design parameters: Ri bitrate assigned to the i-th system, Sampling periods Ti,
control sets Ui ⊆ εiZ
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where I(x) = [−x/2, x/2]

• Design parameters: Ri bitrate assigned to the i-th system, Sampling periods Ti,
control sets Ui ⊆ εiZ
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The envisioned methodology - I
• Let ∆ and δ be vectors of reals such that the i-th system is

(I(∆i), I(δi))-stable; let ∆0 and δ0 respectively denote the
minimum and the maximum required values

• the design problem can be formulated as:

arg minR,T,∆,δ f(∆, δ)

subj. to

8

>

>

>

<

>

>

>

:

∆ ≥ ∆0

δ ≤ δ0
P

Ri ≤ R

(R,T, ∆, δ)feasible

• the analysis allows us to identify the minimum bitrate

R
(i)
min(∆i, δi) to attain the specification (∆i, δi). The problem

is simplified as

arg min∆,δ f(∆, δ)

subj. to

8

>

<

>

:

∆ ≥ ∆0

δ ≤ δ0
P

R
(i)
min

(∆i, δi) ≤ R
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The envisioned methodology - I
• we solve

arg min∆,δ f(∆, δ)

subj. to











∆ ≥ ∆0

δ ≤ δ0
∑

R
(i)
min(∆i, δi) ≤ R

by numeric optimisation techniques coming up with an
optimal solution (∆∗, δ∗)

• from the optimal bitrate R∗ we can reconstruct the optimal
sampling period T ∗

i and the optimal set of controls U∗
i
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Identifying Rmin(∆, δ)
• Consider a single plant (since we are dealing with scalar

plants we can refer the T -sampled discrete time equivalent)

• let l(∆, δ, T ) be the minimum cardinality of the control set
U ∈ εZ that attains (I(∆), I(δ))-stability

• inverting l(∆, δ, T ) ≤ 2dRT e, we get that
(R,T,∆, δ) is feasible iff R ≥ ρ(∆, δ, T ) = 1

T dlog2 l(∆, δ, T )e

• Rmin(∆, δ) can simply be found as

Rmin(∆, δ) = min
T

ρ(∆, δ, T )
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Explicit results
• The general problem can be numerically solved for certain classes of quantisation

policies (e.g., simulation of a logarithmic quantiser on a fixed one)

• If we consider only controlled invariance of the target set δ, there are stronger
(explicit) results

• For unstable plants:

Rmin(∆) =
a

log

 

1 + a∆

2ε
l

a∆+w
2ε

m

+w

!
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An example problem
As an example problem we considered the following

arg minδ |δ0 − δ|∞

subj. to
P

R
(i)
min(δi) ≤ R

Because Rmin is not analytic, the feasibility region is disconnected and not convex.

However, we can use an analytic lower bound of Rmin and come up with an
easy-to-compute lower bound of the problem.

Rmin(δ) =
a

log
“

1 + aδ
aδ+2(w+ε)

”
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An example problem - I
• Generally speaking, the lower bound can be found by

finding the zero of a non-linear equation.
• If wi

aiδi
� 1 the expression of the lower bound is particularly

neat:
δ∗h ≈

2
P

i
(wi+εi)

R−
P

ai

R∗
h ≈ ah + wh+εh

P

(wi+εi)
(R−

∑

ai)

• The exact solution can be found by using a Branch and
Bound scheme
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Conclusions
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Conclusions
• Control with quantisation has become a very active

research field in the last few years.
• In this talk we have briefly surveyed some results related to

the problem of stabilisation
• Other approaches consider quantisation from a more

closely information theoretical point of view (Delschamps,
Nair-Evans), or using model predictive control
(Picasso-Bemporad-Bicchi)

• Another very active research area is to use quantisation in
planning, verification and design problems
◦ lattice based analysis/synthesis for discrete-time nonholonomic

systems (Bicchi-Marigo-Piccoli)
◦ discrete bisimulations (Tabuada-Pappas)

• ...and we just scraped the surface!
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