

Jynamics

show

Stabilisation of Quantised Systems

A ROL JELL

<u>luizi Palopoli</u> Scuola Superiore S. Anna – Pisa, Italy

luigi@gandalf.sssup.it

Hycon PhD school Stabilisation of quantised systems

Luigi Palopoli

University of Trento - Italy

Motivation

Quantised sensors/actuators

The problem of dealing with quantised resources may arise in practical applications in which a given technology limits the control freedom. The quantiser is imposed.

7

Control of a large number of systems by a centralised controller: quantisation is instrumental to an efficient communication

Example: Rendez-vous of multiple vehicles moving on a plane. Each vehicle receives through a communication channel an approximation of its position from a remotely positioned sensor.

- quantisation is often the result of truncation or parameters round-off
 - Digital to Analog conversion at the actuator with a finite resolution (e.g., much coarser than the precision used in the machine).
- typical round-off conversion: $u \to q(u) = k$ for $u \in [k \frac{1}{2}, k + \frac{1}{2}]$ where ϵ is the quantiser's resolution

• it is also possible to consider a scaled version: $u \to \epsilon q_{\epsilon}(\frac{u}{\epsilon})$

• this quantiser guarantees $|q_{\epsilon}(u) - u| < 0.5\epsilon$ and it spans a set of uniformly spaced points: $u \in U = \epsilon \mathbb{Z}$

Logarithmic quantisation

- Recently other schemes have been proposed to the purpose of saving communication bandwidth
- One of the most appealing is logarithmic quantiser:
 - when we are far off from the target we don't need very much precision
- A quantiser of this kind is characterised by: $|q(u) u| \le \delta |z|$
- this quantiser spans a set $u \in \mathcal{U} = \{\pm \delta^n u_0, \delta > 1, n \in \mathbb{N}, u_0 > 0\}$

Practical stabilisation of discrete-time linear system with inputs/outputs in discrete sets (fixed quantisation)

consider a discrete time system

$$\begin{aligned} x^+ &= Ax + Bu \\ y &= q(x) \end{aligned} \tag{1}$$

where $u \in \mathcal{U}$ and $y \in \mathcal{Y}$

- assume that the discrete sets U and Y are given (for instance they could be imposed by technological limitations of sensors or actuators)
- we want to know:
 - 1. is it possible to stabilise the system "in some sense"?
 - 2. what kind of control law do we need to achieve stabilisation?

(X_0, Ω) -Stability

- Back in 1990, Delschamps has proved that exact stabilisation is not attainable
- a better suited notion for quantised control systems (QCS) is practical stability
 - The target "equilibrium point" is a set Ω , which is guaranteed to be controlled invariant
 - The state is assumed to initially lie in an outer set X_0
 - $^{\circ}\,$ we want the trajectories never to leave X_0 and eventually fall into Ω

Consider a system A, b with inputs in the discrete (and possibly finite) set \mathcal{U}

- 1. the set Ω is controlled invariant if $\forall x \in \Omega$ there exists $u \in \mathcal{U}$ s.t. $x^+ \in \Omega$
- 2. the system is (X_0, Ω) -stable $\forall x_0 \in \Omega$ there exists N and a sequence of commands $u_0, u_1, \ldots, u_{N-1}$, s.t., 1) $x_k \in X_0$ and $u_k \in \mathcal{U}$ for k = 1, ..., N, 2) $x_N \in \Omega$

we aim at finding conditions that allow us to enforce the two conditions above. The quantiser is identified by a triple (m, M, ρ) :

The controller form

- Picasso and Bicchi (2002) have shown the convenience of:
 - considering systems in standard controller form coordinates
 - considering hypercubic sets $Q_n(\Delta)$ centred in the origin and of size Δ for reachability and invariance
- using the control canonical coordinates the evolution of the system is

$$\begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \rightarrow \begin{bmatrix} x_2 \\ x_3 \\ \dots \\ \sum \alpha_i x_i + u \end{bmatrix}$$
(2)

Key observation: Except for the last component, the evolution of the state is dictated by a shift register. Hence, $x_i \in [-l, +l] \rightarrow x_{i-1}^+ \in [-l, +l]$ for i = 2, ..., n

• Theorem (Picasso and Bicchi-2002) Let A, b be in control canonical form and α_i be the coefficients of the characteristic polynomial and let $a = \sum |\alpha_i|$. Assume that $u \in \mathcal{U}$ characterised by the triple (m, M, ρ) and $\sum |\alpha_i| > 1$

Then $Q_n(\Delta)$ is controlled invariant iff: $\begin{cases} m \leq -\frac{\Delta}{2}(a-1) \\ M \geq \frac{\Delta}{2}(a-1) \\ \rho < \Delta \end{cases}$

• For the consideration above we have to take care only of the n - th coordinate

- For the consideration above we have to take care only of the n th coordinate
- Assume that $x_i(k) \in [-\Delta/2, \Delta/2], \forall i = 1, ..., n$

- For the consideration above we have to take care only of the n th coordinate
- Assume that $x_i(k) \in [-\Delta/2, \Delta/2], \forall i = 1, ..., n$
- The controlled invariance of the interval can be imposed as follows:

$$\begin{aligned} x_n(k+1) &\in \left[-\Delta/2, \Delta/2\right] \forall x(k) \in \left[-\Delta/2, \Delta/2\right] \leftrightarrow \\ \forall x(k) \in \left[-\Delta/2, \Delta/2\right] \exists u \in \mathcal{U} s.t. \\ -\Delta/2 &\leq x_n(k+1) = \sum \alpha_i x_i(k) + u(k) \leq \Delta/2 \leftrightarrow \\ -\Delta/2 - \sum \alpha_i x_i(k) \leq u(k) \leq \Delta/2 - \alpha_i x(k) \end{aligned}$$

- For the consideration above we have to take care only of the n th coordinate
- Assume that $x_i(k) \in [-\Delta/2, \Delta/2], \forall i = 1, ..., n$
- The controlled invariance of the interval can be imposed as follows:

$$\begin{aligned} x_n(k+1) &\in \left[-\Delta/2, \Delta/2\right] \forall x(k) \in \left[-\Delta/2, \Delta/2\right] \leftrightarrow \\ \forall x(k) \in \left[-\Delta/2, \Delta/2\right] \exists u \in \mathcal{U} s.t. \\ -\Delta/2 &\leq x_n(k+1) = \sum \alpha_i x_i(k) + u(k) \leq \Delta/2 \leftrightarrow \\ -\Delta/2 - \sum \alpha_i x_i(k) \leq u(k) \leq \Delta/2 - \alpha_i x(k) \end{aligned}$$

• The segment of acceptable u(k) is Δ , so the quantiser grain has to be $\epsilon \leq \Delta$

- For the consideration above we have to take care only of the n th coordinate
- Assume that $x_i(k) \in [-\Delta/2, \Delta/2], \forall i = 1, ..., n$
- The controlled invariance of the interval can be imposed as follows:

$$\begin{aligned} x_n(k+1) &\in \left[-\Delta/2, \Delta/2\right] \forall x(k) \in \left[-\Delta/2, \Delta/2\right] \leftrightarrow \\ \forall x(k) &\in \left[-\Delta/2, \Delta/2\right] \exists u \in \mathcal{U}s.t. \\ -\Delta/2 &\leq x_n(k+1) = \sum \alpha_i x_i(k) + u(k) \leq \Delta/2 \leftrightarrow \\ -\Delta/2 - \sum \alpha_i x_i(k) \leq u(k) \leq \Delta/2 - \alpha_i x(k) \end{aligned}$$

- The segment of acceptable u(k) is Δ , so the quantiser grain has to be $\epsilon \leq \Delta$
- Likewise, the maximum and minimum required values are, in turn, $m \leq -\frac{\Delta}{2}(a-1), M\frac{\Delta}{2}(a-1)$

The feedback law

- Recall that $u(k) = -\sum \alpha_i x_i$ is the *deadbeat* controller
- consider a fixed quantisation scheme with granularity ρ
- The controlled invariance of the interval can be imposed by using:

$$-\rho/2 - \sum \alpha_i x_i(k) \le u(k) \le \rho/2 - \alpha_i x(k)$$

 we have got only one value ensuring invariance, and this is the quantised version of the deadbeat controller

The quantised dead beat yield a quantisation partition that results into cutting $Q(\Delta)$ by hyperplanes orthogonal to $[\alpha_0, \ldots, \alpha_{n-1}]^T$ (each associated to a quantisation level).

• Theorem (Picasso and Bicchi-2002) Let A, b be in control canonical form and α_i be the coefficients of the characteristic polynomial and let $a = \sum |\alpha_i|$. Assume that $u \in \mathcal{U}$ characterised by the triple (m, M, ρ) and $\sum |\alpha_i| > 1$, and let $\Delta_0 > \Delta_1 > 0$. Then the system is

$$(Q_n(\Delta_0) - Q_n(\Delta_1))$$
-stabilisable if:
$$\begin{cases} m \leq -\frac{\Delta_0}{2}(a-1) \\ M \geq \frac{\Delta_0}{2}(a-1) \\ \rho \leq \Delta_1 \end{cases}$$

• for a uniform quantiser of resolution ϵ , the system is $(Q_n(\Delta) - Q_n(\epsilon))$ -stabilisable in *at most* n steps. The control law attaining stabilisation is the quantised dead-beat:

$$u(x) = \left\lfloor \frac{\sum \alpha_i x_i + \epsilon/2}{\epsilon} \right\rfloor \epsilon$$

• consider for a logarithmic quantiser with symbols:

$$\mathcal{U} = \{0\} \bigcup \{\pm \delta^n u_0, \, s.t.n \in \mathbb{N}, \, \delta > 1, \, u_0 > 0\}.$$

If $1 < \delta < \frac{||A||_{\infty}+1}{||A||_{\infty}-1}$, then $\forall \Delta_0 > u_0$ the q.d.b. controller is $(Q_n(\Delta_0), Q_n(u_0))$ -stabilising.

• Theorem (Picasso and Bicchi-2003) Consider the system:

$$\begin{cases} x^+ = Ax + Bu \\ y(t) = q(x(t)) \\ u \in \mathcal{U} \subset \mathbb{R}, \ y \in \mathcal{Y} \subset \mathbb{R}^n \end{cases}$$

Let A, b be in control canonical form and α_i be the coefficients of the characteristic polynomial and let $a = \sum |\alpha_i|$. Assume that \mathcal{U} characterised by the triple (m, M, ρ) and $\sum |\alpha_i| > 1$, and let $\Delta_0 > \Delta_1 > 0$. Then $Q_n(\Delta)$ is invariant if: $\begin{cases} m \leq -\frac{\Delta_0}{2}(a-1) \\ M \geq \frac{\Delta_0}{2}(a-1) \\ \rho + H \leq \Delta_1 \end{cases}$ where H is a computable parameter of the map q

• Consider a continuous time system:

$$\tilde{\dot{x}}(t) = a\tilde{x}(t) + u(t) + w(t), \tilde{x}(0) = x_0, w(t) \in [-w, w]$$

• Consider a continuous time system:

$$\tilde{\dot{x}}(t) = a\tilde{x}(t) + u(t) + w(t), \tilde{x}(0) = x_0, w(t) \in [-w, w]$$

• The sampled-data equivalent is given by:

$$x(k+1) = \Phi x(k) + \Gamma u(k) + w(k)$$

where
$$\Phi = e^{aT}$$
, $\Gamma = \int_0^T e^{as} ds$,
 $w(k) = \int_{kT}^{(k+1)T} e^{(a(k+1)T-s}w(s)ds$

• Consider a continuous time system:

$$\tilde{\dot{x}}(t) = a\tilde{x}(t) + u(t) + w(t), \tilde{x}(0) = x_0, w(t) \in [-w, w]$$

• The sampled-data equivalent is given by:

$$x(k+1) = \Phi x(k) + \Gamma u(k) + w(k)$$

where
$$\Phi = e^{aT}$$
, $\Gamma = \int_0^T e^{as} ds$,
 $w(k) = \int_{kT}^{(k+1)T} e^{(a(k+1)T-s}w(s)ds$

• Controlled invariant interval $I(\Delta)$: for each point there must exist a control value that makes the state confined in $I(\Delta)$ throughout the whole sampling period.

Preliminary question: if an interval is controlled invariant for the discrete-time equivalent is it so also for the continuous-time evolution (i.e., what does the state do in the inter-sampling)?

- Preliminary question: if an interval is controlled invariant for the discrete-time equivalent is it so also for the continuous-time evolution (i.e., what does the state do in the inter-sampling)?
- Lemma (Picasso, Palopoli et al.) 2004: Consider the *first* order system

$$\tilde{\dot{x}}(t) = a\tilde{x}(t) + u(t) + w(t), \tilde{x}(0) = x_0, w(t) \in [-w, w]$$

and assume that it is controlled by a ZoH with sampling period T. An interval $I(\Delta) = [-\Delta/2, \Delta/2]$ is controlled invariant if and only if the discrete time equivalent is.

- Preliminary question: if an interval is controlled invariant for the discrete-time equivalent is it so also for the continuous-time evolution (i.e., what does the state do in the inter-sampling)?
- Lemma (Picasso, Palopoli et al.) 2004: Consider the *first* order system

$$\tilde{\dot{x}}(t) = a\tilde{x}(t) + u(t) + w(t), \tilde{x}(0) = x_0, w(t) \in [-w, w]$$

and assume that it is controlled by a ZoH with sampling period T. An interval $I(\Delta) = [-\Delta/2, \Delta/2]$ is controlled invariant if and only if the discrete time equivalent is.

Proposition (Picasso, Palopoli et al.): consider the first order system above and assume that $u \in \mathcal{U}$. Then

- Preliminary question: if an interval is controlled invariant for the discrete-time equivalent is it so also for the continuous-time evolution (i.e., what does the state do in the inter-sampling)?
- Lemma (Picasso, Palopoli et al.) 2004: Consider the *first* order system

$$\tilde{\dot{x}}(t) = a\tilde{x}(t) + u(t) + w(t), \tilde{x}(0) = x_0, w(t) \in [-w, w]$$

and assume that it is controlled by a ZoH with sampling period T. An interval $I(\Delta) = [-\Delta/2, \Delta/2]$ is controlled invariant if and only if the discrete time equivalent is.

Proposition (Picasso, Palopoli et al.): consider the first order system above and assume that $u \in \mathcal{U}$. Then

1. if a < 0, $I(\Delta)$ is controlled invariant iff $\Delta \ge \min\{\frac{\Gamma w}{1-\Phi}; \Gamma(\epsilon+w)\}$

- Preliminary question: if an interval is controlled invariant for the discrete-time equivalent is it so also for the continuous-time evolution (i.e., what does the state do in the inter-sampling)?
- Lemma (Picasso, Palopoli et al.) 2004: Consider the *first* order system

$$\tilde{\dot{x}}(t) = a\tilde{x}(t) + u(t) + w(t), \tilde{x}(0) = x_0, w(t) \in [-w, w]$$

and assume that it is controlled by a ZoH with sampling period T. An interval $I(\Delta) = [-\Delta/2, \Delta/2]$ is controlled invariant if and only if the discrete time equivalent is.

- Proposition (Picasso, Palopoli et al.): consider the first order system above and assume that $u \in \mathcal{U}$. Then
 - 1. if a < 0, $I(\Delta)$ is controlled invariant iff $\Delta \ge \min\{\frac{\Gamma w}{1-\Phi}; \Gamma(\epsilon+w)\}$
 - 2. if $a \ge 0$, $I(\Delta)$ is controlled invariant iff $\Delta \ge \Gamma(\epsilon + w)$

- Preliminary question: if an interval is controlled invariant for the discrete-time equivalent is it so also for the continuous-time evolution (i.e., what does the state do in the inter-sampling)?
- Lemma (Picasso, Palopoli et al.) 2004: Consider the *first* order system

$$\tilde{\dot{x}}(t) = a\tilde{x}(t) + u(t) + w(t), \tilde{x}(0) = x_0, w(t) \in [-w, w]$$

and assume that it is controlled by a ZoH with sampling period T. An interval $I(\Delta) = [-\Delta/2, \Delta/2]$ is controlled invariant if and only if the discrete time equivalent is.

- **Proposition (Picasso, Palopoli et al.)**: consider the first order system above and assume that $u \in \mathcal{U}$. Then
 - 1. if a < 0, $I(\Delta)$ is controlled invariant iff $\Delta \ge \min\{\frac{\Gamma w}{1-\Phi}; \Gamma(\epsilon+w)\}$

2. if $a \ge 0$, $I(\Delta)$ is controlled invariant iff $\Delta \ge \Gamma(\epsilon + w)$

• **Remark**: Because the system is affected by noise, the controlled invariance problem is non-trivial also for the case of open loop stable pole.

Control with communication constraints

- So far we have studied the performance of a system when a fixed quantiser is in place
- Another situation of fundamental importance is when quantisation is imposed by communication constraints (e.g., in distributed control systems).
- in general, an encoder/decoder pair and a channel that we will assume noiseless and loss-free, are used in the feedback
- the problem is: what is the minimum bitrate and an encoder/decoder pair to achieve "practical" stabilisation?

An illustrative example (Fagnani and Zampieri 2004)

Assume we want to stabilise a unidimensional vehicle by using a remote sensor. The sensor transmits the position of the vehicle by means of a wireless channel.

Dynamics: $x^+ = x + u$ How do we do it with a few bits?
Assume we want to stabilise a unidimensional vehicle by using a remote sensor. The sensor transmits the position of the vehicle by means of a wireless channel.

Dynamics: $x^+ = x + u$

How do we do it with a few bits?

We partition the state space in three areas, and we only say which area we are lying in.

Moreover, we enlarge or shrink the resolution of the quantiser.

Vehicle in zoom area: sensor zoom in, controller move toward the target with velocity proportional to the zooming factor

• Sensor (Encoder):

$$(y, s_s^+) = \begin{cases} (y_o, s_s - 1) & \text{if } |x| > \delta^{s_s} \\ (y_-, s_s + 1) & \text{if } - \delta^{s_s} \le x < 0 \\ (y_+, s_s + 1) & \text{if } 0 < x \le \delta^{s_s} \end{cases}$$

Sensor (Encoder):

$$(y, s_s^+) = \begin{cases} (y_o, s_s - 1) & \text{if } |x| > \delta^{s_s} \\ (y_-, s_s + 1) & \text{if } -\delta^{s_s} \le x < 0 \\ (y_+, s_s + 1) & \text{if } 0 < x \le \delta^{s_s} \end{cases}$$

$$(u, s_v^+) = \begin{cases} (0, s_v - 1) & \text{if } y = y_o \\ (0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_- \\ (-0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_+ \end{cases}$$

Sensor (Encoder):

$$(y, s_s^+) = \begin{cases} (y_o, s_s - 1) & \text{if } |x| > \delta^{s_s} \\ (y_-, s_s + 1) & \text{if } -\delta^{s_s} \le x < 0 \\ (y_+, s_s + 1) & \text{if } 0 < x \le \delta^{s_s} \end{cases}$$

• Controller at the vehicle (Decoder):

$$(u, s_v^+) = \begin{cases} (0, s_v - 1) & \text{if } y = y_o \\ (0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_- \\ (-0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_+ \end{cases}$$

• At the initial instant we have to synchronise the zooming factors at the controller and at the sensor: $s_s = s_v$.

Sensor (Encoder):

$$(y, s_s^+) = \begin{cases} (y_o, s_s - 1) & \text{if } |x| > \delta^{s_s} \\ (y_-, s_s + 1) & \text{if } -\delta^{s_s} \le x < 0 \\ (y_+, s_s + 1) & \text{if } 0 < x \le \delta^{s_s} \end{cases}$$

$$(u, s_v^+) = \begin{cases} (0, s_v - 1) & \text{if } y = y_o \\ (0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_- \\ (-0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_+ \end{cases}$$

- At the initial instant we have to synchronise the zooming factors at the controller and at the sensor: $s_s = s_v$.
 - this relation will always be maintained because the channel is ideal

Sensor (Encoder):

$$(y, s_s^+) = \begin{cases} (y_o, s_s - 1) & \text{if } |x| > \delta^{s_s} \\ (y_-, s_s + 1) & \text{if } -\delta^{s_s} \le x < 0 \\ (y_+, s_s + 1) & \text{if } 0 < x \le \delta^{s_s} \end{cases}$$

$$(u, s_v^+) = \begin{cases} (0, s_v - 1) & \text{if } y = y_o \\ (0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_- \\ (-0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_+ \end{cases}$$

- At the initial instant we have to synchronise the zooming factors at the controller and at the sensor: $s_s = s_v$.
 - this relation will always be maintained because the channel is ideal
- The system is asymptotically stable if $\delta \ge 0.5$. Indeed, in this case, we can write: $|x| \le \delta^s \rightarrow |x^+| \le 0.5\delta^s \le \delta^{s+1} = {\delta^s}^+$. Therefore at very state we will shrink the state.

Sensor (Encoder):

$$(y, s_s^+) = \begin{cases} (y_o, s_s - 1) & \text{if } |x| > \delta^{s_s} \\ (y_-, s_s + 1) & \text{if } -\delta^{s_s} \le x < 0 \\ (y_+, s_s + 1) & \text{if } 0 < x \le \delta^{s_s} \end{cases}$$

$$(u, s_v^+) = \begin{cases} (0, s_v - 1) & \text{if } y = y_o \\ (0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_- \\ (-0.5\delta^{s_v}, s_v + 1) & \text{if } y = y_+ \end{cases}$$

- At the initial instant we have to synchronise the zooming factors at the controller and at the sensor: $s_s = s_v$.
 - this relation will always be maintained because the channel is ideal
- The system is asymptotically stable if $\delta \ge 0.5$. Indeed, in this case, we can write: $|x| \le \delta^s \rightarrow |x^+| \le 0.5\delta^s \le \delta^{s+1} = {\delta^s}^+$. Therefore at very state we will shrink the state.

• The techniques shown earlier is very effective in reducing the bitrate (in the example above we attain stabilisation using two bits).

- The techniques shown earlier is very effective in reducing the bitrate (in the example above we attain stabilisation using two bits).
- Tatikonda and Mitter (Tat. Ph.D. Thesis 2000) proved that:

- The techniques shown earlier is very effective in reducing the bitrate (in the example above we attain stabilisation using two bits).
- Tatikonda and Mitter (Tat. Ph.D. Thesis 2000) proved that:
 - A necessary condition for the stabilisation of a linear system is to have a bitrate $R \ge \sum_{\lambda(A)} \max \{0, \log |\lambda(A)|\}$

- The techniques shown earlier is very effective in reducing the bitrate (in the example above we attain stabilisation using two bits).
- Tatikonda and Mitter (Tat. Ph.D. Thesis 2000) proved that:
 - A necessary condition for the stabilisation of a linear system is to have a bitrate $R \ge \sum_{\lambda(A)} \max\{0, \log |\lambda(A)|\}$
 - A zooming technique like the one shown earlier attains this bound.

- The techniques shown earlier is very effective in reducing the bitrate (in the example above we attain stabilisation using two bits).
- Tatikonda and Mitter (Tat. Ph.D. Thesis 2000) proved that:
 - A necessary condition for the stabilisation of a linear system is to have a bitrate $R \ge \sum_{\lambda(A)} \max \{0, \log |\lambda(A)|\}$
 - A zooming technique like the one shown earlier attains this bound.
- The same technique is proposed in Liberzon and Brockett (2000).

- The techniques shown earlier is very effective in reducing the bitrate (in the example above we attain stabilisation using two bits).
- Tatikonda and Mitter (Tat. Ph.D. Thesis 2000) proved that:
 - A necessary condition for the stabilisation of a linear system is to have a bitrate $R \ge \sum_{\lambda(A)} \max \{0, \log |\lambda(A)|\}$
 - A zooming technique like the one shown earlier attains this bound.
- The same technique is proposed in Liberzon and Brockett (2000).
- One potential problem is that the encoder/decoder pair have to maintain a perfectly synchronised state information (even one simple packet loss could cause instability)

- The techniques shown earlier is very effective in reducing the bitrate (in the example above we attain stabilisation using two bits).
- Tatikonda and Mitter (Tat. Ph.D. Thesis 2000) proved that:
 - A necessary condition for the stabilisation of a linear system is to have a bitrate $R \ge \sum_{\lambda(A)} \max \{0, \log |\lambda(A)|\}$
 - A zooming technique like the one shown earlier attains this bound.
- The same technique is proposed in Liberzon and Brockett (2000).
- One potential problem is that the encoder/decoder pair have to maintain a perfectly synchronised state information (even one simple packet loss could cause instability)
- Moreover the number of states of the encoder/decoder state is infinite (albeit denumerable)

Performance/complexity tradeoffs

- Fagnani and Zampieri (2003, 2004) propose to consider, in the general case, the following problem: how can we relate the closed loop performance to the controller complexity.
- System:

$$\begin{cases} x^+ = Ax + Bu\\ y = Gx \end{cases}$$

• Controller:

$$\begin{cases} s^+ = f(s, y) \\ u = k(s, y) \end{cases}$$

where, $s \in S$ with S finite or denumerable, and the maps k(s, .) and f(s, .) are quantised for each s, i.e., there exist two finite partitions $\mathcal{K}_s = \{K_s^1, \ldots, K_s^{N_s}\}$ and $\mathcal{F}_s = \{F_s^1, \ldots, F_s^{N_s}\}$ of the \mathbb{R}^p (p is the dimension of y) such that $(\bigcup K_s^j = \mathbb{R}^p, \bigcup F_s^j = \mathbb{R}^p)$

° k(s,.)m f(s,.) are constant respectively in each partition K_s^j and F_s^j

Performance/complexity tradeoffs

- Performance parameters: Considering the problem of (W, V)-stability the we consider:
 - $^{\rm O}~$ the contraction rate $C=\lambda(W)/\lambda(V),$ where $\lambda()$ is the Lebesgue measure
 - $^{\circ}$ the mean time T used for reducing the state from W to V
- Performance parameters:
 - L number of states of the controller (utilised for the reduction form W to V)
 - $^{\circ}~N$ maximum number of the partitions \mathcal{K}_s over s
 - $^{\circ}~M$ maximum number of the partitions \mathcal{F}_s over s

Memoryless uniform quantisation Recall that

the system is $(Q_n(\Delta_0) - Q_n(\Delta_1))$ -stabilisable if: $\begin{cases} m \leq -\frac{\Delta_0}{2}(a-1) \\ M \geq \frac{\Delta_0}{2}(a-1) \\ \rho \leq \Delta_1 \end{cases}$ where

 $a = \sum \alpha_i$. That means that the minimum number of levels is:

$$N = \left\lceil a \frac{\Delta_0}{\Delta_1} \right\rceil = \left\lceil a C^{\frac{1}{n}} \right\rceil$$

• the QDB stabilises the system in at most n steps.

Memoryless uniform quantisation Recall that

• the system is
$$(Q_n(\Delta_0) - Q_n(\Delta_1))$$
-stabilisable if:
$$\begin{cases} m \leq -\frac{\Delta_0}{2}(a-1) \\ M \geq \frac{\Delta_0}{2}(a-1) \\ \rho \leq \Delta_1 \end{cases}$$
 where

 $a = \sum \alpha_i$. That means that the minimum number of levels is:

$$N = \left\lceil a \frac{\Delta_0}{\Delta_1} \right\rceil = \left\lceil a C^{\frac{1}{n}} \right\rceil$$

• the QDB stabilises the system in at most n steps.

It is possible to prove: $E(T_{(Q_{\Delta_0},Q_{\Delta_1})} = n - C^{-\frac{1}{n}} \frac{1 - C^{-1}}{1 - C^{-\frac{1}{n}}}$

Memoryless uniform quantisation Recall that

the system is
$$(Q_n(\Delta_0) - Q_n(\Delta_1))$$
-stabilisable if:
$$\begin{cases} m \leq -\frac{\Delta_0}{2}(a-1) \\ M \geq \frac{\Delta_0}{2}(a-1) \\ \rho \leq \Delta_1 \end{cases}$$
 where

 $a = \sum \alpha_i$. That means that the minimum number of levels is:

$$N = \left\lceil a \frac{\Delta_0}{\Delta_1} \right\rceil = \left\lceil a C^{\frac{1}{n}} \right\rceil$$

• the QDB stabilises the system in at most n steps.

It is possible to prove: $E(T_{(Q_{\Delta_0},Q_{\Delta_1})} = n - C^{-\frac{1}{n}} \frac{1 - C^{-1}}{1 - C^{-\frac{1}{n}}}$

Therefore, for large C, we get: $N \approx aC^{\frac{1}{n}}$, $T \approx n$ which shows that for large C the

entrance time does not depend on C.

• Suppose you have three sets: $W_3 \subseteq W_2 \subseteq W_1$

- Suppose you have three sets: $W_3 \subseteq W_2 \subseteq W_1$
- We have seen how to reduce: W_1 into W_2 and W_2 into W_3

- Suppose you have three sets: $W_3 \subseteq W_2 \subseteq W_1$
- We have seen how to reduce: W_1 into W_2 and W_2 into W_3
- We can do both! (i.e., use the first quantiser until we reach W_2 and then the second quantiser). The number of levels is upper bounded by $N_1 + N_2$ where N_1 is the number of levels of the first quantiser and N_2 is the number of levels of the second quantiser.

- Suppose you have three sets: $W_3 \subseteq W_2 \subseteq W_1$
- We have seen how to reduce: W_1 into W_2 and W_2 into W_3
- We can do both! (i.e., use the first quantiser until we reach W_2 and then the second quantiser). The number of levels is upper bounded by $N_1 + N_2$ where N_1 is the number of levels of the first quantiser and N_2 is the number of levels of the second quantiser.
- The computation of the mean entrance time is a little bit more involved

Fix $\Delta > 0$ and $1 > \delta > 0$ and assume that k(x) is the feedback that reduces Q_{Δ} into $Q_{\delta\Delta}$, then $k_i(x) = \delta^i k(\delta_i^{-1}x)$ reduces $Q_{\delta^i\Delta}$ into $Q_{\delta^i+1\Delta}$. We can iterate this construction (Say *r* times)

• Fix $\Delta > 0$ and $1 > \delta > 0$ and assume that k(x) is the feedback that reduces Q_{Δ} into $Q_{\delta\Delta}$, then $k_i(x) = \delta^i k(\delta_i^{-1}x)$ reduces $Q_{\delta^i\Delta}$ into $Q_{\delta^i+1\Delta}$. We can iterate this construction (Say *r* times)

• suppose that we start in Q_{Δ} with a uniformly distributed density. Then after the system evolves under the quantised feedback for a while, it provably reaches a steady state probability \overline{g} .

- Fix $\Delta > 0$ and $1 > \delta > 0$ and assume that k(x) is the feedback that reduces Q_{Δ} into $Q_{\delta\Delta}$, then $k_i(x) = \delta^i k(\delta_i^{-1}x)$ reduces $Q_{\delta^i\Delta}$ into $Q_{\delta^i+1\Delta}$. We can iterate this construction (Say *r* times)
- suppose that we start in Q_{Δ} with a uniformly distributed density. Then after the system evolves under the quantised feedback for a while, it provably reaches a steady state probability \overline{g} .
- if $\overline{T} = E_{\overline{g}}[T_{(Q_{\Delta},Q_{\delta\Delta}])}]$ is the mean entrance time form Q_{Δ} to $Q_{\delta\Delta}$, then the mean entrance time of the r nested quantiser $T_r \approx \overline{T}$

- Fix $\Delta > 0$ and $1 > \delta > 0$ and assume that k(x) is the feedback that reduces Q_{Δ} into $Q_{\delta\Delta}$, then $k_i(x) = \delta^i k(\delta_i^{-1}x)$ reduces $Q_{\delta^i\Delta}$ into $Q_{\delta^i+1\Delta}$. We can iterate this construction (Say *r* times)
- suppose that we start in Q_{Δ} with a uniformly distributed density. Then after the system evolves under the quantised feedback for a while, it provably reaches a steady state probability \overline{g} .
- if $\overline{T} = E_{\overline{g}}[T_{(Q_{\Delta},Q_{\delta\Delta}])}]$ is the mean entrance time form Q_{Δ} to $Q_{\delta\Delta}$, then the mean entrance time of the r nested quantiser $T_r \approx \overline{T}$
- For the r-nested quantiser we get:

$$N_r \approx r \frac{a}{\delta} = ar C^{\frac{1}{rn}}, T_r \approx r \overline{T}$$

- Fix $\Delta > 0$ and $1 > \delta > 0$ and assume that k(x) is the feedback that reduces Q_{Δ} into $Q_{\delta\Delta}$, then $k_i(x) = \delta^i k(\delta_i^{-1}x)$ reduces $Q_{\delta^i\Delta}$ into $Q_{\delta^{i+1}\Delta}$. We can iterate this construction (Say *r* times)
- suppose that we start in Q_{Δ} with a uniformly distributed density. Then after the system evolves under the quantised feedback for a while, it provably reaches a steady state probability \overline{g} .
- if $\overline{T} = E_{\overline{g}}[T_{(Q_{\Delta},Q_{\delta\Delta}])}]$ is the mean entrance time form Q_{Δ} to $Q_{\delta\Delta}$, then the mean entrance time of the r nested quantiser $T_r \approx \overline{T}$
- For the r-nested quantiser we get:

$$N_r \approx r \frac{a}{\delta} = ar C^{\frac{1}{rn}}, T_r \approx r \overline{T}$$

• if we vary as a function of C, fixing δ , we get a logartihmic quantiser for which:

$$N \approx \frac{a}{\delta n} \frac{\log C}{\log \delta^{-1}}, T_r \approx \frac{\overline{T}}{n} \frac{\log C}{\log \delta^{-1}}$$

We saved a lot of levels, but this time the entrance time depends on the compression rate.

- Fix $\Delta > 0$ and $1 > \delta > 0$ and assume that k(x) is the feedback that reduces Q_{Δ} into $Q_{\delta\Delta}$, then $k_i(x) = \delta^i k(\delta_i^{-1}x)$ reduces $Q_{\delta^i\Delta}$ into $Q_{\delta^{i+1}\Delta}$. We can iterate this construction (Say *r* times)
- suppose that we start in Q_{Δ} with a uniformly distributed density. Then after the system evolves under the quantised feedback for a while, it provably reaches a steady state probability \overline{g} .
- if $\overline{T} = E_{\overline{g}}[T_{(Q_{\Delta},Q_{\delta\Delta}])}]$ is the mean entrance time form Q_{Δ} to $Q_{\delta\Delta}$, then the mean entrance time of the r nested quantiser $T_r \approx \overline{T}$
- For the r-nested quantiser we get:

$$N_r \approx r \frac{a}{\delta} = ar C^{\frac{1}{rn}}, T_r \approx r \overline{T}$$

• if we vary as a function of C, fixing δ , we get a logartihmic quantiser for which:

$$N \approx \frac{a}{\delta n} \frac{\log C}{\log \delta^{-1}}, T_r \approx \frac{\overline{T}}{n} \frac{\log C}{\log \delta^{-1}}$$

We saved a lot of levels, but this time the entrance time depends on the compression rate.

• Can we do any better in terms of levels?

Saving quantisation levels

- Can we do any better in terms of levels?
- Consider a scalar system $x^+ = ax + u$ and assume that we have a controller that makes an interval Δ controlled invariant

Saving quantisation levels

- Can we do any better in terms of levels?
- Consider a scalar system $x^+ = ax + u$ and assume that we have a controller that makes an interval Δ controlled invariant
- How do the trajectory move inside the invariant?

Saving quantisation levels

- Can we do any better in terms of levels?
- Consider a scalar system $x^+ = ax + u$ and assume that we have a controller that makes an interval Δ controlled invariant
- How do the trajectory move inside the invariant?
- If we choose the quantised control law appropriately we can inject an ergodic behaviour for almost all initial points (Zampieri and Fagnani 2003). Thereby, by simply making the V invariant we can have (V-W)-stability.

using a chaotic scheme we can have a number of levels

 $N = 2 \left\lceil |a| \right\rceil$

independent of the contraction rate!

Clearly we must have time to wait:

 $T \approx C \log C$

An application Design Example Picasso-Palopoli et al. 2004

A motivating example

In a distributed control problem we can encounter both sources of quantisation:

- Iow cost sensors/actuators
- finite communication bandwidth on shared channels

Problems:

- 1. which quantisation level on each vehicle should we utilise?
- 2. how should we distribute the shared channel capacity

• Consider a set of linear and first order systems $\dot{x}_i = a_i x_i + u_i + w_i$

- Consider a set of linear and first order systems $\dot{x}_i = a_i x_i + u_i + w_i$
- Assumptions:
 - 1. controls are quantised: $u_i \in \epsilon \mathbb{Z}$
 - 2. the channel has a finite capacity \mathcal{R} , which is *statically* allocated amongst the different systems.
 - 3. the noise is bounded: $w_i(t) \in [-w/2, w/2]$
 - 4. we use a fixed sampling period and piecewise constant control (Zoh); moreover, the feedback law is *memoryless*

- Consider a set of linear and first order systems $\dot{x}_i = a_i x_i + u_i + w_i$
- Assumptions:
 - 1. controls are quantised: $u_i \in \epsilon \mathbb{Z}$
 - 2. the channel has a finite capacity \mathcal{R} , which is *statically* allocated amongst the different systems.
 - 3. the noise is bounded: $w_i(t) \in [-w/2, w/2]$
 - 4. we use a fixed sampling period and piecewise constant control (Zoh); moreover, the feedback law is *memoryless*
- Control goal: achieve practical ($(I(\Delta_i), I(\delta_i))$ -stability) on each control loop, where I(x) = [-x/2, x/2]

- Consider a set of linear and first order systems $\dot{x}_i = a_i x_i + u_i + w_i$
- Assumptions:
 - 1. controls are quantised: $u_i \in \epsilon \mathbb{Z}$
 - 2. the channel has a finite capacity \mathcal{R} , which is *statically* allocated amongst the different systems.
 - 3. the noise is bounded: $w_i(t) \in [-w/2, w/2]$
 - 4. we use a fixed sampling period and piecewise constant control (Zoh); moreover, the feedback law is *memoryless*
- Control goal: achieve practical ($(I(\Delta_i), I(\delta_i))$ -stability) on each control loop, where I(x) = [-x/2, x/2]
- Design parameters: R_i bitrate assigned to the *i*-th system, Sampling periods T_i , control sets $\mathcal{U}_i \subseteq \epsilon_i \mathbb{Z}$

The envisioned methodology - I

Let Δ and δ be vectors of reals such that the *i*-th system is (I(Δ_i), I(δ_i))-stable; let Δ₀ and δ₀ respectively denote the minimum and the maximum required values

The envisioned methodology - I

- Let Δ and δ be vectors of reals such that the *i*-th system is (I(Δ_i), I(δ_i))-stable; let Δ₀ and δ₀ respectively denote the minimum and the maximum required values
- the design problem can be formulated as:

$$arg\min_{\mathbf{R},\mathbf{T},\boldsymbol{\Delta},\delta} f(\boldsymbol{\Delta},\delta)$$

subj. to
$$\begin{cases} \boldsymbol{\Delta} \geq \boldsymbol{\Delta}_0 \\ \delta \leq \delta_0 \\ \sum R_i \leq \mathcal{R} \\ (\mathbf{R},\mathbf{T},\boldsymbol{\Delta},\delta) feasible \end{cases}$$

The envisioned methodology - I

- Let Δ and δ be vectors of reals such that the *i*-th system is (I(Δ_i), I(δ_i))-stable; let Δ₀ and δ₀ respectively denote the minimum and the maximum required values
- the design problem can be formulated as:

$$arg\min_{\mathbf{R},\mathbf{T},\boldsymbol{\Delta},\delta} f(\boldsymbol{\Delta},\delta)$$

subj. to
$$\begin{cases} \boldsymbol{\Delta} \geq \boldsymbol{\Delta}_0\\ \delta \leq \delta_0\\ \sum R_i \leq \mathcal{R}\\ (\mathbf{R},\mathbf{T},\boldsymbol{\Delta},\delta) feasible \end{cases}$$

• the analysis allows us to identify the minimum bitrate $R_{min}^{(i)}(\Delta_i, \delta_i)$ to attain the specification (Δ_i, δ_i) . The problem is simplified as

$$arg \min_{\boldsymbol{\Delta},\delta} f(\boldsymbol{\Delta},\delta)$$

subj. to
$$\begin{cases} \boldsymbol{\Delta} \geq \boldsymbol{\Delta}_0 \\ \delta \leq \delta_0 \\ \sum R_{min}^{(i)}(\Delta_i,\delta_i) \leq \mathcal{R} \end{cases}$$

 $arg \min_{\mathbf{\Delta},\delta} f(\mathbf{\Delta}, \delta)$ subj. to $\begin{cases} \mathbf{\Delta} \ge \mathbf{\Delta}_0 \\ \delta \le \delta_0 \\ \sum R_{min}^{(i)}(\Delta_i, \delta_i) \le \mathcal{R} \end{cases}$

by numeric optimisation techniques coming up with an optimal solution $({\Delta}^*, \delta^*)$

• from the optimal bitrate R^* we can reconstruct the optimal sampling period T_i^* and the optimal set of controls \mathcal{U}_i^*

• Consider a single plant (since we are dealing with scalar plants we can refer the *T*-sampled discrete time equivalent)

- Consider a single plant (since we are dealing with scalar plants we can refer the *T*-sampled discrete time equivalent)
- let $l(\Delta, \delta, T)$ be the minimum cardinality of the control set $\mathcal{U} \in \epsilon \mathbb{Z}$ that attains $(I(\Delta), I(\delta))$ -stability

Identifying $R_{min}(\Delta,\delta)$

- Consider a single plant (since we are dealing with scalar plants we can refer the *T*-sampled discrete time equivalent)
- let $l(\Delta, \delta, T)$ be the minimum cardinality of the control set $\mathcal{U} \in \epsilon \mathbb{Z}$ that attains $(I(\Delta), I(\delta))$ -stability
- inverting $l(\Delta, \delta, T) \leq 2^{\lceil RT \rceil}$, we get that (R, T, Δ, δ) is feasible iff $R \geq \rho(\Delta, \delta, T) = \frac{1}{T} \lceil \log_2 l(\Delta, \delta, T) \rceil$

Identifying $R_{min}(\Delta, \delta)$

- Consider a single plant (since we are dealing with scalar plants we can refer the *T*-sampled discrete time equivalent)
- let $l(\Delta, \delta, T)$ be the minimum cardinality of the control set $\mathcal{U} \in \epsilon \mathbb{Z}$ that attains $(I(\Delta), I(\delta))$ -stability
- inverting $l(\Delta, \delta, T) \leq 2^{\lceil RT \rceil}$, we get that (R, T, Δ, δ) is feasible iff $R \geq \rho(\Delta, \delta, T) = \frac{1}{T} \lceil \log_2 l(\Delta, \delta, T) \rceil$
- $R_{min}(\Delta, \delta)$ can simply be found as

$$R_{min}(\Delta, \delta) = \min_{T} \rho(\Delta, \delta, T)$$

- The general problem can be numerically solved for certain classes of quantisation policies (e.g., simulation of a logarithmic quantiser on a fixed one)
- If we consider only controlled invariance of the target set δ , there are stronger (explicit) results
- For unstable plants:

As an example problem we considered the following

 $arg \min_{\delta} |\delta_0 - \delta|_{\infty}$ subj. to $\sum R_{min}^{(i)}(\delta_i) \leq \mathcal{R}$

Because R_{min} is not analytic, the feasibility region is disconnected and not convex.

As an example problem we considered the following

 $arg \min_{\delta} |\delta_0 - \delta|_{\infty}$ subj. to $\sum R_{min}^{(i)}(\delta_i) \leq \mathcal{R}$

Because R_{min} is not analytic, the feasibility region is disconnected and not convex.

However, we can use an analytic lower bound of R_{min} and come up with an easy-to-compute lower bound of the problem.

$$\underline{R}_{min}(\delta) = \frac{a}{\log\left(1 + \frac{a\delta}{a\delta + 2(w + \epsilon)}\right)}$$

An example problem - I

- Generally speaking, the lower bound can be found by finding the zero of a non-linear equation.
- If $\frac{w_i}{a_i \delta_i} \gg 1$ the expression of the lower bound is particularly neat:

$$\delta_h^* \approx \frac{2\sum_i (w_i + \epsilon_i)}{\mathcal{R} - \sum a_i}$$
$$R_h^* \approx a_h + \frac{w_h + \epsilon_h}{\sum (w_i + \epsilon_i)} (\mathcal{R} - \sum a_i)$$

• The exact solution can be found by using a Branch and Bound scheme

Conclusions

- Control with quantisation has become a very active research field in the last few years.
- In this talk we have briefly surveyed some results related to the problem of stabilisation
- Other approaches consider quantisation from a more closely information theoretical point of view (Delschamps, Nair-Evans), or using model predictive control (Picasso-Bemporad-Bicchi)
- Another very active research area is to use quantisation in planning, verification and design problems
 - lattice based analysis/synthesis for discrete-time nonholonomic systems (Bicchi-Marigo-Piccoli)
 - discrete bisimulations (Tabuada-Pappas)
- ...and we just scraped the surface!

References

- [1] N. Elia and S. Mitter, *Stabilization of Linear Systems With Limited Information*, IEEE Trans. Autom. Control, 46(9); pages: 1384–1400. 2001.
- [2] F. Fagnani and S. Zampieri Stability analysis and synthesis for scalar linear systems with a quantized feedback, IEEE Trans. Automat. Control, AC-48:1569–1584, 2003.
- [3] F. Fagnani and S. Zampieri, *Quantized stabilization of linear systems: complexity versus performance*, To appear on Transactions on Automatic Control, special issue on "Networked Control Systems". 2004.
- [4] B. Picasso, F. Gouaisbaut and A. Bicchi, Construction of invariant and attractive sets for quantized—input linear systems, Proc. of the 41st IEEE Conference on Decision and Control "CDC 2002" pages: 824–829. 2002.
- [5] S.C. Tatikonda, *Control under communication constraints*, Ph.D. thesis, Massachusetts Institute of Technology. 2000.
- [6] B. Picasso, L.Palopoli, A. Bicchi and K.H Johansson Control of distributed embedded systems in the presence of Unknown-but-bounded Nois, Control and decision conference (cdc04). 2004.